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Abstract. In this paper, we propose and explore the use of the sequential search for solving the prototype selection problem
since this kind of search has shown good performance for solving selection problems. We propose three prototype selection
methods based on sequential search. The main goal of our methods is to reduce the training data without losing too much
classification accuracy. Experiments and results are reported showing the effectiveness of the proposed methods and comparing
their performance against other prototype selection methods.
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1. Introduction

The supervised classifiers recognize unseen (i.e., unclassified) prototypes (objects) through an already
labeled training set (T ). Usually, all the available prototypes are used as training for the classifier; a
sample pre-processing is not performed and as result, harmful and superfluous prototypes could be stored
needlessly. Thus, what prototypes to store for using as training in order to avoid excessive storage and
too long runtimes, and possibly to improve the classification accuracy by avoiding noise and over-fitting
should be decided. Therefore, a good prototype set (S) that would ideally be of minimal cardinality
and produce the highest possible classification accuracy is needed. Following [19,24], there are two
strategies to find this prototype set:

Prototype Selection. A subset of prototypes from the original data set is retained, eliminating those
that do not contribute significantly to the classification accuracy.

Prototype Replacement. A number of labeled prototypes that do not necessarily coincide with any
prototype in the original data set are used instead of it.

In this paper, the prototype selection strategy is addressed. Many researchers have faced this problem,
most of them have proposed methods which are designed to solve the prototype selection problem based
on the k-NN (k-Nearest Neighbor) rule [29]. The prototype subsets produced by these methods have a
good performance when they are used as training for k-NN. However, when other classifiers are used, the
subsets obtained by these methods do not have as good performance as they have for k-NN (as we will
show in this paper), therefore, prototype selection methods that allow using, during the selection stage,
the classifier that will be used at the classification stage are needed.
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As it is well known, the sequential search is a useful strategy for solving selection problems; in this
paper, we explore the use of this kind of search for prototype selection, guided by the accuracy of a
classifier. We propose three prototype selection methods based on sequential search for reducing the
stored prototype set trying to maintain acceptable recognition accuracy.

The paper is organized as follows. Section 2 describes the main related works. The proposed methods
and experimental results are presented in Section 3. In Section 4, a discussion about the performance of
our methods is presented. Finally, in Section 5, the conclusions and future research directions are given.

2. Related works

There has been a lot of research in developing efficient algorithms for prototype selection; some of
these methods are briefly described in this section.

Hart [26] proposed the Condensed Nearest Neighbor method (CNN); it begins by randomly selecting
one prototype from T and putting it in S. Then each prototype in T is classified using only the prototypes
in S. If a prototype is misclassified, it is added to S, to ensure that it will be correctly classified. This
process is repeated until there are not prototypes in T that are misclassified. This method ensures that S
correctly classifies all prototypes in T , this is, S is consistent. CNN does not guarantee to find a minimal
consistent subset.

The Reduced Nearest Neighbor rule (RNN) [15] consists in deleting from T those prototypes that do
not affect the classification of the remaining prototypes, the goal is to find a minimal consistent subset.

The Selective Nearest Neighbor rule (SNN) [14] finds a minimal subset such that all prototypes in T
would be closer to a prototype of the same class in S than to any prototype of a different class in T .

Wilson [10] proposed a method for prototype selection through the Edited Nearest Neighbor (ENN),
here a prototype is deleted from T if its class does not coincide with the class of the majority of its k
nearest neighbors. A variant of this method is the Repeated ENN (RENN) where ENN is repeatedly
applied until all remaining prototypes have the majority of their nearest neighbors with the same class.

Tomek [18] extended the ENN with his All k-NN prototype selection method. This method works
as follows: for i = 1 to k, flag as bad any prototype misclassified by its i nearest neighbors. After
completing the loop all k times, remove any prototypes flagged as bad.

Devijver and Kittler [25] proposed the Multiedit method for prototype selection, which randomly
divides T in m blocks (P1 . . . Pm). After that, ENN (using 1-NN) is applied over each block Pi finding
the neighbors of Pi in P(i+1)mod m. This process is repeated until there are not changes (eliminations)
in f successive iterations.

