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ABSTRACT

An improved formulation for the N(H2)/I(CO) conversion factor or X-factor

is proposed. The statement that the velocity-integrated radiation temperature

of the 12CO J = 1 → 0 line, I(12CO), “counts” optically thick clumps is quan-

tified using the formalism of Martin et al. (1984) for line emission in a clumpy

cloud. Adopting the simplifying assumptions of thermalized 12CO J = 1 → 0

line emission and isothermal gas, an effective optical depth, τef , is defined as the

product of the clump filling factor within each velocity interval and the clump

effective optical depth as a function of the optical depth on the clump’s central

sightline, τ0. The clump effective optical depth is well approximated as a power

law in τ0 with power-law index, ǫ, referred to here as the clump “fluffiness,” and

has values between zero and unity. While the 12CO J = 1 → 0 line is optically

thick within each clump (i.e., high τ0), it is optically thin “to the clumps” (i.e.,

low τef). Thus the dependence of I(CO) on τef is linear, resulting in an X-factor

that depends only on clump properties and not directly on the entire cloud. As-

suming virialization of the clumps yields an expression for the X-factor whose

dependence on physical parameters like density and temperature is “softened”

by power-law indices of less than unity that depend on the fluffiness parameter,

ǫ. The X-factor provides estimates of gas column density because each sightline

within the beam has optically thin gas within certain narrow velocity ranges.

Determining column density from the optically thin gas is straightforward and

parameters like ǫ then allow extrapolation of the column density of the optically

thin gas to that of all the gas. Implicit in this formulation is the assumption

that fluffiness is, on average, constant from one beam to the next. This is also

required to some extent for density and temperature, but the dependence of the

X-factor, Xf , on these may be weaker.

http://arXiv.org/abs/astro-ph/0610209v3
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One important suggestion of this formulation is that virialization of entire

clouds is irrelevant. The densities required to give reasonable values of Xf are

consistent with those found in cloud clumps (i.e. ∼ 103 H2 cm−3). Thus virial-

ization of clumps, rather than of entire clouds, is consistent with the observed

values of Xf . And even virialization of clumps is not strictly required; only a

relationship between clump velocity width and column density similar to that

of virialization can still yield reasonable values of the X-factor. The underlying

physics is now at the scale of cloud clumps, implying that the X-factor can probe

sub-cloud structure.

The proposed formulation makes specific predictions of the dependence of Xf

on the CO abundance and of the interpretation of line ratios. In particular, the
13CO J = 1 → 0/12CO J = 1 → 0 line ratio values observed in the Orion clouds

suggest that ǫ ≃ 0.3 ± 0.1. If the majority of the 12CO J = 1 → 0 emission

originates in structures with an r−2 density variation, then the constraints on

ǫ also constrain the ratio of the outer-to-inner radii of the r−2 region within

the clumps. Specifically, this ratio for spherical clumps must be 2 to 9 and

for cylindrical clumps it must be 4 to 42. This is apparently consistent with

observations, but higher spatial resolution is necessary to ensure that the observed

ratios are not just lower limits. This formulation also ties the narrow range of

the observed values of the 13CO J = 1 → 0/12CO J = 1 → 0 line ratio to the

relative constancy of the X-factor.

The properties of real clumps in real molecular clouds can be used to estimate

the X-factor within these clouds and then be compared with the observationally

determined X-factor. This yields X-factor values that are within a factor of 2

of the observed values. This is acceptable for the first attempt, but reducing

this discrepancy will require improving the formulation. While this formulation

improves upon that of Dickman et al. (1986), it has shortcomings of its own.

These include uncertainties as to why ǫ seems to be constant from cloud to

cloud, uncertainties in defining the average clump density and neglecting certain

complications, such as non-LTE effects, magnetic fields, turbulence, etc.

Despite these shortcomings, the proposed formulation represents the first ma-

jor improvement in understanding the X-factor because it is the first formulation

to include radiative transfer.

Subject headings: ISM: molecules and dust — Orion
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1. Introduction

One of the most basic questions that can be asked in any field of research is about the

quantity of the material under investigation. In studies of the interstellar medium (ISM),

for instance, the amount of gas and dust bears on questions of the physical mechanisms

that effect and control the ISM and, consequently, how that ISM evolves and can affect the

evolution of an entire galaxy. In particular, the amount of molecular gas in a cloud, cloud

complex, spiral arm, or galaxy constrains the number of stars that form and the way that

they form. The workhorse molecule for estimating molecular gas masses has been, and still

is, CO (e.g., see IAU Symp.#170, 1997, and references therein). Specifically, observations

of the J = 1 → 0 rotational line of the isotopologue, 12C16O (just CO for short), permit

simple, but crude, estimates of the mass of molecular hydrogen in an astronomical source.

The velocity-integrated radiation temperature, I(CO), often called the integrated intensity ,

is multiplied by a standard conversion factor, N(H2)/I(CO), to yield the molecular hydrogen

column density, N(H2), which gives the H2 mass of the source after integrating over the

source’s projected area. The most current value of this conversion factor is about 2 ×
1020 H2 cm−2 · (K · km · s−1)−1 for the molecular gas in the disk of our Galaxy (Dame et al.

2001).

Why the CO J = 1 → 0 line should yield an estimate of column density is far from clear.

Even if this line were optically thin, the conversion factor would depend in a simple way on

the physical conditions in the molecular gas. Given that CO has many rotational levels and

that the spacings of these levels (in temperature units) are comparable to the temperatures

found in molecular gas, the N(H2)/I(CO) conversion factor would depend, at the very least,

on the gas kinetic temperature. Given that the densities inferred with molecular clouds (of

at least ∼ 103 H2 cm−3) are comparable to, and not much higher than, the critical densities

of the observed rotational transitions, then it is obvious that N(H2)/I(CO) should also have

at least a weak dependence on molecular gas density. Another obvious dependence would be

on the abundance of CO relative to H2, X(CO). If these physical conditions were known, then

the molecular hydrogen column density could be recovered easily (see Appendix A of Wall

2006). Even if these conditions are not known exactly, observations of molecular clouds on

galactic scales would yield reasonable estimates of molecular gas column densities, because

reasonable values for the relevant physical parameters are well known and are relatively con-

stant from source to source. For example, estimating the mass of the molecular medium of an

entire galaxy using an optically thin molecular line would be, on average, more reliable than

estimating the mass of a molecular cloud core of unknown physical conditions, because the

physical conditions in the molecular gas averaged over the scale of a galaxy are less extreme

and vary much less from galaxy to galaxy than they do from cloud core to cloud core. In

any event, the conversion from integrated intensity to column density is very straightforward
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and relatively simple in the optically thin case. However, as is well known (e.g., see Evans

1980; Kutner 1984; Evans 1999), the CO J = 1 → 0 line is optically thick, obfuscating any

simple explanation as to why it should probe molecular gas column densities.

Other tracers of molecular gas mass exist, tracers that do not possess the potentially

serious uncertainties posed by CO J = 1 → 0. The rotational lines of the isotopologues
13C16O and 12C18O (just 13CO and C18O in short form), for example, can be optically thin

and, consequently, their integrated intensities have a straightforward relationship with the

molecular gas column density (provided the physical conditions are known). While poten-

tially simpler to use for determining column densities, these optically thin lines are nor-

mally factors of about 3 to 50 weaker than the CO J = 1 → 0 line (e.g., Kutner 1984;

Langer & Penzias 1990; Nagahama et al. 1998; Maddalena et al. 1986); the 12CO lines are

better for mapping large areas of molecular gas or for detecting weak sources, such as high-

redshift galaxies (e.g., Brown & Vanden Bout 1992; Barvainis et al. 1997, 1998; Alloin et al.

2000; Carilli et al. 2002,a). This makes the J = 1 → 0 line of CO, and the N(H2)/I(CO) fac-

tor, more useful or even essential in estimating the total molecular gas mass in some sources,

resulting in a strong incentive for understanding the N(H2)/I(CO) factor’s behavior.

The usual attempts at accounting for why the N(H2)/I(CO) factor, or X-factor (or

Xf), is relatively constant on multi-parsec scales are variations of the explanation given by

Dickman et al. (1986), hereafter DSS86 (e.g., Sakamoto 1996). A summary of the DSS86

explanation follows. If T
R

is the peak radiation temperature of the CO J = 1 → 0 line

and ∆v is the appropriately defined velocity width of this line, then I(CO) = T
R
∆v. If the

molecular gas under observation is virialized, then the observed velocity width is related to

the mass of this gas and, therefore, the gas column density averaged over the solid angle

subtended by the observed gas. It was then easy to show that N(H2)/I(CO) ∝ n0.5/T
R
.

The n was the gas density averaged over the virialized volume of gas. DSS86 found that n

had to be ∼ few × 102 H2 cm−3 to give the observed value of N(H2)/I(CO); therefore it was

assumed that this volume included entire clouds. Because the CO J = 1 → 0 line is optically

thick, relatively easily thermalized (compared to higher rotational lines of CO), and may

almost fill the radio telescope’s beam at the line peak, it has been assumed that T
R
≃ T

K
,

where T
K

is the gas kinetic temperature, T
K

(e.g., Kutner & Leung 1985; Weiss et al. 2001).

Even if the gas does not fill the beam (a point to which we will return later), we would

have T
R

roughly proportional to T
K

and we would still have N(H2)/I(CO) ∝ n0.5/T
K
. The

basic argument is that the quantity n0.5/T
K

does not strongly vary on multi-parsec scales,

especially due to the weak dependence on density, resulting in a fairly stable value of X.

Observational evidence does indeed seem to support a roughly constant value of the X-

factor to within a factor of about 2 for the disk of our Galaxy, where X ≃ 2×1020 cm−2 · (K ·
km · s−1)−1 (see, e.g., Dame et al. 2001; Strong et al. 1988, and references therein), although
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the observations of Sodroski et al. (1994) and Strong et al. (2004) suggest a higher value

of Xf in the outer disk (a claim that is at odds with Carpenter et al. 1990). The values

of the X-factor that apply to the disks of other spiral galaxies are often within factors of

about 3 of that of the Galactic disk X-factor (e.g., Young & Scoville 1982; Adler et al. 1992;

Guélin et al. 1995; Nakai & Kuno 1995; Brouillet et al. 1998; Rand et al. 1999; Meier et al.

2000, 2001; Boselli et al. 2002; Rosolowski et al. 2003).

Nonetheless, there is good observational evidence that the usual value of the X-factor

does not always apply. In the centers of external galaxies, the X-factor is factors of about

5 or more lower than the standard value (e.g., Rickard & Blitz 1985; Israel 1988; Wall et al.

1993; Regan 2000; Paglione et al. 2001), as well as in the central region of our own Galaxy

(Sodroski et al. 1995; Dahmen et al. 1997, 1998). In contrast, clouds in the central region of

the galaxy M 31 have an X-factor that is an order of magnitude larger than that for the disk

of our Galaxy (Sofue & Yoshida 1993; Loinard & Allen 1998). The high-latitude translucent

clouds in our Galaxy show X-factor variations with a total range of an order of magnitude

(see Magnani et al. 1998). In some infrared luminous galaxies there is evidence that the X-

factor can be roughly an order of magnitude lower than the standard value (Yao et al. 2003).

In irregular galaxies, the X-factor can be more than an order of magnitude higher than the

standard value (e.g., Israel 1988; Dettmar & Heithausen 1989; Israel 1997,a; Madden et al.

1997; Fukui et al. 1999). A detailed discussion of the shortcomings of the X-factor can be

found in Maloney & Black (1988)(also see Israel 1988; Kutner & Leung 1985).

Hence, any complete explanation or theory of the X-factor must allow for and account

for inferred variations of Xf in some cases and, at the same time, relative stability of Xf in

other cases. This is a difficult balancing act, but achieving such a theory is important for the

very basic reason that scientific tools must be thoroughly understood. While there are a few

articles that explore the underlying physics of Xf (e.g., DSS86 Maloney & Black 1988; Israel

1988; Kutner & Leung 1985), there are literally hundreds of articles in the literature that use

or mention the X-factor without a detailed examination of its physical properties (including

even Wall et al. 1996). This is in stark contrast to the situation with supernovae type Ia

(SNe Ia), for example. SNe Ia can be used as standard candles (Phillips 1993; Reiss et al.

1995, 1996; Hamuy et al. 1996,a) and can constrain cosmological models (Reiss et al. 1998;

Perlmutter et al. 1999). While these supernovae are often used as standard candles, there

is also much theoretical and observational work to understand SNe Ia (e.g. Sauer et al.

2006; Wang 2007; Reiss & Livio 2006; Garg et al. 2007; James et al. 2006; Neill et al. 2006;

Borkowski et al. 2006). Such work will elucidate why SNe Ia are standard candles, or why

they might not be in some cases (see Howell et al. 2006). In a sense, the X-factor is almost

a standard candle that relates surface brightness to surface density (i.e., I(CO) to N(H2)).

And yet there is comparatively little effort to shed light on the physics underpinning the
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X-factor.

Furthermore, there are a number of more specific reasons for understanding Xf :

Reliable molecular gas mass estimates. Among other things, this can refine our under-

standing of star formation yields (i.e., what fraction of the gas goes into star formation).

Improved knowledge of molecular cloud structure and physics. Better comprehension

of the X-factor can constrain estimates of molecular cloud physical parameters and can

supply new insights into star formation processes.

Improved radiative transfer theory. While it is unlikely that there would be funda-

mental improvements of radiative transfer theory, such improvements are still possible,

benefiting astrophysical theory in general.

These represent possible long-term goals of research into the physics underlying the X-factor.

The goals of the current paper are considerably more modest: addressing the deficiencies

of the DSS86 explanation of the X-factor, improving upon this explanation, and examining

a few consequences of the formulation proposed here. Improvements are necessary because

DSS86 has the following problems:

1. No treatment of radiative transfer. This is a fundamental problem with DSS86. At

first glance, it might seem superfluous to treat radiative transfer in the optically thick

case. However, if we consider a clumpy medium, where the clumps can have optically

thin edges and optically thin frequencies in their line profiles, then treating radiative

transfer is essential for understanding the X-factor. In particular, the optically thin

limit of CO J = 1 → 0 must also be included. Any complete treatment must include

the optically thin case, whether this case is observed in nature or not. This case cannot

be included easily in the DSS86 explanation because it includes the virial theorem

without including radiative transfer — virialization by itself says nothing about the

optical depth of the emission.

2. Sensitivity to T
K

and n(H2). As discussed in Wall (2006), I(CO) and the X-factor

estimate the molecular hydrogen column densities to within factors of about 2 of the

values determined from optically thin tracers for the majority of positions in the Orion

clouds. And yet we know from Wall (2006) (looking at two-component model tempera-

tures), the range of gas kinetic temperatures can be an order of magnitude. In general,

we know that molecular cloud kinetic temperatures and densities have a full range of

an order of magnitude on multi-parsec scales (cf. Sanders et al. 1985; Sakamoto et al.

1994; Helfer & Blitzer 1997; Plume et al. 2000). Since the X-factor supposedly varies
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as n0.5/T
K
, the temperature and density variations can each change Xf by factors of

3 to 10 (unless n0.5 were to vary like T
K
, but this is unlikely to be true in general,

especially if there is pressure equilibrium). Thus the Xf of DSS86 is too sensitive to

the density and kinetic temperature. Having a weaker dependence of Xf on n and

T
K
, like X ∝(n/T

K
)0.3, would resolve this sensitivity problem; variations of an order

of magnitude in either n or T
K

would allow X to vary by less than a factor of 2.

3. Virialization of entire clouds. DSS86 require low densities (i.e. n(H2) ∼few×102 cm−3)

to obtain the observed value of the X-factor. Given that the critical density of the

CO J = 1 → 0 transition is ∼ 3 × 103 H2 cm−3, the densities of the CO-emitting

structures are about an order of magnitude higher (also see the average densities of the

filaments found by Nagahama et al. 1998). The low density required by DSS86 may

represent the density averaged over an entire cloud. For the Orion A and B clouds,

this volume-averaged density is between about 200 and 600 H2 cm−3, depending on

the precise assumptions used. Therefore, DSS86 are assuming that entire clouds are

stable and virialized. Some evidence suggests that larger molecular clouds are indeed

virialized (i.e. for masses >∼ 104 M⊙, e.g., see Heyer et al. 2001; Simon et al. 2001), while

other evidence suggests that many molecular clouds may not be (Pringle et al. 2001;

Clark & Bonnell 2004; Vazquez-Semadeni et al. 2007(@), especially in extragalactic

systems (e.g., see Israel 2000). Also, the X-factor seems to yield reasonable column

density estimates for gas on scales smaller than entire clouds (e.g., Wall 2006).

4. Stronger dependence of peak T
R

on N(H2) than of ∆v on N(H2) is not explained.

DSS86 require that the observed velocity width of the line depends on the gas col-

umn density. However, there is evidence that it is the peak radiation temperature,

T
R
, that depends on N(H2) and that ∆v has only a weak dependence on N(H2) (see

Figure 1 and Wall 2006; Heyer et al. 1996; Pichardo et al. 2000; Ostriker et al. 2001;

Ballesteros-Paredes & Mac Low 2002).

The purpose of the current paper is to propose an improved approach for understanding the

X-factor that will resolve, or at least mitigate, the problems with DSS86. For example, the

explanation proposed here includes radiative transfer in a clumpy medium and shows how

the optically thick CO J = 1 → 0 emission of a cloud can be sensitive to the optical depths

of the individual clumps. As a result, this explanation will permit, in some circumstances,

a very weak dependence on T
K

and n(H2). Also, even though we will also use the virial

theorem (except in one case), we can apply it to scales smaller than entire clouds. And

the X-factor in the current proposed explanation will lose its dependence on virialization

in the optically thin case. In addition, the proposed approach will naturally explain the

dependence of the peak T
R

on N(H2). This improved approach has shortcomings of its own,

but nevertheless represents the first major improvement in understanding the X-factor since
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DSS86, because it is the first formulation to include radiative transfer. (The reader may also

consult Wall 2006c, for a very brief description of the method.)

2. A Formulation for the X-Factor

2.1. Radiative Transfer in a Clumpy Cloud

The X-factor may yield a reasonable estimate of the molecular gas column density,

because the integrated intensity of the CO J = 1 → 0 line is essentially counting optically

thick clumps in the gas in the beam (e.g., see Evans 1999). Two clumps on the same line of

sight within the beam will be, on average, separated in velocity by more than the velocity

widths of the individual clumps, thereby allowing the clumps to contribute their intensities

to separate velocities within the line profile without absorption of the emission from the

more distant clump. And clumps at the same velocity within the line profile will be, on

average, at different locations within the beam, their intensities simply added together at

that velocity within the profile. This explanation does not, by itself, directly relate the

masses of individual clumps to the observed integrated intensity, because, again, the clumps

are optically thick in the CO J = 1 → 0 line. Applying only the DSS86 approach to the

clumps will not work, because, as discussed in the introduction, DSS86 and the observed

value of the X-factor together require densities an order of magnitude lower than is found

in the clumps of real clouds. The DSS86 derivation of the X-factor depends on the beam-

averaged column density, N , and the observed velocity width, ∆v. We need a treatment of

the problem in which the beam-averaged quantities, N and ∆v, are cancelled out in favor

of the corresponding quantities for an individual clump, i.e., Nc and ∆vc. And we need a

treatment of the radiative transfer in a clumpy medium.

Martin et al. (1984) (hereafter MSH84) developed a method for describing radiative

transfer through a clumpy medium in a highly simplified case: they assumed that each

clump was homogeneous and in LTE. For additional simplicity, they also assumed that

the clumps were identical, although they pointed out that their method could be easily

generalized to clumps with a spectrum of properties (see the Appendix of MSH84). The

assumption of LTE was necessary because the implicit assumption is that the excitation

temperature of the transition is constant throughout each clump, which is easily attained

if the density is high enough for LTE. If the density is not high enough for LTE, then

the populations of the rotational levels are affected by the ambient radiation field at the

frequency of the line: all other things being equal, the molecules on the surface of a clump

will be less excited than those in the clump center, because the former only see the radiation

from roughly 2π steradians of solid angle, while the latter see it from the full 4π steradians.
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This results in a spatial gradient in the line’s excitation temperature. If the density is high

enough for the transition to be in LTE, then this excitation temperature will be equal to

the kinetic temperature of the gas throughout the clump. Since the clump is assumed to be

homogeneous, this kinetic temperature is constant throughout the clump, thereby ensuring

that the line’s excitation temperature is also constant. These assumptions are particularly

appropriate for the CO J = 1 → 0 line: because of its high optical depth (i.e., τ ∼ few)

and low critical density (i.e., n
crit

≃ 3× 103 cm−3), this line is largely thermalized (i.e., close

to LTE). Hence the method of MSH84 is appropriate here.

MSH84 used a statistical approach to find the appropriately averaged optical depth

on a sightline through a cloud with clumps in a vacuum. The effective optical depth on

a given sightline was expressed in terms of the individual clump opacities and the mean

number of clumps on a sightline with velocities within a clump’s velocity width for the

case of identical clumps. This effective optical depth is the expectation value of the total

optical depth of the clumps on a given sightline, considering the probability of a given

clump impact parameter with respect to the sightline (i.e., perpendicular displacement of

the clump center from the sightline) and, accordingly, of a given line-of-sight optical depth

through each clump. Computing this expectation value then depends on an average opacity

over all impact parameters for each clump, which is the appropriately determined average

opacity over the clump’s surface area projected in the sightline’s direction. The appropriate

average of the optical depth is determined from the average over values of [1 − exp(−τ)]

and not over τ itself because the observed emission depends directly on the former and only

indirectly on the latter — and the relationship between the two is non-linear. Accordingly,

the effective optical depth, τef , is given by 1 − exp(−τef ) = 〈1 − exp(−τ)〉, which implies

exp(−τef ) = 〈exp(−τ)〉, where 〈〉 indicates expectation value. In the approximation of the

spectral line width, ∆v, being much larger than the velocity width of an individual clump,

∆vc, τef can be expressed as the product of the number of clumps per clump velocity width on

a sightline and the effective optical depth of an individual clump. If N is the beam-averaged

gas column density and Nc is the gas column density averaged over the projected area of a

single clump, then (N/Nc)(∆vc/∆v) is the number of clumps per sightline averaged over the

beam per clump velocity width at the line central velocity. (Note that MSH84 defined N as

the number of clumps per unit projected cloud area rather than the column density of gas.

Note also that, below, Nc is actually the column density on the central sightline through the

clump, but this change in definition accords with the definition of the clump average optical

depth; see Appendix A for details.) If τ0 is the optical depth on a sightline through the

center of a single clump, then, following MSH84, A(τ0) is the clump effective optical depth.

(Note that MSH84 called A(τ0) the effective optically thick area of the clump. Even though

their term is more accurate, the simpler “clump effective optical depth” is adopted here.)
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Consequently,

τef (vz) =
N

Nc

∆vc

∆v
A(τ0) exp

(

− vz
2

2 ∆v2

)

, (1)

where vz is the velocity component along the sightline and where a Gaussian line profile has

been assumed. If τ(x, y) is the clump optical depth on the sightline at position (x,y) with

respect to a sightline through the clump center, then the clump effective optical depth is

given by

A(τ0) =
1√

2π ∆vc a
eff

∫

dv

∫

dx

∫

dy

{

1 − exp

[

−τ(x, y) exp

(

− v2

2 ∆v2
c

)]}

, (2)

where a
eff

is clump’s effective projected area defined in terms of its optical depth:

a
eff

≡ 1

τ0

∫

dx

∫

dy τ(x, y) . (3)

The τ0 is simply τ(x = 0, y = 0), the optical depth through the clump’s center and at

the center of the clump’s velocity profile. The integrals are over the projected area of the

clump and over the clump’s velocity profile. For more details, see MSH84 and Appendix A.

Figure 2 shows the variation of A(τ0) as a function of τ0 for two types of clumps: cylindrical

(seen orthogonally to the axis of symmetry) and spherical.

