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ABSTRACT

We consider the multiple scattering of the light from a point-like source located above the semi-infinite electron, turbulent, and
magnetized atmospheres. The frozen magnetic field has both the regular B0 and stochastic B′ components (B = B0 + B′). The
stochastic Faraday rotations due to fluctuations B′ decrease the intensity of each separate polarized beam (the extinction factor is
proportional to λ4〈B′2〉). This decrease at large λ dominates the usual decrease (∝λ2B0 cosΘ0) caused by summing beams with very
different Faraday’s rotation angles. This effect changes the spectrum of polarization degree as compared with what is influenced by the
regular magnetic field. We calculated the integral (observed) polarization of the reflected radiation with the inclusion of unpolarized
radiation going directly from the point-like source. We present the observed polarization for various degrees of true absorption of the
radiation into the atmosphere and the values of magnetic energy fluctuations. The spectra of polarization in the optical (λ = 0–1 µm),
infrared (λ = 1–5 µm), and X-ray (E = 1–50 keV) regions of the wavelengths are presented. We discuss the possibility of estimating
parameters of magnetic field fluctuations from the observation of the spectra of polarization in AGNs with the X-ray excesses and in
the turbulent accretion disk in NGC 4258.
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1. Introduction

Many astronomical objects – neutron stars, white dwarfs, ac-
tive galactic nuclei, hot accretion disks, envelopes around of
X-ray sources, and many usual stars (for example our Sun) –
have magnetic fields (see Blaes 2003). For a number of objects
such as binary systems with optically thick accretion disks (see
Cherepashchuk 2000) and flare stars (Grinin & Domke 1971;
Gurzadyan 1980), we observe the linear polarization in differ-
ent regions of the wavelengths. There are the reasons to consider
that this polarization stems in a number of cases from the reflec-
tion of unpolarized radiation of the point-like sources off in the
optically thick accretion disks (see, for example, Czerny et al.
2004) or the atmospheres of the stars.

It is known (see, for example, Dolginov et al. 1995) that the
Faraday rotation of the polarization plane in magnetized plasma
disks and atmospheres can strongly diminish the degree of the
outgoing radiation. Because the angle of the Faraday rotation is
proportional to the square of wavelength (see below), the outgo-
ing radiation acquires the characteristic forms of the polarization
spectra. These spectra depend on the value and geometry of the
magnetic field and on the distribution of the number density of
electrons in a plasma. Analysis of these spectra can be useful for
estimating the magnetic field and the electron concentration.

The polarization of the observed (the intensity is integrated
over the surface of the atmosphere) radiation from the point-
like source reflected from a semi-infinite non-magnetized at-
mosphere was first calculated by Grinin & Domke (1971).
Following the ideas of Sobolev (1963), they obtained the inte-
gral matrix equation for the probability of the total energy of

the polarized radiation escape from the semi-infinite atmosphere.
The solution of this equation by the known Sobolev’s method
(see Sobolev 1968) has shown that the maximum polarization
(�4.1%) of outgoing radiation occurs at the conservative scat-
tering (q = 0) when the angle between the normal to the atmo-
sphere N and the line of sight n is equal to �70◦.

The influence of Faraday’s rotation on the polarization plane
in optically thick non-turbulent atmospheres has been studied in
a number of papers: see Silant’ev (1979, 1994, 2002), Agol &
Blaes (1996), Agol et al. (1998), Shternin et al. (2003), etc.

1.1. Faraday rotation in turbulent atmospheres

The real atmospheres, accretion disks, and circumstellar en-
velopes are frequently turbulent. The frozen magnetic fields in
these cases are also stochastic. Faraday rotation of the polariza-
tion plane, as a whole, diminishes the value of observed polar-
ization. Besides, the spectra of polarization acquire new charac-
teristic forms corresponding to the more rapid decrease in the
polarization with the increase in the wavelengths. The theoreti-
cal calculations of the polarization spectra for various situations
are very useful for estimating the magnetic fields and other pa-
rameters in many cosmic objects. Our paper is devoted to doing
this.

The radiative transfer equation for the turbulent magnetized
atmosphere was derived in a recent paper (Silant’ev 2005). In
this atmosphere, all the quantities – the extinction coefficient
α = α0 + α

′, the magnetic field B = B0 + B′, the parameter
of Faraday’s rotation (see Sect. 2) δ = δ0 + δ

′ and the Stokes
parameters I = I0 + I′, Q = Q0 + Q′, U = U0 + U ′ and
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V = V0 + V ′ – are the stochastic quantities; i.e., they are char-
acterized by its mean values (for example, 〈I〉 ≡ I0) and fluc-
tuations (for example I′, 〈I′〉 ≡ 0). The brackets 〈 〉 denote
the statistical average over the ensemble of the realizations of
the stochastic quantity. Clearly (see Levshakov & Kegel 1997)
when we observe the radiation from many turbulent (more gen-
erally, stochastic) cells, we observe the mean values I0,Q0,U0,
and V0. Silant’ev (2005) showed that if the characteristic radius
R0 of turbulent pulsations is less than the photon free path, i.e.
τ1 = α0R0 � 1 with τ1 being the mean optical depth of the
turbulent cell, then the mean Stokes parameters obey the usual
radiative transfer equation with renormalized (effective) kinetic
coefficients.

Thus, instead of the extinction coefficient α, we have to use
the effective extinction factor αeff , which is less than the mean
extinction coefficient α0. The difference between them is pro-
portional to τ1 � 1 and the level of fluctuations 〈α′2〉/α2

0. In
this paper we consider the case when the product of these values
is low and one takes αeff � α0. It seems in interstellar medium
the case can also occur where the level of extinction factor fluc-
tuations is high and the effective extinction αeff is considerably
lower than the mean value α0. Below we consider the multiple
light scattering in a semi-infinite atmosphere and use the notion
of dimensionless optical depth τ = α0 s. The use of new opti-
cal depth αeff s slightly changes the whole theory (see Silant’ev
2005). For the conservative atmosphere, without the true absorp-
tion of light, the results obtained below do not change.

The influence of the Faraday rotation fluctuations in a tur-
bulent atmosphere can be very strong. Indeed, the fluctuating
Faraday rotation angle ψ′1 ∝ R0λ

2B′ at the characteristic dis-
tance R0 of the turbulent curls can be large (ψ′1 	 1) for a large
enough magnetic field B′ and wavelength λ. Statistically this
gives rise to the decrease in the polarization degree of each light
beam by its propagation in the turbulent magnetized medium.
The effect is proportional to 〈(ψ′1)2〉; i.e., it is proportional to
λ4〈(B′)2〉. Physically this decrease appears as a consequence of
the summation of the incoherent realizations with very different
Faraday’s rotation angles. Remember that the propagation of the
light beam in an atmosphere with the regular magnetic field B0
does not change its degree of polarization, but only the value of
the positional angle χ. The outgoing radiation is depolarized in
this case as the consequence of summing the beams going from
different atmosphere’s depths, each with its own value for the
positional angle. All the statistical effects can be obtained qual-
itatively from the consideration of two realizations models (see
Silant’ev 2007). Clearly these statistical effects distort the ob-
served polarization spectra of outgoing radiation.

Below we calculate a number of the observed polarization
spectra of the radiation from point-like sources reflected off in
the optically thick turbulent, magnetized atmospheres. Note that
the integrated intensities of radiation over the perpendicular co-
ordinates ρ and the azimuthal angles φ (see Fig. 1) obey the
usual radiative transfer equation. This means that the observed
integrated Stokes parameters are connected to the solutions of
classical problems corresponding to unbounded radiation fluxes.
Of course, this is true for any restricted sources of radiation in a
homogeneous atmosphere.