Lowe [9] presented a Variable Similarity Metric (VSM) learning system that produces a confidence
level of its classifications. In order to reduce storage and remove noisy prototypes, a prototype p is
removed if all of its k nearest neighbors are of the same class, even if they are of a different class than p
(in which case p is likely to be noisy).

Kuncheva [22–24] used genetic algorithms (GA) to select the prototype subset S, codifying a selection
as a binary valued chromosome and using a fitness function based on the classification accuracy and the
size of S.

Wilson and Martinez [12] presented five methods DROP1,. . . , DROP5 (Decremental Reduction Opti-
mization Procedure) for prototype selection. DROP1 is identical to RNN but the classification accuracy
is verified in S instead of T . This algorithm uses the next selection rule: delete the prototype p if the
associates of p are correctly classified without p. An associate is a prototype that has p as one of its
nearest neighbors. DROP2 takes into account the effect in T of eliminating a prototype in the partial
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subset, i.e., a prototype p is deleted only if its associates in T are correctly classified without p. DROP3
uses a filter similar to ENN and after applies DROP2. DROP4 is similar to DROP3 but it uses a different
filter. DROP5 is based in DROP2 but it starts deleting the prototypes that are nearest to their nearest
enemies, i.e., the nearest prototypes but with different class.

Another strategy used for solving search problems is the tabu search (TS) [13]. Cerver ón and Ferri [31]
proposed a method based on TS for prototype selection.

Brighton and Mellish [16] proposed the ICF (Iterative Case Filtering) method based on the Coverage
(associates) and Reachable (neighborhood) sets, a prototype p is flagged for removal if |Reachable(p)| >
|Coverage(p)|, which means that more cases can solve p than p can solve itself. After, all prototypes
flagged for removal are deleted.

Riquelme et al. [20] proposed the POP (Pattern by Ordered Projections) method based on the weakness
concept, which is defined as the number of times that a prototype is not a border, that is, the prototype
is not close to prototypes belonging to different class. POP discards those prototypes whose weakness
is equal to the number of attributes. Aguilar et al. [28] modified this method using a threshold weakness
factor.

The POC-NN (Pair Opposite Class-Nearest Neighbor) method proposed by Raicharoen and Lursin-
sap [30] selects border prototypes (close to prototypes belonging to different class). The selection process
in POC-NN is based on the nearest prototypes to the mean of opposite classes.

A variant of CNN is the Generalized Condensed Nearest Neighobor (GCNN) method [5] which is
similar to CNN but GCNN includes in S prototypes according to the Absorption(p) criterion, which
is calculated in terms of the nearest neighbor and the nearest enemy of p in S. The selection process
finishes when all prototypes in T have been strongly absorbed, that is, when their Absorption satisfies a
threshold value given by the user.

Some authors [3,17,19] mentioned the idea of using clustering for prototype selection; this idea
consists in after splitting T in n clusters, S is the set of centers of each cluster. In [2], the CLU
(CLUstering) prototype selection method is based on this rule and it was applied to the signature
recognition problem. Another method that follows the same idea is NSB (Nearest Sub-class Classifier) [7]
which allows selecting different number of prototypes (centers) per class via the Maximum Variance
Cluster algorithm [6].

Most of the prototype selection methods previously discussed (excluding GA, TS, CLU and NSB) are
based on the k-NN rule. In the next section, we propose prototype selection methods based on sequential
search, which allow using, during the selection stage, the classifier that will be used in the classification
stage.

3. Proposed methods

In this section, three new prototype selection methods based on sequential search that can use any
classifier in the selection process are introduced.

3.1. Backward sequential prototype selection

The first prototype selection method we propose is called Backward Sequential Prototype Selection
(BSPS). The idea of this method consists in adapting the backward sequential selection used for feature
selection (a treatment of this method can be found in [21]) but now for prototype selection.
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Given a training set T , frequently occurs that there are some prototypes in T with a null or even negative
contribution for classification accuracy, so it is necessary to identify and eliminate those prototypes i.e.
prototype selection. We can see this problem as a search problem where the goal is to find the optimal
training subset of prototypes S for a classifier. If we have m prototypes, the size of the search space is
2m-1 then it is necessary to have a non-exhaustive search method for avoiding exponential complexity.
The sequential search is a non exhaustive method with quadratic complexity (O(m 2)) that allows to get
a suboptimal training set.

