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This paper presents the method to get the equations that transform a color space of n independent primary colors to the
HSIn color system (H: hue, S: saturation, I: intensity); n indicates the number of bands and the shape of the HSIn space.
For n ¼ 3 the structure is a double triangular pyramid, for n ¼ 4 it is the structure of the double pyramid tetrangular,
and so on. # 2009 The Optical Society of Japan
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1. Introduction

The n-bands color space and HSIn space are mathematical
entities that we have extended from RGB and HSI color
systems. The n-bands color space is a generalization of the
RGB additive system, which indicates that a color point
belonging to the n-bands color space is the result of the
mixture of n additive primary colors. This affirmation is
supported by the following definition of additive mixture:

Definition 1.1. Additive mixture means a color stimulus
for which the radiant power in any wavelength interval,
small or large, in any part of the spectrum is equal to the
sum of the powers in the same interval of the constituents of
the mixture.1)

This definition allows us to see that a color can be matched
by different number of primary colors, not necessarily three,
which is the case found in most books or papers related to
the study of color.

On the other hand, the HSIn space has the same
characteristics of the HSI: hue, saturation and intensity.
These features that are in the most natural terms to an artist.
Also, the HSI system is based on the RGB and the HSIn
color model is in terms of the n-bands space. The n is related
to the shape of the space; HSIn takes the form of an n-
angular double pyramid.

The HSI color space is widely used to generate high
quality computer graphics in digital image processing. With
the development of technology in the capture and display of
multispectral images (images based on more than three
primary colors), we require a space that generalizes to the
HSI space and use it, for example in segmentation or
restoration of such images.2) At the Tokyo Institute of
Technology along with government organizations of Japan,
devices have been developed for the capture and visual-
ization of multispectral images in the visible with 8, 16, and
32 bands. These have been designed, built and patented by
the Natural Vision Research Laboratory, with the main
objective of reproducing the real color of the objects.3)

2. n-Bands Color Space

The n-bands color model is a generalization of the RGB

additive model, so we can say that an n-bands color space is
determined by a basis vector, whose linear combinations
generate all elements of the space. As the number of vectors
increases, the space will include a larger amount of real
colors. Examples: Space of one dimension, the grayscale;
two-dimensional spaces, the RG, GB, and BR planes that are
respectively variations of the yellow, cyan and magenta;
three-dimensional spaces, RGB, HSV (H: hue, S: saturation,
V: value), and HSI.

The n-bands color space is an n-dimensional subspace
contained in Euclidean space of dimension n. The subspace
is generated by a basis of n unit vectors. The colors appear
with their primary components, namely with the n in-
dependent primary colors, which we will denote as C1,
C2, . . . , Cn. The values given in real numbers of C1, C2, . . . ,
Cn range from zero to one, and they are respectively over the
n axes. In other words, in the Ci-axis (i ¼ 1; . . . ; n) is the
scale of color Ci; black is located at the origin ð0; . . . ; 0Þ, and
white is in ð1; . . . ; 1Þ; the levels of gray extend from black to
white, over a hyper-line (line defined in the Euclidean n-
dimensional space). Any gray intensity is obtained by adding
equal amounts of each primary color, so the colors are points
of the space. For n ¼ 3, the color space is a unit color cube
as shown in Fig. 1, this space is well-known as RGB space.4)

3. HSIn Color Space

The HSIn color model is the generalization of the HSI
space, in which the colors can be distinguished from each
other by their hue (H), intensity (I), and saturation (S).5)

The hue is associated with the dominant wavelength in
a mixture of light waves. Thus, the hue represents the
dominant color as we perceive it, when we say that an object
is red, green or brown, we are indicating its hue [Fig. 2(a)].

The intensity represents the perceived illumination. The
intensity conveys the extent to which light is reflected on an
object. We can see this attribute clearly in a white and black
television [Fig. 2(b)].

