
4124 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

Input and/or Output Pruning of Composite Length FFTs
Using a DIF-DIT Transform Decomposition

Modesto Medina-Melendrez, Miguel Arias-Estrada, and
Albertina Castro

Abstract—Pruned fast Fourier transforms (FFTs) can be efficient
alternatives to compute DFTs when the input vector is zero padded
and/or several output elements are not required. In this correspondence, a
new method to prune composite length FFTs is proposed. The proposed
pruning method uses decimation in frequency (DIF) and decimation in
time (DIT) to decompose a DFT into stages of smaller DFTs. The pruning
process is carried out on the input stage and the output stage of the
decomposed transform. The proposed pruning method is flexible since it
can perform input and/or output pruning over any composite length FFT,
action that no other pruning method reported in the literature can carry
out. Additionally, no restriction exists with the number of consecutive
inputs and consecutive outputs that can be used. Finally, it is shown that
the proposed pruning method generates efficient pruned power-of-three
and power-of-two length FFTs.

Index Terms—Fast Fourier transform, FFT pruning, transform decom-
position.

I. INTRODUCTION

The discrete Fourier transform (DFT) is one of the most important
tools used in digital signal processing. A DFT can be implemented
with efficient algorithms generally classified as fast Fourier transforms
(FFTs). Typically, given an input vector of length � , the computation
of a FFT of length � generates an output vector also of length � .
However, there are applications in which an input vector with a length
smaller than � has to be zero padded until the length � is reached
and/or only a subset of the � output elements is required. In the liter-
ature, several methods have been developed to eliminate or reduce the
computation with zero values of the required arithmetic operations and
the computation of the non required outputs in FFT algorithms. These
methods are collectively known as “FFT pruning.”

Sorensen et al. [1] proposed a transform decomposition method to
prune the input and another one to prune the output of any composite
length FFT. They demonstrated that their pruned FFTs require less
arithmetic operations than the pruned FFTs achieved by Markel in [2]
and Skinner in [3] to prune the input or the output of power-of-two
length FFTs. Since then, additional methods have been proposed to
prune power-of-two length FFTs. Bouguezel et al. [4] used a decom-
position process to prune the output of a FFT, the pruned FFT consists
in the computation of a few stages of butterflies. In [5], Fan et al. pre-
sented a grouped scheme to prune the output of a FFT.

Few methods in the literature can carry out input and output pruning
at the same time. Sorensen et al. [1] sketched how to prune the input

Manuscript received October 02, 2008; accepted May 04, 2009. First pub-
lished June 10, 2009; current version published September 16, 2009. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Markus Peuschel. This work was supported by the Na-
tional Council of Science and Technology of México (CONACYT) by the Grant
161826.

M. Medina-Melendrez is with the Computer Science Coordination, National
Institute of Astrophysics, Optics and Electronics, , Tonantzintla, Puebla, 72840,
México, and also with the Culiacán Technological Institute, Culiacán, Sinaloa,
México (e-mail: modesto@inaoep.mx).

M. Arias-Estrada is with the Computer Science Coordination, National Insti-
tute of Astrophysics, Optics and Electronics, 1 Luis Enrique Erro, Tonantzintla,
Puebla 72840, México (e-mail: ariasmo@inaoep.mx).

A. Castro is with the Optics Department, National Institute of Astro-
physics, Optics and Electronics, Tonantzintla, Puebla 72840, México (e-mail:
betina@inaoep.mx).

Digital Object Identifier 10.1109/TSP.2009.2024855

and output of FFTs, but they concluded that their pruning method was
less efficient than other pruning methods when both, the number of
input and output elements are limited. They recommended the use of
the method proposed by Sreenivas et al. in [6] to prune the input and
output of power-of-two length FFTs. A more efficient pruning method
for power-of-two length FFTs was proposed by Roche in [7].