In order to evaluate the subsets of prototypes along the search, we propose to apply a classifier (the
evaluation function in the BSPS method) using the subset that is being evaluated as training set and
estimating the accuracy rate over a test set.

It is important to highlight that most of the prototype selection methods are much related to the nearest
neighbor rule. Our method discards a prototype p if the accuracy (over the testing set) of the classifier
(anyone) after discarding p is the same or better than without eliminating p. Notice that, in this way, the
prototype selection depends on the classifier accuracy and not necessarily on the neighbors’ relationship.

The main idea of BSPS is to search the best single prototype elimination, and repeating this process
until no more prototypes can be eliminated.

The proposed method starts with the whole set T and in each step, the worst prototype is discarded.
In this case, as worst prototype p we mean the one that if we eliminate it from T the resultant subset
S = T–{p} provides a classification accuracy better than or equal to T does and better than or equal to
eliminating any other prototype. If there is more than one worst prototype, only the last one is eliminated.

If we have m prototypes and F attributes, in each step, the complexity of removing the worst prototype
in the training set is O(m) and at most m − 1 prototypes can be removed. Therefore the complexity of
BSPS is O(m2J(m,F )), where J(m,F ) is the complexity of the evaluation function (classifier) along
the search.

The BSPS method is as follows:

BSPS(Training set: T): Prototype subset S
S = T
BestEval=Classifier(S)
Repeat

Worstp = None
For each prototype p in S

S’= S – {p}
Eval = Classifier(S’)
If Eval � BestEval

Then Worstp = p
BestEval = Eval

If Worstp �= None
Then S = S – {Worstp}

Until Worstp == None or |S| == 1
Return S

Our method stops when it cannot eliminate more prototypes and its behavior depends on the function
that evaluates the subset quality (which is based on a classifier).

3.1.1. Experiment description
From the UCI Repository [1] nine datasets were chosen in order to study the behavior of the methods

introduced in this document.
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In order to handle mixed databases, those with both numeric and nominal attributes, we used the
heterogeneous distance function HVDM [11], which is defined as follows:

HV DM(x, y) =

√√√√ F∑
a=1

d2
a(x, y) (1)

where da(x, y) is the distance for the values of the feature a and it is as follows:

da(x, y) =




1 if x or y is unknown
vdma(x, y) if a is nominal
|x−y|
4σa

if a is numeric
(2)

where σa is the standard deviation in T of the feature a and vdma(x, y) is defined as:

vdma(x, y) =
C∑

c=1

(
Na,x,c

Na,x
− Na,y,c

Na,y

)2

(3)

Where Na,x is the number of times that the feature a had value x in the training set; Na,x,c is the number
of times that the feature a had value x in the class c; and C is the number of classes.

For all the experiments shown in this document, 10-fold cross-validation was used. Each dataset was
divided into 10 blocks. A training set T consisting of nine of the blocks (i.e., 90% of the data) was
used to train each prototype selection method (for BSPS and TS we used the whole training set, 90%
of the data, as testing set during the selection process), from which each method returned a subset S.
The remaining block (i.e., the other 10% of the data) was classified using only the prototypes in S.
For each dataset, with each prototype selection method 10 trials were run. The average classification
accuracy (Acc.) over the 10 trials for each method on each dataset is reported. The average percentage
of prototypes in T that were included in S is reported for each experiment under the column “%”, that
is, % = 100*|S|/|T|. In addition, the accuracy obtained using the whole training set (Orig.) is included
in the tables, for comparison. Also at the bottom of each table, the averages over the nine datasets are
shown.

It is important to emphasize that in all the experiments for each prototype selection method; the same
training/testing sets and distance function (HVDM) were used on the same computer.

