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ABSTRACT

The reliability of modeling the far-IR continuum to 13CO J = 1 → 0 spectral

line ratios applied to the Orion clouds (Wall 2006) is tested by applying the

models to simulated data. The two-component models are found to give the dust-

gas temperature difference, ∆T, to within 1 or 2 K. However, other parameters

like the column density per velocity interval and the gas density can be wrong by

an order of magnitude or more. In particular, the density can be systematically

underestimated by an order of magnitude or more. The overall mass of the clouds

is estimated correctly to within a few percent.

The one-component models estimate the column density per velocity interval

and density within factors of 2 or 3, but their estimates of ∆T can be wrong by

20 K. They also underestimate the mass of the clouds by 40-50%.

These results may permit us to reliably constrain estimates of the Orion

clouds’ physical parameters, based on the real observations of the far-IR contin-

uum and 13CO J = 1 → 0 spectral line. Nevertheless, other systematics must

be treated first. These include the effects of background/foreground subtraction,

effects of the HI component of the ISM, and others. These will be discussed in a

future paper (Wall 2006a).

Subject headings: ISM: molecules and dust — Orion
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1. Introduction

Paper 1 (Wall 2006) examined the ability of the FIR-continuum to 13CO J = 1 → 0

line intensity ratio to diagnose dust and molecular gas physical conditions. Specifically,

the COBE/DIRBE 140 µm and 240 µm continuum data (see COBE/DIRBE Explanatory

Supplement 1998) were compared with the Nagoya 4-m 13CO J = 1 → 0 spectral line data

for the Orion A (Nagahama et al. 1998) and B molecular clouds. The Iν(240 µm)/I(13CO)

ratio, or r
240

, was plotted against the 140 µm/240 µm dust color temperature, or Tdc, for

the high signal-to-noise positions (≥ 5 − σ for 140 µm, 240 µm, and 13CO J = 1 → 0) in

the Orion clouds. This plot was modeled with LTE and LVG, one-component models and

LVG, two-component models; the two-component models fit the data better than the one-

component models at the 99.9% confidence level. Tables 1, 2, and 3 of Paper I list the

resultant parameter values of the two-component model fits. The most noteworthy result

is that the two-component models demand the dust-gas temperature difference, ∆T, to be

zero within ±1 or 2 K. (Note that in the case of the two-component, two-subsample models,

the Tdc ≥ 20 K subsample still yields ∆T = 0 ± 1K if a two-component model is fitted to

that subsample. The listed results in Table 2 of Paper I are those of the one-component

model fitted to the Tdc ≥ 20 K subsample.) This result has important consequences that

were briefly mentioned in Paper I and will be discussed in detail in Paper III (Wall 2006a).

Consequently, the reliability of the derived ∆T must be tested.

In all of the modeling mentioned in Paper I, the systematic uncertainties of the derived

parameter values were evaluated by applying scale factors to the data. These systematic

uncertainties are related to uncertainties in the calibration and in certain assumptions, such

as the dust optical depth to gas column density ratio. The combined effect of these uncer-

tainties was estimated to be ±40%. Accordingly, scale factors that varied from 0.6 to 1.4

were applied to the data to see how strongly the resultant parameter values would change.

Also, the starting search grid for the two-component models was slightly shifted and re-run.

The magnitudes of the changes in the results provided another test of the systematic uncer-

tainties in the parameter values. These two tests gave similar estimates of the systematic

uncertainties. These systematic uncertainties are demonstrated in Figure 21 of Paper I,

which shows that the column densities per velocity interval and densities of both compo-

nents are uncertain by factors of a few or by more than an order of magnitude. (These

uncertainties are orders of magnitude larger than the formal uncertainties obtained from the

model fits. Accordingly, the latter uncertainties can be ignored.)

While the abovementioned tests provide rough estimates of the reliability of the results,

they do not measure any biases inherent in the method. In other words, the range of possible

parameter values that result from the modeling and from the tests may not even include the
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“true” or correct value. And we cannot know that these ranges are indicative of the correct

values, because we cannot know the correct values in the first place. This is in stark contrast

to using simulated data. With simulated data, the true, or input, values can be compared

with the resultant values from the model fits. The tests that were applied to modeling the

actual observed data can be repeated on the modeling of the simulated data. Biases or

shortcomings in the modeling technique are then clearly seen. In the following section and

its subsections, the creation of the simulated data and the results of modeling these data is

described.

Other systematics are not discussed in the current paper, but are left to Paper III.

These are the systematic effects that result when the models do not properly characterize

the contributions of other phases of the ISM, such as from HI and its dust or from some

large-scale foreground/background emission, or when they adopt an improper value of some

more basic physical parameter, such as the far-IR spectral emissivity index, β.

2. The Simulations

To better understand the strengths and weaknesses of determining gas and dust physical

conditions using the ratio of the FIR continuum to the 13CO J = 1 → 0 line, simulated data

were created. The simulations assumed that the real clouds are composed of two components:

a component 0 and a component 1. The former has constant physical conditions; i.e.,

they do not vary from one line of sight to another. The latter also has constant physical

conditions, except for the dust and gas temperatures (i.e. Td and T
K
). The component-

1 temperatures vary from line of sight to line of sight, but maintain a constant dust/gas

temperature difference, ∆T ≡ Td − T
K
. The simulations started with a map of beam-

averaged column densities (i.e., column densities that are averaged over ∼ 1◦ scales) and

component-1 dust temperatures. Td1. Model parameters were specified for two subsamples

and two components (see Table 1 for details). The two subsamples were the Td1 < 20 K

points and the Td1 ≥ 20 K points. This is not exactly the same as using Tdc = 20 K (where

Tdc is the 140 µm/240 µm color temperature) as the boundary (as was done in Paper I), but,

since Td0 = 18 K and since the column density of component 1 within each velocity interval,

i.e. Nc1

∆vc
, is factors of 4 to 10 larger than the corresponding component-0 quantity, Nc0

∆vc
(see

Table 1), component 1 dominates the emission near the Td1 = 20 K boundary by roughly an

order of magnitude. Consequently, Tdc = 20 K is equivalent to Td1 = 20 K for all practical

purposes. The model intensity maps were then generated using the procedure below:

1. The map of Td1 values determined whether a given pixel belonged to subsample 1 or

subsample 2.



– 4 –

2. The subsample to which a pixel belongs then dictated which model parameter values

belonged to that pixel. Using these values in equation (28) of Paper I gave the area

filling factor within a clump velocity width, or the c1 value, for that pixel. The observed

velocity width, ∆v, adopted was 2 km · s−1, which is the the actual observed velocity

width in the Orion clouds in the 13CO J = 1 → 0 line on the scale of 1◦. Nevertheless,

the expressions that give the observed intensities (i.e., 27 and 29 of Paper I) are actually

independent of ∆v. ∆v only determines the filling factor, c1.

3. Equations (20), (27), (31), (32), and (29) of Paper I then gave the Iν(140 µm), Iν(240 µm),

and I(13CO) intensities observable from that pixel. In addition, the color corrections

for bands 9 and 10 of COBE/DIRBE converted the Iν(140 µm) and Iν(240 µm) values

to those observable in the DIRBE bands.

4. The intensities, Iν(140 µm), Iν(240 µm), and I(13CO), then specified the uncertainties

in those intensities, σ(140 µm), σ(240 µm), and σ(13CO), based on the prescriptions

described below and based on the observed data. These uncertainties for all the pixels

represent the σ maps.