The saturation refers to the amount of white light mixed
with the dominant color. The saturation is an attribute that
makes us distinguish between a deep and a pale color. Each
of the primary colors has its greatest value saturation before
being mixed with others. This way, the sky blue is clear (less
saturated), while the navy blue is more opaque (more
saturated). Another example is the pink (combination of red�E-mail address: malonso@inaoep.mx
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and white), it is less saturated, while the color red is totally
saturated [see Fig. 2(c)].

Hue and saturation are defined by the regular polygon of n
sides (Fig. 3). The hue H of color point P is the angle of the
vector regarding the axis C1. The saturation S of the point P
is proportional to the distance measured from P up to the
center of the polygon W. As the distance is greater, the
saturation will be greater.

The value of the intensity of point P is proportional to the
distance (on the perpendicular straight line to the plane of
the polygon, which passes through its center) measured from
the black point to starting point of the vector. Thus for any
color point in the polygonal pyramid, if its intensity tends to
the white point, then the color will be clearer. But if it tends
to black point, the color will be darker. Joining hue,
saturation and intensity we have the n-sided double structure
of polygonal pyramid (Fig. 4).

4. Conversion from the n-Bands Color Space to HSIn

Color Space

The H and the S are given in terms of equations called
chromatic coordinates, which are defined as

ci ¼
CiXn

j¼1

Cj

; i ¼ 1; . . . ; n: ð1Þ

These are the normalized values of each Ci. Adding the
ci’s, we find the equation of a plane in the Euclidean n-
dimensional space,6) also called hyperplane for n > 3, with
coordinate axes c1; c2; . . . ; cn and passing through the points
e1 ¼ ð1; 0; . . . ; 0Þ, e2 ¼ ð0; 1; . . . ; 0Þ; . . . ; en ¼ ð0; 0; . . . ; 1Þ:Xn

i¼1

ci ¼ 1: ð2Þ

Fig. 1. The RGB unit color cube. The horizontal G-axis as green
values increasing to the right, R-axis as red increasing to the lower
left, and the vertical B-axis as blue increasing towards the top. The
color black is in the origin, at the vertex ð0; 0; 0Þ, the color white at
the vertex ð1; 1; 1Þ. The grayscale is in the line that joins the point
black with the point white.

(a)

(b)

(c)

Fig. 2. (Color online) Hue, saturation and intensity. (a) Different
hues (dominant color); (b) Different intensities represented by this
grayscale; (c) A variety of saturation of red color.

Fig. 3. Hue and saturation are defined by the color regular
polygon of n sides. The Hue is a angular measure and the saturation
is a longitudinal measure.

Fig. 4. Color space HSIn. Hue (H), saturation (S), and intensity (I)
form the n-sided double structure of polygonal pyramid.
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In the case of two-dimensional, eq. (2) is the representa-
tion of a line through e1 and e2, with midpoint at coordinates
ð1=2; 1=2Þ. In the case of three dimensions, it represents a
plane bounded by e1; e2; e3 giving the form of an equilateral
triangle centered on ð1=3; 1=3; 1=3Þ, Fig. 5. Thus we assume
that to n dimensions, the hyper-plane defined by e1; e2 . . . ; en
is a regular polygon of n sides with center in ð1=n; . . . ; 1=nÞ.
It can be verified that this hyper-plane delimited fulfills
with the definition of a regular polygon, taking as distance
to the Euclidean norm for n-dimensional spaces; the
coordinates ð1=n; . . . ; 1=nÞ as the center of this polygon;
and to measure the angles, use the equation of the dot
product of spatial vectors,6) a � b ¼ kakkbk cos �, for
0 � � � 180.