3.1.2. Comparison of BSPS against other prototype selection methods
In this section, a comparison among BSPS, ICF, DROPs, GCNN, TS, POP and POC-NN prototype

selection methods using k-NN (k = 3, value where DROPs have the best performance), is shown
(Tables 1–4). We have compared against DROPs because according to [12], they outperforms to
previously proposed prototype selection methods. In addition, we have considered other recently
proposed methods (ICF, TS, POP, POC-NN and GCNN).We have omitted GA because according to the
results reported in [19], TS outperforms GA.

The POP and POC-NN methods cannot be applied over all the datasets because some of them have
nominal or missing values. Therefore, in Tables 3–4 we show the results obtained over the five datasets
that can be used by POP and POC-NN.

In Fig. 1, we show the scatter graphic of retention (vertical axis) versus accuracy (horizontal axis) for
the average results obtained by the methods shown in Tables 3 and 4.
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Table 1
Accuracy (Acc.) and retention (%) results obtained by: Orig., DROPs and BSPS using k-NN, k = 3

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Bridges 66.09 100 39.91 25.17 61.51 28.53 56.36 14.78 56.73 21.08 62.82 20.66 60.18 58.80
Echocardiogram 95.71 100 88.93 12.16 93.04 15.16 92.86 13.95 92.86 13.80 88.75 14.87 91.96 25.18
Glass 71.42 100 66.84 23.21 65.89 31.05 66.28 24.35 67.77 29.39 62.16 25.91 65.02 46.36
Iris 94.66 100 89.33 9.56 94.66 16.96 95.33 15.33 94.66 15.26 94.00 12.44 94.00 15.26
Liver 65.22 100 57.98 31.53 64.08 39.26 67.82 26.83 66.41 31.95 63.46 30.59 57.85 58.90
New Thyroid 95.45 100 85.56 8.32 90.78 14.88 93.98 9.77 93.51 10.39 94.46 8.84 91.25 14.09
Tae 51.08 100 55.75 30.54 53.67 33.56 49.75 26.27 53.71 31.71 52.42 32.01 51.54 54.01
Wine 94.44 100 94.97 10.36 95.52 14.80 94.41 15.04 94.41 15.04 93.86 10.55 94.44 13.76
Zoo 93.33 100 87.78 16.79 86.67 20.37 90.00 20.37 91.11 21.36 95.56 18.77 91.55 20.86

Average 80.60 100 74.12 18.63 78.42 23.84 78.53 18.52 79.02 21.08 78.61 19.40 77.53 34.14

Table 2
Accuracy (Acc.) and retention (%) results obtained by: Orig., TS, ICF, GCNN and BSPS using k-NN, k = 3

Dataset Orig. TS ICF GCNN BSPS
Acc. % Acc. % Acc. % Acc. % Acc. %

Bridges 66.09 100 45.90 18.94 40.45 8.33 68.20 88.20 60.18 58.80
Echocardiogram 95.71 100 85.71 7.46 75.00 11.94 93.39 22.67 91.96 25.18
Glass 71.42 100 62.59 15.98 63.63 8.93 69.61 61.62 65.02 46.36
Iris 94.66 100 70.66 6.50 64.66 10.37 96.00 38.00 94.00 15.26
Liver 65.22 100 64.13 5.21 52.94 1.83 66.09 83.70 57.85 58.90
New Thyroid 95.45 100 83.05 5.40 76.23 3.61 93.96 30.33 91.25 14.09
Tae 51.08 100 55.00 14.93 40.00 2.86 45.95 32.50 51.54 54.01
Wine 94.44 100 79.44 6.10 59.01 5.49 94.44 78.89 94.44 13.76
Zoo 93.33 100 88.88 14.12 75.55 9.38 95.55 26.17 91.55 20.86

Average 80.60 100 70.60 10.52 60.83 6.97 80.35 51.34 77.53 34.14

Table 3
Results obtained by: Orig., DROPs and BSPS for numeric datasets using k-NN, k = 3

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Glass 71.42 100 66.84 23.21 65.89 31.05 66.28 24.35 67.77 29.39 62.16 25.91 65.02 46.36
Iris 94.66 100 89.93 9.56 94.67 16.96 95.33 15.33 94.67 15.26 94.00 12.44 94.00 15.26
Liver 65.22 100 57.98 31.53 64.08 39.26 67.82 26.83 66.41 31.65 63.46 30.59 57.85 58.90
New Thyroid 95.45 100 85.56 8.32 90.78 14.88 93.98 9.77 93.51 10.39 94.46 8.84 91.25 14.09
Wine 94.44 100 94.97 10.36 95.52 14.80 94.41 15.04 94.41 15.04 93.86 10.55 94.44 13.76