The observed line radiation temperature, T
R
, is then related to τef by the usual expres-

sion

T
R
(ν) = Jν(TK

) [1 − exp(−τef )] , (4)

where

Jν(TK
) ≡

hν

k

{[

exp

(

hν

kT
K

)

− 1

]−1

−
[

exp

(

hν

kT
BG

)

− 1

]−1}

. (5)

T
K

and T
BG

are the gas kinetic and cosmic background temperatures, respectively. As stated

earlier, LTE is assumed for the emission of the spectral line at frequency, ν. The Jν(TK
)

is the source function in temperature units and is the correction for the cosmic microwave

background emission and for the failure of the Rayleigh-Jeans approximation. Of course

when τef ≪ 1, we have the simplified form of equation (4):

T
R
(ν) = Jν(TK

) τef . (6)

This is often called the “optically thin limit” for the equation of radiative transfer. A very

interesting and important point here is that the effective optical depth is in the optically

thin limit even though the individual clumps can still be quite optically thick. And this, of
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course, will provide a partial explanation for the X-factor. Substituting equation (1) into

equation (6) yields

T
R
(vz) = Jν(TK

)
N

Nc

∆vc

∆v
A(τ0) exp

(

− vz
2

2 ∆v2

)

, (7)

As mentioned previously, the quantity (N/Nc)(∆vc/∆v) is the number of clumps per sight-

line averaged over the beam within a clump velocity width at the line central velocity. (Note

that this is not exactly correct. See the last paragraph of Appendix A for an explana-

tion.) This quantity can be much less than unity, thereby permitting τef ≪ 1 even for

A(τ0) ≫ 1. (When (N/Nc)(∆vc/∆v) < 1, it is similar to the geometric area filling factor

within a narrow velocity interval, although it is not necessarily equivalent.) Since A(τ0)

is roughly equivalent to [1 − exp(−τ)] for a single clump, the meaning of expression (7) is

clear: it is the specific intensity of a single clump at velocity vz — ∼ Jν(TK
) [1 − exp(−τ)]

— multiplied by the number of clumps at that velocity within a clump velocity width —

(N/Nc)(∆vc/∆v) exp[−vz
2/(2 ∆v2)]. Simply multiplying the intensity of a single clump by

the number of clumps gives the observed intensity if the clumps are radiatively de-coupled,

and this is ensured if τef ≪ 1. As τef increases and becomes optically thick, the different

clumps within each velocity interval start absorbing each other’s emission and the radiation

temperature approaches the source function Jν(TK
) asymptotically.

We are now better equipped to understand the behavior of the curves in Figure 2. A(τ0)

represents the level of emission from a single clump averaged over the clump’s projected area.

When τ0 ≪ 1, A(τ0) ≃ τ0 because all lines of sight through the clump and the line’s profile

at all the clump’s internal velocities are optically thin. As τ0 increases past unity, the line

profiles on sightlines passing near the clump’s center start saturating in their cores and A(τ0)

starts deviating noticeably from the A(τ0) = τ0 line. Nevertheless, A(τ0) continues rising with

increasing τ0 because sightlines away from the clump’s center are still optically thin. Even

for sightlines near the clump’s center, the line remains optically thin at velocities outside the

line’s core. As τ0 continues increasing, A(τ0) deviates further and further from the A(τ0) = τ0

line because the area of optically thick emission slowly increases outwards from the sightline

through the clump center, covering more and more of the clump’s projected area. The

optically thick portion of the line profile on each sightline increases as well. Nevertheless,

A(τ0) continues growing because of those lines of sight and those velocities at which the

emission is still optically thin. Figure 2 shows two curves: one for a cylindrical clump of gas

(i.e. a filament) and one for a spherical clump. The cylinder is viewed side-on (i.e. with its

symmetry axis perpendicular to the sightline) and has length h. If the symmetry axis is the

x-axis, then a Gaussian variation of the optical depth with y was adopted:

τ(x, y) = τ0 exp

(

−πh2 y2

a
eff

2

)

. (8)
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The spherical clump also has Gaussian spatial variation with optical depth, but with radial

distance, p, from the central sightline through the clump:

τ(x, y) = τ0 exp

(

−π
p2

a
eff

)

, (9)

where p =
√

x2 + y2. This case was also treated by MSH84, and it is included here for

comparison. (Note that the a
eff

used here corresponds to the r2
o of MSH84.) The effective

optical depth of the spherical clump grows faster with τ0 for τ0>∼ 1 than that of the cylindrical

clump because the former’s optically thick area is growing simultaneously in two dimensions,

whereas the latter’s grows only in one. While A(τ0) can grow without bound in these idealized

cases, T
R

cannot. Eventually, A(τ0) will grow large enough that τef ≪ 1 is no longer valid

and T
R

asymptotically approaches Jν(TK
). The growing τ0 causes this to happen because the

clumps start crowding each other spatially and in velocity, due to their increasing optically

thick areas and their increasingly saturated line profiles.

The curves of Figure 2 demonstrate that we can represent them as power-laws in τ0 for

τ0 ≤ 1 or τ0 ≥ 3:

A(τ0) ≃ kA τ ǫ
0 . (10)

The values of kA and ǫ obviously depend on the specific τ(x, y) — the opacity structure of

the clump, except in the optically thin case. When τ0 < 1, we have kA = 1 and ǫ = 1,

regardless of the specific variation of τ(x, y). A lower value of ǫ, i.e. closer to zero, indicates

a clump with a better defined outer edge like a hard sphere. Conversely, aside from the

optically thin case, a higher value of ǫ, i.e. closer to unity, indicates a clump with a more

tenuous, or fluffier, outer region. Accordingly, ǫ will be called the “fluffiness” of the clump.

2.2. Relating Clump Velocity Width with Column Density

DSS86 required virialization in order to relate the line velocity width to the gas column

density. That is also required here, but it will be combined with the radiative transfer in a

clumpy cloud discussed in the previous subsection. The virial theorem in its simplest form

neglects the effects of surface pressure and magnetic fields, yielding

2 T + W = 0 , (11)

with T as the total internal kinetic energy of the cloud and W as its total internal potential

energy. Assuming a spherical clump of uniform density gives

W = −3

5

G M2
c

R
, (12)
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where Mc and R are the clump mass and radius, respectively. The total kinetic energy is

T =
1

2
Mc ∆v2

3d . (13)

The ∆v3d is the three-dimensional velocity dispersion of the gas. The exact kind of velocity

dispersion this is depends on a number of factors, including the radiative transfer through

the gas (E. Vazquez Semadeni, priv. comm.). Nevertheless, this velocity width most closely

resembles an rms width. The ∆v3d is related to the one-dimensional velocity dispersion ∆vc

by ∆v2
3d = 3 ∆v2

c . If we assume that molecular hydrogen is the only form of hydrogen in the

gas with number density, nc, then the mass of the spherical clump is

Mc =
4π

3
ncµm

H2
R3 . (14)

m
H2

is the mass of the hydrogen molecule, µ is the helium correction, and R is the clump

radius. The density nc is related to the column density through the clump center by nc =

Nc/Lc, where Lc is the path length on the central sightline through the clump is equal to

2R. Substituting equations (13), (14), and (12) into (11) gives us

∆vc = kv N0.5
c L0.5

c (15)

and

kv ≡
( π

15
G µm

H2

)0.5

. (16)

Numerically in cgs units, this is

kv = 2.47 × 10−16 ,

where µ = 1.3 was used. For a more detailed treatment of spherical clumps, see Appendix C.

(Also, see Appendix D for a treatment of cylindrical clumps.)

2.3. Relating Clump Optical Depth with Column Density

The clump optical depth on the sightline through the clump’s center, τ0, can be written

in terms of the column density of CO in level J , NJ :

N
J

=
8π

A
J,J−1

λ3
J,J−1

[

exp

(

T
J,J−1

T
K

)

− 1

]−1

τ0

√
2π∆vc . (17)

This comes from equation (A9) of Wall (2006) after applying the Boltzmann factor to change

NJ−1 to NJ . The velocity integral was replaced by τ0

√
2π∆vc, where τ0 is the optical depth
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at the center of the clump’s velocity profile and on the sightline through the clump’s center.

T
J,J−1

is the energy of the J → J−1 transition in units of temperature: i.e., T
J,J−1

= h ν
J,J−1

/k

with ν
J,J−1

as the frequency of the transition. A
J,J−1

and λ
J,J−1

are the spontaneous transition

rate and the wavelength of the transition, respectively. LTE is assumed, so T
K

applies in

place of T
X
(J → J − 1). We can determine the total column density of CO, N(CO), by

substituting equation (17) into equation (A22) of Wall (2006):

N(CO) =
8π

(2J + 1)A
J,J−1

λ3
J,J−1

Q(T
K
) exp

(

T
J,0

T
K

)

[

exp

(

T
J,J−1

T
K

)

−1

]−1

τ0

√
2π∆vc , (18)

where Q(T
K
) is the partition function of CO. Setting J to 1 and rearranging for τ0 results in

τ0 =
3A10λ

3
10

8
√

2 π
3

2 ∆vcQ(T
K
)

[

1 − exp

(

−
T10

T
K

)]

NcX(CO) . (19)

The N(CO) was replaced by NcX(CO), where X(CO) is the abundance of CO relative to H2.

The following values are used (see Wall 2006, and references therein): A10 = 7.19×10−8 s−1,

T10 = 5.54 K, λ10 = 0.2601 cm, and X(CO) = 8 × 10−5. Accordingly,

τ0 =
1.21 × 10−14

√
2π∆vcQ(T

K
)

[

1 − exp

(

−
5.54

T
K

)]

Nc . (20)

The above expression can be represented more simply as a power-law in T
K
:

τ0 =
kτ√

2π∆vc

NcT
−γ
K

. (21)

The exact values of kτ and γ depend on the temperature range and can be computed by

numerically comparing expressions (21) and (20). In the high-temperature limit, however,

an analytical solution is possible. This limit means that T
K
≫T10 and Q(T

K
) → 2T

K
/T10

and [1− exp(−T10/TK
)] → T10/TK

. This results in kτ = 1.85× 10−13 in cgs units and γ = 2.

But we will be interested in the temperature range T
K

= 10 to 20 K. The necessary numerical

comparison gives us

kτ = 7.23 × 10−14 (cgs units)

and

γ = 1.75

for that range. This approximation is accurate to within 1-2% on the above specified range.

Equation (21) simplifies further by using expression (15) for ∆vc and nc = Nc/Lc:

τ0 =
kτ

kv

√
2π

n0.5
c T−γ

K
. (22)
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This interesting result suggests that the optical depth for this simplified case (i.e., the velocity

profile of the optical depth is a simple Gaussian) of a virialized clump does not explicitly

depend on the sightline pathlength nor the velocity width, but on their ratio. This is

related to the Sobolev approximation (e.g., see Shu 1991) in which the optical depth is

dependent on the velocity gradient within a given region and not explicitly on the region’s

size. The pathlength-to-velocity-width ratio (Lc/∆vc) in a virialized clump is determined by

the average density, the spatial variation of the density, and the geometry. Therefore, the

optical depth depends on those things and the gas temperature, but with no dependence on

the clump size or velocity width (at least for this simplified case).

2.4. The X-Factor

Understanding how to combine the results of the previous subsections to derive an ex-

pression for the X-factor requires examining the observational data that inspired the current

paper in the first place. Figure 3 shows the Orion data discussed in Wall (2006): the peak

radiation temperature of the 12CO J = 1 → 0 line (i.e., T
R
) for various positions in the

Orion clouds normalized to the source function at each position (i.e., Jν(TK
)) versus the gas

column density (i.e., N(H2)) as determined from 13CO J = 1 → 0. The plots demonstrate

a clear correlation between T
R
/Jν(TK

) and N(H2). The Spearman rank-order correlation

test indicates that the correlation exists at better than the 99.99% confidence level. (In fact,

the confidence level of the null proposition of no correlation is zero to within the machine

precision — 10−38.) This is more than just the expected correlation between the J = 1 → 0

lines of 12CO and 13CO, because the Jν(TK
) is determined from the dust temperature (see

Wall 2006, for details). This suggests that the dust temperature really is a reliable measure

of the kinetic temperature of the molecular gas, at least for the Orion clouds on the scales of

parsecs (see Wall 2006,a,b, for more discussion of this). One way of explaining the correlation

visible in Figure 3 is that the area filling factor of the clump in each clump velocity interval

is less than unity. A rising beam-averaged column density, N , could mean that the filling

factor is rising as more and more clumps fill the beam in each velocity interval. Eventually

the clumps start crowding each other within the beam and within the line velocity profile

and the T
R
/Jν(TK

) ratio starts to saturate and asymptotically approaches unity. (Another

possibility is that N rises because of rising Nc within each clump, thereby increasing the

clumps’ optical depths. This would also produce the observed saturation effect without in-

creasing the number of clumps within each velocity interval.) Obviously, the goal here is to

be very specific about the relationship between T
R
/Jν(TK

) and N(H2). There is sufficient

scatter and uncertainty in the data that it is not possible to rule out a priori a number of

such relationships.
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Nevertheless, from simple radiative transfer theory, we know that the specific intensity

of a source normalized to its source function, usually written Iν/Sν , will vary like 1−exp(−τ)

when plotted against the optical depth through the source, τ . Given that the column density,

N , is proportional to τ for constant kinetic temperature and density, the data in Figure 3

mimic a curve with the form 1− exp(−aN) (see the plotted curves), where the aN probably

represents some kind of optical depth. The majority of the data points are on the roughly

linearly rising portion of the curve. This represents the optically thin region of the curve,

but the 12CO J = 1 → 0 is known to be optically thick from comparisons with the optically

thin isotopologue 13CO. Therefore, a clue to understanding the X-factor is realizing that

CO J = 1 → 0 emission behaves like it is optically thin, despite being optically thick. This

apparent contradiction is resolved when we consider the effective optical depth as described

previously. While the individual clumps are themselves optically thick in CO J = 1 → 0, the

cloud is optically thin “to the clumps.” In other words, the emission from every clump in the

telescope’s beam through the cloud reaches the observer. An analogy would be observing

the H I 21-cm line from an atomic cloud. In this case, the cloud is optically thin “to the

atoms” in the sense that the emission from every atom in the telescope’s beam through the

cloud reaches the observer. And since every hydrogen atom is nearly identical in its 21-cm

line emission properties, the conversion from I(H I) to N(H I) is physically straightforward

and undisputed. For converting from I(CO) to N(H2), assuming absolutely identical clumps

would give a constant value of the X-factor, relatable to the clumps’ properties. However,

assuming identical clumps contradicts observational evidence (see, e.g., Tachihara et al. 2000;

Nagahama et al. 1998; Kawamura et al. 1998; Onishi et al. 1996). But we need not restrict

the clump properties so severely to explain the X-factor. All we need is to have the clumps

similar on average from one beam to the next for the X-factor to stay relatively constant.

And, of course, we must also allow the X-factor to vary in some cases (see Introduction); the

clumps’ average properties must vary from the “norm” in some clouds and locations.

We now need to quantify this picture, so that we might better understand it and its

limitations. As Figure 3 clearly shows, the T
R
/Jν(TK

) ∝ N for N<∼ 1 to 2 × 1022 H2 cm−2.

This is in the τef ≪ 1 limit, so equation (7) applies and it has the desired proportionality. Of

course, this proportionality is only visible if the clump properties — Nc, ∆vc, and A(τ0) —

and the observed line width, ∆v, do not vary strongly with N . In fact, the scatter visible in

the plots of Figure (3) is probably due to variations in all four of these quantities. Integrating

equation (7) over velocity, vz, gives

I(CO) =
√

2π T
R
(0) ∆v

=
√

2πJν(TK
)τef(0) ∆v . (23)

T
R
(0) is the radiation temperature of the CO J = 1 → 0 line at vz = 0 and is also the peak

radiation temperature of this line. Similarly, τef(0) is the effective optical depth at vz = 0.
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The X-factor is then given by

Xf =
[√

2πJν(TK
) τef(0) ∆v N−1

]−1

. (24)

If we now substitute equation (1) evaluated at vz = 0 into the above, then

Xf =
[√

2πJν(TK
) A(τ0) ∆vc N−1

c

]−1

. (25)

The important thing to notice here is that the directly observed quantities, N and ∆v, have

been replaced by the corresponding clump properties, Nc and ∆vc. In fact, all the parameters

in expression (25) are clump parameters, as desired. It is convenient to define

CT ≡ T
K

Jν(TK
)

. (26)

We now use the approximation Jν(TK
) ≃ T

K
− 3.4 K for T

K
>∼ 10 K and the frequency of the

12CO J = 1 → 0 line, ν = 115.271 GHz. This is good to within 0.4% of T
K

(and within 0.6%

of Jν(TK
)). Consequently,

CT =
T

K

T
K
− 3.4 K

, (27)

which approaches unity as T
K

grows large. Now we substitute the results of the previous

subsections into equation (25): equation (10) for A(τ0), (22) for τ0, (15) for ∆vc, and T
K
/CT

for Jν(TK
). Except in the case of the end-on cylinder, where we defined the relationship

between Nc and nc differently, we also use nc = Nc/Lc. These substitutions yield

Xf = (2π)
1

2
(ǫ−1) CT k−1

A k−ǫ
τ kǫ−1

v Tγǫ−1
K

n
1

2
(1−ǫ)

c . (28)

The expression (28) and its variants (e.g., see Appendices) will be examined in detail. It

should be mentioned that expression (28) is more general than for just a clumpy medium

and can also apply to a uniform-density cloud (see Appendix B).

The above formulation for Xf obviously accomplishes the goal of insensitivity to the

parameters T
K

and nc that we have sought for Xf . The fluffiness parameter, ǫ, is in the

range 0 to 1; any value in that range that is greater than 0 will confer a greater insensitivity

than occurs for the DSS86 explanation. A particularly interesting example is that value of

ǫ for which γǫ − 1 = 0. In the high temperature limit, CT → 1 and γ → 2 and, if ǫ = 0.5,

then Xf has no dependence on temperature. (Notice that the density dependence is also very

weak in this case: Xf ∝ n0.25
c .) Given that the CO J = 1 → 0 line is optically thick, this is

counterintuitive; raising the temperature by some factor should simply increase I(CO) by

the same factor (in the high-T
K

limit), thereby decreasing Xf by that factor. That is not the

case here. Here we are dealing with a clumpy medium where the optical depth varies across
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the projected area of each clump. There will always be some sightlines through a clump that

will still be optically thin. There will also be some velocities in the clump’s spectral line

profile where the line emission is still optically thin. As T
K

increases, τ0 goes like T−2
K

, so

that A(τ0) goes like T−1
K

(see equations 21 and 10). But Jν(TK
) goes like T1

K
(in this high-T

K

limit), meaning that the observed T
R

stays constant. The effect of the increasing kinetic

temperature of the gas is cancelled by the decreasing effective optical depth of the clumps.

Another way of saying this is that the effect of the rising temperature is cancelled by the

shrinking effective optically thick areas of the clumps; the filling factors of the clumps decline

as the temperature rises. (Note that this special case also occurs for lower temperatures.

For T
K

= 10 to 20 K, for example, CT ∝ T−0.32
K

and γ = 1.75. The value of ǫ for which Xf is

independent of temperature would be 0.75.) Therefore, despite the optical thickness of the

spectral line in the emitting clumps, changing the optical depths of the individual clumps will

still have an appreciable effect on the line strength. And this will reduce the dependence of

the X-factor on the temperature and the density of the gas within the clumps.

In general, the X-factor provides estimates of gas column density because each sight-

line within the beam has some optically thin gas within certain narrow velocity ranges.

Parameters like ǫ then allow extrapolation from the optically thin gas to all the gas.

One problem with the above analysis is that it assumes clumps of homogeneous density.

This is inconsistent with most of the τ(x, y) functions that will be discussed in Section 3.

The full analyses of these cases are given in the appendices.

3. Examination of the Properties of the X-Factor

In this section we examine the properties of the X-factor as formulated in the previous

section.

3.1. Dependence on Clump Type

Here we examine how the X-factor relates to properties of the individual clumps, such

as velocity width, optical depth, and mass. Accordingly, a “standard” clump — or, rather, a

set of standard clumps — with specific input parameters must be adopted: geometry, dimen-

sions, and density. These input parameters are based on the filamentary clumps as identified

by Nagahama et al. (1998) with their 13CO J = 1 → 0 map of the Orion A molecular cloud.

(It should be mentioned here that the units responsible for the CO-line and dust-continuum

emission may be subfragments within the filaments identified by Nagahama et al. (1998).
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The filaments identified by that paper are nonetheless used as a first test of the X-factor’s

properties.) Table 2 of that paper lists the Orion A clumps and their characteristics, includ-

ing dimensions and masses. Based on this table, the roughly cylindrical clumps have lengths

ranging from 1.7 to 21 pc with a mean length of 6.2 pc, and diameters ranging from 0.7 to

3.5 pc with and a mean diameter of 1.8 pc. Using the mass-to-volume ratios, the average

densities range from about 300 to 4000 H2 · molecules · cm−3. Nagahama et al. (1998) also

used 12CO J = 1 → 0 data to estimate the gas kinetic temperature for each filament. Their

Table 2 shows values ranging from about 10 to 40 K.

The adopted kinetic temperature and density values for the standard clumps use the

above numbers in combination with other considerations. The adopted kinetic temperatures,

for instance, also consider the numbers found for the Galactic disk at many-parsec scales.

For example, the maximum temperature expected for the molecular gas and its dust on

such scales in the Galaxy is about 20 K (e.g., see Sanders et al. 1985; Sodroski et al. 1994).

Therefore, the standard clumps have adopted kinetic temperatures of either 10 K or 20 K,

and not temperatures as high as the 30 to ∼40 K values in Table 2 of Nagahama et al. (1998).

The adopted densities for the standard clumps are loosely related to the range of densities

mentioned in the previous paragraph, but also expand the range to better explore the effect

(or to demonstrate the lack of it) on the derived X-factor: the adopted densities for the

standard clumps are 200, 2000, and 20000 H2 · cm−3.

The adopted dimensions for the standard clumps have no effect on the derived X-factor

or clump optical depth (see equations 28 and 22), except in the case of a cylindrical filament

viewed end-on. And even in that case, the derived X-factor still does not depend on the

individual values of the diameter or length, but on their ratio (see Appendix D). Both the

X-factor and clump optical depth depend on the clump temperature and average density, but

not on clump size. Nevertheless, the clump dimensions still affect the derived clump mass

and clump velocity width. For the spherical clumps, the adopted diameter is 1.8 pc — the

same as the mean diameter of the observed Orion filaments. For the cylindrical filaments,

the adopted length and diameter are 6.2 pc × 1.8 pc — again the same as the mean values

of the observed Orion filaments.

Given that three kinds of density variations are considered for the spherical clumps

and one for the cylindrical filamentary clumps, there are twenty-four standard clumps in

the set. For each type of spherical clump, each with diameter 1.8 pc, there are six T
K
,nc

combinations: T
K

= 10 K, and nc = 200, 2000, and 2000 H2 cm−3 and T
K

= 20 K with those

same three densities. For the single type of cylindrical clump, with length × diameter =

6.2 pc × 1.8 pc, there are the same six T
K
,nc combinations as for each type of spherical

clump. The different kinds of density variations considered for the spherical clumps are as
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follows: uniform, Gaussian, and squared Lorentzian. For the cylindrical filamentary clump,

only the Gaussian radial density variation is considered, viewed from the side (perpendicular

to the symmetry axis) and from the end (along that axis). All these cases are listed in

Table 1, along with two extra cases discussed in the next two subsections.

The following subsections and the appendices examine these cases in detail, the results

of which are summarized in Tables 1 – 5.

3.1.1. Completely Optically Thick Case: Optically Thick Disks with Flat-Topped Velocity

Profiles

For this case we will examine face-on optically thick disks with completely flat-topped

velocity profiles. This means that the optical depth of the 12CO J = 1 → 0 line will be equal

to τ0 for all lines of sight through the clump and at every point in the velocity profile for

each sightline. A(τ0) would then have the thoroughly familiar form,

A(τ0) = 1 − exp(−τ0) . (29)

In the optically thick case, i.e. τ0>∼ 2,

kA = 1. and ǫ = 0. . (30)

With fluffiness and kA set to zero and unity, respectively, all dependence on optical depth

parameters kA, ǫ, kτ , and γ disappears from expression (28), resulting in an expression for

Xf that is devoid of radiative transfer:

Xf = (2π)−
1

2 CT k−1
v T−1

K
n

1

2
c . (31)

Numerically, this is

Xf (cgs) = 1.62 × 1015 CT T−1
K

n
1

2
c ,

or

Xf(X20) = 1.62 CT T−1
K

n
1

2
c , (32)

where the X-factor in (32) is in units of X20 or 1020 H2 · molecules · cm−2 · (K · km · s−1)−1.