In this correspondence, a new transform decomposition to perform
input and/or output pruning of composite length FFTs is presented. The
proposed method is a combination of the transform decompositions in-
troduced by Sorensen et al. in [1], but with the extra capability to per-
form input and output pruning at the same time. We focus on cases
where the input elements and the output elements are consecutive and
start in the element zero. Any number of input elements and/or output
elements can be used. An input stage, an output stage and an interme-
diate stage result from the decomposition transform and the pruning
process. Pseudo codes to implement the input and the output stages are
included. Finally, the efficiency of the resulting pruned FFTs is shown
for power-of three length FFTs and for power-of-two length FFTs.

II. PRUNING A DIF AND DIT TRANSFORM DECOMPOSITION

The definition of the DFT of length� ������ can be expressed as

���� �

���

���

�������
� � � �� �� 	 	 	 � � � � (1)

where ���
� � ��������� represents the kernel of the transform.

Lets consider that the number of consecutive input elements that can
be different of zero is 	� and that there is an integer decomposition
factor
��, such that 	� �� � ��
�� where� is an integer. Thus,
it can be carried out the decimation defined by

� � ��

����� �� � �� �� 	 	 	 �
�� � �

�� � �� �� 	 	 	 �� � �

� �
�
�
��
� � �� �� 	 	 	 �� � �

� � �� �� 	 	 	 �
�� � � (2)

that introduced in (1) gives

����

�����

�

	��

 ��

�
 �
�

� ��

 ��

��
�
�
���

 �
� �
 �

	 �

(3)

Since 	� � � ,
� is always zero and the DFTs of length
��

��������� are not required; furthermore, � is always equal to
�.
Thus, (3) can be rewritten as

����

����� �

	��

���

���
� ���� ���

	 � (4)

The substitution of � by ��

���� generates a DIF structure. The
elimination of the ������� produces a reduction in the number of
arithmetic operations required to compute the ���� .

If the number of required consecutive output elements is	�, approx-
imately or exactly 	��
�� output elements are computed from each
DFT of length � in (4). Lets consider that there is another integer de-
composition factor
�� such that 	��
��

�� � � ��
�� where �
is an integer. Thus, it can be carried out the decimation defined by

� ���

����� �� � �� �� 	 	 	 �
�� � �

�� � �� �� 	 	 	 � � � �

�� � ��
 ���� �� � �� �� 	 	 	 � � � �

�� � �� �� 	 	 	 �
�� � � (5)

1053-587X/$26.00 © 2009 IEEE

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009 4125

that introduced in (4) gives

� ��� ������� � �����

�

� ��

� ��

�� �
�

���

� ��

�
�� �� � ��

	 ������
����

��� �

� �� �

� 	 (6)

Since

����
�� � , in (6) just a few outputs of each DFT of length

�
� �����
�� are required. Thus, a FFT is an inefficient alterna-
tive to compute the ����
�� since it computes all the possible out-
puts and not only the required. In (6), multiplications with twiddle fac-
tors are needed before computing the����
��. These multiplications
can be avoided if the twiddle factors are merged with the kernel of the
����
��. Thus, (6) can be rewritten as

���� �������

�

� ��

� ��

�� �

� ����
 ��
 ���

�

� ��

� ��

�� �

�

���

� ��

����
 ��
 ����
� ��� ��

� (7)

where ������� � ��� 	
��

 � � � �� and ����
 ��
 ��� is

����
 ��
 ��� ��
�� �� � ��

	 ���� ��
����	 (8)

Summations of complex multiplications are required in (7) to com-
pute the final outputs, instead of the twiddle factors and the ����
��
that are required in (6). This substitution can produce a reduction in the
number of arithmetic operations required to compute the ���	 .

The substitution of� by����
��� generates a DIT structure. Since
a DIF structure is obtained with the former decimation and a DIT struc-
ture is obtained with the latter decimation, the FFT pruned with the pro-
posed transform decomposition (TD) is referred as ����	
��	����.

In Fig. 1, a diagram of the ����	
��	���� is shown. Three stages
are identified: an input stage (implementation of (8)), an intermediate
stage (the computation of the ����
� ���� �) and an output stage
(implementation of (7)).