2. Basic equations

In the vast domain of the wavelengths and the magnetic fields,
the inequality ωB/ω � 0.93 × 10−8λ[µm]B[G] � 1, ωB =
eB/mec takes place. In this case the scattering cross-section is
equal to the Thomson value σT = 6.65 × 10−25 cm2. It means
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Fig. 1. Scheme of the multiple scattering of radiation from a point-
like source. The dashed curve denotes the characteristic dimension of a
“spot”.

that the magnetic field reveals itself only by the Faraday rota-
tion of the polarization plane. The angle of Faraday’s rotation ψ
can be written in the form (see Dolginov et al. 1995; Gnedin &
Silant’ev 1997)

ψ =
1
2
δτT cosΘ, (1)

where τT = NeσTs is the Thomson optical length of the distance
s, Ne the concentration of electrons in a plasma atmosphere, Θ
the angle between magnetic field B, and the light propagation
direction (line of sight) n. Remember that the polarization plane
has a righthand rotation at Θ < 90◦ if we observe along the
direction n. At Θ > 90◦ the rotation is opposite. Parameter δ is
determined by the formula

δ =
3

4π
λ

re

ωB

ω
� 0.8(λ[µm])2B[G]. (2)

Here re = e2/mec2 � 2.82×10−13 cm is the classical radius of an
electron, λ = 2πc/ω is the light wavelength,ω = 2πν the angular
frequency, and c the light velocity. Furthermore, we always take
the wavelengths in [µm] and the magnetic fields in Gauss.

2.1. Transfer equations for the average Stokes parameters

According to the paper by Silant’ev (2005) the system of ra-
diative transfer equations for the mean Stokes parameters in the
turbulent magnetized atmosphere has the form

(n∇)I0(r, n) = −α0 I0(r, n)

+ 〈NeσT BI(r, n)〉 + 〈S I(r, n)〉,
(n∇)Q0(r, n) = −αpol Q0(r, n)

−N0(r)σT δeff cosΘ0 U0(r, n)

+ 〈NeσTBQ(r, n)〉 + 〈S Q(r, n)〉,
(n∇)U0(r, n) = −αpol U0(r, n)

+N0(r)σT δeff cosΘ0 Q0(r, n)

+ 〈NeσTBU(r, n)〉 + 〈S U(r, n)〉, (3)
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where N0(r) ≡ 〈Ne(r)〉 is the mean concentration of electrons,
and Θ0 is the angle between the light propagation direction n
and the mean magnetic field B0. The effective (renormalized)
coefficients αpol and δeff take the following form:

αpol = α0 + N0σTτ
(T )
1

⎡⎢⎢⎢⎢⎣〈δ′2〉 fB + δ
2
0 cos2Θ0

〈N′2e 〉
N2

0

fN

⎤⎥⎥⎥⎥⎦ , (4)

δeff = δ0

[
1 − 2τ1

〈α′N′e〉
α0N0

fαN

]
. (5)

Here τ(T)
1 = N0σTR0 is the Thomson optical length of the char-

acteristic radius of the turbulent correlations R0, τ1 = α0R0 is the
total optical depth of this radius, taking the true absorption into
account. The δ0 = 0.8λ2B0 is the mean value of the parameter δ.
The 〈(δ′)2〉 = (0.8λ2)2〈(B′)2〉/3 is the rms-value of parameter δ′.
The other averaged fluctuations have the same meaning. The val-
ues fB, fN , and fαN are the integrals from the corresponding two-
point correlation functions (see Silant’ev 2005). All these factors
are near unity. Frequently one uses the model of the normalized
correlation function exp (−R/R0). Here R is the distance between
the points where the fluctuating values are located. For this par-
ticular form of the correlation function, the coefficients fB, fN ,
and fαN are equal to unity.

We see that the extinction coefficients of the intensities of po-
larized light (parameters Q and U) acquire the additional terms
due to the existence of the Faraday rotation fluctuations men-
tioned above. Note that these fluctuations can also be generated
by the fluctuations of the electron number density (the second
term in square brackets). Both terms in this brackets are pro-
portional to λ4 and can be greater at large λ than the parame-
ter δ0 ∼ λ2. The second term in Eq. (5) describes the decrease
in the positional angle in turbulent medium. When the regular
magnetic field is absent (δ0 = 0), this effect disappears since the
fluctuating fields B′ and −B′ occur with equal frequency and the
resulting average rotation of the position angle is equal to zero.
This new effect is discussed in Silant’ev (2007) in more detail.
This effect is practically small because is proportional to τ1. For
this reason we take δeff � δ0.

Our system (3) takes into account both the additional extinc-
tion of parameters Q and U and the usual decrease in the polar-
ization degree due to the existence of the very different Faraday
rotations of the polarization plane of light escaping from differ-
ent layers of the atmosphere. Our particular calculations will be
concerned with the case of a purely fluctuating magnetic field.
This does not correspond to zero’s mean magnetic field. Below
we give the condition where the regular magnetic field B0 in-
fluences the light polarization negligibly less than the magnetic
fluctuations. Of course, the other effects of the regular magnetic
field can be considered.

Terms with BI,Q,U describe the Thomson scattering on
the electrons. Their explicit forms are rather complex (see
Chandrasekhar 1950). Therefore we use a more compact equa-
tion for the radiation density matrix ραβ(r, n), which is linearly
related to the Stokes parameters I,Q,U,V (see Silant’ev 1979,
1994, 2005, 2007).

2.2. Transfer equation for the radiation density matrix

As is well known in plasma withωB/ω� 1, the electromagnetic
waves with the right – and left – circular polarizations propa-
gate independently each with its own refractive index. For this

reason we use the most convenient representation of the radi-
ation density matrix in cyclic coordinates (the unit vectors are
e−1 = (ex + iey)/

√
2, e0 = ez, e1 = −(ex − iey)/

√
2):

ρ−1−1 =
1
2

(I0 + V0), ρ11 =
1
2

(I0 − V0),

ρ−11 =
1
2

(−Q0 + iU0), ρ1−1 =
1
2

(−Q0 − iU0). (6)

Here V is the Stokes parameter describing the circularly polar-
ized intensity. This parameter obeys the separate equation. We
are interested in the linear polarization in this paper. Therefore
we can take V ≡ 0. Instead of terms BI,Q,U , we use the corre-
sponding expressions in cyclic coordinates:

〈NeσT Bαβ(r, n)〉 = α0 aαβnm(n) Gnm(r), (7)

where we assume the summation over the repeated
Greek α, β, γ, ... = −1, 1 and Latin n,m, p, ... = −1, 0, 1
indices, both here and in what follows. The angular distribution
of the scattered radiation is described by the matrix

aαβnm(n) = e−(n−m)ϕd(1)
nα (ϑ)d(1)

mβ(ϑ), (8)

where the Wigner matrices (see Varshalovich et al. 1988) have
the form

d(1)
−1−1 = d(1)

11 = (1 + cosϑ)/2, d(1)
00 = cosϑ,

d(1)
−1 1 = d(1)

1−1 = (1 − cosϑ)/2, (9)

d(1)
0 1 = d(1)

−1 0 = −d(1)
10 = −d(1)

0−1 = sinϑ/
√

2.