(Because the expressions 31 and 32 come from 28, we have actually assumed that the clumps

are spheres rather than disks; the result is almost the same so long as A(τ0) is given by 29.)

This of course is the DSS86 result with the n0.5
c /T

K
dependence for Xf . The resultant

numerical values for Xf are listed in the first row of Table 1. Notice that these Xf values
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are higher than those for the other cases. Also, notice that the only reasonable values for

Xf occur for a density of 2× 102 H2 cm−3. Given that this result only occurs for this highly

contrived case of optically thick disks with flat-topped velocity profiles, the DSS86 result is

unlikely. Nevertheless, DSS86 represents a useful limit.

3.1.2. Completely Optically Thin Case

This case assumes that the line emission is optically thin on all sightlines through the

clump and at all velocities within the line profile. Consequently, A(τ0) = τ0 and

kA = 1. and ǫ = 1. . (33)

Now with fluffiness set to unity, dependence of Xf on kv and nc disappears. So expression (28)

is free of the dependence on virialization; this is the exact opposite of the optically thick

case discussed in the previous subsection. Accordingly,

Xf = CT k−1
τ Tγ−1

K
. (34)

For T
K

= 10 to 20 K,

Xf(X20) = 1.38 × 10−2 CT T0.75
K

. (35)

These values of Xf are listed in the second row of Table 1. Notice that the Xf values are

lower than those for the other cases. Equation 35 can also be written as,

N(H2 · cm−2) = 1.38 × 1018 CT T0.75
K

I(CO)(K · km · s−1) . (36)

Therefore, the relationship between column density and integrated intensity in the optically

thin case is recovered. (This is easily verified by starting with expression 23 for A(τ0) = τ0

and combining this with expression 21.)

3.1.3. Spherically Symmetric Clumps

Here we examine cases examined by MSH84: the hard sphere, the Gaussian sphere, and

the squared-Lorentzian sphere. These examples do not necessarily represent the real clumps

in real molecular clouds, but simply represent an interesting exploration of the parameter

space that determines the Xf values. In all the cases considered in this paper, the clumps

are isothermal and in LTE, implying that the clump optical depth as a function of impact

parameter, or projected radius p, is proportional to that for the column density: τc(p) ∝
Nc(p). See Appendix C for a detailed treatment of the spherically symmetric examples. As
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stated at the beginning of Section 3.1, the spherical clumps considered here have radii equal

to 1.8 pc.

First, the hard sphere example is examined. This is a uniform-density sphere with a

well-defined edge at radius, R. Given that the density is uniform, the optical depth profile

over the projected area of the clump is simply the sightline path-length for impact parameter,

p:

τ(p) = τ0

[

1 −
(

p2

R2

)]0.5

, (37)

the same as equation (12) of MSH84, with R in place of r0. Using (37) along with (1), (2),

and (3) yields the curve depicted with plus signs in Figure 5 of MSH84. Measuring the curve

for log τ0 ≥ 0.5 results in kA = 1.7 and ǫ = 0.14. Following the derivation in Subsections 2.2,

2.3, and 2.4 or in Appendix C yields expression (C13) for Xf . The numerical results for

this case are listed in Tables 1 to 5 inclusive. The hard sphere is the case closest to the

completely optically thick case and yields results within factors of a few of those of DSS86

(see Table 1). The hard sphere has the advantage of giving reasonable Xf values (i.e.

∼ 2 X20 for reasonable densities (i.e. ∼ 103 H2 cm−3) and temperatures (i.e. 20 K), but has

the disadvantage of sensitivity to density and temperature (i.e. Xf ∝ CT n0.43T−0.76
K

).

The Gaussian sphere has an optical depth profile given by expression (C15), with τ(p)

and τ0 in place of Nc(p) and n0

√
π, respectively. Using this τ(p) and the equations (1), (2),

and (3) yields A(τ0) versus τ0: the solid curve in Figure 5 of MSH84 and the dashed curve

in Figure 2 of the current paper. Measurement of this curve gives kA = 1.6 and ǫ = 0.36 for

τ0 ≥ 3. The derivations in Subsection C.2 of Appendix C give the numerical results listed in

Tables 1 to 5. As seen in Table 1, the expected Xf values for n̄ = 2× 103H2 cm−3 are within

about a factor of 2 of the observed value for the Galactic disk. Also, expression (C19) shows

that Xf ∝ CT n̄0.32T−0.38
K

, which is a greater insensitivity to physical conditions than occurs

for the hard sphere case.

The squared-Lorentzian sphere’s optical depth profile is given by equation (C21), with

a similar expression (i.e. C22) for the column density profile. Following the usual procedure

gives the A(τ0) versus τ0 curve: the “×” symbols in Figure 5 of MSH84, for which we find

that kA = 1.5 and ǫ = 0.57. This particular optical depth profile has the advantage of low

sensitivity to density and temperature (i.e. Xf ∝ CT n0.22T−0.003
K

), but the disadvantage of

Xf values of roughly factors of 4 too low for a density of ∼ 103 cm−3.

In addition to the Xf values (i.e. Table 1), the tables also have the ∆vc, τ0, A(τ0),

and Mc values (i.e. Tables 2 through 5 inclusive). The ∆vc and Mc in Tables 2 and 5,

respectively, can be compared with the velocity widths and masses of the clumps in the

Orion A cloud, as listed in Table 2 of Nagahama et al. (1998). Given that spherical clumps
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with a diameter of 1.8 pc were adopted here, we need the roughly analogous clumps in

Nagahama et al. (1998). These are the clumps numbered 14 and 23 in their Table 2, with

dimensions 2.3 pc × 1.8 pc and 1.7 pc × 1.5 pc, respectively. The observed masses of these

clumps, 330 M⊙ and 220 M⊙, suggest that they most closely resemble either the hard sphere

of density 2000 cm−3 or the Gaussian sphere of average density 200 cm−3. However, their

observed velocity width of 1.1 km · s−1 suggests that they more closely resemble the hard

sphere, but with about 2/3 the density, or ∼ 1300 cm−3. Here we have also considered that

the masses given in Table 2 of Nagahama et al. (1998) do not include the correction for

helium. This lower density would imply ∆vc ≃ 1.2 km · s−1, close to that observed. This

implies that these clumps are virialized, as is required for a roughly constant X-factor to

apply. However, hard spheres with T
K
≃ 20 K (see column 5 of Table 2 of Nagahama et al.

1998) and nc = 1300 cm−3 would result in an Xf of about 1.3 X20 or about 2/3 that observed

for the Orion clouds (see Wall 2006; Dame et al. 2001). Consequently, clumps 14 and 23 are

not entirely representative of the rest of the clumps of the Orion clouds.

Tables 3 and 4 give the optical depths on the central sightline, τ0, and the clump effective

optical depths, A(τ0). The τ0 values listed in Table 3 seem to be too high. The observed

I(13CO)/I(12CO) values for the Orion clouds (see Figure 5) are mostly in the range 0.1 to 0.4,

implying τ(12CO) of 6 to 24. However, Table 3 lists values that are an order of magnitude

larger. Nevertheless, given that a roughly constant X-factor only occurs on large scales

(i.e. many parsecs) and that the data for which the X-factor was estimated had a spatial

resolution of about 1◦ (see Wall 2006), the relevant optical depth to use would be A(τ0)

and not τ0. The former is listed in Table 4 and has values in the desired range and lower.

(Although interpretation of the I(13CO)/I(12CO) ratio is a little more complicated than in

the case of homogeneous gas. See Section 3.3 for more details.)

3.1.4. Cylindrically Symmetric Clumps

Filaments or cylindrical clumps are discussed in detail in Appendix D. The behavior

of these clumps — e.g., the derived τ0 and Xf values — depend on whether these filaments

are observed side-on (i.e., perpendicularly to their symmetry axes) or end-on (i.e., parallel

to these axes). The filament considered here has a Gaussian density variation with distance

from the central axis, viewed side-on and viewed end-on. As mentioned near the beginning

of Section 3.1, the adopted dimensions of the filament are 6.2 pc × 1.8 pc.

For the case of the Gaussian cylinder viewed side-on, the optical depth, τ , as a function

of projected distance from the central axis, y, is similar to equation (D8), but with τ(y) in

place of Nc(y) and τ0 in place of Nc(0). Using τ(y) with (1), (2), and (3) yields the solid
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curve in Figure 2. Measuring the curve for log τ0 ≥ 0.5 gives us kA = 1.5 and ǫ = 0.25. Side-

on cylinders are expected to be less fluffy than spheres with the same optical depth profile,

given that the former have optical depth variations in only one projected dimension and the

latter have those variations in two projected dimensions. Here we see that the Gaussian

side-on cylinder has a fluffiness that is only about 2/3 that of the Gaussian sphere (i.e. 0.25

versus 0.36). The derivation in Appendix D, Subsection D.1.1, gives the numerical results in

Tables 1 to 5. As in the case of the Gaussian sphere, the resultant Xf values for an average

density of 2×103H2 · cm−3 are within a factor of 2 of the value inferred for our Galaxy. Like

the hard sphere case, this Xf is a little too sensitive to T
K

and n̄: Xf ∝ CT T−0.56
K

n̄0.37.

The Gaussian cylinder viewed end-on is similar to the Gaussian sphere in its optical

depth profile. However, the central sightline optical depth, τ0, depends on the cylinder length-

to-diameter ratio or aspect ratio, h/d1/2. Using the same kA and ǫ as the Gaussian sphere,

the derivation in Appendix D, Subsection D.2.1, gives the numerical results in Tables 1

to 5. The Xf value for an average density of 2 × 103H2 · cm−3 and T
K

= 20 K is very

close to that observed for our Galaxy. Also like the Gaussian sphere, this Xf also has the

advantage of relative insensitivity to T
K

and n̄: Xf ∝ CT n̄0.32T−0.38
K

. Unfortunately, these

advantages are merely lucky coincidences, because the Xf is dependent on the filament’s

aspect ratio (Xf ∝ (h/d1/2)
0.64), which can vary by an order of magnitude or more. For

example, the filaments of Orion A listed by Nagahama et al. (1998) have aspect ratios that

vary from about 1 to 10. Another coincidence is that the end-on case implicitly assumes

that the cylindrical filament is absolutely straight and pointing along the sightline — a low

probability event.

Comparison of the results in Tables 1 to 5 with the clump properties listed in Table 2 of

Nagahama et al. (1998) suggests that the Orion A filaments behave more or less like Gaussian

cylinders, except for the inferred Xf values. Clumps 12, 22 and 33 have dimensions similar

to the standard dimensions adopted here: 6.2 pc × 1.8 pc. The average densities of these

filamentary clumps, n̄, can be inferred from the column densities divided by the product of

the observed thicknesses and the kN for a Gaussian cylinder (see Appendix D). These average

densities and the dimensions can be combined to give the masses and velocity widths. These

are found to agree with those in Table 2 of Nagahama et al. (1998) to within 7%, except

for the velocity width of clump 33. The observed value for this clump is about double

the virialized velocity width, strong evidence that this clump is not virialized. Another

problem is the inferred Xf values. Table 2 of Nagahama et al. (1998) provides enough

information to roughly estimate the Xf that would correspond to each of the filaments

listed. Assuming side-on Gaussian cylinders for all 39 filaments listed gives Xf = 0.6 to

1.2 X20, factors of roughly 2 to 4 lower than the estimated value for the Orion clouds (see

Wall 2006; Dame et al. 2001). One way that the Xf can be raised to that estimated from
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observations is to consider uniform-density filaments. As seen in Table 1 for the spheres for

n̄ = 2×103 cm−3, the uniform-density case (i.e., hard sphere) has Xf about a factor of 2 larger

than for the Gaussian sphere. Accordingly, uniform-density filaments would correspond to

higher X-factors, closer to that observed for Orion. One slight problem with uniform-density

filaments is that the inferred virialized velocity widths are lower than those for the Gaussian

filaments, resulting in a slightly greater number of non-virialized filaments. For uniform-

density filaments, roughly half have velocity widths within 40% of the virial velocity widths.

For Gaussian filaments, roughly half have velocity widths within 30% of the virial velocity

widths.

3.1.5. Gravitationally Collapsing, Magnetized Filaments

The examples of clumps that have been examined up till now have all been virialized

clumps. Strictly speaking, virialization is not required for determining Xf ; all that is required

is a relationship between the clump velocity width and the clump’s density. Tilley & Pudritz

(2003), for example, examine gravitationally collapsing, magnetized filaments. They inves-

tigate filaments with constant toroidal flux-to-mass ratio and those with constant thermal

gas pressure to magnetic pressure. In the current paper only the former is considered (see

Appendix D, Subsection D.3). Their equation (35) is rearranged to give the clump velocity

width in terms of the density; see equation (D21). Tilley & Pudritz (2003) find that the

density goes like r−α at large r, where α = 2 in the case of strong magnetic fields and α = 4

for weak magnetic fields. Both of these cases are examined here.

For the case of ρ(r) ∝ r−2 (see Appendix D, Subsubsection D.3.1), the total clump

mass, Mc(r1), depends on the ratio, r1/r0, where r1 is the clump’s outer radius and r0 is

the radius of the ρ = constant core. In contrast, all the previous clump examples had finite

Mc(∞). This dependence on r1/r0 also extends to A(τ0). Numerically integrating (2) and

(3) shows that ǫ is an increasing function of this ratio, asymptoting out at about 0.9 for

r1/r0>∼ 5 × 104. It is clear then that the fluffiness of the filament depends not only on the

density exponent, α, but also on the ratio r1/r0. As was found previously, increased fluffiness

had the advantage of reduced sensitivity to T
K

and n̄, but the disadvantage of unrealistically

low Xf . For example, for r1/r0 = 1000, we have kA = 1.46, ǫ = 0.69, and Xf ∝ CT T0.21
K

n̄0.16.

To determine a value for Xf , we must specify a reasonable number for the fragmentation

wavelength, λfrag. The simplest way to specify this is to adopt the average cylinder length,

6.2 pc, that has been used up till now. Equation (35) of Tilley & Pudritz (2003) allows us

to estimate this number. The observed ∆vc(FWHM) in most of the filaments in Orion A

is 1-2 km · s−1 or velocity dispersions of 0.4-0.8 km · s−1 (after dividing by
√

8 ln 2). The
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conversions from the central density to the average density are found in Appendix D. These

together yield λfrag = 4.4 to 8.8 pc for α = 2 (and 3.5 to 7.0 pc for α = 4). These numbers

suggest that choosing λfrag = 6.2 pc is acceptable. For reasonable temperature and density,

T
K

= 20 K and n̄ = 2000 H2 · cm−3, Xf = 0.36 X20, or a factors of ∼5 smaller than that

for the Galaxy. On the other hand, if r1/r0 = 10, we have kA = 1.74, ǫ = 0.27, and

Xf ∝ CT T−0.53
K

n̄0.37. For T
K

= 20 K and n̄ = 2000 H2 · cm−3, Xf = 1.6 X20, which is

close to the Galactic value. One problem with the r1/r0 = 10 case is that the power-law

approximation for A(τ0) is noticeably poorer than for the othercases studied in the current

paper. For these other cases, A(τ0) ≃ kA τ ǫ
0 is good to within about 13%. For r1/r0 = 10, it

is only good to within about 26%.

For the case of ρ(r) ∝ r−4 (see Appendix D, Subsubsection D.3.2), Mc(∞) is finite and

the power-law approximation for A(τ0) is as good as that for the majority of cases discussed

in the current paper. Numerical integration of (2) and (3) yields kA = 1.15 and ǫ = 0.37,

which results in Xf ∝ CT T−0.36
K

n̄0.32. For reasonable temperature and density, T
K

= 20 K

and n̄ = 2000 H2 · cm−3, Xf = 1.9 X20, which is approximately the value for molecular clouds

in the Galactic disk.

One complication with the above analysis is that magnetized filaments have velocity

dispersions that vary spatially within the filaments. The central velocity dispersion used in

equation (35) of Tilley & Pudritz (2003) may differ from the observed velocity dispersion by

a factor of about 2, as suggested by Figure 4 of Fiege & Pudritz (2000). If so, then λfrag is

a factor of two lower than the numbers used above. Of course, if this is true, then the value

used for kv must be increased by this factor of 2. Since Xf is a function of the product,

kv λfrag, the factor of two decrease in λfrag is cancelled by this factor of increase in kv,

leaving Xf unchanged.

The density dependences found for the collapsing, magnetized filament are those ex-

pected for an isothermal filament in hydrostatic equilibrium (Tilley & Pudritz 2003). Ostriker

(1964) solved for the density distribution in an isothermal filament and found the ρ(r) ∝ r−4

at large r. This solution would also permit ρ(r) ∼ r−2 over a range of intermediate r.

Since this is similar to the case of the collapsing, magnetized filament, how do the Xf

values compare? The kM values were computed in Appendix D, Subsection D.3, allowing

determination of kv for a virialized filament. Using the virialized kv values and removing the

[d1/2/(λfrag kmax)]
(1−ǫ) factor will give the corresponding virialized Xf values. For ρ(r) ∝ r−2,

Xf for the virialized, non-magnetic filament is up to nearly 20% smaller than that for the

collapsing, magnetized filament. For ρ(r) ∝ r−4, Xf for the virialized, non-magnetic filament

is almost 50% larger than that for the collapsing, magnetized filament. The X-factor values

derived in the isothermal, virialized case are then easily within a factor of 2 of those for the
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gravitationally collapsing, magnetized filament.

3.2. Other Effects on the X-Factor

3.2.1. Fluffiness

One advantage of the current, proposed formulation of the X-factor is that Xf can

be insensitive to the kinetic temperature and density. But this advantage is coupled to an

important disadvantage: Xf is sensitive to the fluffiness, ǫ. Another way of saying this is that

the problem of sensitivity to temperature and density has been recast as one of sensitivity

to another physical parameter. If real clumps in real clouds can indeed be characterized,

at least approximately, with a parameter ǫ and if the proposed formulation of the X-factor

is roughly correct, then a relatively constant Xf requires constant ǫ. Understanding the

X-factor would then provide insights into molecular cloud structure. More specifically, the

X-factor would itself be a probe of the opacity structure in CO-emitting clumps.

One obvious way to do this is to plot Xf as a function of ǫ and see what range of ǫ values

gives realistic Xf values. This must be done for specific and realistic values of T
K

and n̄, but

the parameters kA, kv, and kN have implicit dependences on ǫ. These dependences are not

simple, given that they are affected by many things, such as geometry and density variations.

However, these dependences are not strong and a crude variation of Xf versus ǫ can be

plotted if we adopt “typical” values for these quantities: kA = 1.4, kv = 3.4× 10−16 cgs, and

kN = 1.5. These values along with n̄ = 2000 H2 cm−3 and T
K

= 10 and 20 K were substituted

into equation (C11) to yield the curves of Figure 4. Note that the curve is about 30% lower

than the level expected for ǫ = 0 and ǫ = 1 (cf. Table 1). This occurs because kv, kN ,

and especially kA were fixed. Another point to consider is that the positions of these curves

also depend on exactly how the “average” densities are defined. Nevertheless, the curves of

Figure 4 still permit approximate estimates of ǫ in molecular clouds.

Figure 4 can estimate the range of ǫ that results in Xf within a factor of 2 of that for

Galactic disk molecular clouds. Given that Galactic disk molecular clouds have Xf ≃ 2 X20

(Dame et al. 2001), what range of ǫ permits Xf to be in the range 1 to 4 X20? For T
K

= 20 K

and n̄ = 2000 H2 cm−3, ǫ = 0.0 to 0.35. (Taking into account the underestimate of Xf for

ǫ = 0, this lower limit is more like 0.05.) For T
K

= 10 K and n̄ = 2000 H2 cm−3, ǫ = 0.17

to 0.46. For Xf = 2 X20, ǫ = 0.15 when T
K

= 20 K and n̄ = 2000 H2 cm−3 and ǫ = 0.31

when T
K

= 10 K and n̄ = 2000 H2 cm−3. So for the adopted density, the clumps in Galactic

disk molecular clouds behave most like hard spheres if T
K

= 20 K and roughly like Gaussian

spheres or filaments if T
K

= 10 K. If instead the clumps are filaments with ρ ∝ r−2, then the
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estimated ǫ values constrain the ratio of the maximum-to-minimum radii of the r−2 region,

r1/r0. The ǫ = 0.15 for T
K

= 20 K and n̄ = 2000 H2 cm−3 requires r1/r0 = 2. The ǫ = 0.31

for T
K

= 10 K and n̄ = 2000 H2 cm−3 requires r1/r0 = 16.

In short, the likely range of ǫ is subject to a number of assumptions, but is probably

ǫ = 0.05 to 0.46. One point that should be emphasized is that the curves of Figure 4, for

the given densities and temperatures, are not universal. These curves are dependent on the

definition of average density (see Section 4.7.1).

3.2.2. CO Abundance

The effect of the CO abundance on the X-factor has been discussed in the literature

(e.g., see Kutner & Leung 1985; Maloney & Black 1988). One might expect that Xf would

depend only weakly on the CO abundance given that the 12CO J = 1 → 0 line is optically

thick. However, as discussed in Maloney & Black (1988), a reduced CO abundance means

less self-shielding from the interstellar radiation field and a smaller CO-emitting volume,

resulting in a lower area filling factor. The current proposed formulation would suggest a

very specific dependence on the CO abundance, X(CO). From equations (19) and (21) in

Section 2.3, we see that kτ ∝ X(CO). Equation (28) tells us that Xf ∝ k−ǫ
τ . Accordingly,

Xf ∝ X(CO)−ǫ. Given that the most likely values for ǫ are between 0.05 and 0.46 (see

Section 3.2.1), this is a weak dependence on the CO abundance.

However, a more relevant approach is to determine the dependence on the volume-

averaged abundance. In irregular galaxies it has been found that CO is virtually absent over

large volumes of molecular clouds, while having roughly Galactic abundance of CO within

small central regions within those clouds (see Israel 1997a, 2000, and references therein).

Accordingly, an effective CO abundance, X(CO), is defined which is related to the Galactic

CO abundance, XG(CO), within a spherical central region of radius, rco, within a spherical

clump of radius, r1, by

X(CO) = XG(CO)

(

rco

r1

)3

. (38)

It is easy to show that the optical depth on the central sightline through the clump, τ0, is

proportional to rco/r1. From equations (7) and (10) we know that,

T
R
(0) ∝ N

Nc

τ ǫ
0 . (39)

The quantity N/Nc is the number of clumps per sightline averaged over the beam. It had

been assumed up till this point that the entire volume of each clump was emitting in the
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CO line. If we now only consider the case where the projected emitting area is less than the

entire projected area of each clump, then it is easy to show that N/Nc ∝ (rco/r1)
2. Putting

all of this together yields,

Xf ∝ X(CO)−
1

3
(ǫ+2) . (40)

Given that ǫ = 0.05 to 0.46,

Xf ∝ X(CO)−0.7 to −0.8 . (41)

This is a considerably stronger dependence on the CO abundance than was derived in the

previous paragraph. In fact, the derived dependence is nearly as strong as that expected

for optically thin 12CO J = 1 → 0: Xf ∝ X(CO)−1. Notice that (40), in fact, has this

dependence in the optically thin case: i.e., when ǫ = 1.

Filamentary clumps may imply a different dependence of Xf on X(CO) from that

of spherical clumps. If the filaments are much longer than their diameters (i.e., high as-

pect ratio), then the dependence of X(CO) on rco/r1 may be two-dimensional rather than

three-dimensional. This is only an approximation because the strong radiation fields or low

metallicities that can lead to low effective X(CO) (see Israel 1997a, 2000, and references

therein) would reduce the length of a filament’s CO-emitting volume as well as its diameter.