In the input stage of Fig. 1, it is considered that
� � � ; but if

� � � , the inputs of the ���� � that correspond to �� ��
��� �

� � � are directly set to zero. In the output stage, the computation of
all the possible final outputs is sketched; but in practice, only the

consecutive required final outputs will be computed. The array inside
the argument of complex exponentials and inside the mapping of the
final outputs means that many final outputs can depend on the same set
of outputs of the intermediate stage. Then, depending on the required
final output is the element of the array that will be used.

III. IMPLEMENTATION OF THE INPUT AND THE OUTPUT STAGES

A. Implementation of the Input Stage

Given an element of ����, all the elements of ����
 ��
 ��� that de-
pends on it are generated. The index � should be decomposed in the
indexes �� � �

�����
�� and �� � ������
� � � � �
��� of
the required array ����
 ��
 ���, such that � � �� � �
���. Since
�� can take ��� different values, each element of ���� is used in
��� ���� �. The ���� � with the same value of �� are referred as

“set of �
� ���� �.” In this work, the values of ����
	 are pre-com-

puted and stored into the array � of length � , which variation index
is equal to �������	 .

The element ���� does not need to be multiplied and it is just mapped
to each set of�
� ���� � in the coordinate ��� � �
 �� � ��. The in-
puts of each set of�
����� � that corresponds to � � ����
��� �

� � � are generated with a direct method. In the proposed direct
method, ���� � �
���� is mapped to the coordinate ���
 ��� of the
first set of �
� ���� � ��� � ��; for the other sets of �
� ���� �
��� �� ��, ���� � �
���� is first multiplied per ����

	 and then
mapped. The inputs of the ���� � that correspond to a value in the
interval
� � ����
��� � ��� are directly set to zero. In Fig. 2, a
pseudo code of a function to implement the input stage is shown. Since
multiplications per one are not performed, the previously described im-
plementation of the input stage requires �
� � ������ � �� complex
multiplications.

B. Implementation of the Output Stage

Given a required final output����, its index � is decomposed in the
indexes �� � �

�������� and �� � �������� � � � �����. ��
indicates which set of�
� ���� � has to be used to compute the final
output, and ������� indicates which output of each ���� needs to
be used. �� is the variation index of the summation of complex multi-
plications required to compute the final outputs. The values of �����

�

can be obtained from the pre-computed array � using �����������	
as variation index.

According to (7), the computation of the first ��� final outputs does
not require complex multiplications since �� � �. Thus, if

 � ���,
only a summation of �
� � � complex values is required in the com-
putation of each final output. If

 � ���, the first ��� required final
outputs are computed as summations and the remaining final outputs
have to be computed as summations of complex multiplications. The
element in every summation that corresponds to �� � � does not need
to be multiplied. Therefore, a direct implementation (direct method)
of the output stage requires

��
� � �� complex additions and zero
complex multiplications if

 � ���; otherwise, it requires the same
number of complex additions but �

�������
���� complex mul-
tiplications.

Sorensen et al. in [1] proposed a method called filtering 2BF to com-
pute a subset of final outputs from their transform decomposition. The
structure of their transform decomposition is equal to the structure of
the transform decomposition in Fig. 1 for each set of �
� ���� �
(given a value of ��). The computation of each final output using the
filtering 2BF method requires ��
� real arithmetic operations. Using
the direct method, this computation requires ���
���� real arithmetic
operations if a complex multiplication is carried out with two real ad-
ditions and four real multiplications. Then, only when�
� � � the fil-
tering 2BF method requires fewer real arithmetic operations than using
the direct method. Therefore, the direct method is used to implement
the output stage if � � �
� � �, otherwise, the filtering 2BF method
is used. In Fig. 2, a pseudo code of a function to implement the output
stage is shown.