5. For the given pixel, a random number generator with a normally distributed probability

of outputs with a mean of zero and an rms dispersion of unity generated noise values

in the three wavelength bands. The noise value for each band was scaled by the σ for

that pixel and for that band (i.e. σ(140 µm), σ(240 µm), or σ(13CO)). These noise

values for all the pixels represent the noise maps.

6. The noise maps were then added to the noise-free intensity maps to produce the final

simulated maps.

The noise prescriptions mentioned above are based on the 3 × 3 smoothed maps of the

real observations. The uncertainties in these maps had approximately the following behavior:

σ(140 µm) =

{

2 MJy · sr−1, for Iν(140 µm) ≤ 60 MJy · sr−1

0.03 Iν(140 µm), for Iν(140 µm) > 60 MJy · sr−1 (1)

σ(240 µm) =

{

0.5 MJy · sr−1, for Iν(240 µm) ≤ 50 MJy · sr−1

0.01 Iν(140 µm), for Iν(240 µm) > 50 MJy · sr−1 (2)

σ(13CO) =

{

0.05 K · km · s−1, outside Orion A Field

0.005 K · km · s−1, inside Orion A Field
(3)

It should be mentioned that the sigma levels for the simulated 240 µm and 13CO maps are

actually half of those of the actual observed maps. This reduction of the sigma levels in

the simulated 240 µm and 13CO maps was done to ensure a sufficient number of high-sigma
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points. To generate the σ map for I(13CO), a portion of the map area that would represent

the lower-noise subfield within Orion A Field was chosen. The simulated maps were chosen

to be 51 pixels × 51 pixels, a total of 2601 pixels and similar to that of the Orion fields: 2609.

The area designated to have the lower noise of the Orion A Field consisted of two separate

rectangular patches with a total of 156 pixels. One of the patches included a peak in the

input column density map and the other patch included areas of low column density (see

Figure 1). The patch with the column density peak also had a peak in the component-1 dust

temperature. This was consistent with the actual observations.

Now the input column density and component-1 dust temperature maps must be spec-

ified. These maps are depicted in Figure 1. The maximum column density was cho-

sen to be roughly the same as that of the observations (i.e., the two-component models):

5 × 1022 H nuclei · cm−2. The column density map has two elliptical gaussians: one with

a low peak that crudely represents the Orion Nebula Field and one with a high peak that

crudely represents the main body of the Orion A molecular cloud. In the Orion Nebula field,

the dust temperature rises with rising column density. Consequently, the component-1 dust

temperature map has an elliptical gaussian peak corresponding to the low peak in the col-

umn density map. In the main body of the Orion A cloud, however, the dust temperature

declines with increasing column density. Therefore, the temperature map has an elliptical

gaussian valley corresponding to the high peak in the column density map. The component-

1 temperatures range from 3 to 28 K. To ensure that a small minority of the pixels had

sufficiently low temperature values, these values were placed in two patches on the left edge

of the map (see lower panel of Figure 1). The procedure above was then implemented using

the parameter values in the first two columns of Table 1 to yield the simulated maps.

Figures 2 to 5 show the results of the simulations along with some comparisons with

the observations. Figure 2 shows the distribution of pixel intensities for the 140- and 240-

µm continuum maps and for the 13CO J = 1 → 0 line map for both the simulations and

observations. The pixels represented in the histograms are only those where Iν(140 µm),

Iν(240 µm), and I(13CO) are simultaneously greater than 5-σ. This corresponds to 1465

pixels for the simulations and 674 pixels for the observations. Even after normalizing for the

factor of ∼2 greater number of high signal-to-noise pixels in the simulations, the number of

medium- and high-intensity pixels (i.e. >
∼ 200 MJy · sr−1 for Iν(140 µm) and >

∼ 100 MJy · sr−1

for Iν(240 µm)) in the 140- and 240-µm simulated maps is about 2 to 3 times higher than for

the maps of the real observations. For the I(13CO) map, the simulations have about a factor

of 5 higher number of pixels of medium- and high-intensity (i.e. I(13CO)>∼ 2 K · km · s−1)

than in the observations. All the simulated maps have a higher ratio of medium- and high-

intensity pixels to low-intensity pixels than the observations. This is especially true for the
13CO J = 1 → 0 maps. This is partly because the simulations have roughly twice the fraction
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of low r
240

values than do the observations (i.e. for r
240

<
∼ 20 MJy · sr−1 · (K · km · s−1)−1).

Nevertheless, the normalized pixel distributions of the simulations agree with those of the

observations to within factors of a few. Exact agreement is not necessary in any case,

because the purpose of the simulations is to check how well the original input parameters

are recovered, whether those parameters adequately mimic the real observations or not.

Another check of this mimicry is given in Figure 3. These are the plots of r
240

versus

Tdc upon which all of the modeling in the current work is based. The simulations adequately

reproduce the main features of the observations: the triangular cluster of points for Tdc<∼ 21 K

and the monotonic rise for Tdc>∼ 20 K. However, the simulations do not account for the

observed points that fill in the center of the triangular cluster and also do not account for

the points of r
240

>
∼ 80 MJy · sr−1 · (K · km · s−1)−1. This comparison between simulations and

observations suggests that the basic assumption (see Paper I) is not correct and that we need

appropriately chosen subsamples, each with its own set of physical conditions, to account

for the shortcomings in the simulations (see the end of Section 3.4 of Paper I). Nevertheless,

the simulated r
240

versus Tdc plot is an adequate representation of the observations. In fact,

the noise in the simulations seems to account for the low-r
240

points (i.e. the points with

Tdc = 18 to 22 K and r
240

<
∼ 15 MJy ·sr−1 ·(K ·km ·s−1)−1) mentioned in Section 3.1 of Paper I.

Figure 4 further compares the simulations with the observations, and has plots of the

one-component, continuum-derived gas column densities, Nd(H), versus the dust tempera-

ture, Td, in the one-component case. Since these are continuum-derived quantities, they

are independent of the particular parameter values of the one-component model (e.g., gas

density, gas column density per velocity interval, etc.). Again, the simulations adequately

imitate the observations. There are only slight differences. For example, the simulations

show a hook-like feature centered at Td ≃ 17.5, Nd(H) ≃ 100, which is nearly, but not

completely, absent from the observations. Another example is a spur that extends from

Td ≃ 14.3 to 18 for Nd(H) ≃ 15 in the simulations that is only hinted at in the observations.

Notice also that the simulations have a smaller vertical spread in the Td > 20 K points than

do the observations. Still, these are just minor discrepancies.

Like Figure 4, Figure 5 plots the continuum-derived gas column densities against the

dust temperature (the component-1 temperature for this figure), but this time for the two-

component, two-subsample models. For the two-component cases, the specific parameter

values do indeed matter. Specifically, the resultant parameter values from the model fits to

the actual observations are those given in Table 2 of Paper I. The resultant parameter values

from model fits to the simulations are given in Table 1 (the model results from the data with

noise). Again, the simulations satisfactorily represent the observations and have only minor

discrepancies. The most noticeable of these is the group of points with large error bars at
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Td1 = 3 to 8 for Nd(H) ≃ 150 to 500 that occur for the real observations and are not in the

simulations.

Given that the simulations are reasonable, we now examine how well the models recover

the inputs. We start with the most realistic models — the two-component, two-subsample,

LVG models — and move towards the simplistic models — the one-component models — to

see what information they can realistically recover.