The angles ϕ and ϑ are the usual azimuthal and polar angles of
the vector n in the reference frame with the Z-axis along the out-
ward normal N (see Fig. 1). The Stokes parameters Q and U are
taken in the reference frame (Xn, Yn, Zn) with the Zn-axis in the
direction n. The Xn-axis is always taken in the plane (nN). Now
the system of Eqs. (3) can be written as a one-matrix equation:

(n∇)ραβ(r, n) = −α0ḡαβ(n)ραβ(r, n)

+ α0 aαβnm(n) Gnm(r) + 〈S αβ(r, n)〉. (10)

One of the advantages of using the radiation density matrix rep-
resentation is that every matrix component propagates in the
medium with its own absorption coefficient:

ραβ(s, n) = ραβ(0, n) exp (−α0ḡαβ s), (11)

where the dimensionless coefficients ḡαβ(n) are determined by
the relations

ḡ−1−1 = ḡ11 = 1,

ḡ−11 = ḡ
∗
1−1 = (αpol + iN0σTδ0 cosΘ0)/α0. (12)

Note that there is no summation over repeated indices α and β
in Eqs. (10) and (11). Tensor Gnm(r) is related to the density
matrix (6):

Gnm(r) =
3

8π
(1 − q)

∫
dn′ aγν∗nm (n′) ργν(r, n′). (13)

Here 1 − q = N0σT/α0, where q is the degree of the true
absorption.
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2.3. Point-like source of radiation

The terms 〈S I〉, 〈S Q〉, 〈S U〉 and corresponding matrix 〈S αβ〉
describe the averaged sources in the turbulent atmosphere.
Furthermore, we consider the case where the point-like source
of the anisotropic and polarized radiation is placed at height h
over the semi-infinite plane-parallel atmosphere (see Fig. 1).
This source is described by the density matrix Lγν(n0) (erg s−1

sterad−1). The total luminosity of the source L0 (erg s−1) is equal
to the integral of the value Lγγ(n0) over all solid angles dn0. Note
that, in contrast to the isotropic source, the anisotropic source
can radiate the polarized radiation; for example, this is the dipole
radiation. The density matrix of the radiation penetrating into the
point (−z, ρ, φ) of the atmosphere (we use the cylindrical refer-
ence frame) is

ρ(0)
αβ (r, n′) = Lαβ(n0)

exp (−ḡαβ(n0)τ/|µ0|)
(h + |z|)2 + ρ2

δ(n′ − n0), (14)

where n0 is directed from the point-like source to the point
r(−z, ρ, φ). The Z-axis, as usual, is directed along the outward
normal N to the atmosphere. The source is located at z = h,
and µ0 = cosϑ0 ≤ 0, ϑ0 is the angle between z and n0, and
dτ = −α0dz, i.e. τ is the mean total optical depth of the level −z.
Note that the azimuthal angles φ of the radius-vector r and the
direction n0 coincide one with another.

Note also that the value µ0 is related to the coordinates z
and ρ:

|µ0| = h + |z|√
(h + |z|)2 + ρ2

, (15)

(dµ0)z=const.=−
µ3

0 ρdρ

(h + |z|)2
· (16)

The substitution of matrix (14) in formula (13) gives rise to the
matrix G(0)

nm(r):

G(0)
nm(r) =

3
8π

(1 − q) aγν∗nm (n0) Lγν(n0)
exp (−ḡγν(n0)τ/|µ0|)

(h + |z|)2 + ρ2
· (17)

Note that, due to relation (15), this matrix depends on the
height h. The substitution of this matrix to Eq. (7) gives the
explicit form of the source 〈S αβ(r, n)〉. Remember that source
functions 〈S I,Q,U〉 and corresponding 〈S αβ〉 are equal to the scat-
tering term (7) after the substitution the intensities of radiation
penetrating the atmosphere (see expression (14)).

2.4. Formulae for the observed integral polarization

The atmosphere is considered as homogeneous in directions per-
pendicular to the Z-axis. The dependence of the Stokes parame-
ters I,Q,U from the perpendicular distance ρ and the azimuthal
angle φ is due to the inhomogeneity and anisotropy of the source
(see Eq. (17)). The derivatives along the direction n on the left-
hand sides of the systems (3) and (10) also have the deriva-
tives over ρ and φ. For this reason the solution of equations for
I(τ, ρ, φ, n), Q(τ, ρ, φ, n), and U(τ, ρ, φ, n) is a very difficult prob-
lem.

From expressions (14) and (17), we see that the intensity
of the radiation penetrating the medium decreases rapidly in
the perpendicular directions; i.e., it has the spot-like distribution
with the characteristic length ρ∗ ≥ h. The telescope observe, the
“spot” as a whole. If the curvature radius of the atmosphere is
large compared with the characteristic dimension of the “spot”,

we can consider the atmosphere as a plane with inclination an-
gle ϑ. The angle ϑ is the angle between the line of sight n and the
local outward normal to the atmosphere N (µ ≡ cosϑ). In this
case the telescope registers the radiation fluxes FI(n), FQ(n), and
FU(n) proportional to µ and the surface integrals over the “spot”:

FI(n) =
µ

R2

∫ 2π

0
dφ

∫ ∞

0
dρρ I0(r, n) ≡ µ

R2
EI(n),

FQ(n) =
µ

R2

∫ 2π

0
dφ

∫ ∞

0
dρρQ0(r, n) ≡ µ

R2
EQ(n),

FU(n) =
µ

R2

∫ 2π

0
dφ

∫ ∞

0
dρρU0(r, n) ≡ µ

R2
EU(n), (18)

where R is the distance to the telescope, and the values EI,Q,U(n)
are the surface integrals from I0(0, ρ, φ, n), Q0(0, ρ, φ, n), and
U0(0, ρ, φ, n). These values have the meaning of total energy
(erg s−1 sterad−1), radiating from the whole “spot” to the direc-
tion n (see Fig. 1).

Clearly at ρ → ∞ the intensity tends to zero. Therefore by
integrating Eqs. (3) or (10) over surfaces τ = const., terms with
the derivatives over ρ and φ do not give any contribution. Thus,
the values EI,Q,U (τ, n) obey the usual transfer equations without
the derivatives over ρ and φ. The source terms in this system of
equations are equal to the source terms in Eq. (3) integrated over
the variables ρ and φ. It seems that in first time this was men-
tioned by Sobolev (1963) and later used by Grinin and Domke
(1971), when derivation of the system of equations for the po-
larized radiation probabilities to escape the non-turbulent and
non-magnetized atmosphere.

If we consider the bounded flux of the plane-parallel light,
then the expressions for EI,Q,U coincide with the known solution
for the unbounded flux and need to be multiplied on the surface
area of the “spot” S 0/| cosϑ0|. Here S 0 is the cross-section of the
beam and ϑ0 is its inclination angle.

2.5. Relation to the known solutions for unbounded beams

The solution methods for the usual system of equations for the
Stokes parameters are known. Silant’ev (1994) developed the
generalization of the Sobolev (1968) method to solve a number
of the standard problems, in particular, the problem of reflect-
ing the parallel unbounded polarized light beam off in the semi-
infinite non-turbulent magnetized atmosphere. The problem of
the reflection of the polarized light from a magnetized atmo-
sphere was also resolved earlier (Silant’ev 1979) using Eq. (10)
and the known invariance principle (Chandrasekhar 1950).

Below we calculate the directly observed radiation
fluxes (18); i.e., we have to solve the usual radiative transfer
equations for the values EI,Q,U(τ, n). For this we must obtain
the surface integrals over planes τ = const. from the function
G(0)

nm(r). According to expression (16), this surface integration
can be transformed into the solid angles integration over the
semi-sphere of the solid angles Ω− directed into the interior of
the atmosphere:

∫ ∞

0
dρρ

∫ 2π

0
dφG(0)

nm(r) =
3

8π
(1 − q)

×
∫
Ω−

dn0

|µ0| a
γν∗
nm (n0)Lγν(n0) exp (−ḡγν(n0)τ/|µ0|). (19)
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Note that, after this integration, the problem does not depend
on the altitude h of the point-like source over atmosphere’s sur-
face. This independence is entirely the consequence of the re-
lations (16) taking place only for point-like sources, both the
isotropic and anisotropic. It means that any distribution of these
sources along the normal N will be observed as an effective
point-like source. We are really restricted by the condition that
the effective radius of “spot” (ρ∗ ≥ h) has to be smaller than
the curvature radius of the atmosphere (see Sect. 2.4). As a re-
sult, very high values of h are beyond the validity of this pa-
per. In this subsection we demonstrate that the observed radia-
tion fluxes (18) can be calculated from the known solution to the
problem of the reflections unbounded plane-parallel beam from
semi-infinite plane-parallel atmosphere. The continued source
producing the “spot” smaller than the curvature of the atmo-
sphere can be considered as a sum of point-like sources, so our
consideration includes these more realistic forms of sources. It
is important that the inclination angle of the “spot” is practically
the same for all the parts of the “spot”.