However, for a filament with a high aspect ratio, the fractional change would be larger for the

diameter than for the length. As long as the effective X(CO) is not extremely low, we can

roughly assume that X(CO) ∝ (rco/r1)
2. If the filaments are viewed side-on, N/Nc ∝ rco/r1.

Using a similar approach to that for the spherical clumps,

Xf ∝ X(CO)−
1

2
(ǫ+1) . (42)

Given that ǫ = 0.05 to 0.46,

Xf ∝ X(CO)−0.5 to −0.7 . (43)

For end-on filaments it is simple to show that,

Xf ∝ X(CO)−1 , (44)

regardless of the value of ǫ. Since filaments, on average, are viewed neither completely side-

on nor completely end-on, the expected power-law index would be between −0.5 and −1.0.

Again, notice that (42) gives the dependence expected in the optically thin case for ǫ = 1.

For (44) this optically thin dependence holds regardless of the value of ǫ, given that the

effective X(CO) is affected only by the projected area of the CO-emitting volume.
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3.2.3. Effective Optical Depth

The proposed formulation for the X-factor assumes that the 12CO J = 1 → 0 line is

optically thin “to the clumps”: i.e., τef ≪ 1. But this is not necessarily the case. The

panels of Figure 3 suggest that saturation starts for N(H2)>∼ 1 to 2×1022 cm−2. Finding the
12CO J = 1 → 0 brightness that corresponds to this surface density is not straightforward;

the inferred τef also depends on the source function, Jν(TK
). Another consideration is that

the conditions for saturation that are inferred here really only apply to the Orion clouds

and not necessarily to other clouds. Still another point is that the peak T
R

is more relevant

than the I(CO), because the latter includes the velocity width of the line. The I(CO) of

an external galaxy, for instance, can have a very large velocity width often dominated by

large-scale systematic motions, such as the large-scale rotation of the galaxy, rather than the

smaller scale virialized velocity dispersions within individual clumps or clouds.

With these caveats in mind, it is at least possible to specify a rough minimum peak T
R

as a necessary (and certainly not sufficient) condition for the start of saturation. Within

the Orion clouds, this is T
R
>∼ 6 to 8 K, although there are still positions for which T

R
≃ 10

to 12 K and τef ≪ 1 still applies. So some measure of the source function is necessary to be

certain that saturation is occurring.

If saturation is indeed a problem for some sources (or some positions within a source),

then the actual X-factor necessary for determining the gas surface density could be factors

of roughly two or more higher than the “standard” value applicable to most other sources

(or to most other positions within a source). This saturation behavior of the X-factor can

be understood better by examining either panel of Figure 3. The X-factor of a given point

on the curve is proportional to the reciprocal of the slope of a line-segment joining the origin

to that point. As the column density increases, the point moves to the right and the line-

segment to the origin has an ever decreasing slope; the X-factor increases without bound.

Therefore, in this optically thick limit, the 12CO J = 1 → 0 line loses its sensitivity to column

density, as expected.

3.2.4. Interclump Gas

Including the effects of a more or less continuous low-density medium between the

clumps — an interclump gas — in the current treatment of the X-factor is beyond the scope

of the current paper. Nonetheless, the effects of such gas on Xf can be crudely estimated.
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From expressions (23), (10), and (1), we have

I(CO) =
√

2 πJν(TK
)

N

Nc
∆vc kA τ ǫ

0 , (45)

which assumes τef ≪ 1, as used throughout most of this paper. Of course, the beam-averaged

column density, N , is a measure of the mass of CO-emitting gas within the beam. If CO-

containing gas is added to the beam, then I(CO) increases. How I(CO) increases depends

on how this gas is added:

1. If the gas is added in the form of more clumps to each velocity interval, without chang-

ing the clumps’ properties, then I(CO) ∝ N and Xf = N/I(CO) remains constant.

2. If the added gas increases Nc of each clump, without changing the clumps’ dimensions,

then N/Nc remains constant and ∆vc ∝ N0.5
c . Given that τ0 ∝ Nc/∆vc, I(CO) ∝

N0.5(1+ǫ), requiring that Xf ∝ N0.5(1−ǫ).

3. If a very distended envelope is added to each clump, then Nc changes very little and

∆vc ∝ N−0.5. This is a dependence of ∆vc on N because the total mass in the beam

has increased, which will change the velocity widths of the clumps, even though Nc has

changed little. This is an inverse dependence of ∆vc on N because the mass is added

at large distances from each clump center (see more discussion of this below). Again,

it results that I(CO) ∝ N0.5(1+ǫ) and Xf ∝ N0.5(1−ǫ).

4. There are other cases where Nc is increased only a small amount, but ∆vc is increased

by a bit more, resulting in I(CO) ∝ Nβ , where β > 1. (Note that if τ0 < 1, then

β = 1, because ǫ = 1 and τ0 (∆vc/Nc) = 1.) Hence, Xf ∝ N1−β and Xf decreases with

increasing N .

One thing to notice about all these cases is that, if the gas is optically thin in the 12CO J =

1 → 0 line (i.e. τ0 < 1 and ǫ = 1), then I(CO) ∝ N and Xf is constant. Except for point #4

above, the addition of extra CO-emitting gas will increase, or leave unchanged, the X-factor.

And point #4 does not necessarily represent a very common case.

A quantitative estimate of how strongly the interclump gas could affect Xf can come

from assuming that such gas behaves like an envelope for each clump. The self-potential

energy of such a clump-envelope system would be

W = −kW yW
G M2

c

p1/2

, (46)

where kW and Mc are the quantities that apply to the clump without the envelope and yW

is the correction due to the envelope. The internal kinetic energy is

T =
1

2
Mc ∆v2

3d (1 + rM) , (47)
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where

rM ≡ Me

Mc
(48)

is the mass ratio of the envelope to the clump without the envelope. The rM is also

= rρ r3
σ , (49)

with

rρ ≡ ρe0

ρc0

(50)

as the ratio of the central densities of the envelope to bare clump. The rσ is the ratio of

sizes of envelope to bare clump. Employing the Virial theorem in its simplest form and

∆v2
3d = 3 ∆v2

c yields

∆vc = kv y0.5
v n̄ d1/2 , (51)

with

yv ≡ yW

1 + rM

. (52)

The central column density of the clump-envelope system, Nc, is

Nc = 2 kN yN n̄ p1/2 . (53)

The kN is the quantity for the bare clump and

yN ≡ 1 + rρ rσ (54)

= 1 + rM r−2
σ (55)

From expressions (51) and (53) we see that the kv and kN in expression (C11) for Xf must

be replaced by kv y0.5
v and kN yN , respectively. The formula for Xf ends up with an extra

factor of y1−ǫ
X in which

yX ≡ yN y−0.5
v . (56)

We are now ready to estimate the effects of the interclump gas on the X-factor. To

effectively be the interclump gas the envelope must extend far from the clump; i.e., rσ → ∞.

Obviously, this yields yW → 1 and yv → (1 + rM)−1. Hence the addition of the envelope

to the bare clump actually reduces the clump velocity width (see point #3 two paragraphs

back). Because this limit implies that yN → 1, we have yX → (1 + rM)0.5. It is clear then

that the interclump gas has only a small effect on Xf . If the interclump gas mass does not

dominate the mass of the cloud, then rM < 1 and Xf would increase by less than about 40%.
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For rσ not large, these numbers would be smaller. Also, the envelope would increase the

effective ǫ and kA of the clumps, thereby further decreasing the effect of the interclump gas

on the X-factor. (A numerical test of this found that ǫ can increase by about 50%, requiring

rσ = 10 and the extreme rM = 10. A less extreme rM = 1 produced the usual ǫ but a 25%

increase in kA.)

Knowing the size of the effect on Xf for finite rσ requires knowing the specific density

variation within the clump and envelope. It is easy to show that for rσ = 1 that yX = (1 +

rM)0.5 as it does for rσ → ∞. (This comes from yW = (1 + rM)2 when rσ = 1.) Therefore, for

rσ between 1 and ∞, yX must achieve a minimum or a maximum. (And, since the envelope

must surround the clump and not vice-versa, rσ must be greater than unity.) Examining

the cases of a uniform-density spherical clump and envelope and a Gaussian spherical clump

and envelope shows that both these cases have a minimum for yX in the desired range for

rσ. In the former case, this minimum is greater than unity but less than (1 + rM)0.5. In the

latter case, the minimum of yX is less than unity but greater than (1 + rM)−0.5. Therefore,

the largest deviations from unity for yX occur for rσ large. Accordingly, only for rσ large is

the effect on the X-factor maximized; and even in this large-rσ limit the effect is no more

than 40% if rM ≤ 1. (Note that rσ large means that rσ ≫ r
1

3

M when rM < 1 and rσ ≫ rM

when rM > 1 for the uniform-density case and rσ ≫ r
1

2

M when rM < 1 and rσ ≫ r2
M when

rM > 1 for the Gaussian case.)

Another point to consider is if the interclump gas has a different temperature from that

of the clumps. Since this interclump gas is at a lower density than that of the clumps and, if

there is even very crude pressure equilibrium between the clumps and interclump medium,

then T
K
(interclump) > T

K
(clump). The warmer interclump gas could then possibly have

appreciable emission compared to that of the clumps and reduce Xf appreciably. However,

if there is true clump/interclump pressure equilibrium and if the density of the interclump

gas is lower than that of the clump gas by an order of magnitude, then the temperature

would be higher by an order of magnitude. This would bring down the optical depth of

the 12CO J = 1 → 0 line in the interclump medium by two orders of magnitude and could

weaken its emission below what it would have been if T
K
(interclump) = T

K
(clump). If so,

then the interclump gas would have an even weaker effect on the X-factor than has been

estimated above.

Of course, the above analysis assumes that the dominant CO-emitting gas is in the

clumps, so that the presence of the interclump gas only increases Xf . However, if the

interclump gas were to dominate the mass of the cloud and its 12CO J = 1 → 0 emission,

then the appropriate average density to use in the expression for Xf would be considerably

lower, thereby lowering Xf .
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In summary, interclump gas would likely increase the X-factor by less than about 40%,

so long as this gas did not dominate the mass of the cloud. If the interclump gas did

dominate the mass, then the X-factor would be decreased, because the average density of

the dominate CO-emitting gas would decrease. One other important effect of the interclump

medium would be to increase the effective ǫ. Estimates of ǫ from inferred Xf values (and

assumed or estimated clump densities and temperatures, see Section 3.2.1) or from 13CO J =

1 → 0/12CO J = 1 → 0 line ratios (see Sections 3.3 and 4.4) could be higher than those

expected from just clumps alone.

3.3. 13CO J = 1 → 0/12CO J = 1 → 0

One implication of the proposed formulation is that there is an additional layer of

complication in interpreting line ratios. For example, if two spectral lines have τef ≪ 1,

then the ratio of their intensities depends on the ratio their respective Jν(TX
) A(τ0) values

(where T
X

is the excitation temperature of the transition), instead of depending on the ratio

of their Jν(TX
) [1 − exp(−τ0)] values. If the two spectral lines have similar optical depths

(i.e. similar A(τ0) values) and τef ≪ 1, then this complication is minimized. Given that the
12CO to 13CO abundance ratio is about 60 (e.g., Langer & Penzias 1990), the ratios of 13CO

lines to those of 12CO still have this complication.

To appreciate this, we start with a uniform slab of gas in which the J = 1 → 0 lines of
12CO and 13CO are in LTE:

I(13CO)

I(12CO)
≃

1 − exp(−xrτ12)

1 − exp(−τ12)
, (57)

where xr is the 13CO/12CO abundance ratio, X(13CO)/X(12CO). τ12 is the optical depth of
12CO J = 1 → 0 and, in LTE, the optical depth of 13CO J = 1 → 0, τ13, is related to τ12 by

τ13 = xr ·τ12. Expression (57) is an approximation because the integrated intensities are used

here instead of the radiation temperatures at a particular velocity within the line profile. (It

is also an approximation because the temperature corrected for the cosmic background and

for failure of the R-J approximation, Jν(TK
), is slightly different for the the two J = 1 → 0

lines.) This line ratio has the following limiting cases:

I(13CO)

I(12CO)
≃ xr , for τ12 ≪ 1 and τ13 ≪ 1, (58)

≃ 1 − exp(−xrτ12) , for τ12 ≫ 1, (59)

≃ xrτ12 , for τ12 ≫ 1 and τ13 ≪ 1, (60)

≃ 1 , for τ12 ≫ 1 and τ13 ≫ 1. (61)
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Equation (58) represents the uncommon case of optically thin 12CO J = 1 → 0 and has the

unsurprising result that the line ratio is the abundance ratio when both lines are optically

thin. Equation (60) shows a linear relationship between the line ratio and the abundance

ratio. When both lines are optically thick, as represented by equation (61), the line ratio is

completely insensitive to the abundance ratio.

If we now consider a clumpy medium and use the MSH84 formalism, then

I(13CO)

I(12CO)
≃ 1 − exp(−aτef,12)

1 − exp(−τef,12)
, (62)

where τef,12 is the effective optical depth of the 12CO J = 1 → 0 line and where,

a ≡ τef,13

τef,12

=
A(τ0,13)

A(τ0,12)
. (63)

Here it is implicitly assumed that A(τ0) has the same functional form for both 12CO J = 1 → 0

and 13CO J = 1 → 0. This is not necessarily the case given that 13CO can be selectively

photodissociated more easily than 12CO (Warin et al. 1996). Nevertheless, for simplicity, the

same A(τ0) for both of the J = 1 → 0 lines will be assumed here. Even for the same A(τ0),

the kA and ǫ values can be different if 13CO J = 1 → 0 and 12CO J = 1 → 0 are in different

optical depth regimes (i.e. τ0<∼ 1 versus τ0>∼ 3):

a =
kA,13 τ ǫ13

0,13

kA,12 τ ǫ12
0,12

. (64)

When 13CO J = 1 → 0 is optically thin in the clump (i.e. τ0,13 ≪ 1), kA,13 = 1 and ǫ13 = 1.

If, at the same time, 12CO J = 1 → 0 is optically thick in the clump (i.e. τ0,12>∼ 3), then it

is easy to see that

a = xr k−1
A τ 1−ǫ

0 , (65)

where the subscript “12” was omitted from the kA and ǫ. In the other limit, when 13CO J =

1 → 0 is optically thick in the clump, kA,13 = kA,12 and ǫ13 = ǫ12 and

a = xǫ
r , (66)

where ǫ is both ǫ13 and ǫ12. With these expressions in mind, the following limiting cases

result:

I(13CO)

I(12CO)
≃ xr , for τef,12 ≪ 1, τef,13 ≪ 1, τ0,12<∼ 1, and τ0,13<∼ 1, (67)

≃ xr k−1
A τ

(1−ǫ)
0,12 , for τef,12 ≪ 1, τef,13 ≪ 1, τ0,12>∼ 3, and τ0,13<∼ 1, (68)

≃ xǫ
r , for τef,12 ≪ 1, τef,13 ≪ 1, and τ0,13>∼ 3, (69)
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≃ xr τ0,12
N
Nc

∆vc

∆v
, for τef,12 ≫ 1, τef,13 ≪ 1, and τ0,13<∼ 1, (70)

≃ xǫ
r kA τ ǫ

0,12
N
Nc

∆vc

∆v
, for τef,12 ≫ 1, τef,13 ≪ 1, and τ0,13>∼ 3, (71)

≃ 1 , for τef,12 ≫ 1 and τef,13 ≫ 1. (72)

The kA and ǫ are those for τ0>∼ 3. Only in the last case is the line ratio completely inde-

pendent of the abundance ratio. When τ0,13>∼ 3, I(13CO)/I(12CO) ∝ xǫ
r which is the same

proportionality that the X-factor has in the case when the X(CO) is not spatially varying

(see first paragraph of Section 3.2.3). This represents a very important contrast with the case

of uniform gas: even when both 12CO J = 1 → 0 and 13CO J = 1 → 0 are optically thick

on the central sightlines of the clumps, the observed 13CO J = 1 → 0/12CO J = 1 → 0

line ratio does not reach an asymptotic value of unity, unless τef,13 ≫ 1. And when both

τef,12 ≪ 1 and τef,13 ≪ 1 for τ0,13>∼ 3, the line ratio saturates near an asymptotic value that

depends on the abundance ratio and the clump fluffiness.

Expression (62) and its limiting forms, (67) to (72) inclusive, can be applied to the
13CO J = 1 → 0 and 12CO J = 1 → 0 data of the Orion A and B molecular clouds (Wall

2006). The line ratio I(13CO)/I(12CO) is plotted against τef,12 in the panels of Figure 5. The

τef,12 was found from solving equation (4) for τef . The Jν(TK
) was determined from the

observed Iν(140 µm)/Iν(240 µm) ratio and the one- and two-component models described in

Wall (2006). The uncertainties in τef , σ(τef ), were estimated from

σ(τef ) =
σ(ηff )

1 − ηff
, (73)

where ηff ≡ T
R
/Jν(TK

). Any attempt to model the points in Figure 5 must consider

the large scatter. The points with τef<∼ 0.3 and I(13CO)/I(12CO)>∼ 0.3, for instance, have

large vertical scatter due to their large vertical error bars (which are really twice as large

as shown, see figure caption). Even if the vertical scatter for these points is not entirely

real, the high I(13CO)/I(12CO) ratios still seem to be likely — i.e., I(13CO)/I(12CO) ∼ 0.6.

This combination of high I(13CO)/I(12CO) and low τef is difficult to explain, and is best

represented by expression (69). For xr = 1/60, a line ratio of I(13CO)/I(12CO) = 0.6 requires

ǫ = 0.12, roughly consistent with clumps that are hard spheres. Hence these points could

be explained by gas with a low filling factor (and, accordingly, low τef) and with clumps

approximating hard spheres.

On the other hand, the vertical scatter is probably real in the quasi-horizontal band of

points that extends from τef ≃ 0 to τef > 1 for I(13CO)/I(12CO)<∼ 0.3 to 0.5. Accordingly,

no single theoretical curve can adequately model this band; models that have two curves

each are plotted in the panels of Figure 5. Before the two-curve models are discussed, the

one-curve models are described.
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3.3.1. Crude Modeling of I(13CO)/I(12CO) versus τef,12

The data points in Figure 5 are those positions in the Orion A and B molecular clouds for

which the peak T
R
(12CO J = 1 → 0) > 3 σ, and Iν(140 µm), Iν(240 µm), and I(13CO) are all

> 5 σ for a total of 372 points (see Wall 2006). One set of τef,12 values were derived from one-

component models, hereafter τ
(1)
ef,12, and another from two-component models, hereafter τ

(2)
ef,12.

These models were necessary for estimating the source function, Jν(TK
), from the 140 µm and

240 µm DIRBE data (see details in Wall 2006). While both panels of Figure 5 show roughly

the same basic trend of I(13CO)/I(12CO) with τef,12, the models fit the I(13CO)/I(12CO)

versus τ
(1)
ef,12 plot much better (i.e., upper panel) than the I(13CO)/I(12CO) versus τ

(2)
ef,12 (i.e.,

lower panel). This is due to the unrealistically small errors in τ
(2)
ef,12. But these errors are only

the formal errors. While the two-component models for the Orion clouds are better than the

one-component models in many ways, they do not seem to adequately estimate the source

function, Jν(TK
). This source function depends on a model parameter, c0, that is not well

constrained (unless combined with another parameter). Therefore, when systematic effects

are considered, the effective errors in τ
(2)
ef,12 would be much larger. This must be borne in

mind when considering the models described below.

One of the simplest models to consider is that where each model curve is characterized

only by a value of a, where a is defined in expression (63). This kind of model represents

a picture in which the clump properties are constant (i.e. fixed τ0, ∆vc, Nc) and τef,12 and

τef,13 increase only because the average number of clumps per sightline within each clump

velocity width is increasing (i.e., increasing N
Nc

∆vc

∆v
), thereby increasing the beam-averaged

column density N . In the limit where τef,12 → 0 and aτef,12 → 0, (62) becomes

I(13CO)

I(12CO)
→ a + 0.5 a (1 − a) τef,12 (74)

If a is constant, then the line ratio would have a linear dependence on τef,12 with slope

0.5a(1 − a) and intercept a. It turns out that (74) is very good approximation even when

the limit τef,12 → 0 is not valid. For example, (74) yields a result that is within 2% of that

of expression (62) even for τef,12 = 3, when a = 0.3. A sample of clumpy gas with identical

clumps, but varying τef,12 would have a clear signature in a diagram like Figure 5: a straight

line extending to the right from the intercept on the vertical axis with a positive slope, and

there would be a well-defined relationship between the slope and the intercept. Figure 5

shows that, for the Orion clouds at least, such a simple signature is not obvious.

Nevertheless, models with one curve were attempted using the orthogonal regression

method described in Wall (2006). Models with two curves were also tried. Neither the one-

curve nor the two-curve models were successful. The two-curve models produced fits with
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reduced chi-square values of χ2
ν = 13.9 and 24.4 for the τ

(1)
ef,12 and the τ

(2)
ef,12, respectively.

These are factors of roughly 3 better than for the corresponding one-curve models. The

recovered a values for the τ
(1)
ef,12 are 0.13 and 0.24 from the two-curve models. These are the

same for the τ
(2)
ef,12.

Models that are slightly more complicated are those that assume constant A(τ0,12)/τef,12.

The model curves here are characterized by two parameters: the A(τ0,12)/τef,12 ratio, b, and

the clump fluffiness, ǫ. This kind of model represents a picture in which the average number

of clumps per sightline within each clump velocity width is constant (i.e., constant N
Nc

∆vc

∆v
),

but τ0,12 and τ0,13 increase, thereby increasing τef,12 and τef,13. Combining equation (10) with

the constant b yields,

τ0,12 = b1/ǫ k
−1/ǫ
A τ

1/ǫ
ef,12 , (75)

where kA and ǫ are those for τ0,12 ≫ 3. Substituting (65) into (75) gives

a = bτ τ
(1−ǫ)/ǫ
ef,12 , (76)

where

bτ ≡ xr k
−1/ǫ
A b

1−ǫ
ǫ . (77)

Substituting (76) into (62) results in

I(13CO)

I(12CO)
≃

1 − exp(−bτ τ
1/ǫ
ef,12)

1 − exp(−τef,12)
. (78)

The above expression results in τef,13 growing very rapidly for small ǫ. This growth cannot

continue unchecked and must slow when a reaches its saturation value, given by expres-

sion (66). Consequently, in this limit,

I(13CO)

I(12CO)
≃ 1 − exp(−xǫ

rτef,12)

1 − exp(−τef,12)
. (79)

Each model curve combines (78) and (79): the minimum of the two I(13CO)/I(12CO) values

for each τef,12 is used. As a result, the I(13CO)/I(12CO) versus τef,12 curves are from ex-

pression (78) for lower τef,12 and expression (79) for higher τef,12. This produces an abrupt

transition at some intermediate τef,12 value (see curves in Figure 5). This abrupt transition

is not real and only appears in these model curves because the smooth transition of A(τ0)

from optically thin to optically thick behavior (i.e., for 1<∼ τ0<∼ 3) has not been considered

here. Nevertheless, these intermediate τ0 values represent only a small portion of the curves.

Accordingly, the abrupt transitions in the curves only introduce small inaccuracies into the

final results.
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Models with one curve and models with two curves were fitted, each fit optimizing bτ

and ǫ. The best fits of the one-curve models had reduced chi-square values that were factors

of 2.1 to 2.5 worse than those of the two-curve models. The data points in Figure 5 are

not entirely independent, so the effective number of degrees of freedom is about a factor

of 9 lower than the number of points (see discussion of this in Wall 2006), or about 40.

Therefore, the F-test states that the two-curve models are better than the one-curve models

at a 97.5% confidence level. The resultant parameter and reduced chi-square values are given

in Figure 5. Even if the two-curve models are superior to the one-curve models, the fits of

the former to the data are not impressive. Nonetheless, the fit to the τ
(1)
ef,12 is not too bad

(χ2
ν ≃ 4) considering the vertical spread in the points, even in the quasi-horizontal band.