2.1. Two-Component, Two-Subsample Models of the Simulations

The best fitting model curves to the simulations for the two-component, two-subsample

models are shown in Figure 6 and the corresponding parameter values are given in the last

four columns of Table 1. Columns 4 and 5 of Table 1 list the model results from fitting

the models to the data before the noise was added — i.e., the noise-free data. Columns 6

and 7 list those results for the fits to the data that have noise added. The results in these

columns can be compared with the simulation inputs in columns 2 and 3. (Column 1 gives

the parameter names.) The two subsamples were chosen from those pixels for which the

signal-to-noise ratio was ≥ 5 in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously. Of course,

the signal-to-noise ratio is not defined for the noise-free maps; so the pixels that matched

the signal-to-noise criteria in the maps with the added noise were also the pixels chosen in

the corresponding noise-free maps. Also, fitting the model required specifying the error bars,

even for the noise-free maps. The error bars were specified to be the same as those in the

corresponding maps with added noise, even though the noise-free maps had no noise and,

therefore, no errors.

A number of important conclusions result from comparing the results with the inputs.

The most important is that completely recovering the inputs even in the noise-free case is

not possible. This despite the model curves fitting the data extremely well (see Figure 6).

Accordingly, problems like not recovering the correct values of c0, nc0, or nc1 within an order

of magnitude or more are intrinsic shortcomings of the method itself and are not entirely

due to the uncertainties caused by noise in the data. Also note that some results are more

accurate in the noise-added data than in the noise-free data. For example, c0 for both the

Tdc < 20 K and Tdc ≥ 20 K subsamples was more accurately recovered in the model fits to

the data with noise than in fits to the noise-free data. This is also the case for Nc0

∆vc
for the

Tdc < 20 K subsample. Better recovery from fits to the data with noise is probably just

random luck. As discussed in Section 3.3 of Paper I, the fitting process itself has random

elements, such as the choice of starting grid. This choice affects the final results of some

parameters. Consequently, a different choice of starting grid could easily result in worse
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recovery than better.

Comparing the particular model results found here with the inputs gives a crude measure

of the accuracy of the modeling. The results of this comparison are summarized below:

• ∆T is within 1 K for the Tdc < 20 K subsample and within 2 K for the Tdc ≥ 20 K

subsample (within 1 K in the noise-free case).

• Td0 for the Tdc < 20 K subsample is known within the formal uncertainty of ≤ 1 ×

10−5 K. (For the actual observations this would be an order of magnitude larger.) For

the Tdc ≥ 20 K subsample, the value for Td0 is adopted.

• c0 is known within a factor of 2 for the Tdc < 20 K subsample (within a factor of 16

for the noise-free case). It is known within a factor of 3 for the Tdc ≥ 20 K subsample

(within a factor of 2 for the noise-free case).

•
Nc0

∆vc
is known within a factor of 3 for both subsamples (within a factor of 10 for the

noise-free case for the Tdc < 20 K subsample and within a factor of 2 for the noise-free

case for the Tdc ≥ 20 K subsample).

• Again, the product c0
Nc0

∆vc
is more accurately recovered than either of its factors. This is

known to within a factor of 2 for both subsamples (also within a factor of 2 or exactly

correct in the noise-free case depending on the subsample).

• nc0 is out by 3 orders of magnitude or exactly correct depending on the subsample

(with the same behavior in the noise-free case).

•
Nc1

∆vc
is within a factor of 2 for both subsamples (within a factor of 2 or exactly correct

in the noise-free case depending on the subsample).

• nc1 is within a factor of 6 for the Tdc < 20 K subsample and within a factor of 2 for

the Tdc ≥ 20 K subsample (within a factor of 6 or exactly correct in the noise-free case

depending on the subsample).

We discuss these accuracies in more detail after examining the results of simple two-component

models applied to the simulated data in the next subsection.

One important point is the reliability of the ∆T result. Given that the two-component

model results always yield a ∆T value that is within 1 K, or sometimes 2 K, of zero, is

it possible that the two-component models always yield this result, regardless of the true

value of ∆T? This was tested by modeling simulated maps with inputs ∆T = 8 K for the

Tdc < 20 K subsample and ∆T = 10 K for the Tdc ≥ 20 K subsample. The two-component,
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two-subsample model results were again within 1K of the input ∆T values. Therefore, ∆T

is very likely zero for the observations as well.

The best fitting model curves can find the component-1 dust temperatures and the

column densities as a function of position. These are compared with the original input values.

Figure 7 shows the recovered Td1 values plotted against the input Td1 values. Despite the

noise in the simulated maps, the recovered Td1 values match the input values to within a

few percent for the majority of (high signal-to-noise) points. The most noticeable exceptions

occur in two spurs that extend above and below the solid line plotted in the lower panel

of that figure. The upper spur represents those positions where Td1 is between about 3

and 8 K, but has been misidentified as being between 16 and 9 K. The lower spur represents

another misidentification of Td1, but in the opposite sense: Td1 is really between 17 and

20 K, but has been assigned to be between 4 and 3 K. This mistake in assigning the correct

Td1 value for some positions is easy to understand. In Figure 6, the model curve for the

Tdc < 20 K sample crosses itself; there is a vertical segment that crosses an inclined segment.

At the intersection point, the vertical segment has Td1 ≃ 3-4 K and the inclined segment has

Td1 ≃ 18 K. Therefore, any points in the r
240

versus Tdc plot near this intersection point are

easily misassigned to the vertical segment, when it really belongs to the inclined segment,

and vice versa. As the noise in the data grows larger, more points will be assigned to the

wrong segment. In this case, the number of misassigned points is only 8% of the total number

of high signal-to-noise points.

The misassignment of Td1 values changes the determination of column densities. This

is illustrated in the panels of Figure 8, which are plots of the model-derived column densities

(i.e., continuum-derived gas column densities and 13CO line-derived gas column densities)

versus the input column densities. As in the previous figure, the majority of positions show

nearly perfect agreement (within a few percent) between the model-derived column densities

and the input column densities. However, again as in the previous figure, there are two spurs

representing strong disagreements. In this figure the disagreements are factors of ∼4-6 in

either direction. Obviously, the spurs in the column density plots of Figure 8 correspond to

the spurs in the dust temperature plots of Figure 7, although in the opposite sense: the upper

spur in the dust temperature plots corresponds to the lower spur in the column density plots

and vice versa. The question is why the disagreements are around a factor of 5. Starting

with equation (40) of Paper I, we first consider the case where the Td1 of a position is 18 K,

which is numerically equal to Td0, and has been misassigned to 4 K. If the Td1 value had

been correct, then the correct column density would have been given by

Nd(H)(correct) =
fν10

(Tdc)

fν10
(Td0)

Nd1(H) , (4)

which was obtained by setting Td1 = Td0. This in turn implies Tdc = Td0 and (4) simplifies
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to

Nd(H)(correct) = Nd1(H) . (5)

But, because this data point has Td1 misassigned to some low value, we have

Nd(H)(incorrect) ≃

[

Nc1(13CO)
∆vc

]

mod

+ c0

[

Nc0(13CO)
∆vc

]

mod

c0

[

Nc0(13CO)
∆vc

]

mod

fν10
(Tdc)

fν10
(Td0)

Nd1(H) , (6)

where fν10
(Td1) << fν10

(Td0) was assumed. This assumption is especially valid in the Wien

limit, which applies to the 240 µm continuum for these temperatures. Because the Wien

limit applies, we can also state that Tdc ≃ Td0, so that fν10
(Tdc) ≃ fν10

(Td0). Using this and

dividing (6) by (5) yields

Nd(H)(incorrect)

Nd(H)(correct)
≃

[

Nc1(13CO)
∆vc

]

mod

+ c0

[

Nc0(13CO)
∆vc

]

mod

c0

[

Nc0(13CO)
∆vc

]

mod

. (7)

Using the parameter values in Table 1 for the Tdc < 20 K subsample for the data with noise

gives Nd(H)(incorrect)/Nd(H)(correct) ≃ 5 as desired. For the real observed data, the model

parameter values in Table 2 again give Nd(H)(incorrect)/Nd(H)(correct) ≃ 5. Note that in

the opposite case where the Td1 = 4 K data point is misassigned to Td1 = 18 K, the right

side of expression (7) is changed to its reciprocal or, numerically, 0.2. Even though there are

two spurs, there are many more points in the upper spur than in the lower spur; this results

in overestimate of the total mass of about 7%.