Comparison of expression (19) with formula (44) in the pa-
per (Silant’ev 1994) or with formula (12) in Silant’ev (1979)
shows that this expression is the integral superposition of the
sources for the known classical problem on the reflection of un-
bounded light beam from the semi-infinite non-turbulent mag-
netized medium. If the density matrix F(0)

γν (n0) in formula (44) is
replaced by Lγν(n0)/|µ0|, then we obtain the integrand in expres-
sion (19). Note that the notations in Silant’ev (1979) differ from
those in Silant’ev (1994).

The solution of this classical problem (see formulae (45)
and (12) in the mentioned papers) takes the form:

ραβ(n, n0, B0) =
3

8π
(1 − q)|µ0|(−1)n+m

×Cαβ
nm(n, B0)Cγν

−n−m(−n0,−B0)F(0)
γν (n0)

µḡγν(n0, B0) + |µ0|ḡαβ(n, B0)
· (20)

Here, F(0)
γν (n0) and ραβ(n, n0, B0) are the density matrices of the

radiative flux falling along the direction n0 and the radiation re-
flected in direction n, and B0 is a homogeneous magnetic field
in the atmosphere. Note that the coefficients gαβ in these formu-
lae are to be replaced by our coefficients (12), which include the
additional extinction factor αpol. After these changes, the formu-
lae (45) and (12) present the solution of the classical problem in
the turbulent magnetized atmosphere with B0 as the mean value
of the magnetic field. The magnetic field fluctuations are pre-
sented in the coefficients (12).

The tensor functions Cαβ
nm(n, B0) are the generalization of

known Ambartzumyan – Chandrasekhar H – functions (see
Ambartzumyan 1942; Chandrasekhar 1950). They obey the fol-
lowing system of nonlinear equations (Silant’ev 1979, 1994):

Cαβ
pq (n, B0) = aαβpq(n) +

3
8π

(1 − q)µ

×
∫
Ω+

dn′
Cαβ

nm(n, B0)Cγν∗
nm (n′,−B0)aγνpq(n′)

ḡγν(n′, B0)µ + ḡαβ(n, B0)µ′
· (21)

The solid angle region Ω+ of the integration corresponds to
values with µ′ ≥ 0. The number of independent components
of the tensor Cαβ

nm is reduced substantially by the large number
of symmetry properties; in particular, the matrix is hermitian,
Cαβ

nm = Cβα∗
mn . For axially symmetric problems with the magnetic

field directed along the normal to the atmosphere the system (21)

break up a number of separate systems. The maximum order of
these systems is equal to 6 (for n − m = 0).

Note that Eqs. (20) and (21) can be easily derived from
radiative transfer Eq. (10) using the standard procedure of
Chandrasekhar (1950) as in Silant’ev (1979). In this paper the
value Hαβ

pq ≡ Cαβ
pq . Note also that the property (−1)p+qH−γ−ν−p−q =

Cγν∗
pq occurs.

Due to the linearity of the transfer Eqs. (3) and (10), the
problem of the reflection of the total energies EI,Q,U from the
semi-infinite medium will be expressed as the integral over the
semi-sphere of solid angles Ω− corresponding to all the direc-
tions n0 from the expression (20) where instead of F(0)

γν (n0) we
substitute the value Lγν(n0)/|µ0|.

Thus, the general formula for the density matrix of the mul-
tiple scattered radiation flux registered by the telescope takes the
form

Fαβ(n, B0) =
3(1 − q)

8π
µ

R2
(−1)n+m

×
∫
Ω−

dn0
Cαβ

nm(n, B0)Cγν
−n−m(−n0,−B0)Lγν(n0)

µḡγν(n0, B0) + |µ0|ḡαβ(n, B0)
· (22)

Formulae for the Stokes parameters FI , FQ, and FU can be ob-
tained from this expression if one uses the relations (6). In par-
ticular, this general solution represents the isotropic atmosphere
with B0 = 0 and isotropic magnetic fluctuations.

The expressions for the parameters FI,Q,U determine the to-
tal radiation reflected by the atmosphere after the multiple scat-
tering. Because these formulae do not depend on altitude h,
each distribution of sources can be considered as an effective
source with the luminosity Leff

γν (n0) = L(1)
γν (n0) + L(2)

γν (n0) + ...
The telescope also registers the radiation directly coming from
the sources. It means that we are adding the value Leff

γν (n)/R2 to
expression (22). Remember that we are restricted by the condi-
tion that the radius of the atmosphere curvature is larger than the
characteristic surface dimension of the radiating “spot”.

As mentioned above, transfer equations (3) for the total en-
ergies EI,Q,U take place for any forms of bounded sources, not
only for the point-like sources, for example, for the bounded
beam of polarized radiation falling in the direction n0. In the
case of Fαβ(n, B0), we obtain the expression (22) where the in-
tegration over dn0 is absent and the whole formula is multiplied
by the factor S 0/|µ0|. Analogously, using the general theory of
the paper (Silant’ev 1994), one can obtain the formulae for Fαβ

for other forms of spot-like sources, in particular, for spot-like
sources of the thermal radiation inside the atmosphere.

3. Reflection of radiation from the turbulent
atmosphere with isotropic magnetic field
fluctuations

A turbulent atmosphere with isotropic magnetic field fluctu-
ations is the simplest example of the influence of the mag-
netic field on the polarization of outgoing radiation. In Silant’ev
(2007) devoted to Milne’s problem in magnetized conservative
atmospheres, it was shown that, if the inequality

τ(T )
1 λ2〈B′2〉 ≥ 4B0 (23)

takes place, the influence of regular magnetic field B0 on the
light polarization is weaker than the influence of magnetic fluc-
tuations 〈B′2〉. In expression (23) the value τ(T)

1 is the Thomson
optical depth of the characteristic length R0 of turbulent pulsa-
tions. Remember that in this paper we use the wavelengths λ in
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[µm], and the magnetic field in Gauss. It follows from inequal-
ity (23) that, at large wavelengths and (or) large magnetic field
fluctuations, we can use the results of this section to the interpret
observing polarization spectra even if the small regular magnetic
field exists. This small field barely changes the polarization spec-
tra.

The atmosphere with isotropic magnetic field fluctuations is
isotropic. For this reason we can only consider the functions
Cαβ

nm(n) with n = m. Besides, in this case we can omit the explicit
notions of the magnetic field in formulae. Indeed, the regular
magnetic field B0 is neglected and the dependence on the scalar
parameter 〈B′2〉 exists only in expressions (4) and (12), so the
formulae for dimensionless parameters ḡγν in Eq. (12) acquire
very simple form

ḡ−1−1 = ḡ11 = 1, ḡ−11 = ḡ1−1 = 1 + (1 − q) b ≡ g,

b = 0.217 fBτ
(T)
1 λ4〈B′2〉, τ(T)

1 = N0σTR0. (24)

Parameter b describes the additional decrease in the polarized
part of the radiation due to the existence of incoherent Faraday
rotation fluctuations of the polarization plane. At b = 0 we return
to the case of the usual non-magnetized electron atmosphere de-
scribed by the Rayleigh phase matrix. This case was considered
in Grinin & Domke (1971).

Consideration of system (21) gives rise to following expres-
sions for the functions Cαβ

nn :

Cαα
−1−1 = Cαα

11 ≡ A(µ),

Cα−α
−1−1 = Cα−α

11 ≡ C(µ),

Cαα
00 ≡ B(µ), Cα−α

00 ≡ −D(µ). (25)

Here we take the condition V ≡ 0 into account. More general
expressions without this condition and with the existence of the
regular magnetic field directed along the normal N are given in
Silant’ev (2007).