The fit to the τ
(2)
ef,12 is considerably worse, but then this is due to the unrealistically small

horizontal error bars. These two-curve models (where each curve uses two parameters) are

better than the previous simpler two-curve models (where each curve uses one parameter) at

the 95% confidence level or better, according to the F-test. For τef,12 beyond some threshold,

the constant a models (with one parameter per curve) superficially resemble the constant

A(τ0,12)/τef,12 models (with two parameters per curve), because the latter have constant a

(i.e., a = xǫ
r) in this τef,12 range. Consequently, the latter being significantly better than the

former is because the latter models have a rapid non-linear rise at smaller τef,12 where the

majority of the points lie.

The systematic uncertainties in the resultant parameter values were found by adopting

systematic errors of 30% for I(13CO)/I(12CO), ηff , and xr. Specifically, 0.7 and 1.3 were

each multiplied by one of these quantities and the models were refit, a total of 6 refits. The

minimum and maximum bτ and ǫ were chosen from these refits as measures of the uncertain-

ties. The uncertainty in bτ is about a factor of 2 and for ǫ about 30%. Expression (77) and

ǫ ∼ 0.3 imply that the systematic uncertainty in b is roughly a factor of
√

2 or about 40%.

Given that 1/b is in reality N
Nc

∆vc

∆v
, this latter also has a systematic uncertainty of about 40%.

With these systematic uncertainties in mind, the ǫ values given in Figure 5 for the

upper panel are consistent with those in the lower panel. The bτ values given in Figure 5 are

significantly different between the two panels. Nonetheless, the changes in ǫ from one panel

to the other conspire with the bτ values to produce b values that are much closer together

(in a logarithmic sense). Solving (77) for b, adopting kA = 1.5, and using the bτ values in

Figure 5 results in

N

Nc

∆vc

∆v
= 1 × 10−2 and 6 × 10−2 , for τ

(1)
ef,12, (80)

= 2 × 10−2 and 8 × 10−2 , for τ
(2)
ef,12. (81)

Considering that the effective spatial resolution of the observations was slightly less than
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1◦ (or a linear resolution of 8 pc for the adopted distance of 450 pc), these numbers are

reasonable. The fluffiness values are more succintly summarized as roughly the following:

ǫ ≃ 0.3 ± 0.1. This range is consistent with that found in Section 3.2.1.

One concern raised by the modeling here is that many positions seem to have non-

negligible optical depths in the 13CO J = 1 → 0 line. The modeling of physical conditions by

Wall (2006) required 13CO J = 1 → 0 to be optically thin. Examination of the upper panel

of Figure 5 suggests that the majority of points are not towards optically thick sightlines

in 13CO J = 1 → 0. Most of the points are associated with the curve with the lower bτ

value and, hence, lower A(τ0,12) values. The majority of these points are at lower τef,12 than

occurs for the abrupt transition at τef,12 = 0.34. It is easy to compute that τ0,13 ≃ 2 at

this transition. Accordingly, the majority of points have τ0,13 < 2. Given that τ0,12 ∝ τ
1/ǫ
ef,12

(cf. equation 75), the τ0,13 is very strong function of τef,12 and drops rapidly with τef,12

decreasing below the transition point. Therefore, the majority of points do not represent

sightlines optically thick in 13CO J = 1 → 0, although some important minority of points

may indeed represent such sightlines.

In summary, the modeling of the I(13CO)/I(12CO) versus τef,12 diagram did not produce

exceptionally good fits, but does strongly favor one scenario over another. Specifically, it

favors the case of growing clump optical depth as the column density increases from position

to position, rather than the case of a growing number of clumps per sightline. The model

fits suggest that the average number of clumps per sightline per clump velocity width is a

few× 10−2 and the fluffiness is 0.3± 0.1, consistent with that expected for the observed Xf

value (see Section 3.2.1).

4. Discussion

The Orion clouds have been used as a test bed for the ideas developed here. More

general implications are examined in this section.

4.1. Comparisons with Previous Work

Much of the previous work on the X-factor was based in one way or another on DSS86.

Two examples of this are Sakamoto (1996) and Weiss et al. (2001), which examined the

relationship between Xf and physical parameters — i.e., n(H2) and T
K
. The former used

LVG models to explore the behaviour the X-factor under non-LTE conditions. The latter

used observational data to estimate the dependence of Xf on density and temperature.
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Sakamoto (1996) has the advantage that it deals with non-LTE conditions, but has the

disadvantage that it does not consider radiative transfer through a clumpy cloud. Obviously,

the advantage and disadvantage of the current paper complement those of Sakamoto (1996).

Accordingly, a treatment that combines non-LTE conditions with radiative transfer in a

clumpy medium would be desirable, but is beyond the scope of the current work.

Any attempt to at least roughly estimate the properties of such a combined treatment

must compensate for some minor errors found in Sakamoto (1996).

• The expression for the virial mass, equation (5) of that paper, is missing a factor of 1
2
.

This can be verified for the uniform density case by comparing with the derivation given

in Section 2.2 of the current paper. This can also be verified for the ρ(r) ∝ r−1 case by

comparing with the expressions given in Maloney (1990). Both of these comparisons

confirm the absence of the factor 1
2

in equation (5) of Sakamoto (1996). So equations

using the parameter k3 must use k3

2
in place of k3. Consequently, the numerical values

of Xf computed from equation (7) of that paper must be corrected downward by a

factor of
√

2.

• The claim that Xf is independent of T
K

in the optically thin (i.e. τ(12CO J = 1 → 0) ≪
1), thermalized limit is incorrect. This claim and its explanation are given in point #2

(which contains expression 11) of Sakamoto (1996). Section 3.1.2 shows that such a

claim is false. A very simple physical argument makes it obvious that Xf must depend

on T
K

in the optically thin, LTE limit: as T
K

increases in the high-T
K
, LTE limit the

CO molecules populate more and more of the upper-J levels, thereby decreasing the

column density of CO in the J = 1 level. If the J = 1 → 0 line is optically thin,

then I(CO) decreases for fixed total N(H2), resulting in Xf increasing with increasing

T
K

(cf. Section 3.1.2). The panels of Figure 3 of Sakamoto (1996) do indeed show

that Xf varies by less than factor of about 2 (from smallest to largest) over the range

T
K

= 10 to 100 K for CO abundances less than about 10−5. However, contrary to

point #2 of Sakamoto (1996), even n(H2) as high as 104 cm−3 does not thermalize the
12CO J = 1 → 0 line when it is optically thin — LTE still does not apply. Given that

the critical density of the 12CO J = 1 → 0 line is ∼ 3 × 103 H2 cm−3, it is natural to

assume that densities corresponding to the lower two panels of Figure 3 of that paper

— i.e., 3 × 103 H2 cm−3 and 1 × 104 H2 cm−3 — are sufficient to bring the J = 1 → 0

line of CO close to LTE. The problem is that critical densities are normally computed

as though a given atom or molecule is just a two-level system. For the CO molecule,

there are many rotational levels and the radiative decay rates increase very rapidly —

roughly like J3 — as one moves up the rotational ladder. When the CO J = 1 → 0 line

is optically thin, radiative trapping effects are minimized and the CO molecules pile

up mostly in the J = 0 and J = 1 states, often resulting in superthermal J = 1/J = 0
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population ratios (i.e., the excitation temperature of the J = 1 → 0 transition is

greater than T
K
) or even population inversions, because of the higher levels with large

radiative decay rates. Therefore, non-LTE effects play a role in the behavior of the

J = 1 → 0 line even at densities around 3× 103 H2 cm−3 (provided that the J = 1 → 0

line is optically thin). For the specific cases of the densities considered in Figure 3

of Sakamoto (1996) and for CO abundances <∼ 10−5, the increasing T
K

populates the

J = 1 level from the J = 0 level at an increasing rate, but also depopulates the J = 1

level to the higher-J levels at an increasing and roughly comparable rate. Accordingly,

the column density of CO molecules in the J = 1 level stays roughly constant. Given

that the CO J = 1 → 0 line is optically thin for these abundances, the observed line

brightness is directly proportional to the column density in the J = 1 (and not the

J = 0) state, resulting in roughly constant line brightness and, ergo, roughly constant

Xf . Therefore, expression (11) of Sakamoto (1996), which states that Xf ∝ X(CO)−1

with no dependence on T
K

nor n(H2), is approximately correct. And again, this is only

in this particular non-LTE case. In the LTE limit when CO J = 1 → 0 is optically

thin, the dependence of Xf on T
K

is as given in Section 3.1.2.

• The statement that the observed spectral profiles of the CO J = 1 → 0 line place an

upper limit on its opacity is erroneous, and is at odds with the clumpy cloud picture

presented in Figure 1 of Sakamoto (1996). That paper states that the 12CO J = 1 → 0

line cannot be very optically thick or its profiles would be flat-topped. For a given

volume of gas with more or less uniform density, that would be true; increasing the

optical depth would saturate the line core before it would do so in the line wings.

But this is not necessarily the case in a clumpy cloud. The optical depth of the
12CO J = 1 → 0 line within each clump can increase without bound and, as long

as the filling factor within each velocity interval within the line profile is sufficiently

small, the observed line profile can still be Gaussian (e.g., see equation 7 of the current

paper). This point is important for avoiding unrealistically low upper limits on the

optical depth of the 12CO J = 1 → 0 line.

With these caveats in mind, a relatively simple treatment of clumpy clouds that includes both

radiative transfer and non-LTE effects can be developed. This will be particularly useful for

developing insights into the emission of high-dipole molecules like CS, whose transitions are

farther from LTE than those of CO.

In the meantime, a rough estimate of the behavior of Xf in the non-LTE limit is possible

from combining the results of Sakamoto (1996) with the current work. For example, in the

high-density, metal-rich case Sakamoto (1996) finds that Xf ∝ n(H2)
1/2 T−1

K
. In the current

paper, this can correspond to any of the cases in Sections 3.1.3, 3.1.4, or 3.1.5. All of these

cases show a weaker dependence of Xf on n(H2) and on T
K
. The side-on Gaussian cylinder,



– 43 –

for instance, requires roughly the following: Xf ∝ CT T−0.6
K

n(H2)
0.4. Therefore, as has been

noted previously, the radiative transfer through a clumpy medium has the effect of softening

the dependence of the X-factor on density and kinetic temperature. Two other cases are

discussed in that paper. The case of intermediate density (i.e. ∼ 3 × 103 H2 cm−3) and low

metallicity shows no dependence of Xf on n(H2) nor T
K
. Including radiative transfer through

a clumpy medium is unlikely to change this. The case of low density (i.e. <∼ 3×102 H2 cm−3)

and low metallicity has the following behavior: Xf ∝ n(H2)
−1 T−1/2

K
X(CO)−1. Combining

this with radiative transfer in clump medium will yield Xf ∝ n(H2)
−δ1 T−δ2

K
X(CO)−1, where

δ1 < 1 and δ2 < 1
2
. Very crude guesses would be that δ1 ∼ 0.6 and δ2 ∼ 0.4. Something else

worth considering is that in low-metallicity clouds, such as those in irregular galaxies, the

CO abundance within the CO-emitting region within each cloud is close that in our Galaxy

(see Israel 1997a, 2000, and references therein). Consequently, the behavior of the X-factor in

such clouds may be closer to that described in Sections 3.1 and 3.2.2 than assuming optically

thin, non-LTE 12CO J = 1 → 0 emission.

Weiss et al. (2001) observationally tested the dependence of the X-factor on density

and temperature. They observed the central region of the galaxy M 82 in the lower-J lines

of 12CO, 13CO, and C18O to constrain estimates of the molecular gas density and temper-

ature. Using their estimates of N(H2), n(H2), and T
K
, they plotted N(H2)/I(CO) versus

n(H2)
1/2 T−1

K
for the observed positions and found a roughly linear relationship (see their

Figure 11). Determining the densities and kinetic temperatures from line ratios with suffi-

cient accuracy is fraught with difficulties; Weiss et al. (2001) do not include the error bars

in this plot and it is easy to show that the total horizontal uncertainty of each plotted point

(i.e. from smallest to largest value for each point) is roughly 1/3 the horizontal extent of

the entire figure. Accordingly, a large range of dependences on temperature and density are

not ruled out. In general, such observational tests of the behavior of the X-factor are very

uncertain.

4.2. The Dependence of Xf on CO Abundance

The molecular gas in low-metallicity irregular galaxies has very low CO abundance over

large volumes and has roughly the Galactic abundance level in small internal regions within

the molecular clouds (see Israel 1997a, 2000, and references therein). Based on this picture,

Section 3.2.2 discussed the dependence of the X-factor on the CO abundance and found

that Xf ∝ X(CO)−θ, where θ can be anywhere from 0.5 to 1.0. Israel (2000) examined the

dependence of Xf on the metallicity in a sample of Magellanic irregular galaxies and had the

result that Xf ∝ X(O)−2.5. If the CO abundance is largely determined by the O abundance,
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then Xf ∝ X(CO)−2.5. If, however, the CO abundance is largely determined by the C

abundance and, given that X(C) ∝ X(O)1.7 (Israel 2000, and references therein), Xf ∝
X(CO)−1.5. Instead, the CO abundance might be strongly affected by the photodissociation

rate and would be inversely proportional to that rate. Given that the photodissociation

rate is proportional to X(O)−3 (Israel 1997a, and references therein), this results in Xf ∝
X(CO)−0.8. Hence, there are three possibilities:

Xf ∝ X(CO)−2.5 , (82)

or

Xf ∝ X(CO)−1.7 , (83)

or

Xf ∝ X(CO)−0.8 . (84)

Expressions (82) and (83) represent dependences that are steeper than one would expect even

in the optically thin case (i.e., Xf ∝ X(CO)−1.0). Having such a steep dependence would

require that other physical parameters like density and kinetic temperature also depend on

the CO abundance. When the volume-averaged X(CO) is small, the interstellar radiation

field that reaches the CO-containing gas is strong, resulting in high gas temperatures. This

would produce a smaller X-factor at small X(CO) (based on the expressions of Section 3.1)

and the dependence of Xf on X(CO) would be less steep. On the other hand, the strong

interstellar radiation field would preferentially photodissociate the low-density molecular gas,

leaving the high-density gas. The low X(CO) would be associated with higher densities and

higher densities mean higher Xf (see Section 3.1). Higher Xf at low X(CO) means a steeper

dependence of Xf on X(CO). Consequently, the effects of the higher temperature would

compete against the effects of higher density, making it uncertain if such steep relations are

possible or even likely. The most likely dependence is that of expression (84). And this is

consistent with the range found in Section 3.2.2.

4.3. The Relationship between Xf and 13CO J = 1 → 0/12CO J = 1 → 0

That a relationship exists between the X-factor and the 13CO J = 1 → 0/12CO J = 1 → 0

line ratio is not new and has been used to determine whether the X-factor varies spatially.

For example, Rickard & Blitz (1985) and Paglione et al. (2001) observed the J = 1 → 0

lines of 12CO and 13CO in external galaxies and found that the I(13CO)/I(12CO) ratio was

significantly different in the nuclear regions from that in the disks. This is evidence that

the X-factor in galactic nuclei is also different from that in the disks. Based on the current

work, how do changes in I(13CO)/I(12CO) relate to changes in Xf? This can be assessed by
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using an equation analogous to (34) for 13CO. Equation (34) assumes that 12CO J = 1 → 0

is optically thin (i.e., τ0,12<∼ 1). Since 13CO J = 1 → 0 is likely to be optically thin on the

scales of many parsecs, the appropriate expression is

Xf = CT k−1
τ Tγ−1

K
x−1

r

I(13CO)

I(12CO)
. (85)

The Xf and kτ are those for 12CO and not for 13CO; accordingly the I(13CO)/I(12CO) and

x−1
r are necessary to correct for those, respectively. Notice that when 12CO J = 1 → 0

is optically thin as well (τ0,12<∼ 1), the line ratio is xr (see equation 67) and equation (85)

reduces to (34), as required. When τ0,12 > 3, equation (68) for I(13CO)/I(12CO) applies;

when this is substituted into expression (85), equation (28) for Xf is recovered, also as

required. Therefore, the X-factor is proportional to the 13CO J = 1 → 0/12CO J = 1 → 0

line ratio.

However, the situation is not quite that simple. Given that the X-factor is also pro-

portional to Tγ−1
K

x−1
r , determining spatial variations in Xf from one observed position to

another can be obscured by unknown spatial variations in T
K

and xr. For example, Xf may

be varying spatially while I(13CO)/I(12CO) remains constant and vice versa. One way to

estimate the dependence between Xf and I(13CO)/I(12CO) when there are also spatial vari-

ations in T
K

is to assume some kind of correlation between the T
K

and n(H2). For example,

T
K
∝ n(H2)

w. One of the limiting forms of equation (62) in Section 3.3 — i.e., equations (67)

to (71) — is useful here: the most appropriate of these for the bulk of molecular clouds is

equation (68). Using that expression along with that of (22) and substituting into (85)

results in the following possible dependence:

Xf ∝
[

I(13CO)

I(12CO)

]u

, (86)

where

u ≡
1
2
(1 − ǫ) + w(γǫ − 1.32)

(1
2
− γw)(1 − ǫ)

for T
K

= 10 to 20 K. (87)

In the high-T
K

limit, the “1.32” is replaced with “1.00”. Of particular interest is pressure

equilibrium, where w = −1. For ǫ = 0.2 to 0.4 (see Section 3.3.1), u = 0.8 to 0.7 when

T
K

= 10 to 20 K. In the high-T
K

limit, the corresponding range in u is 0.5 to 0.3. Hence,

if there are spatial variations of the molecular gas kinetic temperature from one observed

position to another, and pressure equilibrium applies, the apparent correlation between the

X-factor and the 13CO J = 1 → 0/12CO J = 1 → 0 line ratio could be weak.

There are, of course, additional complications. One is that equation (85) assumes LTE;

non-LTE effects might be important in some sources and this would require an explicit density
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dependence in the relationship between Xf and I(13CO)/I(12CO). Another complication is

that the 13CO J = 1 → 0/12CO J = 1 → 0 ratio may be saturated (see equation 69) toward

some positions in some sources. (See Section 4.4 for more details.)

Nonetheless, if a large number of positions are sampled in a source where the kinetic

temperature is roughly constant, such as in a galactic disk on large scales, then there could be

an approximately linear correlation between the X-factor and the 13CO J = 1 → 0/12CO J =

1 → 0 line ratio.

4.4. Determining ǫ from 13CO J = 1 → 0/12CO J = 1 → 0

One way to constrain estimates of Xf is to model the data in the I(13CO)/I(12CO)

versus τef,12 plot, as was done in Section 3.3.1, thereby estimating ǫ and possibly other

parameters. However, this method has the considerable drawback that it requires some

measure of the source function. Wall (2006) did this for the Orion clouds by using the far-IR

continuum data. The Orion clouds are 10◦ to 20◦ out of the Galactic plane, meaning that the

origin of the continuum emission was unambiguous. Due to the lack of velocity information,

continuum data is not very useful for isolating the emission of individual clouds along lines

of sight through the Galactic plane. Therefore, determination of the source function of such

clouds with continuum data would be very difficult, if possible at all.

Another simpler approach is to use the histogram of I(13CO)/I(12CO) values. One such

histogram for the Orion clouds is shown in Figure 6. It shows a prominent peak between
13CO J = 1 → 0/12CO J = 1 → 0 line ratios of about 0.1 and 0.3 with a maximum at about

0.2. The left edge of this peak roughly corresponds to the self-shielding limit for molecules —

i.e., Av ≃ 1 mag. The 13CO J = 1 → 0/12CO J = 1 → 0 line ratio approximately correlates

with the gas column density. For the Orion clouds, I(13CO)/I(12CO) = 0.1 corresponds to

total hydrogen-nuclei column density, N(H I+2H2), of 0.7 to 1.5×1021 cm−2 or about Av = 0.5

to 1.0 magnitudes. (Note that this range applies regardless of whether the column densities

were derived from one- or two-component models and regardless of imposed restrictions on

the signal-to-noise ratio; cf. Wall (2006).) The right edge of the peak can be interpreted by

inspecting the panels of Figure 5; the value of I(13CO)/I(12CO) corresponding to the right

edge of the histogram peak corresponds to where the model curves are linear — i.e., where

the 13CO J = 1 → 0/12CO J = 1 → 0 ratio saturates. According to equation (69), this is xǫ
r.

If re is the 13CO J = 1 → 0/12CO J = 1 → 0 ratio at the right edge of the peak, then ǫ is

given by

ǫ =
ln(re)

ln(xr)
. (88)
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If the 13CO/12CO abundance ratio, xr, is the same in the Orion clouds as in the inner

Galactic disk, then the fluffiness, ǫ, of the molecular cloud clumps are also the same. For

xr = 1/60, ǫ = 0.29. This is consistent with model results of Section 3.3.1. However, the

observations of Langer & Penzias (1990) show that xr in the inner galaxy systematic varies

with Galactocentric radius by a factor of about 2 from the center to the solar circle. Because

of the logarithmic dependence on xr the affect on ǫ is relatively small: ǫ = 0.29 to 0.35 from

the solar circle to the inner Galaxy. And these values are still consistent with the model

results of Section 3.3.1, even though those results only apply to the Orion clouds. Whether

the X-factor is the same in the Orion clouds as in the inner Galaxy also depends on the

typical densities and temperatures in the molecular cloud clumps in the two. If they are

the same on average, then Figure 4 provides a crude estimate of the X-factor: Xf ≃ 1.2 to

2.2 X20 depending on the curve and ǫ value (i.e. 0.29 or 0.35) used.

Of course, not all positions have 13CO J = 1 → 0/12CO J = 1 → 0 ratios between

0.1 and 0.3. A few are much larger, up to 0.95. Line ratios this high can only occur if

either ǫ is smaller than the value(s) that occurs for the positions in the peak, as discussed

in Section 3.3, or if τef,13 is large. It is possible that there is a distribution of ǫ values in

clouds. This distribution would probably have to be sharply peaked to permit the peak in

the histogram to have reasonably defined right edge (e.g., the peak from its maximum down

to some poorly defined zero level on the right side has 13CO/12CO line ratios from about 0.2

to about 0.45). To have a rough guess at what such a distribution might look like, it could

be assumed that all the observed positions have saturated 13CO J = 1 → 0/12CO J = 1 → 0

ratios. Then equation (88) with all the observed line ratios used in place of re will give a

histogram that would contain such a distribution within its boundaries. Adopting symmetry

about the maximum of the ǫ distribution as a working assumption implies that there is an

excess in the number of positions with high ǫ values (ǫ > 0.3), which corresponds to an excess

in the number of positions with low 13CO J = 1 → 0/12CO J = 1 → 0 ratios (< 0.3). This

excess supports the interpretation that these low line ratios are unsaturated as expected,

and do not represent part of this hypothetical distribution of ǫ values.

Comprehending exactly what limits the range of ǫ values in a molecular cloud, cloud

complex, or galaxy is key to understanding the X-factor. It is also key to comprehending

the narrow range of 13CO J = 1 → 0/12CO J = 1 → 0 ratios. Therefore, understanding the

narrow range of 13CO J = 1 → 0/12CO J = 1 → 0 ratios is key to understanding the X-factor.

These two are linked. Even if the formulation for the X-factor proposed in this paper were

incorrect, even if it were not possible to clearly define a quantity like ǫ in real molecular

clouds, the connection between the restricted range of 13CO J = 1 → 0/12CO J = 1 → 0

ratios and the X-factor would exist independently.
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4.5. Clump/Interclump

Real molecular clouds (like Orion and Rosette) have about 3
4

of their mass and 1
10

of their

volume in the form of clumps, and the remainder in an interclump medium (see, e.g., Ostriker

1999; Williams et al. 1995; Bally et al. 1987). Adopting θH as the former quantity and fH as

the latter (as done in Ostriker 1999), then rM = θ−1
H − 1 = 1

3
and rσ = [(1 − fH)/fH ]

1

3 ≃ 2.

For rM < 1, we need rσ ≫ r
1

3

M for the rσ large limit to apply; since 2 ≫ 0.7 is more or

less valid, Xf would be increased by about (1 + rM)0.5(1−ǫ), which is an increase of less

than 15%. Therefore, if most molecular clouds are like the examples given here, then the

interclump medium will have a small effect on the X-factor. This is especially true if this

interclump gas is mostly atomic (e.g., see Williams et al. 1995, and references therein).