The above only explains the spur locations in the continuum-derived column density

plots of Figure 8 (i.e., the upper panels). The explanation for the 13CO-derived column

densities is similar. Instead of starting with expression (40) of Paper I as was done for

the continuum-derived column densities, we would start with (34) of Paper I. Since T
R
∝

N(13CO)/∆v for a large area of parameter space (see Section 3.3 of Paper I), the arguments

used above apply to the 13CO-derived column densities as well. The only difference is that,

now, the Wien limit does not apply and we may not be able to approximate the (T
R1

+c0TR0
)

in the denominator with c0TR0
. Nevertheless, such an approximation is still valid, because

these radiation temperatures are with respect to the cosmic background temperature of

roughly 3 K. So, for the example discussed here, where Td1 = 18 K is mistaken for Td1 = 4 K,

T
R1

/T
R0

is not 4
18

, but closer to 1
15

, more than 3 times smaller. Consequently, equation (7)

and its reciprocal are still valid for the 13CO-derived column densities. The overestimate of

the total mass from using the 13CO data is similar to that for the continuum-derived total

mass: 6%.
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Figure 9 shows that the two types of model-derived column densities agree with each

other extremely well, despite having 7% of these wrong by factors of 5. The total masses

also agree well because the erroneous column densities are wrong by the same factors for

both the continuum-derived and 13CO-derived column densities.

In summary, the simulations show that even modeling the noise-free data will not allow

perfect recovery of the parameters. Nevertheless, the simulations show that we obtain ∆T to

within 1 or 2 K (even when that ∆T is different from zero), Td0 to better than a millikelvin

for the Tdc < 20 K subsample, the component-0 density can be off by 3 orders of magnitude,

and the other parameters might be known to within about an order of magnitude. Recovery

of other quantities like the component-1 dust temperatures and the gas column densities is

apparently accurate to within a few percent for 93% of the points. The other 7% of the

points have column densities too high or too low by a factor of about 5. This results in

overestimate of 6-7% in the total mass.

2.2. Simple Two-Component Models of the Simulations

The best fitting model curve for the two-component models applied to the whole sample

of high signal-to-noise points in the simulations is shown in Figure 10. Again, these points

corresponded to those pixels for which the signal-to-noise ratio was ≥ 5 in Iν(140 µm),

Iν(240 µm), I(13CO) simultaneously. As done in Section 3.3 and Figure 21 of Paper I, Fig-

ure 11 shows the systematic effects on the resultant parameters when a scale factor applied

to the data is changed. Comparing the various panels of Figure 11 with the corresponding

panels of Figure 21 of Paper I reveals strong similarities between the models applied to the

simulations and those applied to the observed data. The range of parameter variations is

nearly identical in the two cases. However, there is one important difference between the

systematic effects on the simulated data model results and those of the observed: with the

simulated data we can specify the accuracy of the recovered results by comparing the “true”

values (i.e., the inputs) with the model results; with the actual observed data we can only

estimate such accuracy by comparing the results in different cases (i.e., with different scale

factors applied to the data or with different starting grids) with each other. The accuracy

of the recovered results for the simulations can also be tested by comparing the results in

different cases — as was done in Figure 11. By comparing this accuracy with the accuracy

obtained from comparisons with the input values, we now have insights into the estimated

accuracies of the actual observations.

An example of such comparisons is inspecting how ∆T varies in Figure 11 about the

∆T value for a scale factor of unity (i.e. SF=1.0) and then comparing this with how those
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∆T values vary about the original input value. This then tells us whether the variation of

∆T with the scale factor for the real observations (see Figure 21 of Paper I) is a realistic

measure of the uncertainty in ∆T. In Figure 11, ∆T varies within 2 K of the value, i.e.

∆T = 0 K, for SF=1.0. The input value was ∆T = 0 K. Therefore, the variation of ∆T with

the scale factor provides a reasonable estimate of the actual uncertainty in ∆T. For the

models applied to the observations, Figure 21 of Paper I shows us that ∆T varies within 1 K

of the value corresponding to SF=1.0, i.e. ∆T = 0 K. So we can say that the model ∆T value

is within 1 or 2 K of the true ∆T value. Using the same arguments applied to Td0 suggests

that this is known to within a 1 mK or less; this is undoubtedly optimistic and is dependent

on the basic assumption. (It is also dependent on other assumptions, such as whether the

spectral emissivity index, β, really is 2.0 or something nearby. Paper III suggests that Td0

can be anywhere from ∼16 to ∼19 K.) For the other parameters, which had different input

values for the two subsamples, we will compare the model results with the geometric mean

of the two inputs:

• The parameter c0 can be off by a factor of 10 from the value corresponding to SF=1.0

(for both the simulations and the observations), but is off by a factor of 40 from the

input. In addition, the model-derived c0 values for all the scale factors are systemati-

cally lower than the input. In other words, we cannot rely on varying the scale factor

to give us parameter values that will surround the true value. Again, c0 is much more

reliable when combined with Nc0

∆vc
.

•
Nc0

∆vc
itself can be out by a factor of 100 from the value corresponding to SF=1.0 (for

both simulations and observations), and is also wrong by this factor compared to the

input.

• The product c0
Nc0

∆vc
is off by at most only a factor of 10 compared to the value corre-

sponding to SF=1.0, and is also wrong by this factor compared to the input. Also,

unlike c0 alone, the range of different values of c0
Nc0

∆vc
corresponding to different scale

factors does indeed include the input value.

• nc0 is as much as a factor of 100 away from the value for SF=1.0 for the simulations,

and as much as factor 1000 away for the observations. The different nc0 values for the

simulations can be wrong by as much as a factor of 200 from the input, and the range

of these values includes the input value. It would seem, then, that the observations

would suggest a greater uncertainty in nc0 than would the simulations.

•
Nc1

∆vc
is as much as a factor of 10 from the value at SF=1.0 for both the simulations and

observations. Nc1

∆vc
can be as far as a factor of 30 from the input, which is worse than
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the comparison with the Nc1

∆vc
value at SF=1.0 would suggest. The range of possible

Nc1

∆vc
values for the different scale factors (see Figure 11) includes the input value.

• nc1 can be as far as a factors of 2 or 3 from the value at SF=1.0 for both the simulations

and observations. However, nc1 can be out by a factor of 20 from the input value, much

worse than comparison with the value at SF=1.0 implies. Also, another problem is that

the range of possible nc1 values (see Figure 11) does not include the input: the model-

derived densities are all systematically too low by more than an order of magnitude.