The functions A(µ), B(µ),C(µ), and D(µ) obey the following
system of nonlinear equations:

A(µ) =
1 + µ2

4
+

3
8

(1 − q)µ

×
∫ 1

0
dx

[
(1 + x2)

2A(µ)A(x) + B(µ)B(x)
µ + x

+ (1 − x2)
2A(µ)C(x) − B(µ)D(x)

gµ + x

]
,

B(µ) =
1 − µ2

2
+

3
4

(1 − q)µ

×
∫ 1

0
dx(1 − x2)

[
2A(µ)A(x) + B(µ)B(x)

µ + x

− 2A(µ)C(x) − B(µ)D(x)
gµ + x

]
,

C(µ) =
1 − µ2

4
+

3
8

(1 − q)µ

×
∫ 1

0
dx

[
(1 + x2)

2C(µ)A(x) − D(µ)B(x)
µ + gx

+ (1 − x2)
2C(µ)C(x) + D(µ)D(x)

gµ + gx

]
,

D(µ) =
1 − µ2

2
− 3

4
(1 − q)µ

×
∫ 1

0
dx(1 − x2)

[
2C(µ)A(x) − D(µ)B(x)

µ + gx

− 2C(µ)C(x) + D(µ)D(x)
gµ + gx

]
· (26)

From this system we can derive the relations

2A(µ) + B(µ) = 1

+
3
2

(1 − q)µ
∫ 1

0
dx

2A(µ)A(x) + B(µ)B(x)
µ + x

,

2C(µ) − D(µ) =
3
2

(1 − q)µ

×
∫ 1

0
dx

2C(µ)A(x) − D(µ)B(x)
µ + gx

· (27)

Integration of the first relation gives rise to the connection
between the zero moments A0 and B0:

2A0 + B0 = 1 +
3
4

(1 − q)(2A2
0 + B2

0),

An =

∫ 1

0
dµµnA(µ), Bn =

∫ 1

0
dµµnB(µ). (28)

Considering this relation as a quadratic equation for one of the
moments, e.g., for A0, we find that at q = 0 the unique real
solution is A0 = B0 = 2/3.

3.1. Effective methods of solution of system (26)

The solution of the system (26) by a direct iteration method at
small absorption, q � 1, is very ineffective, especially at q = 0.
Silant’ev (2007) found the method to improve the convergence
of the iterations for q = 0. To some extent this method is analo-
gous to the known Chandrasekhar’s method (see Chandrasekhar
1950). Remember that it is applied to solve the scalar nonlinear
equations for H-functions. Below we present the generalization
of the Silant’ev (2007) method for any values of the absorption
degree q.

Substituting the equality µ/(µ + x) = 1 − x/(µ + x) into the
first relation in Eq. (27), we obtain the formula:

A(µ) =
1 − 3

2 (1 − q)
∫ 1

0
dx xB(µ)B(x)

µ+x − B(µ)
[
1 − 3

2 (1 − q)B0

]
3(1 − q)

∫ 1

0
dx xA(x)

µ+x + [2 − 3(1 − q)A0]
· (29)

At q = 0 (A0 = 2/3, B0 = 2/3), the terms in the square brackets
are equal to zero and we obtain the iteration formula for A(µ),
used in the paper (Silant’ev 2007). It is seen that substitution
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of the approximate value of A(µ) with the underestimation gives
rise to the value A(µ) with the overestimation; i.e., this is the fork
method. The iterations of functions B(µ),C(µ), and D(µ) are cal-
culated directly from system (26). As a new approximation,one
uses the half of sum of two previous approximations.

At q � 0 for the iterations of A(µ), we use formula (29),
where the moments A0 and B0 correspond to the previous itera-
tion, and the initial approximation coincides with the free terms
in system (26). The initial values of the moments A0 and B0 are
equal to 1/3 and for every iteration these moments are calculated
from the current iterations of A(µ) and B(µ). As a new approx-
imation is also used, the half of sum of two previous approxi-
mations. Such procedure gives the quick calculation of A, B,C,
and D up to q � 0.001. For the lowest q, this procedure is rather
ineffective but still more effective than direct iterations of sys-
tem (26). It should be noted that the function A(µ) grows mono-
tonic from the value 0.25 at µ = 0, whereas the other functions
first slightly increase with the increase in µ but later decrease
monotonically (see Fig. 2). The functions C(µ) and D(µ) tend to
zero at µ→ 1. It seems that the fork method for A(µ), which is to
some extent a maximal function compared with the other func-
tions provides the effective convergence for the other B(µ),C(µ),
and D(µ) functions.

3.2. General formulae for observed intensity
and polarization

Now we write the explicit formulae for the Stokes parameters
FI(µ) and FQ(µ) (the parameter FU ≡ 0) which follow from
Eqs. (22) and (25):

FI(µ) =
1

R2

3
2

(1 − q)µ

×
∫ 1

0
dx

[
LI(−x)

2A(µ)A(x) + B(µ)B(x)
µ + x

− LQ(−x)
2A(µ)C(x) − B(µ)D(x)

x + µg

]
,

FQ(µ) = − 1
R2

3
2

(1 − q)µ

×
∫ 1

0
dx

[
L(−x)

2C(µ)A(x) − D(µ)B(x)
µ + xg

− LQ(−x)
2C(µ)C(x) + D(µ)D(x)

xg + µg

]
· (30)

Here we assume that the point-like source of the polarized radi-
ation is axially symmetric:

L−1−1 = L11 = LI(µ0)/2,

L−11 = L∗1−1 = (−LQ(µ0) + iLU(µ0))/2. (31)

If one takes Lγν(n0) depending from the azimuthal angle ϕ0, then
it is necessary also to calculate the functions Cαβ

nm with n � m.
Note that, in the axially symmetric case, the parameter LU does
not give the contribution.
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Fig. 2. The functions A(µ), B(µ),C(µ),D(µ), and 2A(µ) + B(µ) at q =
0, 0.1, 0.5, and b = 0. The dashed curves for C(µ) and D(µ) correspond-
ing to b = 100 practically coincide for all the values of parameter q.
The dashed curves for 2A(µ) + B(µ) correspond to b = 100.

3.3. The case of an isotropic non-polarized source

For this most simple type of source, we have Lαβ = δαβL0/8π.
From formula (30), together with relations (27), the very simple
expressions follow (remember that L0 is the total luminosity of
the source):

FI(µ) =
L0

4πR2
(2A(µ) + B(µ) − 1),

FQ(µ) = − L0

4πR2
(2C(µ) − D(µ)). (32)

The parameters FI and FQ have the dimension of the radiation
flux (erg s−1 cm−2).

Taking into account the radiation emerging to the telescope
directly from the source L0/4πR2 into account, for observing
flux FI(µ) we obtain the expression:

FI(µ) =
L0

4πR2
(2A(µ) + B(µ)). (33)
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Thus, the actually observed polarization degree is

p(µ) =
|2C(µ) − D(µ)|
2A(µ) + B(µ)

· (34)

Note that the value 2C−D ≤ 0 in all the calculations, i.e. the elec-
tric field oscillations tend occur in the plane (nN), containing the
line of sight n and the outward normal N to the atmosphere (this
is the – so called negative polarization). It seems this is the gen-
eral statement, though we did not prove this directly from sys-
tem (26). In the classical Milne’s problem (see Chandrasekhar
1950) that corresponds to diffusion of the thermal radiation from
very deep layers of the atmosphere the polarization is positive,
i.e. the polarization plane lies perpendicular to the plane (nN).
In this classical problem the radiation density gradient only has
a vertical component.