Definition 4.1. A polygon is considered regular when all
sides and angles are equal.7)

Definition 4.2. The center of the regular polygon is the
equidistant point from the vertices and sides at the center of
a regular polygon.7)

4.1 Intensity and Hue
The intensity I is defined as the average number of

Ci’s

I ¼
1

n

Xn
i¼1

Ci

 !
: ð3Þ

In Fig. 3, we see that the H is the angle between the line
defined by the center of the polygon W and C1 and the line
that is defined by W and the color point P. These points on
the plane given in terms of chromatic coordinates have
coordinates w ¼ ð1=n; . . . ; 1=nÞ, p ¼ ðc01; c02; . . . ; c0nÞ and
C1 becomes e1 ¼ ð1; 0; . . . ; 0Þ. As an example, see Fig. 6
for n ¼ 3. Therefore, using the equation of the dot product
the H is the equation:

H ¼ cos�1 ðp� wÞ � ðe1 � wÞ
kp� wkke1 � wk

� �
; for 0 � H � 180: ð4Þ

kp� wk can be expressed as,

kp� wk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

c2
0i �

1

n

s
: ð5Þ

Now, Substituting the values c0i into eq. (5):

kp� wk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

C2
0i

 !
�

Xn
i¼1

C0i

 !2

n
Xn
i¼1

C0i

 !2

vuuuuuuuut : ð6Þ

On the other hand,

ke1 � wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

n

r
; ð7Þ

and

ðp� wÞ � ðe1 � wÞ ¼
ðn� 1ÞC01 �

Xn
i¼2

C0i

n
Xn
i¼1

C0i

 ! : ð8Þ

Finally

H ¼ cos�1

ðn� 1ÞC01 �
Xn
i¼2

C0i

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

C2
0i

 !
�

Xn
i¼1

C0i

 !2
vuut

2
6666664

3
7777775
: ð9Þ

In Fig. 3 we notice that the angle formed by each Ci W
Ciþ1 ought to be 360�/n, since adding this quantity n times,
the result is 360�. Using eq. (9), that angle has a value of
cos�1½�1=ðn� 1Þ�. For n ¼ 3 this value is matched with
360�/n. Nevertheless, for n > 3, the value is not equal to
360�/n, and adding n times the result is greater than 360�.
To fix this problem we made a scaling with the equation:

H ¼
360

n cos�1

�
�1

n� 1

�
2
64

3
75H: ð10Þ

So, the addition will be 360�. Applying this new
formulation on numerical experiments for n > 3, we realized

Fig. 5. Color triangle. The equation
P3

i¼1 ci ¼ 1, ci within the
interval ½0; 1� represents a plane bounded by e1; e2; e3 giving us the
form of an equilateral triangle centered on ð1=3; 1=3; 1=3Þ.

Fig. 6. Vectors involved in the calculus of hue. The subtraction
vector gives us vectors in which the hue is determined.
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that for points belonging to the area bounded by C1 W C2

(we call it area 1), the resulting hue was correct. However,
for color points outside the area 1 and that had an angle
greater than 100�, the H calculated was incorrect. Hence, the
solution to find the true angle of H in any other area i-th
(area bounded by Ci W Ciþ1, i ¼ 2; . . . ; n) for any plane
polygonal of n sides, is moving this up to the area 1; find the
hue, and return to the original area, adding to the H the
degrees that are needed for the translation (Fig. 7). There-
fore, for any regular polygon we must know how to
characterize the area where is the color point.

For this purpose, let us analyze the color pentagon of
Fig. 8. The findings can be extended to any regular polygon.
Suppose that the color point is in area 1 of the pentagon;
from Fig. 8, we see that this area can be obtained as the
intersection of the shaded zone 1 of Fig. 8(a) and the shaded
zone 2 of Fig. 8(b). So respectively, each shaded zone is
achieved if C1 > C3, and C2 > C5. The explanation is this:
If we take a color point P in the shaded zone 1, the distance
measured from P to C1 is less than the distance measured
from P to C3 [Fig. 8(a)], which means the color point P has a
greater amount of color C1 than color C3. For the remaining
areas, a similar analysis provides explanation.

Generalizing for any regular polygon, let us call area i-th
to the area bounded by Ci W Ciþ1.