The most interesting conclusion is that some parameters like c0 and nc1 have a range of

values that does not include the true input value. As mentioned previously, c0 is assessed

more reliably as part of the c0
Nc0

∆vc
product, whose range of values does indeed include the

input value. nc1 still has this disadvantage, which cannot be “fixed” as easily as for c0.

Based on the comparisons of the different results, the ranges of likely values of the

different parameters have been listed in Table 2. The range of values for each parameter

assumes the minimum and maximum values as in the case of the simple, and the two-

subsample, two-component models — with some important exceptions. In the case of ∆T,

the maximum value found was +1 K, but the simulations suggest that +2 K is also possible.

Therefore, +2 K is listed. Note also that even though, for simplicity, a one-component

model was applied to the Tdc ≥ 20 K subsample, the two-component model results for that

subsample represent the likely ranges listed in Table 2. For c0 and Nc0

∆vc
, only the range of

their product was listed, in order to provide more realistic constraints on these parameters.

For the column density per velocity interval in general, it was stated in Section 3.2 of Paper I

that the lower limit had to be about 3 × 1015 13CO molecules cm−2 · (km · s−1)−1 as roughly

constrained by the large-scale properties of the cloud. For the two-component models, this

lower limit would apply to Nc1(13CO)
∆vc

+c0
Nc0(13CO)

∆vc
. However, Nc1(13CO)

∆vc
is larger than c0

Nc0(13CO)
∆vc

by factors of 3 to 4. Therefore, the first term in that expression dominates and it is sufficient

to apply that lower limit to Nc1(13CO)
∆vc

only, as was done in Table 2. As for the densities, nc0 and

nc1, putting upper limits on those is not possible, because the results are not distinguishable

from those of LTE. Consequently, only lower limits are used. Also the lower limit of nc1 has

been increased by an order of magnitude, because, as stated in the previous paragraph, all

the values of nc1 found by the simple two-component models are too low by at least an order

of magnitude.

The best fitting model curves shown in Figure 10 were used to find the component-1

dust temperatures and the column densities as a function of position. These are compared

with the original input values. Figure 12 shows the recovered Td1 values plotted against the

input Td1 values. Again, as in Figure 7, the majority of recover Td1 values match the input

values reasonably well, except for the two spurs. The noticeable difference, however, is the



– 14 –

systematic overestimate of Td1 for input Td1 values <
∼ 20 K and a systematic underestimate

of most of the Td1 values above this limit. These systematic effects are obviously the re-

sult of forcing a single curve to fit the two different subsamples: the curve systematically

underestimates a large fraction of the Tdc < 20 K subsample and overestimates most of the

Tdc ≥ 20 K subsample. This results in systematically underestimating (overestimating) the

Td1 values for the simulated data points in the Td1 < 20 K (Tdc ≥ 20 K) subsample.

The incorrect estimates of the Td1 values change the determination of the column den-

sities. This is obvious in the panels of Figure 13, which are plots of the model-derived

column densities versus the input column densities, analogous to those in Figure 8 for the

two-component, two-subsample models. As in Figure 8, there are two spurs of very large

disagreements (i.e., factors of ∼ 5 in both directions). But, unlike that figure, Figure 13

shows systematic disagreements of about 10% and 20% on either side of the solid line — the

line that represents perfect agreement. Again those disagreements follow naturally from the

disagreements seen in the plot of Td1 values in Figure 12: the points that have overestimated

Td1 values in the Tdc < 20 K subsample will have underestimated column densities and vice

versa for many of the points in the Tdc ≥ 20 K. Despite these noticeable disagreements,

the continuum-derived and 13CO-derived column densities in Figure 14 agree well, although

with noticeably larger scatter than in Figure 9 for the two-component, two-subsample mod-

els. Also, the total mass estimated from the model results is only overestimated by about 3

to 6%.

In summary, the results of the simple two-component models applied to the simulations

for different scale factors has allowed reasonable estimates of the ranges of parameter values

for all the two-component models. These ranges allow for systematic uncertainties in the

real observations and are listed in Table 2. There are noticeable systematic errors in the

derived component-1 dust temperatures and in the derived column densities. Despite these

systematic errors, the simple two-component models still give reasonable estimates of the

total mass of the Orion clouds.

2.3. One-Component, Non-LTE Models of the Simulations

The best fitting model curve for the one-component models applied to the high signal-

to-noise points in the simulations is depicted in Figure 15. As discussed in Section 3.2

of Paper I and illustrated in Figure 16 of Paper I, Figure 16 of the current paper shows

the systematic effects on the resultant parameters when a scale factor applied to the data

is changed. Comparing the three panels of Figure 16 with the corresponding panels of

Figure 16 of Paper I reveals that the models of the simulations and those of the observed
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data are similar. The range of variation of the parameters is nearly identical in the two cases,

except in the panels of the ∆T values: in that panel the model results of the simulations

have systematically lower ∆T values than those of the observations by 1 to 5 K, the larger

difference applying to the Td ≥ 20 K subsample. For this subsample, the observed data

points have lower r
240

values on average than do the simulated data points.

Also, the one-component modeling of the observed data was done a little differently

from that of the simulated data. The observed data were modeled with the one-component

models applied to the whole sample of points and then again for just the Td ≥ 20 K points.

In contrast, the simulated data were modeled with the one-component models applied to just

the Td < 20 K points and then just the Td ≥ 20 K points. In short, the Td < 20 K subsample

was not treated separately for the observed data points, but was indeed treated separately for

the simulated data points. This different treatment is because the Td ≥ 20 K subsample only

represents 12% of the high signal-to-noise points in the observed data, but represents 28% of

those points in the simulated data. Therefore, modeling the entire sample of observed data

points yields results that are nearly identical to modeling only the Td < 20 K subsample,

because these points are the majority of data points. For the simulated data, this is not

entirely the case, because the Td ≥ 20 K subsample is not such a negligible fraction of the

complete sample; therefore completely separating the two subsamples was more important

for the simulated data than for the observed data.

Now the model results are compared with the inputs. The model-derived ∆T values

are all systematically lower than the input ∆T values. For the N(13CO)/∆v and n(H2) pa-

rameters, we must find the corresponding parameters in the two-component, two-subsample

models (because these were the models used to generate the simulated maps). The contin-

uum emission of the majority of points in the Td < 20 K subsample are dominated by the

emission of component 0 and the continuum emission of all of the points in the Td ≥ 20 K

subsample are dominated by the emission of component 1. However, since the parameters

we are discussing are largely physical parameters of the molecular gas, the 13CO J = 1 → 0

line emission is a better guide in determining which component is the more relevant. The
13CO J = 1 → 0 line emission of component 1 dominates that of component 0 for all the

points, except for the small minority of points where the component 1 temperature is less

than about 4 K. Therefore, the N(13CO)/∆v and n(H2) values of the one-component models

are identified with the Nc1

∆vc
and nc1 values of the two-component models for both subsamples.