4.6. Radial Density Profiles

The density dependence on radius in dark clouds or in the clumps (or cores) of clouds

is often ρ ∝ r−α, where α is 2 or nearly so (e.g., Harvey et al. 2001; Tachihara et al. 2000;

Lada et al. 1999; Alves et al. 1998; Henriksen et al. 1997; Williams et al. 1995). As discussed

in Appendices C and D (see Sections C.4 and D.3.1) and Section 3.1.5, a ρ ∝ r−2 dependence

requires specifying an outer radius, r1, to keep the total mass finite and an inner radius to the

r−2 region, r0, to keep the density finite. Also, the ratio r1/r0 determines the fluffiness, ǫ, of

the clump. And estimates of ǫ can be constrained by observations Xf or of the 13CO J = 1 →
0/12CO J = 1 → 0 intensity ratio (cf. Sections 3.3 and 3.3.1). Accordingly, the observations

can constrain the r1/r0 ratio (assuming that the bulk of the 12CO J = 1 → 0 emission

originates in structures with ρ ∝ r−2). The histogram of I(13CO J = 1 → 0)/I(12CO J =

1 → 0) values suggests that ǫ ≃ 0.3, the same as that found in the modeling in Section 3.3.1

for the Orion clouds. If the range of ǫ values found from that modeling are relevant to much

of the Galactic disk, then ǫ = 0.2 to 0.4. If the clumps are spherical, then r1/r0 would be

in the range 2 to 9. If the clumps are cylindrical filaments viewed side-on, then r1/r0 would

be from 4 to 42. (End-on cylindrical filaments would have a much more restricted range of

r1/r0, but these need not be considered here. It is much more likely to view high-aspect

cylinders close to side-on than close to end-on. Hence, the side-on cylinders would probably

dominate the emission from most clouds.)

Observations suggest r1/r0 ratios that are consistent with the ǫ values specified above.

Specifically, r1/r0 is found to be from about 4 to 15 (e.g., Harvey et al. 2001; Tachihara et al.

2000; Lada et al. 1999; Alves et al. 1998; Henriksen et al. 1997; Williams et al. 1995). It

must be borne in mind that many of these observed r1/r0 values are merely lower limits due
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to limitations in spatial resolution, which place upper limits on r0 — the inner radius of the

ρ ∝ r−2 region within each clump.

4.7. Molecular Clouds in Some Specific Regions

4.7.1. Rosette and Orion

The literature has papers with lists of clump temperatures, masses, and dimensions for

certain molecular clouds. Two examples are Williams et al. (1995) for the clumps in the

Rosette Molecular Cloud (RMC) and Nagahama et al. (1998) for the clumps in the Orion A

cloud. With these clump properties, rough estimates of Xf can be made.

For the RMC, Table 2 of Williams et al. (1995) provides the necessary information, after

adjusting the adopted N(H2)/N(13CO) ratio. Williams et al. (1995) adopt N(H2)/N(13CO) =

5×105, which may be quite reasonable, especially for the ρ Oph cloud (see Bertoldi & McKee

1992, and references therein). Frerking et al. (1982) find an abundance of 8× 10−5 for 12CO

and Langer & Penzias (1990) find 1/60 for X(13CO)/X(12CO) in the Galactic disk approx-

imately at the solar circle (and out to Orion). These imply N(H2)/N(13CO) ≃ 7.8 × 105.

Adopting this abundance ratio implies 55% higher clump masses (see MLTE in their Table 2)

and an observationally determined Xf that is also 55% higher or 1.7 X20, which is about the

value expected for molecular clouds in the Galactic disk. At the very least, this higher

N(H2)/N(13CO) ratio is the same as that adopted for the Orion clouds.

For the RMC clumps, Williams et al. (1995) find r1

r0
= 5 (cf. their Figure 22), which may

only be a lower limit due to resolution constraints. If taken at face value, this means that

ǫ = 0.30 and kA = 1.80. Section C.4 of Appendix C computes the specific expression for Xf

for those parameter values — expression (C43). The densities of the clumps were determined

by assuming spherical clumps with the masses (i.e., MLTE increased by 55%) and radii (i.e.,

∆R) as listed in Table 2 of Williams et al. (1995). The densities and temperatures of the

clumps either inferred from, or listed in, Table 2 of that paper will then give the Xf value

corresponding to each clump — that is, the Xf value that would result in a hypothetical

cloud filled with clumps identical to this one. The median of these Xf values is then taken

as an estimate of the Xf of the cloud. (The mean is not used because it is influenced by

extreme outliers. A better way to do this is to develop a formulation that includes clumps

with a distribution of densities and temperatures, but that is beyond the scope of the current

paper.) Here the Xf values use the density as averaged over the entire clump volume (i.e.

equation C46) and is more appropriate in this case (see Williams et al. 1994, 1995). The

Xf values found for the RMC range from about 2 to 10 X20 with a median of 3.4 X20. This
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median is double that determined observationally (and adjusted to the new N(H2)/N(13CO)

ratio): 1.7 X20. This suggests that the formulation is moderately successful, for the RMC at

least, because it estimates the X-factor to within a factor of 2.

It may be possible, however, to improve the agreement between the model Xf and

that observed. At least some of the temperatures listed in Table 2 of Williams et al. (1995)

are probably underestimated. These temperatures are excitation temperatures of the J =

1 → 0 transition of 12CO that were computed from the peak radiation temperature, T
R
, of

that line. In practical terms, this excitation temperature is about the same as the kinetic

temperature, given that the 12CO J = 1 → 0 line is easily thermalized (and Williams et al.

(1995) themselves implicitly assumed equivalence between the two temperatures when they

determined column densities of all the molecular gas and not just the column densities in

the J = 1 state of 13CO.) This method of determining excitation temperatures or, roughly

equivalently in this case, kinetic temperatures implicitly assumes that the emitting gas fills

the beam within each velocity interval of the line profile, especially at the line peak. Despite

the scatter, the inferred clump temperatures have a definite positive correlation with the

clump diameters; the Spearman rank-order correlation test places a 99.998% confidence level

on the correlation (or the significance of the null proposition of no correlation is ∼ 2×10−5).

In contrast, in the Orion A cloud, where the kinetic (excitation) temperatures were also

estimated using the peak T
R

of the 12CO J = 1 → 0 line (see Nagahama et al. 1998),

the Spearman test places only a 40% to 60% confidence on the correlation (depending on

whether the clump size used was filament length or filament diameter). Accordingly, any

correlation between clump size and inferred clump temperature in Orion A is either weak

or non-existent. (Although it should be mentioned that these temperatures are not entirely

reliable either, given that certain values are frequently repeated.) The Orion clumps have

linear sizes (i.e., in parsecs) factors of 3 to 5 larger than those of the RMC and the Orion

clouds are nearly a factor of 4 closer than the RMC. The interpretation of why the RMC

clumps clearly show a correlation between size and inferred temperature while the Orion

clumps do not is then fairly straightforward: the smaller clumps in the RMC are not being

resolved in the velocity interval at the line peak, while the larger clumps are better resolved.

Hence it is likely that at least some of the inferred clump temperatures for the RMC are too

low. These inferred temperatures range from about 5 to 31 K with a median of about 9 K.

For Orion A, the range is 13 to 37 K with a median of about 18 K, which is the dominant dust

temperature of the Orion clouds (see Wall et al. 1996; Wall 2006) and even of the Galactic

plane clouds (Sodroski et al. 1994). Both Orion A and the RMC are GMCs and should have

clumps with roughly similar properties; the median temperature of the clumps of the RMC

should not be half of that of the Orion A clumps. In short, there are three reasons why some

of the clump temperatures in the RMC are probably underestimated:
1. The temperature versus clump size correlation argues for a spatial resolution effect.
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2. Both the RMC and Orion A are GMCs forming massive stars and their clumps should

have similar temperatures.

3. An additional reason is that the RMC is close to the Galactic plane (i.e. about 2◦) and

the dust temperatures in the plane is about 18 K (e.g., see Sodroski et al. 1994). If the

RMC is like the Orion clouds in that its dust-gas temperature difference is small (Wall

2006), then the gas kinetic temperatures must be roughly double the listed values for

some of the clumps.

Correcting all the RMC clump temperatures upwards by a factor of 2 would not be appropri-

ate; the temperature-size correlation suggests that the correction factor should be largest for

the “coldest,” smallest clumps and progressively decrease towards unity for the “warmer,”

larger clumps.

How do these corrections to the temperatures affect the inferred X-factor values? A

simple way to address this is to raise all the listed temperatures by a factor of 1.5. This

approach is less extreme than doubling all of the temperatures and is simpler than finding

some prescription for applying different scale factors to the temperatures of different-sized

clumps. This temperature correction will then affect the observed column densities and, in

turn, the inferred averaged densities by a factor 1.5γ−1.32 or 1.19. (Again, note that the

“1.32” in the exponent becomes “1.00” for T
K
≫ 20 K.) The theoretical Xf will then change

by a factor of 1.5−0.47×1.190.35 or 0.88. The median Xf becomes 2.8 X20. The observationally

inferred Xf , however, increases by a factor 1.19 to about 2.0 X20. Consequently, there is still

a discrepancy between the Xf from the currently proposed formulation and that that would

be inferred observationally; the theoretical Xf must be corrected downwards by 30%.

There is a similar but somewhat smaller discrepancy for the Orion clouds. The Orion

clumps are filaments (Nagahama et al. 1998) and are treated here as ρ ∝ r−2 cylinders.

This type of cylinder was treated in Section D.3.1 of Appendix D, but it was collapsing

and magnetized. Here we assume the cylinders to be virialized and again adopt the aver-

age density to be over the entire volume. This gives kv = 2.76 × 10−16 in cgs units and

kN = (r1/r0)[2 − (r0/r1)][1 + 2 ln(r1/r0)]
−1. Here r1/r0 = 14 is adopted because it has the

fluffiness of that obtained from the modeling in Section 3.3.1 (also see Section 4.4); numerical

integration of (2) and comparison with (10) results in ǫ = 0.30 and kA = 1.76. Therefore,

Xf (X20) = 0.57 CT T−0.48
K

n0.35
a (89)

The Xf value corresponding to each clump listed in Table 2 of Nagahama et al. (1998) was

determined from the temperatures listed in, and the densities inferred from, that table.

The densities were estimated from the listed filament masses and dimensions. For the Orion

clouds, assuming cylindrical clumps and that the inferred densities are over the entire volume
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will result in Xf values that range from 1.5 to 2.7 X20 with a median value of 1.9 X20, which

is close to the observed value of about 2.1 X20 (Wall 2006). (Note that this Xf applies to

the one-component models of Wall (2006). The two-component models would imply that

Xf ≃ 3.5 X20, except that it is uncertain exactly how much mass is in the other colder

component — see Wall (2006b).) One additional consideration is that at least some of the

observed filaments are being viewed partly end-on. If we were to simplistically assume that

there were only end-on filaments with the same dimensions, densities, and temperatures as

those listed in Table 2 of Nagahama et al. (1998), then the median Xf would roughly double,

even though the r1/r0 = 14 cylinders considered here have ǫ = 0.53 when viewed end-on. If

we then consider that some of the filaments are partly end-on, then the best estimate of the

theoretical Xf would be somewhere around 3 X20. In fact, given that high-aspect filaments

are more likely viewed side-on than end-on, this would probably be closer to about 2.5 X20.

Accordingly, the derived X-factor must be corrected downward by about 20-30% (assuming

that r1/r0 = 14 is appropriate for the Orion filaments).

There are a few points to consider here. One is that average density defined as being over

the whole cylindrical volume results in an X-factor that increases slowly with increasing ǫ;

this is quite different from the behavior seen with the previous definition of average density

(see Section 3.2.1 and Figure 4). Another point is that defining the average density this

way results in fewer of the Orion A clumps being virialized; the fraction of clumps with

velocity widths within 40% of the virialized width drops from 74% to 51%. And the final

point is that the derived X-factor values must be corrected downwards by about 20-30% to

match those observed. This may only require a better definition for the average density.

It is also possible that simply redefining the average density is not enough to account for

the discrepancy between the theoretical and observed X-factor values. There must be some

additional consideration to be included in the formulation. This is not surprising given

that the current formulation simplistically neglects the effects of magnetic fields and surface

pressure (e.g., see Bertoldi & McKee 1992; Tilley & Pudritz 2003). It is likely that improved

understanding of molecular cloud physical conditions is also necessary for reducing this

discrepancy. In any event, the derived X-factor is within a factor of 2 of that observed.

4.7.2. The Galactic Center

The molecular gas within the central few hundred parsecs of the Galaxy represents an

environment that is distinct from that of the Galactic disk. Compared to the disk gas,

the molecular gas in the Galactic center is denser and hotter by an order of magnitude

and very dynamically active (e.g., see Martin et al. 2004; Rodŕıguez-Fernández et al. 2001;
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Paglione et al. 1998; Hüttemeister et al. 1998, 1993; Bally et al. 1988, 1987a; Harris et al.

1985; Güsten et al. 1985). Consequently, it is no surprise that the X-factor for the Galactic

center clouds differs greatly from that for the Galactic disk clouds. Specifically, it is between a

factor of a few and more than an order of magnitude smaller in the Galactic center than in the

disk (see, e.g., Dahmen et al. 1998; Oka et al. 1998; Sodroski et al. 1995). Smaller X-factors

may be common in the central few hundred parsecs of spiral galaxies (e.g., Rickard & Blitz

1985; Israel 1988; Wall et al. 1993; Regan 2000; Paglione et al. 2001)(see also Dahmen et al.

1998, and references therein).

How do we account for these low X-factors? Given that tidal forces may be appreciable

in the Galactic center, the outer layers of clumps or clouds may be sheared off, producing

a substantial interclump or intercloud medium (Stark et al. 1989). As mentioned in Sec-

tion 3.2.4, if interclump gas dominates the 12CO J = 1 → 0 emission and the gas mass, then

Xf decreases because of the low average density in this gas. As stated in the previous para-

graph, there is evidence for dense, hot molecular gas in the Galactic center region, but does

this apply to the bulk of the CO-emitting gas in the Galactic center? If, for example, this CO-

emitting gas is an order of magnitude hotter and an order of magnitude less dense than that

in the Galactic disk, then the low Xf might be explained. However, the evidence for this is

less than compelling. Dahmen et al. (1998) find high I(12CO J = 1 → 0)/I(C18O J = 1 → 0)

ratios that are sometimes nearly as high as the 12CO/C18O abundance ratio. They argue

that the higher the I(12CO J = 1 → 0)/I(C18O J = 1 → 0) ratio, the lower the gas density,

claiming densities as low as n(H2) ∼ 102 cm−3, even though a simpler explanation is that the

higher ratio only really implies lower optical depths in the J = 1 → 0 lines of 12CO and 13CO.

These authors used observed molecular gas velocity gradients (or velocity widths per unit

size) to impose constraints on the model velocity gradient. These observed gradients only

really apply to the scale of entire clouds, and applying them to the model gradients is no

more valid than applying such constraints to gas volume density. Such cloud-scale quantities

are only rough lower limits to the relevant quantities to be used in non-LTE radiative codes,

such as the LVG code. Assuming that the lowest and highest observed cloud-scale velocity

gradients represent both lower and upper limits on the velocity gradients to be used in the

LVG code is not correct and imposes an artificial connection between optical depth and den-

sity — both rise and fall together. Thus when the I(12CO J = 1 → 0)/I(C18O J = 1 → 0)

ratio approaches the abundance ratio, the optical depths of both 12CO J = 1 → 0 and

C18O J = 1 → 0 drop and, because of the imposed constraint on the velocity gradient, the

density drops too. Thus imposing constraints on the velocity gradients in this way leads to

the assertion that I(12CO J = 1 → 0)/I(C18O J = 1 → 0) being close to X(12CO)/X(C18O)

cannot occur in LTE — which is incorrect. Densities of n(H2) ∼ 102 cm−3 may indeed be

present in the CO-emitting gas in the Galactic centre region, but it cannot be verified with
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this line ratio alone; additional information is needed (and something more than large-scale

velocity gradients).

Nonetheless, partly explaining the low X-factors in the Galactic center region is still

possible. The large observed values of the I(12CO J = 1 → 0)/I(C18O J = 1 → 0) ratio

(Dahmen et al. 1998), for example, suggest that 12CO J = 1 → 0 is optically thin or nearly so.

From Table 1 we see that the optically thin case has Xf an order of magnitude or more lower

than the Hard Sphere case, this latter having roughly the Xf for Galactic disk clouds when

T
K

= 20 K and n(H2) = 2000 cm−3. One problem with this is that there is evidence that

the molecular gas could have high kinetic temperatures, e.g. T
K
>∼ 100 K (e.g., Martin et al.

2004; Rodŕıguez-Fernández et al. 2001; Hüttemeister et al. 1998, 1993; Güsten et al. 1985;

Harris et al. 1985). If T
K

is 100 K, then Xf rises to about 0.5 X20 (see equation 34 in

Section 3.1.2), or a factor of ∼ 4 lower than that for the Galactic disk clouds. To have more

than an order of magnitude lower Xf , an additional effect is necessary. The Galactic center’s

clouds are very dynamically active and have line widths factors of 5 to 10 larger than found in

Galactic disk clouds (see, e.g., Bally et al. 1987a, 1988). If this also means that the velocities

of the Galactic center gas are factors of 5 to 10 beyond virialization, then the effective kv of

this gas is larger than the virialized value by the same factors. Given that Xf ∝ kǫ−1
v , Xf

would be reduced by factors between 1 and 5 to 10, depending on ǫ. If the 12CO J = 1 → 0

line truly is optically thin, then ǫ = 1 and the velocity structure is irrelevant (i.e., only

indirectly relevant because the velocity structure partly determines the optical depth) for

determining Xf . Not all the observed I(12CO J = 1 → 0)/I(C18O J = 1 → 0) ratios are high

enough to indicate optically thin 12CO J = 1 → 0, so an intermediate ǫ of 0.5 might be more

appropriate. But this would only result in an X-factor that is only about a factor of 6 lower

than the disk value. Finding X-factors that are more than an order of magnitude smaller

(see Dahmen et al. 1998) in molecular gas that is warm and optically thin (or nearly so) is

difficult to explain. Heightening the abundance of 12CO by a factor of a few might do this,

but it would lead to other difficulties, such as explaining how 12CO J = 1 → 0 could be so

close to being optically thin (as suggested by the high I(12CO J = 1 → 0)/I(C18O J = 1 → 0)

ratios). The best way to reduce Xf seems to be assuming that the gas behaves like fluffy

clumps, something like the Squared Lorentzian Sphere. If the gas has a temperature of

about 100 K and is still marginally optically thick, then it is easy to obtain Xf ≃ 0.4 X20 —

a factor of about 5 smaller than in the Galactic disk. If we also consider that the gas velocity

widths are an order of magnitude larger than required by virialization, then this reduces the

X-factor another factor of nearly 3 and it can be an order of magnitude smaller than that in

the disk.

In short, it is possible to explain X-factor values that are an order of magnitude smaller

than is found in Galactic disk molecular clouds, but the really low values — nearly two
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orders of magnitude smaller (see Dahmen et al. 1998) — are not so easily accounted for.

4.7.3. Irregular Galaxies

As discussed in Sections 3.2.2 and 4.2, the unusually high X-factors found in molecular

clouds in irregular galaxies are largely due to the low abundances of 12CO (or low X(12CO))

in these galaxies. As listed in Israel (1997), the Xf values found in molecular clouds of

irregular galaxies can range from a factor of a few to about 100 higher than that found in

the Galactic disk molecular clouds. As described in Section 3.2.2, the abundance X(12CO)

is an average over the volume of the molecular gas; there are CO-emitting regions with

a Galactic abundance of CO surrounded by envelopes of CO-deficient molecular gas (see

Israel 1997, 2000, and references therein). Consequently, a map of some molecular gas tracer

that can show the molecular gas not traced by CO can be compared with CO maps to test

the correlation between the observed Xf and the inferred volume ratio of molecular gas

to CO-emitting gas. Madden et al. (1997), for example, map the low-metallicity irregular

galaxy IC 10 in the [C II] 158 µm line and find that this emission is largely associated with

molecular gas in photodissociation regions (PDRs). Their Figure 5 shows the contours of

the [C II] 158 µm-line emission with superposed contours of CO emission. Depending on

exactly how the relative areas are estimated, the ratio of projected areas of molecular gas

to CO-emitting gas is about 10 to 20. Assuming that the volume goes like (area)1.5, then

these correspond to volume ratios of about 30 to 90. Accordingly, the volume-averaged

X(12CO) would be roughly the Galactic disk value divided by these volume ratios. Given

that the X-factor goes like Xf ∝ X(12CO)−0.8 (see Section 4.2), Xf would be factors of

about 15 to 40 larger than found in the Galactic disk; Madden et al. (1997) find that this

factor to be about 100. Therefore, using only very crude estimates of the volume ratio of

molecular gas to CO-emitting gas, the X-factor is estimated to within a factor of a few. If

the molecular gas in IC 10 is very roughly representative of that in other irregular galaxies,

then it is easy to understand the high X-factors in these galaxies. If Xf/XfG is the ratio

of the observed X-factor to the “standard” value found in Galactic disk clouds, and if Ar

is the ratio of projected areas of molecular gas to CO-emitting gas, then Xf/XfG ≃ A1.2
r is

expected. Deviations from this dependence would be extremely interesting, providing clues

to differences in physical conditions (e.g., ǫ, n(H2), T
K
) between those in the molecular clouds

of irregular galaxies and those in Galactic disk clouds.
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5. Summary and Conclusions

An improved formulation for the X-factor is proposed that combines virialization of the

gas with radiative transfer in a clumpy medium. The statement that the velocity-integrated

radiation temperature of the 12CO J = 1 → 0 line, I(12CO), “counts” optically thick clumps

is quantified using the formalism of MSH84 for line emission in a clumpy cloud. Adopting the

simplifying assumptions of thermalized 12CO J = 1 → 0 line emission and isothermal gas, an

effective optical depth, τef , is defined as the product of the clump filling factor within each

velocity interval, N
Nc

∆vc

∆v
, and the clump effective optical depth (or effective optically thick

area), A(τ0), as a function of the optical depth, τ0, on the clump’s central sightline. The

A(τ0) is well approximated (to within about 13-26%) as a power law in τ0 with power-law

index, ǫ, called the clump “fluffiness,” and has values between zero and unity. While the
12CO J = 1 → 0 line is optically thick within each clump (i.e., high τ0), it is optically thin

“to the clumps” (i.e., low τef). Thus the dependence of I(CO) on τef is linear, resulting in

an X-factor that depends only on the properties of the clumps rather than having a direct

dependence on the entire cloud. Assuming virialization of the clumps yields an expression

for the X-factor whose dependence on physical parameters like density and temperature are

“softened” by power-law indices of less than unity that depend on the fluffiness parameter, ǫ.

The X-factor provides estimates of gas column density because each sightline within the beam

has optically thin gas within certain narrow velocity ranges. Determining column density

from the optically thin gas is straightforward and parameters like ǫ then allow extrapolation

of the column density of the optically thin gas to that of all the gas. Implicit in this

formulation is the assumption that fluffiness is, on average, constant from one beam to the

next. This is less true for density and temperature for which the X-factor, Xf , may have a

weaker dependence.

The proposed formulation addresses the problems of the explanation proposed by DSS86:

1. Treatment of radiative transfer. The dependence on fluffiness, ǫ, represents a radiative

transfer parameter of the clumps. The optically thin case results by simply setting

ǫ = 1: dependence on virialization disappears and the expression for column density

in terms of I(CO) in the optically thin case remains. In a hypothetical completely

optically thick case with flat-topped line profiles, ǫ → 0 and the radiative transfer

vanishes, leaving only virialization (as in DSS86).

2. Reduced sensitivity to T
K

and n(H2). The effect of the fluffiness reduces the dependence

of Xf on density and temperature from Xf ∝ n(H2)0.5

T
K

to roughly Xf ∝
(

n(H2)
T

K

)0.3

in

the high-T
K

limit. Thus variations of an order of magnitude in either n or T
K

would

allow X to vary by less than a factor of 2.
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3. Virialization of entire clouds is unnecessary. The densities required to give reasonable

values of Xf are consistent with those found in cloud clumps (i.e. ∼ 103 H2 cm−3).