Area 1 is obtained when C1 > C3 and C2 > Cn.
Area i-th is obtained when Ci > Ciþ2 and Ciþ1 > Ci�1,
i ¼ 2; . . . ; n� 2.
Area n� 1 is obtained when Cn�1 > C1 and Cn > Cn�2.
Area n-th is found when we have Cn > C2 and C1 > Cn�1.
However, as we shall see in §5, it may happen that occur

more than one of these conditions. In other words, that some
color point P takes more areas in a virtual way. For example
it can happen, that C1 > C3 and C2 > Cn; C3 > C5 and
C4 > C2, where each Ci is a component of P. So, P would
seem to be in two areas, area 1 and area 3. Moreover,
suppose that the real area of the color point P is the third.
From Fig. 9, which is portion of the polygon of Fig. 3, note
that if P is in area 3, then P is closer to the vertexes C3, C4

than to the vertexes C1, C2. Therefore, we can conclude that
if the sum of the values C3 and C4 is greater than the sum of
C1 and C2, then P is in the area 3. For the foregoing, we
deduct that on a color polygon of n-sides, the area of a color
point P can be located as follows.

Algorithm 4.1.1.

. Area 1 is obtained if: C1 > C3 and C2 > Cn; and
C1 þ C2 > Cj þ Cjþ1 where Cj > Cjþ2 and Cjþ1 >
Cj�1, for j 6¼ 1.

. Area i-th is obtained when Ci > Ciþ2 and Ciþ1 > Ci�1,
i ¼ 2; . . . ; n� 2; and Ci þ Ciþ1 > Cj þ Cjþ1 where
Cj > Cjþ2 and Cjþ1 > Cj�1, for j 6¼ i.

. Area n� 1 is obtained when Cn�1 > C1 and
Cn > Cn�2; and Cn�1 þ Cn > Cj þ Cjþ1 where Cj >
Cjþ2 and Cjþ1 > Cj�1, for j 6¼ n� 1.

. Area n-th is found when Cn > C2 and C1 > Cn�1; and
Cn þ C1 > Cj þ Cjþ1 where Cj > Cjþ2 and Cjþ1 >
Cj�1, for j 6¼ n.

Finally, to get the hue of the color point P, the procedure
to follow is to transfer the area where P is, toward the area 1;
calculate the hue in eq. (9); make an escalation in the
interval from 0� to 360�/n [eq. (10)], and to finish, calculate
the hue on the original area adding to H the grades needed
for translation.

(a) (b) (c)

Fig. 7. Squares color. The figure shows the method to find the hue
in any color regular polygon. (a) Original position of color point;
(b) Translation of the color point towards area 1, and on this area is
calculated the hue; (c) Color point has been returned to the original
area, and its hue is calculated by adding to the previous hue the
ninety degrees that were needed for the translation.

(a) (b) (c)

Fig. 8. (Color online) Description of the area of the color point.
Any color area i-th, zone bounded by Ci W Ciþ1 (c), can be
described by the intersection of two regions that contains the zone
and divide the polygon in two equal parts (a, b). Mathematically,
each area i-th can be expressed in terms of Ci�1, Ci, Ciþ1, Ciþ2 (c).

Fig. 9. Virtual areas. The method for distinguishing the color area
of the color point P among others, which comply with the
restriction Ci > Ciþ2 and Ciþ1 > Ci�1 is to add Ci þ Ciþ2; the
largest amount corresponds to the color area of P. This is equivalent
to the distance from P to the vertices of the color area of P are less
than or equal to the distance from P to the vertices of any other.

94 OPTICAL REVIEW Vol. 16, No. 2 (2009) M. A. ALONSO PÉREZ and J. J. BÁEZ ROJAS



Algorithm 4.1.2.