The resultant N(13CO)/∆v values compare very favorably with the known input values: the

range of N(13CO)/∆v values includes the input values of Nc1

∆vc
for the Td < 20 K and the

Td ≥ 20 K subsamples. Also four of the five N(13CO)/∆v values for the different SF values

are within a factor of 2 of the input value for the Td ≥ 20 K subsample. The densities

determined from the one-component models cover ranges that include the input values. At
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SF=1.0, the model density is within a factor of 2 of the input nc1 value of the Td ≥ 20 K

subsample. Even though the one-component model curves do not characterize the data well,

it is ironic that some parameter values, like the column density per velocity interval and the

volume density, are obtained more accurately with the one-component, two-subsample mod-

els than with the simple two-component models. It is clear then that, for some parameters,

there is a greater advantage in having two subsamples than there is in having two compo-

nents. This may be an effect of using the continuum emission, because the two subsamples

almost correspond to the two separate components when we consider just the continuum

emission.

The best fitting model curves in Figure 15 were used to find the dust temperatures and

the column densities as a function of position. Figure 17 shows the recovered Td values

plotted against the input Td1 values. As expected, the model Td values do not reproduce

all the input Td1 values, except for high Td1. Above Td1 ≃ 16 K, the model Td values are

within about 1 K of the input Td1 values. Below this temperature, the one-component Td

values increase with decreasing Td1. This is because, as Td1 decreases, component 0 and its

temperature increasingly dominate the emission. Also visible are two areas of larger error

bars and, consequently, of heightened noise (i.e. more scatter), located at Td1<∼ 7 K and at

Td1 ≃ 19-21 K. This is due to the relatively larger noise at these temperatures in all three

simulated maps (i.e., the maps of Iν(140 µm), Iν(240 µm), and I(13CO)).

The incorrectly determined Td1 values adversely affect the determination of the column

densities. This is obvious in the panels of Figure 18, analogous to the plots in the previous

subsections. To explain these plots we consider three groups of points defined in terms of

the plots that appear in Figure 5. The separate group of points that occur between Td1 = 3

and 7 K for all values of Nd(H) and for Td1 between about 7 and 17 K for Nd(H)<∼ 50 will

be called “Group 1”. The long descending (as one moves left to right) curve of points

that starts at Td1 ≃ 7 or 9 K (for the simulations and observations, respectively) with

Nd(H) = 550 and runs down to Td1 ≃ 20 K with Nd(H) ≃ 10 will be called “Group 2”.

The final ascending curve of points beyond Td1 ≃ 20 K is “Group 3”. In the panels of

Figure 18, Group 1 is the lower spur of points that runs from about (0,0) to about (100,20).

This spur corresponds to the lower spur in the column density plots of Figures 8 and 13;

as explained previously, the strong underestimates of the column densities represented by

this spur is due to the strong overestimates of the dust temperatures: component-0 emission

overwhelmingly dominates over component-1 emission when this latter component is so cold.

Assuming a single component in the modeling will then result in a dust temperature that

is the component-0 dust temperature. For the 13CO-derived column densities, Group 3 is

the group of points that runs along the slope=1 line. The nearly perfect agreement here is

because the dust temperatures for this group are correct to within a fraction of a Kelvin.
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Group 2 is the long curve that runs from the origin to the upper right of the plot in the panels

for the 13CO-derived column densities. As one ascends this curve (moving from left to right),

the column density estimates move increasingly further from the correct (i.e., input) column

densities. In Figure 17, Group 2 is the flattened V-shaped curve of points that extends

from Td1 ≃ 7 K to 20 K. As one moves to lower Td1, the model Td moves further from the

input Td1. And, as one moves to lower Td1 in Figure 17, one is moving to higher N13(H) in

Figure 18. Consequently, the model Td moving further from the input Td1 is the reason that

the model N13(H) moves further from the input N(H). Another noticeable characteristic

of the curve (of the points in Group 2) in the lower panels of Figure 18 is that its slope

increasingly deviates from unity when moving left to right and then, for input N(H)>∼ 360,

the slope curves back in the direction of slope=1. This is simply a reflection of the flattened

V-shaped curve in Figure 17 when moving right to left. The upper panels of Figure 18,

which have the continuum-derived column densities, show more extreme deviations of the

one-component-model column densities from the input column densities. These panels also

show qualitatively similar, but more extreme, slope variations in the Group 2 points than

in the lower panels. This is because these continuum observations, at wavelengths close

to the Wien limit, are much more sensitive to errors in the temperature estimates. Note

also that the Group 2 and Group 3 points are blended in the upper panels for Nd(H)<∼ 100

because of the higher uncertainties of some of the 140 µm observations compared with some

of the 13CO observations. Because of the greater sensitivity of the continuum observations

to errors in temperature, the error in the estimated total gas mass is further from the correct

value than that estimated from the 13CO observations: the simulated continuum observations

underestimate the total mass by 48% and the simulated 13CO observations underestimate

this mass by 40%.

Figure 19 has the plots of the 13CO-derived column densities versus the continuum-

derived column densities. In these plots, the disagreement is no worse than a factor of 2 to

within about 5% for the majority of points with Nd(H)>∼ 10. The overall shape of the points,

roughly reminiscent of the Loch-Ness monster, roughly reflects the points in the upper panels

of Figure 18 about a solid line with slope=1 and intercept=0. A better description is that the

points in Figure 19 represent a reflection of the points in the upper panels of Figure 18 about

the corresponding groups of points in the lower panels of that figure. The slopes represented

in Figure 19, again for the points with Nd(H)>∼ 10, range between about 0.8 and about 2.

For the one-component models applied to the real data, the slopes range from about 0.6 and

1.7 (see Figure 10 of Paper I).

In summary, the one-component models can provide reasonable estimates of the column

density per velocity interval and volume density (i.e., within factors of 2 or 3) provided that

these models are applied to the two different subsamples (i.e. with Td below and above
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20 K); these reasonable numerical estimates are possible despite the poor characterization of

the r
240

versus Td data points by the one-component models. The estimates of ∆T, however,

can be wrong by about 20 K. The one-component models result in mass estimates that are

too low by about 40-50%; the continuum-derived mass estimates being worse on average than

the 13CO-derived mass estimates due to the higher temperature sensitivity of the continuum

observations.

3. Summary and Discussion

The reliability of recovering physical conditions in the dust and gas of molecular clouds

using the far-IR continuum and the 13CO J = 1 → 0 line was tested by using simulated data.

These data were created using input beam-average column density and dust temperature

maps that crudely represented the inferred physical conditions in the Orion A and B giant

molecular clouds (see Paper I Wall 2006). Input physical parameters, with values similar to

those recovered from modeling the actual observed data (see Paper I), in combination with

the column density and dust temperature maps gave us the simulated intensity maps in the

140 µm continuum, 240 µm continuum and 13CO J = 1 → 0 spectral line. The simulated

maps assumed two subsamples of positions within the clouds and two components. The two

components were component 0, with constant physical conditions within each subsample, and

component 1, with constant physical conditions within each subsample, except for spatially

varying dust and gas temperatures. The two subsamples were defined by the component-1

dust temperature, Td1: those positions with Td1 < 20 K represent one subsample and the

positions with Td1 ≥ 20 K represent the other subsample. The point of the current paper

was to apply the models used in Paper I to the simulated maps to see how well those models

recover the input values of the physical parameters.