Thus virialization of clumps, rather than of entire clouds, is consistent with the ob-

served values of Xf . And even virialization of clumps is not strictly required; only a

relationship between clump velocity width and column density similar to that of virial-

ization can still yield reasonable values of the X-factor. The underlying physics is now

at the level of cloud clumps, implying that the X-factor can probe sub-cloud structure.

4. Stronger dependence of peak T
R

on N(H2) than of ∆v on N(H2) is now explained. The

peak T
R

depends linearly on the filling factor within each velocity interval, N
Nc

∆vc

∆v
,

thereby accounting for its dependence on N(H2). The ∆v, on the other hand, is the

observed line width and is not necessarily directly related to the beam-averaged column

density, N(H2). If virialization is important at the level of the clumps, then the velocity

width-column density relation is between that of the clump velocity width, ∆vc, and

clump column density, Nc.

X-factor values were computed for both spherical clumps and cylindrical clumps (i.e.

filaments) of densities 2×102, 2×103, and 2×104 H2 cm−3 and kinetic temperatures 10 and

20 K and different internal density variations. The clumps of average density 2×103 H2 cm−3

that reproduce the standard observed Xf value of about 2 X20 for the Galactic disk clouds

within a factor of 2 are the Hard Sphere (or uniform-density sphere), the Gaussian Sphere,

and the Gaussian Filament (see Table 1). Aside from the clumps listed in Table 1, spherical

clumps and filaments with average densities of ∼ 103 H2 cm−3 and an r−2 density variation

can also produce X-factors within a factor of 2 of the standard value. Testing these clump

types reveals a potentially strong inverse dependence of Xf on ǫ, as shown in Figure 4.

Increasing the fluffiness has the advantage of weakening the dependence of the X-factor

on density and temperature, but the disadvantage of decreasing Xf to values appreciably

below the standard value. This strong dependence of Xf on ǫ is related to how the average

density is defined. For clump types with no clearly defined outer radius (e.g., Gaussian or

Squared Lorentzian), the average density was defined as that within a spherical or cylindrical

(depending on clump geometry) diameter equal to the FWHM of the projected surface

density distribution. For clumps with an r−2 density variation, an outer radius must be

defined to keep the clump mass finite. The average density can be defined as done previously,

but also can be defined over the whole clump volume. The latter definition can result in a

weakly rising Xf as a function of ǫ.

The proposed formulation also suggests a specific dependence of the X-factor, Xf , on the
12CO abundance, X(12CO). In the molecular clouds in irregular galaxies, the CO abundance

within the CO-emitting regions is about the same as that in Galactic disk clouds, but the

average over the entire molecular cloud volume is much lower (see Israel 1997, 2000, and
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references therein). If X(12CO) is this volume-averaged abundance, then the formulation

predicts Xf ∝ X(12CO)0.7 to 0.8 (for ǫ ≃ 0.3). This is consistent with observations (see

Section 4.2).

This formulation has implications for the interpretation of spectral line ratios, especially

for the I(13CO J = 1 → 0)/I(12CO J = 1 → 0) ratio. Modeling the plot of this ratio against

the effective optical depth, τef , — determined from the peak radiation temperature of the
12CO J = 1 → 0 line normalized to the source function (in temperature units) — for

the Orion clouds provides crude estimates of the fluffiness: ǫ ≃ 0.3 ± 0.1. Histograms of
13CO J = 1 → 0/12CO J = 1 → 0 line strength ratios can also provide estimates of ǫ, and

have the very important advantage that no estimates of the source function are necessary.

Such a histogram from observations of the Orion clouds shows a peak that extends from

I(13CO J = 1 → 0)/I(12CO J = 1 → 0) ≃ 0.1 to 0.3. These limits for the Orion clouds

(and possibly for other Galactic disk clouds) correspond to the minimum column density for

self-shielding against the interstellar radiation field (i.e. Av ≃ 1 mag) at the low end and to

the saturation of the 13CO J = 1 → 0/12CO J = 1 → 0 line ratio at the high end. The value

of this ratio at saturation is determined from the dominant value of ǫ (i.e. ∼ 0.3) within the

clouds’ substructures. Consequently, a narrow range in ǫ can simultaneously account for the

limited range of 13CO J = 1 → 0/12CO J = 1 → 0 line ratios and for a relatively constant

X-factor. In any event, it is no surprise that 13CO J = 1 → 0/12CO J = 1 → 0 line ratio is

related to the X-factor.

Observations of the 13CO J = 1 → 0/12CO J = 1 → 0 line ratio have been used, for

example, to infer differences in the X-factor between the molecular clouds of the nucleus of

a spiral galaxy and that of its disk clouds (e.g., Rickard & Blitz 1985; Paglione et al. 2001).

The formulation finds a linear relationship between Xf and I(13CO J = 1 → 0)/I(12CO J =

1 → 0), provided that T
K

and X(13CO)/X(12CO) (or xr) are constant. If these quantities

vary spatially, then Xf can have a dependence on I(13CO J = 1 → 0)/I(12CO J = 1 → 0)

that is weaker than linear.

The proposed formulation and observed I(13CO J = 1 → 0)/I(12CO J = 1 → 0) ratios,

or observed X-factor values, can constrain estimates of properties of substructures within

molecular clouds, often by imposing limits on estimates of the fluffiness, ǫ. Many clumps or

small clouds have an r−2 density (or ρ) dependence. If the clump outer radius is, r1, and the

inner radius of the ρ ∝ r−2 region within the clump is r0, then the ratio r1/r0 is constrained

by the limits on ǫ. Given that ǫ ≃ 0.2 to 0.4, and assuming that ρ ∝ r−2 structures are the

dominant source of the 12CO J = 1 → 0 emission, spherical clumps would have r1/r0 = 2 to

9 and cylindrical clumps would have r1/r0 = 4 to 42. Observations are apparently consistent

with these limits, where r1/r0 is about 4 to 15 (e.g., Harvey et al. 2001; Tachihara et al. 2000;
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Lada et al. 1999; Alves et al. 1998; Henriksen et al. 1997; Williams et al. 1995), although

spatial resolution limitations often mean that the observed numbers are merely lower limits.

The properties of real clumps in real molecular clouds can be used to estimate the

X-factor within these clouds and then be compared with the observationally determined X-

factor. Applying this to the Orion A cloud (Nagahama et al. 1998) and the Rosette Molecular

Cloud or RMC (Williams et al. 1995) yields estimates of the X-factor that are within a factor

of 2 of the observed values. While this is acceptable as a start, reducing this discrepancy will

require improving the formulation. Simply changing the definition of the average density can

reduce the discrepancy, but it seems likely that something else is missing from the current

formulation.

A future, improved formulation for the X-factor must address the following shortcomings

of the current formulation:

A) It is not entirely clear why the fluffiness seems to be constant, or at least sharply

peaked, at one value. This value seems to be about ǫ ≃ 0.3.

B) The resultant X-factor values are too dependent on the precise definition of the average

density. A closer to optimal way of defining such a density must be found.

C) The desired insensitivity of the X-factor to density and temperature often comes at the

price of too low an X-factor value. Again, this is affected by the definition of average

density.

D) There is a potentially strong dependence on the fluffiness, ǫ. This dependence can be

weakened by the appropriate choice for the definition of average clump density.

E) The current formulation does not consider clumps with a spectrum of properties, such

as distributions of densities and temperatures. This will introduce other parameters

in addition to ǫ, T
K
, and n(H2) for determining the X-factor.

F) Additional physical effects must be considered. These would include non-LTE effects

and the effects of magnetic fields, surface pressure, and turbulence.

G) Observational determinations of parameters such as ǫ can be complicated by clumps

having a spectrum of properties, such as ranges in densities, temperatures, optical

depths, etc. The presence of interclump gas might complicate this as well.

Despite these shortcomings, the currently proposed formulation represents the first ma-

jor improvement in understanding the X-factor since Dickman et al. (1986) (i.e., DSS86),
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because it includes radiative transfer. Previous explanations of the X-factor involved count-

ing optically thick clumps (or entire clouds) and a relationship between the gas column

density and the velocity width of the CO J = 1 → 0 spectal line (e.g., DSS86 Israel 1988;

Evans 1999). But applying the DSS86 approach directly to cloud clumps often overesti-

mates the X-factor. At first glance, applying radiative transfer to an optically thick line is

apparently pointless. However, portions of the gas are not optically thick, permitting esti-

mates of the mass of the gas when radiative transfer is considered. And including radiative

transfer does indeed result in reasonable estimates of the X-factor even when applying the

formulation to the level of individual clumps.

Determination of the X-factor on scales of many parsecs can constrain the average

properties of the molecular gas at scales of just a few parsecs. Future formulations may

refine the X-factor into a potent probe of molecular cloud structure.
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A. The Effective Optical Depth of a Single Clump

MSH84 derive the effective optical depth of a clump, A(τ0), which they call the effective

optically thick area, for the case of a clump with a Gaussian spatial variation of its optical

depth. This appendix gives a quick derivation of A(τ0) for a clump with a more general

optical depth variation. MSH84 derive the effective optical depth on a line of sight through

a clumpy cloud:

τef(vz) =
Nc√

2π ∆v

∫

dv exp

(

− v2

2 ∆v2

)
∫

dx

∫

dy

{

1 − exp

[

−τ(x, y) exp

(

−(v − vz)
2

2 ∆v2
c

)]}

.

(A1)

Notice that different notation from that of MSH84 is used here. The Nc is the number

of clumps per unit projected area of the cloud and corresponds to the N of MSH84. The

velocity widths here are rms velocity widths, whereas those of MSH84 are ratios of the

Gaussian line profile areas to their amplitudes. This results in extra factors of
√

2π. The

spectral line velocity width was represented by σ in MSH84 and is given by
√

2π∆v here.

The velocity width of a single clump was vo in MSH84 and is
√

2π∆vc here. The velocity

vz is the bulk velocity of a clump along the sightline and the velocity, v, is the velocity of a



– 61 –

given element of gas along the sightline. Following MSH84, the assumption of the line width

being much greater than the velocity width of a single clump, i.e. ∆v ≫ ∆vc, is adopted.

This means that v cannot deviate too far from vz without making the integrand very small.

At the same time, the first exponential factor of the integrand does not change much from

exp(−v2
z/(2 ∆v2)), because ∆v is so much larger than ∆vc. Consequently, expression (A1)

simplifies:

τef(vz) =
Nc√

2π ∆v
exp

(

− v2
z

2 ∆v2

)
∫

dv′

∫

dx

∫

dy

{

1 − exp

[

−τ(x, y) exp

(

− v′2

2 ∆v2
c

)]}

,

(A2)

where v′ replaced v − vz. Now the integrals are only over the clump velocity width and the

clump’s projected surface area. Therefore, the integrals, when properly normalized, must

give the effective optical depth of a single clump, A(τ0). Normalizing for the velocity width

requires dividing by
√

2π∆vc. Normalizing for the effective projected area of the clump

requires dividing by a
eff

(see equation 3). This results in equation (2), as desired.

Equation (A2) then becomes

τef (vz) =
a

eff
Nc ∆vc

∆v
A(τ0) exp

(

− vz
2

2 ∆v2

)

. (A3)

Given that a
eff

Nc = N/Nc, equation (A3) becomes equation (1), also as desired.

Equation (1) can be used as the starting point instead. It represents a logical relation-

ship between the effective optical depth through the cloud and that for a single clump; its

derivation is trivial. Comparing equation (1) with equation (A2) then gives equation (2) for

A(τ0).

The reader may have noticed that the definition of A(τ0) is lacking a certain geometric

correction. For example, in the τ0 ≪ 1 limit, A(τ0) ≃ τ0. And yet A(τ0), which is an

appropriately averaged τ over the projected surface of the clump, cannot simply be the τ

through the center of the clump, i.e. τ0. It must be less than this value, at least for those

clumps where τ0 is highest on the central sightline. Consider, for example, the hard sphere,

which means a sphere with clearly defined edges and uniform internal density. (See MSH84

for their treatment of hard spheres.) Since we are only considering LTE and uniform kinetic

temperatures, and that these clumps have uniform internal density, the optical depth on

any given sightline through the clump is proportional to the path length through the clump

on that sightline. The average path length through a hard sphere is its volume divided by

its projected area or 2
3
d, where d is the sphere’s diameter. The average optical depth of

such a sphere in the optically thin limit is then 2
3
τ0 rather than simply τ0. However, the

clump optical depth, Nc, as defined in the text is also used as the column density on the
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central sightline through the clump. This means that N/Nc is not exactly the number of

clumps in the beam as stated in the text: a slight correction factor is needed. Nevertheless,

this correction factor cancels that needed for A(τ0), thereby yielding the correct result for

τef . Another way to argue this is to consider the factors A(τ0)/Nc and N∆vc/∆v. The

former factor is the average optical depth per unit column density for a clump, since both

A(τ0) and Nc are referred to the central sightline. The latter factor is the beam-averaged

column density within velocity interval ∆vc at the line central velocity, vz = 0. Therefore,

the product of the the two factors must give the optical depth at the line central velocity,

and this is equation (1) evaluated at vz = 0, as desired.

B. The X-Factor for a Small Beam on a Uniform-Density Cloud

Here the N(H2)/I(CO) conversion factor is estimated for the case of a beam much

smaller than the source, where that source is a uniform-density cloud. The velocity-integrated

radiation temperature of the 12CO J = 1 → 0 line, I(CO), in LTE in a cloud of uniform

kinetic temperature is

I(CO) = Jν(TK
)

∫

line

dv [1 − exp(−τ(v))] , (B1)

where the integral is over the spectral line profile. The optical depth velocity profile is

τ(v) = τ0 exp

(

− v2

2 ∆v2

)

. (B2)

Numerically integrating (B1) shows that the integral can be approximated by

∫

line

dv [1 − exp(−τ(v))] ≃
√

2π ∆v kA τ ǫ
0 , (B3)

where kA = 1.3 and ǫ = 0.14. If we now assume a uniform density sphere and virialization,

then the derivation of ∆v of Section 2.2 is relevant. It is also assumed that the velocity width

on whatever sightline through the cloud reflects the virialization of the entire cloud and does

not have appreciable contributions from other types of motion. Repeating the derivation

of Section 2.4 again yields equation (28). This means that this equation and its variants

(see Appendices C and D) are more general than only treating radiative transfer through a

clumpy medium. All that is required is that I(CO) ∝ τ ǫ
0 and ∆v ∝ (N L)0.5, where N and L

are the column density and pathlength, respectively, on the sightline through the cloud. In

fact, the density and kinetic temperature that appear in expression (28) must be replaced, in
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the current treatment only, by the corresponding quantities that are appropriately averaged

over the entire cloud, rather than for just an individual clump.

C. Treatment of Spherically Symmetric Clumps

Here we assume that the mass density ρ is simply a function of the radius, r, within each

spherical clump: ρ = ρ(r). This is similarly true for the number density, n(r). If the x-y

plane is perpendicular to the observer’s sightline and z is measured along the sightline, then

n(r) is n(
√

p2 + z2), where p ≡
√

x2 + y2 is the projected radius as seen by the observer.

The clump column density as a function of projected radius, Nc(p), is given by

Nc(p) =

∫ +∞

−∞

dz n(
√

p2 + z2) . (C1)

The mass within radius r, M(r), is given by

Mc(r) = 4π

∫ r

0

dR R2 ρ(R) . (C2)

A useful quantity is the average density ρ̄. This can be defined in a number of ways, but is

chosen here to be in terms of the half-width-at-half-maximum projected radius of the clump,

p1/2, defined such that Nc(p1/2) ≡ 0.5 Nc(p = 0). Then ρ̄ is

ρ̄ ≡ Mc(r = p1/2)
4π
3

p3
1/2

. (C3)

The self-potential due to gravity is

W = −16π2G

∫

∞

0

dR R2ρ(R)

∫ R

0

dR′
R′2

R ρ(R′) . (C4)

If Nc is defined as the column density through the clump center — i.e., Nc ≡ Nc(p = 0) —

and Mc is defined as the total clump gas mass — i.e., Mc ≡ Mc(r = ∞), then we can write

these and W as

Nc = 2 kN n̄ p1/2 , (C5)

Mc = kM ρ̄ p3
1/2 , (C6)

W = −kW
GM2

c

p1/2

. (C7)
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The constants kN , kM , and kW are given by the precise functional form of ρ(r). Specifically,

these constants are determined by comparing equations (C1), (C2), and (C4) with (C5),

(C6), and (C7), respectively.

The simple form of the Virial theorem applied in Section 2.2 and the full-width-at-half-

maximum, d1/2 ≡ 2p1/2, are now used to derive ∆vc:

∆vc = kv n̄
1

2 d1/2 , (C8)

where

kv ≡
[

1

12
kW kM µm

H2
G

]
1

2

, (C9)

where the expressions (C6) and (C7) and ρ̄ = µ m
H2

n̄ was also used (also see Section 2.2).

In addition to the above equations, we need the appropriate equation for τ0. Starting

with equation (21) and plugging in (C8) and (C5) yields,

τ0 =
kτkN

kv

√
2π

n̄0.5T−γ
K

, (C10)

which is a more general form of (22). Equation (22) assumed a sphere of uniform density,

for which kN = 1, and (C10) reduces to (22).

Now we can combine the expressions developed here with (25), (26), and (10) to obtain,

Xf = (2π)
1

2
(ǫ−1) CT k−1

A k−ǫ
τ kǫ−1

v k1−ǫ
N Tγǫ−1

K
n̄

1

2
(1−ǫ) . (C11)

This is a more general version of equation (28), which assumed a uniform-density sphere. In

fact, equation (C11) is more general than for just spherical clumps: as long as ∆vc, Nc(0),

τ0, and A(τ0) can be represented by expressions (C8), (C5), (C10), and (10), respectively,

the expression for the X-factor can have the specific form given by (C11).

A few examples of spherically symmetric clumps are examined in the following subsec-

tions.

C.1. Uniform-Density Sphere

This case is also called the “Hard Sphere” in Section 3.1, the tables, and in MSH84.

Because the hard sphere has a well-defined edge with a well-defined radius, R, this R is

used in place of p1/2. The density, ρ(r), is constant and equal to both ρc and ρ̄. Similarly

n(r) ≡ nc and n(r) ≡ n̄ for all r from zero up to R. Accordingly, it is trivial to show that
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kM = 4π
3

, kW = 3
5
, and kN = 1. It then follows that expressions (16), (22), and (28) result

from (C9), (C10), and (C11), respectively. The central sightline optical depth, τ0, is then,

τ0 = 1.18 × 102 n0.5
c T−1.75

K
, (C12)

for T
K

= 10 to 20 K. These values along with the kA and ǫ values given in Subsection 3.1.2

yield,

Xf(X20) = 0.488 CT T−0.76
K

n̄0.43 , (C13)

where this X-factor is in units of X20 or 1020 H2 molecules · cm−2 · (K · km · s−1)−1.

Specific numerical results of these calculations are listed in Tables 1 through 5.

C.2. Gaussian Sphere

The optical depth profile, τ(p), for the Gaussian sphere is given by ( 9). For an isother-

mal clump in LTE, the volume density, ρ(r), that would give this τ(p) is Gaussian:

ρ(r) = ρ0 exp

(

− r2

σ2
r

)

, (C14)

where ρ0 is the density at the center of the sphere and σr is the (1/e)-folding radius for the

density variation. The analogous expression exists for n(r) and placing this in (C1) results

in

Nc(p) = n0

√
π exp

(

−p2

σ2
r

)

. (C15)

so that Nc = n0

√
π σr. From (C15) we see that σr = p1/2/

√
ln 2. The mass as a function of

r is

Mc(r)

Mc(∞)
= erf

(

r

σr

)

− 2r

σr

√
π

exp

(

− r2

σ2
r

)

, (C16)

where,

Mc(∞) = π
3

2 ρ0 σ3
r . (C17)

The erf is the Gaussian error function. Replacing r with p1/2 in (C16) yields Mc(p1/2)/Mc(∞) =

0.2878. Placing this into (C3) gives us ρ̄ = 0.6630 ρ0. Accordingly, kN = 1.606, kM = 14.55.

Using expressions (C4) and (C7) gives kW =
√

(ln 2)/2 π = 0.3321, which in turn gives

kv = 3.420 × 1016cgs. The central sightline optical depth, τ0, is accordingly,

τ0 = 1.38 × 102 n̄0.5 T−1.75
K

, (C18)
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for T
K

= 10 to 20 K. These together with the kA and ǫ values given in Subsection 3.1.3 yield,

Xf (X20) = 0.204 CT T−0.38
K

n̄0.32 . (C19)

Specific numerical results of these calculations are listed in Tables 1 through 5.

C.3. Squared-Lorentzian Sphere

This case was discussed in MSH84. The optical depth profile is given by

τ(p) = τ0(0)

[

1 +

(

p2

r2
0

)]−2

, (C20)

where the r0 is the projected radius at which τ falls to 0.25 τ0. It also gives the effective

area, where a
eff

= π r2
0. For an isothermal clump in LTE, it follows that

Nc(p) = Nc(0)

[

1 +

(

p2

r2
0

)]−2

. (C21)

It is easy to show that r0 = (
√

2− 1)−0.5 p1/2. The volume density, ρ(r), that corresponds to

the surface density of equation (C21) is

ρ(r) = ρ0

[

1 +

(

r2

r2
0

)]−2.5

. (C22)

This is easily demonstrated by substituting the expression analogous to (C22) for nc(r) into

(C1). Doing so gives,

Nc =
4

3
n0 r0 . (C23)

Substituting (C22) into (C2) results in,

Mc(r)

Mc(∞)
=

[(

r2

r2
0

)

+ 1

]−1.5

, (C24)

where,

Mc(∞) =
4π

3
ρ0 r3

0 . (C25)

Applying (C3) yields ρ̄ = 2−0.75 ρ0. Consequently,

kN =
4

3

(

2 −
√

2
)−0.5

(C26)

= 1.742

and
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kM =
4π

3

(

20.75
)

(√
2 − 1

)−1.5

(C27)

= 26.43 .

Plugging (C22) into (C4) and doing some work yields

kW =
3π

32

(√
2 − 1

)0.5

(C28)

= 0.1896 .

From these the following is obtained:

kv =

[

π2

96
(√

2 − 1
)

(

20.75
)

µ m
H2

G

]0.5

(C29)

= 3.481 × 10−16cgs .

The above results give the central sightline optical depth:

τ0 = 1.46 × 102 n̄0.5 T−1.75
K

, (C30)

for T
K

= 10 to 20 K. All of the above results along with the kA and ǫ values given in

Subsection 3.1.3 give

Xf (X20) = 0.0756 CT T−0.003
K

n̄0.22 . (C31)

Specific numerical results of these calculations are listed in Tables 1 through 5.

C.4. ρ ∝ r−2 Sphere

The adopted sphere density, ρ(r), is flat for r ≤ r0 and falls like r−2 outside of this and

out to r = r1:

ρ(r) = ρ0 for r ≤ r0 (C32)

= ρ0

(r0

r

)2

for r0 ≤ r ≤ r1 . (C33)

It is easy to show that the mass is given by

Mc(r1) =
4π

3
ρ0 r3

0

(

3
r1

r0

− 2

)

. (C34)
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Notice that the mass, Mc(r1), would diverge if r1 → ∞, so a maximum radius, r1 must be

specified. The usual quantities (e.g., for kv and kN) must now be determined in terms of

Mc(r1) instead of Mc(∞). Employing expressions (C1) and the number density analogs of

(C32) and (C33) yields

Nc(p) = 2n0

√

r2
0 − p2 +

2 n0 r2
0

p

[

arccos

(

p

r1

)

− arccos

(

p

r0

)]

for p ≤ r0 (C35)

= π n0 r2
0 p−1 arccos

(

p

r1

)

for r0 ≤ p ≤ r1, (C36)

where Nc(0) = 2 n0 r0 (2 − r0

r1
).