1. Finding the i-th area where P belongs through the
algorithm 4.1.1.

2. Move to Area 1: C1 ¼ Ci, C2 ¼ Ciþ1; . . . ;Cn�1 ¼
Ci�2, Cn ¼ Ci�1.

3. Finding H:

H ¼ cos�1

ðn� 1ÞC01 �
Xn
i¼2

C0i

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

C2
0i

 !
�

Xn
i¼1

C0i

 !2
vuut

2
6666664

3
7777775
:

4. Carry out an escalation in the interval from 0� to
360�/n:

H ¼
360

n cos�1

�
�1

n� 1

�
2
64

3
75H:

5. Return to the area i-th: H ¼ H þ ði� 1Þ (360/n).
For those points of color that are in the diagonals, H is

easily found with the following:
If Ci 6¼ 0 and Cj ¼ constant, for any j 6¼ i, H ¼ ði� 1Þ

(360/n).

4.2 Saturation
To calculate the S, we use Fig. 3. Extend the line defined

by the points W and P until it intersects a side of the
polygon, the point where it is cut is denoted by P0. Since
the saturation is in the closed interval ½0; 1� and is propor-
tional to the distance from W up to P (jWPj), this is defined
as:

S ¼
jWPj
jWP0j

: ð11Þ

This idea applied to our polygon contained in n-dimen-
sional space,

S ¼
kw� pk
kw� p0k

: ð12Þ

We know w and p, but not p0. Let us suppose that we
are working in three-dimensional Euclidean space. With-
out loss of generality let us suppose that P0 is in the
plane defined by the vectors e1 and e2 (Fig. 5). In this
figure we realize that P0 is the intersection of the line
defined by W and P with the plane. Generalizing for
n > 3, P0 is the intersection of the hyper-line defined by
W and P with the hyper-plane defined by the vectors
e1; e2; . . . ; en�1.

Solving the system of equations, which is the result of the
intersection of the hyper-line through W and P, that it is
expressed mathematically

ci ¼ k c0i �
1

n

� �
þ

1

n
; i ¼ 1; . . . ; n;

k within the interval ½0; 1�;
ð13Þ

and the hyper-plane passing through e1; e2; . . . ; en�1, whose
parametric equation is

c1 ¼ 1� t2 � t3 � � � � tn�1;

c2 ¼ t2;

..

.

cn�1 ¼ tn�1;

cn ¼ 0;

ð14Þ

each ti lies into ½0; 1�, it is found that:

p0 ¼ ð1� nc0nÞ�1

� 1�
Xn�1

i¼2

c0i � 2c0n; c02 � c0n; . . . ; c0n�1 � c0n; 0

 !
:

ð15Þ

By replacing eqs. (5) and (15) in eq. (12),

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

c2
0i

 !
�

1

n

vuut

ð1� nc0nÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

c2
0i

 !
�

1

n

vuut
; ð16Þ

that becomes:

S ¼ 1� nc0n; ð17Þ

where c0n is the minimum of all the c0i’s, because c0n is in
½0; 1=n� and the c0i’s belong to ½1=n; 1�; hence

S ¼ 1�
nminfC01;C02; . . . ;C0ngXn

i¼1

C0i

: ð18Þ

Performing the same process for P0, when this is in all
other hyper-planes passing through (n� 1) ei’s, we get to
eq. (18).

5. Numerical Experiments

In this section we show some results after applying the
formulas to find the hue, saturation and intensity on one
digital image based on 16-color bands, Fig. 10. This figure is
the result of a computational program that allows us to
visualize that multispectral image on a monitor based in the
RGB color space. The images are pictures of some codices
obtained from National Library of Anthropology and History
(BNAH, acronym from spanish: Biblioteca Nacional de
Antropologı́a e Historia).8) Natural Vision Research Labo-
ratory (NVRL), National Institute of Astrophysics, Optics
and Electronics (INAOE, acronym from spanish: Instituto
Nacional de Astrofı́sica Óptica y Electrónica), and BNAH
signed a collaboration agreement for the digitalization of the
codices, and analysis of data obtained through devices which
capture multispectral images.