Given that the simulated maps are based on the two-component, two-subsample models,

fitting such models to the simulated data in the noise-free case might be expected to recover

the inputs perfectly. However, even in the noise-free case some input parameters could not

be recovered. The component-0 and component-1 densities, for example, were an order of

magnitude or more different from the inputs. The simulated maps with noise show us that

we can obtain the dust-gas temperature difference, ∆T, to within 1 or 2 K regardless of

the specific value of ∆T. The component zero dust temperature is apparently recovered to

within a fraction of a Kelvin, but see Paper III for further discussion of this. Recovery of

the component-1 dust temperatures and the gas column densities is accurate to within a few

percent for 93% of the points. The other 7% of the points have column densities too high or

too low by a factor of about 5. This results in overestimate of only 6-7% in the total mass.
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The simple two-component models applied to the simulations has shown what biases

can exist in the model results:

1. There are noticeable systematic offsets in the derived component-1 dust temperatures

and in the derived column densities from their inputs. These offsets come from forcing

a single model curve to fit through the two different subsamples.

2. About 7% of the column densities are wrong by factors of 5, as is the case for the

two-subsample, two-component models. Inspite of these systematic errors, the simple

two-component models overestimate the total mass of the clouds by only 3 to 6%.

3. Despite the varying the scale factors, the inferred component-1 densities are all sys-

tematically too low by an order of magnitude or more from the input density.

Keeping these shortcomings in mind gives us reasonable estimates of the parameter value

ranges for all the two-component models as applied to the real observations. These ranges

are listed in Table 2. The range for the component-1 density is the kind of range roughly

expected for LTE emission of the 13CO J = 1 → 0 line. The range for the component-

1 column density per velocity interval is given, as stated earlier, by the large-scale cloud

properties at the low end and by the necessity of optically thin 13CO J = 1 → 0 emission

at the high end. For component 0, the lower limit is nearly that of the master search grid.

(Note that the c0
Nc0(13CO)

∆vc
product lower limit is indeed equal to that of the master search

grid, but the Nc0(13CO)
∆vc

itself is still slightly larger than that.)

Fitting the one-component models to the simulated data shows that these models can

provide reasonable estimates of the column density per velocity interval and volume density

(i.e., within factors of 2 or 3) provided that these models are applied to the two different

subsamples (i.e. with Td below and above 20 K). The estimates of ∆T, however, can be

wrong by about 20 K. The one-component models result in mass estimates that are too low

by about 40-50%; the continuum-derived mass estimates being worse on average than the
13CO-derived mass estimates due to the higher temperature sensitivity of the continuum

observations.

These simulations have provided important insights into the reliability of the model

results. Yet other questions need to be addressed:

• What is the effect of the background subtractions used?

• How will dust associated with HI affect the results?

• Does changing the spectral emissivity index β appreciably affect the results?
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• Are there alternative kinds of models that would also explain the data?

• How representative are the results of the clouds as a whole, given that the modeled

cloud positions only represent 26% of the area of the Orion clouds ?

Paper III examines these questions and discusses the scientific implications of the results.
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Fig. 1.— The above panels contain contour maps of the inputs for the simulations. The

upper panel is the map of beam-averaged column densities in units of 1020 H nuclei · cm−2.

The lower panel is the map of component-1 dust temperatures in Kelvins. Notice that while

the column density map consists of two peaks, the temperature has one peak, which coincides

with the column density peak in the upper right, and one depression, which coincides with

the column density peak in the lower left. The temperature map also has extra low values

(between 3 and 12 K) within the boundary of the closely spaced contours that appear on the

left side of the map at the bottom and near the middle of the left side. The dashed rectangles

illustrate the positions of the patches that have the low noise values in the I(13CO) map.
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Fig. 2.— Histograms of the simulated and observed intensities for the 140 µm and 240 µm

continuum and the 13CO J = 1 → 0 line are shown. The upper panels have the histograms of

the simulated data and the lower panels have the histograms of the observed data. In all of

the panels, only those pixels with intensities above the 5-σ level in Iν(140 µm), Iν(240 µm),

I(13CO) simultaneously are represented in the histograms. This corresponds to a total of

1465 pixels in the simulated maps and 674 pixels in the observed maps.
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Fig. 3.— Plots of r
240

versus the 140 µm/240 µm color temperature are shown for the simu-

lations and for the observations. The upper panel is the plot for the simulated data and the

lower panel is for the observed data. The error bars are omitted for clarity. The panels only

include those pixels with intensities above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO)

simultaneously .
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Fig. 4.— Plots of continuum-derived gas column densities, Nd(H), for the one-component

case versus the dust temperature are given for the simulations and for the observations. The

column densities are in units of 1020 H nuclei · cm−2. The upper panel is the plot for the

simulated data and the lower panel is for the observed data. The panels include omit the

error bars for clarity. The panels only include those pixels with intensities above the 5-σ

level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Fig. 5.— Plots of continuum-derived gas column densities, Nd(H), for the two-component,

two-subsample case versus the component-1 dust temperature are shown for the simulations

and for the observations. The column densities are in units of 1020 H nuclei· cm−2. The upper

panel is the plot for the simulated data and the lower panel is for the observed data. The

panels omit the error bars for clarity. The panels only include those pixels with intensities

above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Fig. 6.— Plots of r
240

versus the 140 µm/240 µm color temperature are shown for the sim-

ulations without noise (upper panel) and with noise (lower panel) along with the best-fit

model curves for the two-component, two-subsample models. The parameter values used

to generate these curves are listed in Table 1. The panels only include those pixels with

intensities above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Fig. 7.— The component-1 dust temperature as derived from fitting a two-component,

two-subsample model is plotted against the component-1 dust temperature input values for

the simulated data. The upper panel includes the error bars in the model results, while

the lower panel omits these error bars. The lower panel also includes a solid straight line

that represents Td1(model) = Td1(input) for comparison with the plotted points. The plots

only include those pixels with the intensities above the 5-σ level in Iν(140 µm), Iν(240 µm),

I(13CO) simultaneously .
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Fig. 8.— Plots of the model gas column densities, Nd(H) and N13(H), for the two-component,

two-subsample case versus the input column density values are shown for the simulations.

All column densities are in units of 1020 H nuclei · cm−2. The upper panel is the plot for

the continuum-derived column densities, Nd(H), and the lower panel is for the 13CO-derived

column densities, N13(H). The panels omit the error bars for clarity. The right panels also

include a solid line representing the hypothetical case of agreement between the inputs and

the model results (i.e. slope=1 and y-intercept=0). The panels only include those pixels

with intensities above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Fig. 9.— Plot of the continuum-derived gas column densities, Nd(H), versus the 13CO-derived

gas column densities, N13(H), is shown for the simulations, where the column densities were

derived using the parameters from the best-fit two-component, two-subsample models. All

column densities are in units of 1020 H nuclei · cm−2. The plot includes a solid straight

line that represents N13(H) = Nd(H) for comparison with the plotted points. The plots

only include those pixels with the intensities above the 5-σ level in Iν(140 µm), Iν(240 µm),

I(13CO) simultaneously . The error bars are omitted for clarity.
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Fig. 10.— Plot of r
240

versus the 140 µm/240 µm color temperature is shown for the sim-

ulations along with the best-fit model curves for the two-component models. The plots

only include those pixels with the intensities above the 5-σ level in Iν(140 µm), Iν(240 µm),

I(13CO) simultaneously . Error bars have been omitted for clarity.
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Fig. 11.— The effect of the systematic uncertainties on the resultant parameters from the

fits of the two-component, LVG model curves to the simulated data is shown. The effect

of these uncertainties was tested by applying the scale factors 0.6, 0.8, 1.0, 1.2, and 1.4

to the model curves and fitting the parameters for each scale factor. Except for the plots

for ∆T and Td0, all plots are semi-logarithmic where the vertical axes cover the about the

same logarithmic difference in range (about 3 orders of magnitude). This allows easy visual

determination of which parameters have the smallest systematic uncertainties.
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Fig. 12.— The component-1 dust temperature as derived from fitting a two-component

model is plotted against the component-1 dust temperature input values for the simulated

data. The upper panel includes the error bars in the model results, while the lower panel

omits these error bars. The lower panel also includes a solid straight line that represents