In our case of the spot-like source, there is also the transverse
gradient of the radiation density. Only this gradient is acceptable
for the negative polarization. The qualitative explanation of this
effect is the following. For the non-polarized radiation propa-
gating inside the medium perpendicular to the plane (nN), the
scattering angle always is equal to 90◦; i.e., the radiation scat-
tered in the n-direction is 100% polarized in the plane (nN). In
contrast, for the radiation propagating parallel to (nN)-plane the
scattering angles mostly does not equal 90◦, and the scattered
radiation with the polarization perpendicular to the plane (nN)
is not 100% polarized. For this reason,the summarized radiation
is negatively polarized. Of course, due to the axial symmetry of
the problem, the polarization p(n) is absent for n||N. A more de-
tailed explanation of the generation of the negative polarization
is given in Dolginov et al. (1995).

Let us consider another simple source of point-like polarized
radiation, the electric dipole with the axis along the normal N.
Here one has LI = LQ = (3L0/8π)(1 − µ2

0), LU = 0. The general
formulae (30) and (26) give the following results:

FI(µ) =
3L0

4πR2

[
B(µ) − 1 − µ2

2

]
,

FQ(µ) = − 3L0

4πR2

[
D(µ) − 1 − µ2

2

]
. (35)

Taking the direct radiation from the source into account, we
derive the formulae

FI(µ) =
3L0

4πR2
B(µ),

FQ(µ) = − 3L0

4πR2
[D(µ) − (1 − µ2)]. (36)

3.4. The calculation of albedo

As the conclusion of this section we derive the formulae for
the albedo a of the atmosphere, i.e. the ratio of the outgoing
radiation energy to the total radiation energy penetrating into
the medium from the source. For the case of an isotropic non-
polarized source, we have a = 2A0+B0−1, a = 3(B0−1/3) for the
dipole source. For the conservative atmosphere (A0 = B0 = 2/3),
we obtain the value a = 1, and for the fully absorbing atmo-
sphere (q = 1, A0 = B0 = 1/3), we obtain the value a = 0.
For q = 0.1, 0.2, and 0.5, the isotropic source characterized by
albedos equal to 0.519, 0.382, and 0.172, respectively. It is inter-
esting that the albedo does not depend on the value of magnetic
fluctuations, because the (2A(µ) + B(µ)) – function practically

does not depend on the magnetic fluctuations (see also the next
chapter). In the general case the integration of FI in Eq. (30) and
the use of relations (27) give rise to the formula

a =
∫ 1

0
dx

{
3
2

(1 − q)

[
LI(−x)(2A0A(x) + B0B(x))

−LQ(−x)
1
g

(2A0C(x) − B0D(x))

]

−
[
LI (−x)(2A(x) + B(x) − 1)

− LQ(−x)
1
g

(2C(x) − D(x))

]} (∫ 1

0
dxLI(−x)

)−1

. (37)

4. The results of calculations

First of all we consider the dependence of the functions
A(µ), B(µ),C(µ), and D(µ) on the degree of true absorption q
and on the parameter b (see Eq. (24)), which characterizes the
additional decrease in the Stokes parameters Q and U due to
fluctuations of Faraday rotation angles. In Fig. 2 we present
the values of these functions at the degree of true absorption
q = 0, 0.1, 0.5, and b = 0 and sometimes at b = 100. Below we
give short description of the behavior of these functions, which
partly follows from this figure.

The function A(µ) always grows monotonic with the increase
in µ from the value 0.25 at µ = 0. This function acquires its
maximal value A(1), depending on the parameters q and b. The
value A(1) with the increase in parameters q and b diminishes
from A(1) = 1.19678 at q = 0 and b = 0 up to 0.5 at q → 1.
The dependence on the parameter b is weak. Thus, for q = 0 at
b → ∞, the value A(1) → 1.13795. Function B(µ) depends on
parameter b stronger but mostly near the value µ = 1. Thus, for
q = 0, B(1) = 0.4408 at b = 0, and B(1) = 0.5898 at b → ∞. At
q→ 1 the value B(1)→ 0. For µ = 0.5 the corresponding values
of B(0.5) are equal to 0.7571 and 0.7142; i.e., the deviation is
opposite. It is directly seen from system (26) that, in the limit
b→ ∞, the functions A(µ) and B(µ) obey the separate system of
equations, which describes the multiple scattering of radiation
with the Rayleigh phase function (3/16π)(1+ (nn′)2).

The functions B(µ),C(µ), and D(µ) are non-monotonic – first
they slightly increase from 0.5, 0.25, and 0.5, respectively, at
µ = 0, and then decrease. The functions C(µ) and D(µ) always
tend to 0 at µ → 1. In the limit b → ∞, the functions C(µ) and
D(µ) tend to its free terms – (1−µ2)/4 and (1−µ2)/2, respectively
(see Fig. 2 at b = 100). Because these functions determine the
light polarization, it means that at large Faraday’s rotation angles
the polarization of outgoing radiation is due to the last scattering
before the escape from the atmosphere.

The value 2A(µ)+B(µ)−1 characterizes the integral intensity
of radiation from the surface of the whole “spot” (see Eq. (32)).
This value hardly depends on the parameter b ∝ λ4, so at q = 0
we have 2A(1)+B(1) for b = 0 is equal to 2.8344, and for b = 50
is 2.8652, i.e. the difference is about 1%. At q = 0.5 these val-
ues differ lesser – about 0.1% (see Fig. 2). This is natural if one
remembers that, even in the absence of the magnetic field, the
influence of the light polarization on the angular distribution is
very weak. In the Milne problem for the scattering according to
Rayleigh’s phase function one has the value J(1) = 3.02 at q = 0
for angular distribution J(µ) = I(µ)/I(0). Taking the polarization
into account, we obtain J(1) = 3.06. The high values of b give
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rise to the depolarization of the radiation and, as a result, the ra-
diation intensity is determined by the separate transfer equation
with the Rayleigh phase function.

The polarization spectrum is determined by expression (34).
Because the value 2A(µ) + B(µ) hardly depends on λ (see
previous paragraph), the spectrum is determined by the value
2C(µ) − D(µ). From the second formula (27), one can obtain
the asymptotic expression for this value at high values of the
parameter g = 1 + (1 − q)b. Indeed, at large g the expression
1/(µ + gx) has a peak-like form with the maximum at x = 0. At
x � 0 the functions A(x) and B(x) are described by its free terms
(see Eqs. (26)). On the other hand, the functions C(µ) and D(µ)
for large b also tend to its free terms. As a result, we obtain the
following asymptotic formula:

2C(µ) − D(µ) � 3(1 − q)µ(1 − µ2)
16g

×
[
3
2
− 3µ

g
− ln

g + µ

µ

]
. (38)

Here g = 1 + αλ4, where the coefficient α = 0.64(1 −
q) fBτ

(T )
1 〈B′2〉/3. The logarithmic term in this expression gives

large distortion from the simple dependence p(λ) ∝ 1/(1+αλ4),
especially for relatively low values of b, when the polarization
degree is rather large and can be registered in the observations.
Note that, in the square brackets, we neglect the small term
3µ2/g2. This gives rise to the better approximation of the func-
tion 2C(µ)−D(µ) for the intermediate values of the parameter g.
The value (38) is always negative; i.e., the polarization plane co-
incides with the plane (nN).

The comparison of formula (38) with the numerical calcula-
tions (at b > 5) shows that the values (38) always are lower than
the exact values. The relative difference is practically the same
for all µ. At q = 0 the relative deviations are �10%, �20%, and
�25% for b = 50, 10, and 5, respectively. With the increase in q
the deviations decrease. At q = 0.5 they are two times less than
at q = 0. The simple asymptotic formula (38) can be used to ap-
proximate the observed polarization spectra and to estimate the
parameters b and µ.

The results of calculating of the polarization degree p(µ) and
the polarization spectra p(λ) for the case of the point-like source
of isotropic non-polarized radiation are presented in Figs. 3–7.
Remember that µ = cosϑ, with ϑ the angle between the nor-
mal N and the line of sight n (see Fig. 1).