The images are composed of 16 matrices of size
768� 768. Each matrix has the scale of a color band. Just
as in the RGB images its maximum value for each matrix is
255, the maximum value of the scale of the 16 matrices is
38160.

From Fig. 10, we have selected shades of yellow, green
and red that are enclosed inside a blue box (Fig. 11). The
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results are shown in tables. Since each pixel in the image has
16 values, we occupy only one table to display all the values
concerning a pixel; just in case the reader is interested in
verifying the results. The others tables contain the coordi-
nates of the pixels, the values of area, H, S, and I.

The areas color were found by means of Algorithm 4.1.1;
the value of H was found by Algorithm 4.1.2; the value of S
with eq. (18) and I with eq. (3). In Fig. 12 we see the 16
primary colors ranging from blue to red, passing through the
green hues. So, the color polygon of space HSI16, has 16
sides. Therefore, the color labeled with the number one has
H ¼ 0�, the color labeled with the number two has
H ¼ 22:5�, the third color has H ¼ 45�, and so on. Area 1
is determined by color 1 and color 2; area 2 by color 2 and
color 3, etc.

Fig. 10. (Color online) Test image. Image based on 16-color
bands. We can look at it because of a computer program that
converts a multispectral image to a RGB image.

Fig. 11. (Color online) Test areas. We have been taken pixels
inside blue boxes to calculate its hue, saturation and intensity.

Fig. 12. (Color online) Sixteen primary colors. These colors
represent the 16 vertices of color polygon of space HSI16.

Table 1. Ci’s data corresponding to a pixel; values of the area of
color point, and of HSI.

Color point green

i 641
j 536
C1 8832
C2 14784
C3 19872
C4 19008
C5 21456
C6 20464
C7 24688
C8 25648
C9 24368
C10 25456
C11 24192
C12 25488
C13 24256
C14 20736
C15 20752
C16 15552

Color areas found 7, 12
Area of color point 7
H 153.656431
S 0.578867
I 0.549581
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Table 1 shows the data of the 16 color bands of a pixel,
which has a greenish hue. This pixel is taken from the
rectangular region with hues of green, and it is shown below
Fig. 11. In this table, we found two possible areas to the
color point, namely, areas 7 and 12; but by means of
Algorithm 4.1.1 we find that area 7 is the correct.

The pixels of Table 2 are taken from the rectangular
region that lies below the image and is a green zone
(Fig. 11). From the results, we note that only three pixels are
in area 7, and the most pixels are in area 10, which means
that it is an area of shades of yellow. So, why do we see
green hues? There are two answers: First, we must
remember that the image of Fig. 10 is based on three basic
colors, while the multispectral image is based on sixteen.
The second answer is the colors of area 10 are less saturated,
and are less intense than those in area 7.

For Table 3, the pixels were selected from the rectangular
region displayed below the image on the bird (Fig. 11). In
this region, hues of yellow shades can be observed, and
Table 3 confirms this. Much of the pixels have a greater
degree of saturation than those from the previous table and
have an intensity of less than 50%.

The Table 4 shows the coordinates of pixels that were
taken at the top of Fig. 11, inside the shield of the image.

The results show that indeed we are in a reddish zone, in
which case we are in area 12. In contrast to the previous
table, here the colors are more saturated because exceed
more than 50%, but they are darker because the values are
closer to zero than one.

From the Table 5, the pixels have been obtained from
top, right of Fig. 11. We observed a dark area with a little
color. We have eight different hues; the data from saturation
are contrasting; and as expected, the intensity is nearly zero.

6. Conclusions

Through this manuscript we have explained the method to
obtain the equations that lead us from n bands color space to
HSIn color space. The n bands color space is the general-
ization of the RGB system additive. In this way, the n bands
color space is a n-dimensional vector subspace, and each
element of color is defined by a vector. HSIn color space is
just the n bands color space given in a different coordinate
system. The intensity I within the n bands color, is defined
along the line defined in Euclidian n-dimensional space,
from the black ð0; . . . ; 0Þ to the white ð1; . . . ; 1Þ. The
intensity range is between ½0; 1� and 0 means black, 1
means white. HS are the polar coordinates of a plane in n

dimensions, and it is normal to I. The saturation component

Table 2. Values of color point’s area and HSI, obtained from a
green zone.