Determining the self-potential, W , and applying the simple form of the Virial theorem

leads to

∆v2
c = 4 π G ρ0 r2

0

r1
r0

− 2
3

ln
(

r1
r0

)

− 14
15

3 r1
r0

− 2
. (C37)

For simplicity, r1

r0
≫ 1 is assumed and

∆vc =

[

4 π

3
G µ m

H2

]0.5

n0.5
0 r0 , (C38)

where ρ0 = n0 µ m
H2

was used. It can be shown that

r0 =
2

π
p1/2 (C39)

and

ρ0 =
π3

4 (3π − 4)
ρ̄ , (C40)

= 1.429 ρ̄

Expressions (C39) and (C40) again assume that r1

r0
≫ 1. With these expressions in hand,

expressions for kN and kv follow:

kN =
π2

3π − 4
, (C41)

= 1.819

and

kv =

[

π2

3 (3π − 4)
G µ m

H2

]0.5

, (C42)

= 4.20 × 10−16 cgs .
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Computing Xf requires specifying r1/r0. The particular example discussed in Sec-

tion 4.7.1 is of the Rosette Molecular Cloud, where Williams et al. (1995) find r1

r0
= 5 for

many of the clumps. Simple numerical integration yields ǫ = 0.30 and kA = 1.80 for this

value of r1

r0
. Therefore,

Xf (X20) = 0.22 CT T−0.47
K

n̄0.35 (C43)

Because the r−2 sphere must have an outer radius, the average density can also be

defined as over the entire volume — i.e., na. Doing this changes kN and kv:

kN = 2
r1

r0
, (C44)

and

kv =
[π

9
G µ m

H2

]0.5

, (C45)

= 3.18 × 10−16 cgs .

For the clumps of the Rosette Molecular Cloud, again using the numbers of the previous

paragraph, we have,

Xf (X20) = 0.88 CT T−0.47
K

n0.35
a (C46)

D. Treatment of Cylindrically Symmetric Clumps

D.1. Viewed Perpendicularly to the Axis of Symmetry: The Side-on Case

Here the mass density ρ is adopted to be a function of the radius from an axis of sym-

metry, r, within each cylindrical clump: ρ = ρ(r). This is also true for the number density,

n(r). Again, the x-y plane is chosen to be perpendicular to the observer’s sightline and z

is measured along the sightline. The x-axis is selected to be along the cylinder’s symmetry

axis and is also perpendicular to the observer’s sightline. The y-axis is perpendicular to

both the observer’s sightline and the symmetry axis; the y is the projected distance from the

cylinder’s central axis. The radius, r, is then y2 + z2. The cylinder’s length is h. The clump

column density as a function of projected distance from the central axis, Nc(y), is given by

Nc(y) =

∫ +∞

−∞

dz n(
√

y2 + z2) . (D1)

The mass within radius r, M(r), is given by

Mc(r) = 2π h

∫ r

0

dR R ρ(R) . (D2)
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The half-width-at-half-maximum distance from the symmetry axis, y1/2, is defined by Nc(y1/2) ≡
0.5 Nc(y = 0). The average density, ρ̄, is defined analogously to that of expression (C3):

ρ̄ =
Mc(r = y1/2)

π y2
1/2 h

. (D3)

The self-potential due to gravity is

W = −kF
GM2

c

h
, (D4)

where kF = 1 in the limit h/d1/2 ≫ 1 (and d1/2 = 2y1/2). Equation (D4) in this limit is

found from solving the Poisson equation in cylindrical coordinates. The parameter kF is a

correction factor for when h/d1/2 ≫ 1 is false; a crude numerical analysis suggests that for

h/d1/2 ≥ 1, kF < 1.4. A similar value is found from a very crude analytical approach. If

the cylinder is of uniform density with radius, R, and has length, h = 2R, then the cylinder

very roughly approximates a uniform density sphere of radius, R. From Appendix C.1, we

know that kW = 0.6. Placing h = 2R into (D4) and comparing with the uniform sphere, we

find that kF ≃ 1.2. In any event, the final dependence of the relevant quantities on kF will

be weak and setting this to unity will be sufficient (see below).

Many parameters have similar or identical expressions to those in Appendix C. The

parameter kN is defined similarly to that in equation (C5), but with y1/2 in place of p1/2.

The kM is defined in terms of a cylindrical variation of equation (C6):

Mc ≡ kM ρ̄ h y2
1/2 . (D5)

The parameter kW does not apply in this case because W is not dependent on r, except for

the weak implicit r-dependence of kF . The expression for ∆vc is the same as (C8) and the

expression for kv is almost the same as (C9):

kv =

[

1

12
kF kM µ m

H2
G

]
1

2

. (D6)

The equations for τ0 and Xf are still (C10) and (C11). Given that Xf ∝ kǫ−1
v and that

kv ∝ k0.5
F , Xf ∝ k

0.5(ǫ−1)
F . Even for a value of ǫ as low as that in a hard sphere, the

dependence of Xf on kF is weak: Xf ∝ k0.43
F . Since kF is between 1.0 and 1.4, the effect on

Xf is less than 16%.

D.1.1. Gaussian Cylinder

The volume density, ρ(r), is given by,

ρ(r) = ρ0 exp

(

− r2

σ2
r

)

. (D7)
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This is apparently identical to (C14), except that the r and σr here are defined as distances

from the central axis rather than a central point. From (D7), it is easy to show that,

Nc(y) = Nc(0) exp

(

−y2

σ2
r

)

, (D8)

where,

Nc(0) =
√

π n0 σr , (D9)

and,

Mc(r) = Mc(∞)

[

1 − exp

(

− r2

σ2
r

)]

, (D10)

where,

Mc(∞) = π ρ0 h σ2
r . (D11)

From the above expressions, we see that y1/2 = σr

√
ln 2, ρ̄ = ρ0/(2 ln 2), kN =

√
π ln 2,

kM = 2π, yielding,

kv =
[π

6
kF µ m

H2
G
]0.5

, (D12)

and adopting kF = 1,

= 3.899 × 10−16cgs .

The above results give the central sightline optical depth:

τ0 = 1.10 × 102 n̄0.5 T−1.75
K

, (D13)

for T
K

= 10 to 20 K. These results along with the kA and ǫ values given in Subsection 3.1.4

give

Xf (X20) = 0.309 CT T−0.56
K

n̄0.37 . (D14)

The numerical results of the above calculations are listed in Tables 1 through 5.

D.2. Viewed Along the Axis of Symmetry: The End-on Case

The mass density is again of the form ρ = ρ(r), but with the sightline along the axis of

symmetry. The x-y plane is still chosen to be perpendicular to the observer’s sightline and

z is measured along the sightline and along the cylinder’s symmetry axis. The radius, r, is

again the distance from the central axis, but this is now x2 + y2. The cylinder’s length again
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is h. The clump column density as a function of projected distance from the central axis,

Nc(r), is given by

Nc(r) = nc(r) h , (D15)

which is because nc(r) has no z-dependence. The HWHM radius, r1/2, is then found from

nc(r1/2) ≡ 0.5 nc(0) . (D16)

The expressions for Mc(r), kM , ρ̄, and kN are analogous to those for the side-on case — i.e.,

(D2), (D5), (D3), and (C5) — but with r1/2 in place of y1/2 or p1/2. Combining this last

with (D15) yields,

kN =
h

d1/2

nc(0)

n̄
, (D17)

where d1/2 ≡ 2 r1/2. The above states that kN ∝ h/d1/2; i.e., kN is proportional to the

cylinder aspect ratio.

Other expressions are identical to those mentioned previously: kv is still given by (D6),

∆vc by (C8), τ0 by (C10), and Xf by (C11). The dependence of Xf on kF is the same as

in the side-on case. The dependence of Xf on kN implies there is now a dependence on the

cylinder aspect ratio: Xf ∝ (h/d1/2)
(1−ǫ).

D.2.1. Gaussian Cylinder

The Gaussian cylinder has been treated in the side-on case, so there are similarities in

this end-on case. The relationship between r1/2 and σr is the same as that between y1/2 and

σr. The relationship between ρ̄ and ρ0 is unchanged. kM and kv are also unchanged. One

important change is the expression for kN :

kN = 2(ln 2)
h

d1/2

. (D18)

These results give τ0:

τ0 = 1.04 × 102 n̄0.5 T−1.75
K

(

h

d1/2

)

, (D19)

for T
K

= 10 to 20 K. Another difference is that the end-on Gaussian cylinder looks like the

Gaussian sphere. Using the kA and ǫ for the Gaussian sphere results in,

Xf(X20) = 0.171 CT T−0.38
K

n̄0.32

(

h

d1/2

)0.64

. (D20)

The numerical results of the above calculations are listed in Tables 1 through 5.
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D.3. Collapsing, Magnetized Filament

Tilley & Pudritz (2003) examined the case of a constant toroidal flux-to-mass ratio

in a collapsing cylindrical cloud. Here we estimate Xf for the side-on case only. Their

equation (35) can be rearranged to give the velocity width:

∆vc = 2.89 × 10−16 n0.5
0 λfrag kmax cgs , (D21)

where λfrag is the fragmentation wavelength and kmax is a dimensionless wavenumber (see

Tilley & Pudritz 2003). They find that the density goes like r−2 for a strong magnetic field

and r−4 for a weak magnetic field. So, assuming a roughly constant density inside radius,

r0,

ρ(r) = ρ0 for r ≤ r0 (D22)

= ρ0

(r0

r

)α

for r ≥ r0, (D23)

where α = 2 or 4. Combining equation (D1) with the number density analogs of (D22) and

(D23),

Nc(y) = 2 n0

√

r2
0 − y2 + 2 n0 rα

0

∞
∫

√
r2
0
−y2

dz
(

z2 + y2
)−α/2

for y ≤ r0 (D24)

= 2 n0 rα
0

∞
∫

0

dz
(

z2 + y2
)−α/2

for y ≥ r0. (D25)

Combining equation (D2) with (D24) and (D25) results in

Mc(r) = π h r2
0 ρ0 + 2 π h ρ0 rα

0

∫ r

r0

dR R(1−α) . (D26)

Now we will examine the α = 2 and α = 4 cases separately.

D.3.1. α = 2

For α = 2 the mass diverges when r → ∞, so we must specify an outer radius, r1. The

upper limits in equations (D24) and (D25) are r1 instead of ∞. But, for simplicity, we will

assume that r1 ≫ r0. Equations (D24) and (D25) become

Nc(y) = 2n0

√

r2
0 − y2 +

2 n0 r2
0

y

[

arccos

(

y

r1

)

− arccos

(

y

r0

)]

for y ≤ r0 (D27)

= π n0 r2
0 y−1 arccos

(

y

r1

)

for r0 ≤ y ≤ r1.(D28)
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It is easy to show that Nc(0) = 4 n0 r0 and, accordingly, that y1/2 = π
2
r0, where it is assumed

that r1 ≫ y1/2. Equation (D26) becomes

Mc(r) = π h r2
0 ρ0

[

1 + 2 ln

(

r

r0

)]

. (D29)

The maximum radius, r1, must be specified and the total mass, Mc(r1), is dependent on the

ratio of the outer-to-inner radii of the r−2 region, r1/r0. Expression (D3) now gives us ρ̄:

ρ̄ =

(

2

π

)2
[

1 + 2 ln
(π

2

)]

ρ0 , (D30)

= 0.771ρ0

With this information in hand (and assuming r0/r1 to be small) it is easy to demonstrate

that

kN =
π

1 + 2 ln
(

π
2

) (D31)

= 1.651 .

We can also determine kM , but it is only useful for estimating ∆vc for virialized gas. Also,

it is normally defined in terms of Mc(∞). Nevertheless, for completeness, it is given here for

Mc(r1):

kM = π
1 + 2 ln

(

r1

r0

)

1 + 2 ln
(

π
2

) (D32)

Expression (D21) is rewritten as

∆vc = kv n̄0.5 λfrag kmax , (D33)

where,

kv = 3.294 × 10−16 cgs

Starting with equation (21) and plugging in (D33) and Nc(0) expressed in terms of kN yields,

τ0 =
kτ kN

kv kmax

√
2π

n̄0.5 T−γ
K

(

d1/2

λfrag

)

, (D34)

where, again, d1/2 = 2y1/2.

Now we can combine the expressions developed here with (25), (26), and (10) to obtain,

Xf = (2π)
1

2
(ǫ−1) CT k−1

A k−ǫ
τ kǫ−1

v k1−ǫ
N Tγǫ−1

K
n̄

1

2
(1−ǫ)

(

d1/2

λfrag kmax

)1−ǫ

. (D35)
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Except for the extra factor of [d1/2/(λfrag kmax)]
1−ǫ, this is identical to the more-or-less

general expression for Xf , i.e., equation (C11). Evaluating (D35) numerically depends on

the values of kA and ǫ, which depend on r1/r0. Here we try two values for this ratio:

r1/r0 = 10 and r1/r0 = 1000. For r1/r0 = 10, kA = 1.74 and ǫ = 0.27 and,

Xf(X20) = 0.97 CT T−0.53
K

n̄0.37

(

d1/2

λfrag

)0.74

. (D36)

For r1/r0 = 1000, kA = 1.46, ǫ = 0.69 and,

Xf(X20) = 0.0729 CT T+0.21
K

n̄0.16

(

d1/2

λfrag

)0.31

, (D37)

in which kmax = 0.2 was adopted for both cases (see Tilley & Pudritz 2003).

D.3.2. α = 4

Equations (D24) and (D25) become

Nc(y) = 2 n0

√

r2
0 − y2 + ...

+ n0 r4
0 y−3

[

arcsin

(

y

r0

)

−
(

y

r0

) (

1 − y2

r2
0

)
1

2

]

for y ≤ r0 (D38)

=
π

2
n0 r4

0 y−3 for y ≥ r0. (D39)

It is easy to show that Nc(0) = 8
3
n0 r0 and, accordingly, that y1/2 = (3π

8
)

1

3 r0. Equation (D26)

becomes

Mc(r) = Mc(∞)

(

1 − r2

2 r2
0

)

, (D40)

where,

Mc(∞) = 2 π h r2
0 ρ0 . (D41)

Unlike the α = 2 case, the α = 4 case has finite mass, even for r/r0 → ∞. Expression (D3)

gives us ρ̄:

ρ̄ =

(

8

3 π

)
2

3

[

1 − 1

2

(

8

3 π

)
2

3

]

ρ0 , (D42)

= 0.495ρ0

It is now easy to demonstrate that
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kN =
2 π

(3 π)
2

3 − 2
(D43)

= 2.552

For completeness, kM is also given:

kM =
2 π

1 − 1
2

(

8
3 π

)
2

3

(D44)

With kN known, we have ∆vc given by (D33) and

kv = 4.114 × 10−16 cgs . (D45)

The equation for Xf is (D35). Numerically integrating (2) and (3) gives kA = 1.15 and

ǫ = 0.37. Adopting kmax = 0.2 and substituting the values for kA and ǫ into (D35) results in

Xf(X20) = 0.900 CT T−0.36
K

n̄0.32

(

d1/2

λfrag

)0.64

. (D46)
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Tieftrunk, A. R., Meyer, K., Wiedenhöver, W., Dame, T. M., Palmer, E. S., May, J.,

Aparici, J., and Mac-Auliffe, F. 1997, A&AS, 126, 197
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Henriksen, R., André, P., and Bontemps, S. 1997, A&A, 323, 549

Heyer, M. H., Carpenter, J. M., and Ladd, E. F. 1996, ApJ, 463, 630

Heyer, M. H., Carpenter, J. M., and Snell, R. L. 2001, ApJ, 551, 852

Howell, D. A. et al. 2006, Nature, 443, 308

1997, IAU Symp. 170, CO: Twenty-five Years of Millimeter-Wave Spectroscopy, eds. W. B.

Latter, S. J. E. Radford, P. R. Jewell, J. G. Mangum & J. Bally (Dordrecht: Kluwer)
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Fig. 1.— The panels above show the velocity widths, ∆v(12CO), of the 12CO J = 1 → 0

line for the Orion A and B molecular clouds versus the molecular hydrogen column den-

sities, N(H2). The velocity widths are effective velocity widths given by the ratio of the

velocity-integrated radiation temperature, I(CO), divided by the peak radiation temper-

ature of the line. The N(H2) values for the upper panel are those determined from the

one-component, non-LTE models of Wall (2006). The N(H2) values for the lower panel are

the two-component, two-subsample, non-LTE models of Wall (2006). The sample of points

are those for which the intensities are 5-σ or more for the 140 µm and 240 µm continuum, the
12CO J = 1 → 0 line, and 13CO J = 1 → 0 line. All these maps were convolved to 1-degree

resolution (see Wall 2006, for details).
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Fig. 2.— The effective optical depth of a clump, A(τ0), after averaging over its projected

area is plotted against the optical depth through the clump center, τ0. The solid curve shows

A(τ0) versus τ0 for a cylindrical clump viewed perpendicularly to the symmetry axis. The

optical depth profile across the cylinder, from the central axis towards the edges, is Gaussian.

The dashed curve shows the corresponding curve for a spherical clump. The optical depth

profile from the sphere center towards the edges is also Gaussian. The Gaussian spherical

clump case was also treated and plotted in MSH84.
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Fig. 3.— Plots of the CO J = 1 → 0 line radiation temperature, T
R
, normalized to its

source function, Jν(TK
), versus the 13CO J = 1 → 0 derived H2 column density. Both plots

are reproduced from Wall (2006). The curves are of the form y = 1− exp(−a x − b), where,

in the ideal case, b = 0. The upper plot is for the LVG, one-component models of Wall

(2006) and the lower plot is for the LVG, two-component, two-subsample models of that

paper. (The source function for the two-component models is the effective source function

as defined in Wall (2006).) Given that x is in units of 1020 H2 cm−2, a = (9.5±0.4)×10−3 and

b = (2.4±5.5)×10−3 for the upper plot and a = (6.4±0.2)×10−3 and b = (7.2±0.8)×10−2

for the lower plot.
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Fig. 4.— Curves that crudely represent the X-factor’s dependence on the fluffiness parameter,

ǫ, are depicted. The kinetic temperature, T
K
, and the average densities, represented simply

by n, corresponding to the curves are shown. Note that the values of the X-factor for ǫ = 0

and 1 are too low by about 30%. See Section 3.2.1 for details. It must be emphasized that

these curves are dependent on how the “average” density is defined (see Section 4.7.1).
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Fig. 5.— The 13CO J = 1 → 0/12CO J = 1 → 0 line ratio is plotted against the τef of
12CO J = 1 → 0. The points represent positions in the Orion A and B molecular clouds

where the peak T
R
(12CO J = 1 → 0) > 3 σ, and Iν(140 µm), Iν(240 µm), and I(13CO) are all

> 5 σ (see Wall 2006). The solid curves represent model fits that are described in Section 3.3.

The reduced chi-square of these two-curve fits are given in the upper-right corner of each

panel. The error bars are 0.5 σ for a better view of the distribution of points and of the

model curves. The upper panel has the τef values derived from one-component models and

the lower panel has the τef derived from two-component models (Wall 2006).
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Fig. 6.— The frequencies of values of the 13CO J = 1 → 0/12CO J = 1 → 0 line ratio in the

Orion clouds is plotted here as a histogram (solid line). This histogram only includes data

where 12CO and 13CO observed line strengths are at or above 5-σ.
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Table 1. X-Factor Values for Different Model Clump Types

Type of Clumpa kA ǫ Xf (1020H2·cm−2/K · km · s−1)

T
K

= 10 K T
K

= 20 K

n̄b= 2 × 102 2 × 103 2 × 104 n̄b= 2 × 102 2 × 103 2 × 104

τ ≫ 1c 1 0 3.5 11 35 1.4 4.4 14

τ ≪ 1 1 1 0.12 0.12 0.12 0.16 0.16 0.16

Hard S. 1.7 0.14 1.3 3.4 9.1 0.59 1.6 4.3

Gaussian S. 1.6 0.36 0.70 1.5 3.1 0.44 0.91 1.9

Sq. Lor. S. 1.5 0.57 0.36 0.58 0.95 0.28 0.47 0.76

G. F. (side-on) 1.5 0.25 0.93 2.2 5.2 0.51 1.2 2.8

G. F. (end-on)d 1.6 0.36 1.3 2.8 5.8 0.82 1.7 3.6

aThese are the types of model clumps as described in Section 3: Completely Optically Thick,

Optically Thin, Hard Sphere, Gaussian Sphere, Squared Lorentzian Sphere, Gaussian Filament

(side-on and end-on).

bClump average density as defined in Section 3 and in the appendices in units of H2 molecules ·
cm−3.

cFor simplicity, a spherical geometry is adopted for computing Xf .

dAssuming a length-to-diameter ratio of 3.4.
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Table 2. Full-Width-at-Half-Maximum Velocity Widths of Individual Model Clumps

Type of Clumpa ∆vc (FWHM)b ( km · s−1)

n̄c= 2 × 102 2 × 103 2 × 104

Hard S.d 0.46 1.4 4.6

Gaussian S.d 0.63 2.0 6.3

Sq. Lor. S.d 0.64 2.0 6.4

G. Filamente 0.72 2.3 7.2

aThese are some types of model clumps as de-

scribed in Section 3: Hard Sphere, Gaussian Sphere,

Squared Lorentzian Sphere, Gaussian Filament.

bThe earlier computed values have been multiplied

by
√

8 ln2 to convert from rms to FWHM .

cClump average density as defined in Section 3 and

in the appendices in units of H2 molecules · cm−3.

dFWHM diameter of 1.8 pc was adopted.

eLength of 6.2 pc and FWHM diameter of 1.8 pc

were adopted.
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Table 3. Central Sightline Optical Depths, τ0, of Individual Model Clumps

Type of Clumpa τ0

T
K

= 10 K T
K

= 20 K

n̄b= 2 × 102 2 × 103 2 × 104 n̄b= 2 × 102 2 × 103 2 × 104

Hard S. 30 94 300 8.8 28 88

Gaussian S. 34 109 344 10 32 100

Sq. Lor. S. 37 120 370 11 35 110

G. F. (side-on) 28 88 280 8.2 26 82

G. F. (end-on)c 90 280 900 27 84 270

aThese are some types of model clumps as described in Section 3: Hard Sphere,

Gaussian Sphere, Squared Lorentzian Sphere, Gaussian Filament (side-on and end-

on).

bClump average density as defined in Section 3 and in the appendices in units of

H2 molecules · cm−3.
cAssuming a length-to-diameter ratio of 3.4.
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Table 4. Effective Optical Depths, A(τ0), of Individual Model Clumps

Type of Clumpa kA ǫ A(τ0)

T
K

= 10 K T
K

= 20 K

n̄b= 2 × 102 2 × 103 2 × 104 n̄b= 2 × 102 2 × 103 2 × 104

Hard S. 1.7 0.14 2.7 3.2 3.8 2.3 2.7 3.2

Gaussian S. 1.6 0.36 5.7 8.6 13 3.7 5.6 8.4

Sq. Lor. S. 1.5 0.57 12 23 44 6.0 12 22

G. F. (side-on) 1.5 0.25 3.4 4.6 6.1 2.5 3.4 4.5

G. F. (end-on)c 1.6 0.36 8.0 12 18 5.2 7.9 12

aThese are some types of model clumps as described in Section 3: Hard Sphere, Gaussian Sphere,

Squared Lorentzian Sphere, Gaussian Filament (side-on and end-on).

bClump average density as defined in Section 3 and in the appendices in units of H2 molecules ·
cm−3.

cAssuming a length-to-diameter ratio of 3.4.
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Table 5. Masses, Mc, of Individual Model Clumps

Type of Clumpa Mc (M⊙)

n̄b= 2 × 102 2 × 103 2 × 104

Hard S.c 3.9 × 101 3.9 × 102 3.9 × 103

Gaussian S.c 1.4 × 102 1.4 × 103 1.4 × 104

Sq. Lor. S.c 2.5 × 102 2.5 × 103 2.5 × 104

G. Filamentd 4.1 × 102 4.1 × 103 4.1 × 104

aThese are some types of model clumps as described

in Section 3: Hard Sphere, Gaussian Sphere, Squared

Lorentzian Sphere, Gaussian Filament.

bClump average density as defined in Section 3 and

in the appendices in units of H2 molecules · cm−3.

cFWHM diameter of 1.8 pc was adopted.

dLength of 6.2 pc and FWHM diameter of 1.8 pc were

adopted.
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