Figure 3 demonstrates that the polarization p(µ) is equal to
zero at µ = 1 and µ = 0. In the first case, this is the consequence
of the axial symmetry of the problem. In the second case, this is
due to the decrease in the observing projection of the “spot” up to
zero at µ = 0. If one excludes the direct intensity from the source,
then at µ = 0 the polarization degree will be equal to p(0) =
(3g)−1. The case b = 0 in Fig. 3 corresponds to the absence of
magnetic field and coincides with the results of Grinin & Domke
(1971).

The existence of the true absorption (q � 0) in an atmosphere
decreases the degree of polarization. This occurs due to a relative
increase in the part of non-polarized radiation coming directly
from the source compared with the partly polarized reflected
light that diminishes when q grows (remember that albedo a→ 0
at q→ 1).

If one excludes the direct radiation from the source then, in
contrast, the polarization degree of outgoing radiation

p(µ) =
|2C(µ) − D(µ)|

2A(µ) + B(µ) − 1
(39)
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Fig. 3. The angular dependence of the observed polarization de-
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at b = 0 first increases with the growth in q and then begins to
decrease, staying greater than the value at q = 0. The deviations
from the case q = 0 are not large, so for µ = 0.5 and the val-
ues of q equal to 0, 0.1, 0.2, and 0.5 the polarization degrees
are 10.23%, 12.70%, 12.62%, and 10.84%, respectively. For this
reason, it is difficult to explain this effect qualitatively. It seems
that this non-monotonic dependence of the polarization degree is
related to the variation in the relative contributions of the parallel
and transverse gradients of the radiation density.

The intensity and the polarization degree of radiation without
the direct radiation are presented in Fig. 4. We present there the
degree of polarization (39) and the value I = 2A(µ) + B(µ) − 1
for the b-parameters equal to 0, 0.1, 0.3, 0.5, 1, 5, and 10. The
degree of true absorption, as in Fig. 3, acquires the values 0, 0.1,
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Fig. 5. The spectra of the observed polarization degree p(λ, ϑ) for the
angles ϑ = 85, 70, 45, and 30◦ for the conservative atmosphere (q = 0).
The parameter b ≡ αλ4(µm) where α = 0.64τ(T )

1 fB〈(B′(G))2〉/3. The
numbers denote the value of the parameter α. The curves in all figures
correspond to this parameter in the same order.
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Fig. 6. The same as in Fig. 5 for the wavelength interval 0–5[µm].

0.2, and 0.5. The dashed curves corresponds to value b = 10, and
solid curves – to b = 0. It is seen that the value 2A(µ) + B(µ)− 1
is practically independent of b. The reason for this effect was
discussed earlier.

In Figs. 5–7, the spectra of observed polarization p(λ) are
presented. The angle ϑ between the local normal N of the “spot”
and the line of sight n takes the values 30◦, 45◦, 70◦, and 85◦.
The atmosphere is assumed to be conservative (q = 0). In this
case the observed polarization is maximal. These spectra can be
used to estimate the parameters b and µ.

Our consideration is restricted by the Thomson scattering.
The comparison with the known Klein-Nishina formula (see, for
example, Haitler 1954) shows that the Thomson approximation
is good enough up to the radiation energy E ≤ 10 keV (soft
X-rays), when the relative error is ≤4%. The results concern-
ing higher energies have the greater errors, so for E � 50 keV
the error is about 20%. For these energies the results presented
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Fig. 7. The same as in Fig. 5 for the photon energy interval
E = 1–50 keV. The parameter b ≡ α/E4 (keV) where α =

0.504τ(T )
1 fB〈(B′/106G)2〉 ≡ 504β. The numbers denote the values of pa-

rameter β, which is numerically equal to b at E = 50 keV. The curves in
all figures correspond to parameter β in the same order.

in Fig. 7 can be used for the preliminary estimates. In the next
chapters we discuss mainly the polarization of soft X-rays and
the optical radiation where our calculations are fully applicable.

It should be noted that Sobolev’s method for considerat-
ing the radiation scattered in “spot” can also be used for the
Compton scattering because the integration over the surface of a
“spot” gives rise to the usual radiative transfer equation for the
plane-parallel, semi-infinite atmosphere. The main difficulty in
this case is how to solve this equation taking the change of the
wavelengths taking into account.

5. X-ray reflection in accreting black holes

Studying of the spectra of accreting black holes is a very im-
portant task of modern astrophysics. It is especially important
for understanding accretion flow and geometry, hence the ef-
fects of strong gravity and black hole spin (Ross & Fabian 2007).
Reflection and scattering of X-ray photons on optically thick me-
dia are believed to produce features such as the Fe fluorescence
emission lines and the broad Compton hump in the spectra of
active galactic nuclei (AGN) (e.g. Pounds et al. 1990; George
& Fabian 1991). For example, the detection of a broadened and
skewed Fe K-alpha (E = 6.4 keV) line in AGN spectra is inter-
preted as the result of the reflection.

A significant fraction of type I AGN show X-ray excess
emission above a power-law continuum identified as the steep-
ening of the X-ray continuum below ∼2 keV (Dewangan et al.
2007). Nevertheless, the origin of the soft X-ray emission has
remained unclear over the past two decades. One of the popular
models, which can explain the observed X-ray excess emission,
is the model of ionized reflection from the material surrounding
a supermassive black hole.

Unfortunately, the origin of the obscuring material in AGN
remains uncertain. Besides accretion flows surrounding the su-
permassive black hole as the central energetic engine, the pho-
tometric and spectroscopical observations show the existence
of a dusty geometrically thick obscuring region (the torus), in
order to account for many observed differences among various
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classes of AGNs (Antonucci 1993; Chang et al. 2007). This torus
may be clumpy, and this situation means that obscuring material
presents a turbulent medium.

The polarization is the effective probe to solve the problem
of the origin of obscuring material in AGNs. The results of our
calculations, presented at Figs. 3, 4, and 7, allow us to estimate
the net polarization of reflected X-ray radiation. The degree of
polarization is dependent on the angle ϑ between the local nor-
mal N of obscuring material and the line of sight. Figure 7 shows
that reflected X-ray radiation is polarized and can reach its max-
imal value ∼4% for hard (E ≥ 20 keV; if the direct radiation
from the source is taken into account) X-ray photons at the an-
gle ϑ ∼ 70◦, and it decreases with the decrease in X-ray en-
ergy due to the Faraday depolarization effect. If we consider that
the direct radiation from the source is invisible, then the polar-
ization degree is much higher (see Fig. 4) and can acquire the
value ∼33%. Remember that the turbulent Faraday depolariza-
tion effect decreases the polarization degree (with increase of the
parameter b).

Figure 7 also allows us to estimate the polarization of
Fe K-alpha line. At the angle ϑ ∼ 70◦ and b = 0.005, the po-
larization magnitude is ∼1%. For the soft X-ray excess emis-
sion, the net polarization is considerably lower: p < 1%. Though
the reflection polarization magnitude is not so high (at the
level≥(0.1−1)%), especially in the soft X-ray region, it will
be perfectly measured by the future X-ray Evolving Universe
Spectroscopy Mission (XEUS), of course, on condition that the
polarization mode in XEUS mission is operated.

Accretion disks in central regions of AGN are subject
to strong external illumination originating from some coronal
sources. As a result, the specific spectral features appear in the
X-ray band. For example, the K-shell lines of iron are found to
be prominent around 6–7 keV. It is very important that the shape
of the intrinsic spectrum be modified by the strong gravitational
field of the central engine (Fabian et al. 2000).

Polarimetric studies could provide additional information
about the inner region of an accreting disk that is especially
subject to strong gravity regime (Karas et al. 2004; Dovciak
et al. 2004; Horak & Karas 2006). The gravitational field of a
black hole influences the Stokes parameters of reflected radia-
tion propagating to a distant observer. The detailed calculations
of this effect have been made by Connors et al. (1980), Karas
et al. (2004), and Dovciak et al. (2004).