Green zone

i j H S I
Area of the
color point

636 531 153.732218 0.544172 0.592374 7
636 532 153.893505 0.531093 0.572275 7
636 533 220.180124 0.514441 0.536242 10
636 534 219.898929 0.496002 0.485010 10
636 535 219.786693 0.522078 0.464099 10
637 531 153.718112 0.532521 0.582993 7
637 532 219.914997 0.521789 0.553249 10
637 533 219.953434 0.502308 0.499581 10
637 534 220.041620 0.504807 0.447065 10
637 535 220.088802 0.550059 0.440776 10

Table 3. Values of color point’s area and HSI, obtained from a
yellow zone.

Yellow zone

i j H S I
Area of the
color point

635 314 220.295169 0.610610 0.491012 10
635 315 219.885758 0.604556 0.487736 10
635 316 220.065209 0.624114 0.506420 10
635 317 219.809990 0.592663 0.497170 10
635 318 220.178402 0.523319 0.416929 10
636 314 220.119336 0.608831 0.486635 10
636 315 219.982936 0.611496 0.487814 10
636 316 220.144948 0.614538 0.502542 10
636 317 220.137425 0.577006 0.471829 10
636 318 219.853621 0.557763 0.401048 10

Table 4. Values of color point’s area and HSI, obtained from a
reddish zone.

Reddish zone

i j H S I
Area of the
color point

144 550 265.110261 0.665532 0.215618 12
144 551 265.051124 0.645743 0.222510 12
144 552 264.890945 0.633560 0.231132 12
144 553 219.832862 0.651056 0.269156 10
145 550 264.635055 0.624161 0.226468 12
145 551 265.373731 0.624413 0.234434 12
145 552 265.164669 0.613050 0.229717 12
145 553 265.024537 0.634239 0.255634 12
146 550 265.290433 0.650961 0.233045 12
146 551 219.842611 0.644133 0.239177 10

Table 5. Values of color point’s area and HSI, obtained from a
dark zone.

Dark zone

i j H S I
Area of the
color point

31 694 264.119223 0.671795 0.005110 12
31 695 240.996097 0.551402 0.005608 11
31 696 151.707692 0.507692 0.005110 7
31 697 240.792967 0.454545 0.004612 11
31 698 354.973827 0.437186 0.005215 16
32 694 239.895048 0.384615 0.005451 11
32 695 128.518875 0.381215 0.004743 6
32 696 286.080858 0.558011 0.004743 13
32 697 84.017547 0.448276 0.004560 4
32 698 217.429438 0.322751 0.004953 10
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shows how much the color is diluted with white color. The
range of the S component is ½0; 1�, and it is measured by the
Euclidean distance. H is the angle starting from the first
color band vector, given in degrees. The hue component
describes the color itself in the form of an angle between
½0; 360� deg.

The conversion from n bands color space to HSIn is given
in terms of the values of the n primaries bands of a color,
we can find its HSI representation using the hyper-plane
defined by the chromatic coordinates and using n dimen-
sional geometry. To show the functionality of the formulas
found, we apply these to a multispectral image of 16 color
bands. The image, among others, was obtained through an
agreement between Natural Vision Research Laboratory
(NVRL), National Library of Anthropology and History
(BNAH, acronym from spanish: Biblioteca Nacional de
Antropologı́a e Historia), and National Institute of Astro-
physics, Optics and Electronics (INAOE, acronym from
spanish: Instituto Nacional de Astrofı́sica Óptica y Elec-
trónica). The results of hue, saturation and intensity are
displayed in five tables.
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