IV. VALUES SELECTION FOR THE DECOMPOSITION PARAMETERS

The saving in number of required arithmetic operations from the
input stage is due to the elimination of the �������. Then, this saving
increase for large values of���, but it is required that��� � ��
�. As
discussed in Section II, a saving can be obtained from the output stage
only if

����

�� ���
�. This means that �
�
�� �����

 �

��

. Thus, as a rough selection the pair of multiplicative factors of
� nearest to ���
�
 ��

� is proposed to be used for ����
�
��. A

4126 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

Fig. 1. General diagram of the ��� .

deeper analysis or an exhaustive search is needed to obtain the exact
pair of values for ����� ���� that achieve the minimum number of re-
quired arithmetic operations.

Since in current processors a multiplication and an addition require
almost the same execution time, in this work, the number of required
arithmetic operations refers to the total number of real arithmetic opera-
tions. The total number of required arithmetic operations to implement
the ������������� is the sum of the operations required to imple-
ment the input stage, the intermediate stage and the output stage:

������� 	������	
�
�������������
�����
�	
�

	����
����
������ ��
������� �
 � (9)

where �, �, � , and � depends on certain conditions. These coeffi-
cients are shown in Table I.

The pair of values for ��� and ��� that results in the lowest
number of required arithmetic operations, computed using (9), should

be adopted. This pair can be found by an exhaustive search when the
number of arithmetic operations required by the ���� � is known.
Nevertheless, when the number of arithmetic operations required by
the ���� � is unknown, the use of the rough selection is suggested.

In the literature, algorithms that implement the DFTs of length �
with �
��� complexities have been reported. One of the most ef-
ficient FFT algorithms to compute power-of-two length DFTs is the
split-radix FFT [8], this requires ��
����� �� ��
� arithmetic op-
erations. In [9], a radix-3 FFT is proposed to compute power-of-three
length DFTs, this requires �����
����� �� ��
 � arithmetic oper-
ations.

Fig. 3 shows various curves representing the number of arithmetic
operations required by the ������������� when ��� 	 ��� 	 �
(without pruning) and when ��� and ��� are those obtained by the
rough selection and the exhaustive search. For the examples in Fig. 3(a),
� is a power-of-two and the split-radix in [8] is used to compute the
���� �. For the examples in Fig. 3(b), � is a power-of-three and the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009 4127

Fig. 2. Pseudo codes to implement the input and the output stages.

TABLE I
COEFFICIENTS OF EQUATION (9)

radix-3 in [9] is used. In most of the cases, the numbers of required
arithmetic operations achieved by the use of the decomposition param-
eters chosen by the rough selection and by the exhaustive search are the
same. Although, the decomposition parameters chosen by the rough se-
lection not always result with the minimum number of required arith-
metic operations, their use can achieve considerable savings in com-
parison with the implementation of the FFT without pruning in most
of the cases.

V. COMPARISON WITH OTHER PRUNED FFTs

There are many methods to prune FFTs, but most of them are
based on power-of-two length FFTs. In [1], the input pruning case
and the output pruning case were compared, but since then, some
new output pruning methods have been reported in [4] and [5]. Thus,
comparisons among the input and output pruning methods and among
the more recent output pruning methods are performed. The pruned
power-of-two length FFTs that are compared are: Bouguezel-DIT
[4], Grouped Scheme [5], Input&Output R2 [6], Input&Output SR

[7] and the proposed �������������. The ���� � required by
the ������������� are implemented with split-radix FFTs. Since
the number of arithmetic operations required to compute the ���� �

is known, the values for ��� and ��� are chosen by an exhaustive
search.

Fig. 4 shows several curves of the number of the arithmetic op-
erations required by the different pruned FFTs. In Fig. 4(a), it is
shown that the ������������� with output pruning requires fewer
arithmetic operations than the pruned FFTs reported in [4] and [5].
In Fig. 4(b), it is shown that the ������������� requires fewer
arithmetic operations than the Input&Output R2 method in [6] that
was suggested by Sorensen et al. in [1] to be used when an input
and output pruning would be required. The savings obtained with
the Input&Output SR method are similar to the obtained with the
������������� since both are based in split-radix FFTs. If a more
efficient algorithm than the split-radix in [8] were used to implement
the ���� �, the ������������� could require fewer arithmetic
operations than the Input&Output SR.