According to these papers, the results of calculating the out-
going Stokes parameters I,Q, and U in the local reference frame
in the accretion disc are to be integrated over the disk’s surface
and also integrated along the geodesic paths of photons going
toward an observer. The second integration gives rise to the de-
formation of the spectrum of radiation (reddening) and to the
change in the Stokes parameters due to rotation of the polariza-
tion plane and the change in the polar angle of accepted radiation
compared with our local ϑ-dependence. What is important is that
the degree of polarization does not change its value. The results
of integration depend on the chosen model of the accretion disc.

Considering small radiating “spot” on the disk’s surface (see,
for example, Czerny et al. 2004), one can separate the integration
over surface of the “spot” and the integration over geodesic line
of the photons. In this case we assume that the “spot” is small
enough to neglect the gravitational differences inside the spot.

The question arises as to how it is possible to distinguish be-
tween two effects of strong gravity and stochastic magnetic field
near a black hole surrounding an accretion disk. The reflection
component has been computed by Karas et al. (2004), with the
help of the Monte-Carlo code. Their results have shown that the

polarization of reflected radiation can be as high as thirty percent
for small inclinations and small heights of the primary source.

In this case, polarization of the reflected radiation only ap-
pears to depend weakly on energy, except in the region close to
the iron edge at ∼7 keV. Another conclusion made by Karas et al.
(2004) is that overall polarization increases little with energy,
which is due to diminishing radiation from the primary source
and to the increasing intensity of reflected radiation with energy,
but the intrinsic polarization of the reflected light stays roughly
constant.

And in contrast, in our case of turbulent magnetized atmo-
sphere of an accretion disk, the polarization of reflected light it-
self does not stay constant and essentially decreases with energy
decrease via the Faraday depolarization effect. Another essential
feature of our effect is the abrupt decrease in the polarization
degree at small inclinations from the value of 30% up to the
level ≤3%.

The strong gravity effect is especially important for obtain-
ing the polarization images and also for investigating polariza-
tion variability, because time-lags and polarization images de-
pend on the focusing effects and the light travel time in a strong
gravity field (Horak & Karas 2006).

There is strong evidence that the origin of soft excess be-
low 2 keV is either reflection or absorption from partially ion-
ized material close to the super massive black hole (Grummy
et al. 2006; Done et al. 2007; Fabian 2006). There are two po-
tential geometries for this material: one, seen via reflection, is
the accretion disk; the other, seen in absorption, is a wind above
the disk (Done & Nayakshin 2007). Both models produce the
7 keV feature, but produce different polarization states (Gnedin
& Silant’ev 1997; Gnedin et al. 2006).

Polarization is the only test that can really distinguish be-
tween these two models. For example, in the case where spher-
ically symmetric wind polarization is zero, unlike for the accre-
tion disk for which the reflected radiation is strongly polarized.
The existence of a magnetic field directed perpendicular to the
disk surface changes the situation even in the case of a spheri-
cally symmetric wind (Gnedin & Silant’ev 1997). The radiation
scattered in the wind also becomes polarized due to the absence
of any compensation of polarization directions along and across
the magnetic field via the Faraday effect. But wavelength de-
pendence and the orientation of position angles are essentially
different (see details in the book by Dolginov et al. 1995; and re-
view by Gnedin & Silant’ev 1997). Thus the polarization states
in the two different models of soft X-ray excess (reflection from
the disk or the absorption in the wind from the accretion disk)
are very different.

6. The turbulent accretion disk in NGC 4258:
evidence from polarimetric observatons

NGC 4258 is a very good laboratory to attempt to measure the
magnetic field directly in an accretion disk around a supermas-
sive black hole. The magnetic field strength could be directly
measured very close to the central black hole (Modjaz et al.
2005). NGC 4258 (M106) is a low-luminosity, weakly active
Seyfert II galaxy (Seyfert 1.9). Nuclear continuum and narrow
emission lines have been detected in a polarized optical light
(Barth et al. 1999). The discovery of a rotating molecular disk
emitting H2O maser lines provides the unique possibility of
tracing the nuclear rotation curve in the inner parsec. NGC is
also a natural target for spectropolarimetric investigations, be-
cause the accretion disk is nearly edge-on (the inclination angle
i = 82◦−84.5◦).
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Modjaz et al. (2005) present the results of polarimetric ob-
servations at 22 GHz of the water vapor masers in NGC 4258
obtained with the VLA and the GBT. They did not detect any cir-
cular polarization in the spectrum indicative of Zeeman-induced
splitting of maser H2O lines and obtained only upper limits for
the toroidal component of the magnetic field in the accretion disk
of NGC 4258 at a radius of 0.2 pc at the level 90 mG. They also
obtained a 1-sigma upper limit of 30 mG on the radial compo-
nent of the magnetic field at the radius of 0.14 pc.

The detection of polarized continuum and line emission from
the nucleus of NGC 4258 by Wilkes et al. (1995) and Barth
et al. (1999) provides new important information on accretion
flows around a supermassive black hole. Unlike most Seyfert
nuclei, NGC 4258 has strongly polarized narrow emission lines.
The narrow-line polarization ranges from 1.0% for [SiII] (λ =
6716 Å) to 13.9% for the [OII] (λ = 7319 Å, 7331 Å blend),
and the position angle of polarization is oriented nearly paral-
lel to the projected plane of the accretion disk. It is an interest-
ing fact that the observed polarization of continuum emission
(λ = 4000–4800 Å, 5100–6100 Å and 7500–8500 Å) is too low,
at pl = 0.3%, for the edge-on accretion disk (Barth et al. 1999).
The expected degree of polarization for inclination angle i ∼ 84◦
is equal to 7.5%. Such low polarization of the continuum can be
explained in the framework of the model of the turbulent mag-
netized accretion disk that produces the depolarization via the
Faraday effect (Silant’ev 2007). Namely, calculations made by
Silant’ev (2007) show that continuum polarization at the level
∼0.3% can be obtained for the turbulent disk with isotropic mag-
netic fluctuations for turbulent parameter b > 10. In this case, the
stochastic Faraday rotation with isotropic fluctuations efficiently
decreases the amplitude of the polarization of each individual
beam as it travels through the turbulent atmosphere.

A higher degree of polarization of line emission can be ex-
plained by the effect of the reflection of emission of line sources
located above the accretion disk. Figures 3–7 show that it is easy
to obtain reflection polarization at the level∼(1−3)%. The higher
polarization, ∼10%, can be obtained only in the case where the
direct line emission is blocked by a molecular torus surrounding
the central energy engine, together with the source of a highly
polarized emission line.

We suggest consider the situation in NGC 4258 in the sepa-
rate paper in more detail.

7. Conclusion

We obtain the solution to the problem of the reflection of the ra-
diation from point-like sources of anisotropic and polarized light
that is located over the turbulent magnetized plasma atmosphere.
The calculation of the integral Stokes parameters of outgoing ra-
diation is presented for the case when the regular part of mag-
netic field is negligible compared with the action of magnetic
fluctuations (see the inequality (23)). These integral parameters
are observed by the telescope from the spot-like part of the atmo-
sphere below the point-like source of the radiation. We studied
the dependence of the polarization degree on the values magnetic
fluctuations and the true absorption in the atmosphere.

The various spectra of polarization are presented for a num-
ber of angles between the line of sight and the normal to the
“spot” for a conservative atmosphere when the polarization is
maximal. Our general solution is also valid for any types of
falling bounded radiation, in particular, for the bounded beam
of plane-parallel radiation and for the case of bounded sources
inside the atmosphere.

The results of calculations can be used when analyz-
ing of the polarization spectra from the binary systems, flare
stars, AGN,etc. We discuss in detail the X-ray observations of
some AGN and possible values of the polarization degrees for
them. The observed polarization of radiation from the object
NGC 4258 is explained using our results.
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