Td1(model) = Td1(input) for comparison with the plotted points. The plots only include

those pixels with the intensities above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) si-

multaneously .
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Fig. 13.— Plots of the model gas column densities, Nd(H) and N13(H), for the two-component

case versus the input column density values are shown for the simulations. All column den-

sities are in units of 1020 H nuclei · cm−2. The upper panel is the plot for the continuum-

derived column densities, Nd(H), and the lower panel is for the 13CO-derived column densi-

ties, N13(H). The panels omit the error bars for clarity. A solid line is included in each panel

that represents the hypothetical case of agreement between the inputs and the model results

(i.e. slope=1 and y-intercept=0). The panels only include those pixels with intensities above

the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Fig. 14.— Plot of the continuum-derived gas column densities, Nd(H), versus the 13CO-

derived gas column densities, N13(H), is shown for the simulations, where the column densi-

ties were derived using the parameters from the best-fit two-component models. All column

densities are in units of 1020 H nuclei · cm−2. A solid straight line is included that represents

N13(H) = Nd(H) for comparison with the plotted points. The plots only include those pixels

with the intensities above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .

Error bars are omitted for clarity.
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Fig. 15.— Plot of r
240

versus the dust temperature is shown for the simulations along with

the best-fit model curves for the one-component models. These models were applied to the

Td < 20 K and Td ≥ 20 K subsamples separately. The plots only include those pixels with

the intensities above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously . Error

bars have been omitted for clarity.
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Fig. 16.— The effect of the systematic uncertainties on the resultant parameters from the

fits of the LVG model curves to the simulated data is shown. The effect of these uncertainties

was tested by applying scale factors to the model curves and fitting the parameters for each

scale factor. The left panel shows the resultant ∆T values, the center panel shows the

resultant N(13CO)/∆v values, and the right panel shows the n(H2) values. The solid line in

each panel represents the resultant parameter values for the fits to the subsample of points

with Td < 20 K. The dotted line represents the resultant parameter values for the fits to

the subsample of data with Td ≥ 20 K. Notice that the plotted points have been slightly

displaced horizontally from their true scale factor values for clarity. The error bars represent

the formal error bars for each model fit and are the minimum grid spacing, for the grid of

LVG models used, necessary to increase χ2 by a minimum of χ2
ν
. These formal errors are

therefore very conservative estimates of the true formal errors.
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Fig. 17.— The dust temperature as derived from fitting a one-component model is plotted

against the component-1 dust temperature input values for the simulated data. The upper

panel includes the error bars in the model results, while the lower panel omits these error bars.

The lower panel also includes a solid straight line that represents Td1(model) = Td1(input) for

comparison with the plotted points. The plots only include those pixels with the intensities

above the 5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .



– 38 –

Fig. 18.— Plots of the model gas column densities, Nd(H) and N13(H), for the one-component

case versus the input column density values are shown for the simulations. All column den-

sities are in units of 1020 H nuclei · cm−2. The upper panel is the plot for the continuum-

derived column densities, Nd(H), and the lower panel is for the 13CO-derived column densi-

ties, N13(H). The panels omit the error bars for clarity. A solid line is included in each that

represents the hypothetical case of agreement between the inputs and the model results (i.e.

slope=1 and y-intercept=0). The panels only include those pixels with intensities above the

5-σ level in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Fig. 19.— Plots of the continuum-derived gas column densities, Nd(H), versus the 13CO-

derived gas column densities, N13(H), are shown for the simulations, where the column

densities were derived using the parameters from the best-fit one-component models. All

column densities are in units of 1020 H nuclei · cm−2. The upper panel includes the error

bars in the model results, while the lower panel omits these error bars. The lower panel

also includes a solid straight line that represents N13(H) = Nd(H) for comparison with the

plotted points. The plots only include those pixels with the intensities above the 5-σ level

in Iν(140 µm), Iν(240 µm), I(13CO) simultaneously .
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Table 1. Parameter Values for the Simulations

Parameter Input Values Model Results (Noise Free) Model Results (with Noise)

Tdc < 20 K Tdc ≥ 20 K Tdc < 20 Ka Tdc ≥ 20 Kb Tdc < 20 Kc Tdc ≥ 20 Kd

∆Te 0 0 −1 0 −1 2

c0
f 1.0 0.4 0.063 0.63 1.6 0.13

Td0
e 18 18 18 18 18 18

Nc0(13CO)
∆vc

g 5.0 × 1015 5.0 × 1014 5.0 × 1016 3.2 × 1014 2.0 × 1015 5.0 × 1015

nc0
h 3.2 × 104 1.0 × 104 5.6 × 101 1.0 × 104 3.2 × 101 1.0 × 104

c0
Nc0(13CO)

∆vc

g 5.0 × 1015 2.0 × 1014 3.2 × 1015 2.0 × 1014 3.2 × 1015 6.5 × 1014

Nc1(13CO)
∆vc

g 2.0 × 1016 5.0 × 1015 1.3 × 1016 5.0 × 1015 1.3 × 1016 3.2 × 1015

nc1
h 3.2 × 104 5.6 × 103 5.6 × 103 5.6 × 103 5.6 × 103 1.0 × 104

χ2
ν

— — 1.59 × 10−2 6.23 × 10−4 1.15 1.90

ν — — 1129 366 1066 389

aFormal relative errors are ≤ 1 × 10−5 for all parameters, except ∆T and Td0, which have formal

absolute errors of ≤ 1 × 10−5 K.

bFormal relative errors are ≤ 1 × 10−1 for all parameters, except ∆T and Td0. ∆T has a formal

absolute error of ≤ 1 × 10−1 K. Td0 was simply adopted to be 18 K.

cFormal relative errors are ≤ 3 × 10−5 for all parameters, except ∆T and Td0, which have formal

absolute errors of ≤ 3 × 10−5 K.

dFormal relative errors are ≤ 2 × 10−2 for all parameters, except ∆T and Td0. ∆T has a formal

absolute error of ≤ 2 × 10−2 K. Td0 was simply adopted to be 18 K.

eIn units of Kelvins.

fDimensionless.

gIn units of 13CO molecules · cm−2 · (km · s−1)−1.

hIn units of H2 molecules · cm−3.
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Table 2. Best Estimates of Parameter Value Rangesa

Parameter Range of Values

∆Tb −1 to +2 K

Td0 18 Kc

c0
Nc0(13CO)

∆vc
2.0 × 1014 to 5.0 × 1015 13CO cm−2 · (km · s−1)−1

nc0 >
∼ 20 H2 cm−3

Nc1(13CO)
∆vc

d 3 × 1015 to 2 × 1016 13CO cm−2 · (km · s−1)−1

nc1 >
∼ few × 103 H2 cm−3

aSee Subsection 2.2 for details.

bAssuming two-component models applied to both subsamples.

cThe uncertainty of this will be dealt with in Paper III.

dFor the two-component models applied to the two subsamples,

the Nc1(13CO)
∆vc

value would be at the higher end of this range for the

Tdc < 20 K subsample and at the lower end for the Tdc ≥ 20 K

subsample.