Fig. 5 shows that the input and output pruning reduces the number of
required arithmetic operations even more than the independent use of
the input pruning and the output pruning when the �������������
is used. Additionally, the Goertzel algorithm in [10] is compared. In
most of the cases, the ������������� requires fewer arithmetic op-
erations than the Goertzel algorithm. Nevertheless, when�� and�� are
very small, the Goertzel algorithm requires fewer arithmetic operations
than the �������������. One advantage of the �������������,
over the Goertzel algorithm, is that it achieves savings in all the range

4128 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

Fig. 3. Number of operations required by the ��� when
and are: � � � � �, chosen by the rough selection
� � and by the exhaustive search � �; (a) � ���	; (b)

�
�
�.

Fig. 4. Comparison among various pruned FFTs for � ��	
. (a) Output
pruning � � ��	
�; (b) input and output pruning � � �.

of values of�� and��. In some cases the savings are significant; for in-
stance, if� � ���� and�� � �� � ���, the savings in the number of

Fig. 5. Comparison of the ��� in different pruning cases and
the Goertzel algorithm; �
��
.

arithmetic operations required by the������������� in comparison
with a complete split-radix FFT are: 29.50% with the input pruning,
29.25% with the output pruning and 57.94% with the input and output
pruning; while with the Goertzel algorithm the saving is only 5.44%.

VI. CONCLUSION

We have proposed a flexible pruning method that can be used on any
composite length FFT and it is capable of carrying out input pruning,
output pruning and input and output pruning. No previously reported
pruning method can perform these three pruning cases over general
composite length FFTs. Any number of consecutive input and/or output
elements can be used. It was shown that the proposed pruning method
can generate efficient pruned power-of-two and power-of-three length
FFTs.

REFERENCES

[1] H. V. Sorensen and C. S. Burrus, “Efficient computation of the DFT
with only a subset of input or output points,” IEEE Trans. Signal
Process., vol. 41, no. 3, pp. 1184–1199, Mar. 1993.

[2] J. D. Markel, “FFT Pruning,” IEEE Trans. Audio Electroacoust., vol.
AU-19, no. 4, pp. 305–311, Dec. 1971.

[3] D. P. Skinner, “Pruning the decimation in-time FFT algorithm,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-24, no. 2, pp.
193–194, Apr. 1976.

[4] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Efficient pruning
algorithms for the DFT computation for a subset of output sam-
ples,” in Proc. IEEE Int. Symp. Circuits Syst., May 2003, vol. 4, pp.
IV-97–IV-100.

[5] C.-P. Fan and G.-A. Su, “Pruning fast Fourier transform algorithm
design using group-based method,” Signal Process., vol. 87, pp.
2781–2798, Nov. 2007.

[6] T. V. Sreenivas and P. V. S. Rao, “FFT algorithm for both input and
output pruning,” IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-27, no. 3, pp. 291–292, Jun. 1979.

[7] C. Roche, “A split-radix partial input/output fast fourier transform al-
gorithm,” IEEE Trans. Signal Process., vol. 40, no. 5, pp. 1273–1276,
May 1992.

[8] H. V. Sorensen, M. T. Heideman, and C. S. Burrus, “On computing
the split-radix FFT,” IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-34, no. 1, pp. 152–156, Feb. 1986.

[9] Y. Susuki, T. Sone, and K. Kido, “A new FFT algorithm of radix 3, 6
and 12,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34,
no. 2, pp. 380–383, Apr. 1986.

[10] G. Goertzel, “An algorithm for the evaluation of finite trigonometric
series,” Amer. Math. Monthly, vol. 65, no. 1, pp. 34–35, Jan. 1958.