Average 84.24 100 79.06 16.60 82.19 23.39 83.56 18.26 83.35 20.35 81.59 17.67 80.51 29.67

From the results in Tables 1–4 and Fig. 1, we can see that in the average case, the classification
accuracy obtained by BSPS is better than the obtained by DROP1, TS, ICF, POP and POC-NN. The best
method in this experiment was GCNN.

We evaluated the accuracy changing of the different subsets obtained during the BSPS selection
process, that is, we evaluated some subsets saved during the selection process. For this experiment, the
datasets were divided in three partitions, one for training, the second for testing during the selection
process and the last for evaluating the prototype sets obtained. The results obtained are depicted in
Figs 2–3, the subset size (horizontal axis) varies from the original training set and the size of the final
subset selected by BSPS.

Figure 2 shows how the accuracy over the testing set (second partition) changes during the selection.
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Table 4
Results obtained by: Orig., TS, ICF, POP, POC-NN, GCNN and BSPS for numeric datasets using k-NN, k = 3

Dataset Orig. TS ICF POP POC-NN GCNN BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Glass 71.42 100 62.59 15.98 63.63 8.93 59.09 29.17 71.47 57.42 69.61 61.62 65.02 46.36
Iris 94.66 100 70.66 6.50 64.66 10.37 79.33 16.00 77.33 12.88 96.00 38.00 94.00 15.26
Liver 65.22 100 64.13 5.21 52.94 1.83 55.88 7.08 55.68 58.09 66.09 83.70 57.85 58.90
New Thyroid 95.45 100 83.05 5.40 76.23 3.61 89.22 13.90 93.05 15.34 93.96 30.33 91.25 14.09
Wine 94.44 100 79.44 6.10 59.01 5.49 92.18 34.51 94.93 40.82 94.44 78.89 94.44 13.76

Average 84.24 100 71.97 7.84 63.29 6.05 75.14 20.13 78.49 36.91 84.02 58.51 80.51 29.67
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Fig. 1. Scatter graphic from average results shown in Tables 3 and 4.

Fig. 2. Accuracy obtained by the different subsets using the second partition as testing set.

This figure shows that BSPS has an incremental behavior during the selection process since only
prototypes that contribute for obtaining better classification (according to the testing set) are selected.

Figure 3 shows the accuracy of the subsets obtained during the selection but over the evaluation set
(third partition) unseen during the selection. In these results, BSPS has not an incremental behavior
because the accuracy obtained by the different subsets is evaluated over the unseen testing set.
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Table 5
Accuracy (Acc.) and retention (%) results obtained by: Orig., DROPs and BSPS using k-NN, k = 1

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Bridges 64.00 100 73.18 23.16 49.73 26.32 44.36 14.78 40.05 21.05 48.36 20.66 53.25 50.12
Echocardiogram 86.78 100 83.11 8.56 88.64 17.43 90.07 13.82 88.64 18.01 90.57 7.65 88.64 20.98
Glass 70.50 100 62.60 17.96 68.29 23.78 68.64 19.78 67.27 22.38 69.59 19.38 67.22 41.74
Iris 94.00 100 82.67 5.41 95.33 14.00 96.00 11.11 96.00 11.63 94.00 8.44 94.00 13.11
Liver 65.24 100 58.26 22.83 62.58 28.60 60.58 24.83 63.72 27.15 64.04 26.09 62.02 54.61
New Thyroid 95.80 100 83.87 7.85 92.14 12.30 92.62 11.42 92.14 11.73 93.53 8.53 93.07 13.12
Tae 58.29 100 45.71 39.00 47.17 41.35 45.75 36.57 47.75 38.56 51.71 38.12 59.62 49.52
Wine 94.93 100 91.11 7.30 94.41 11.86 95.52 11.05 95.52 11.24 94.97 6.18 94.96 11.67
Zoo 98.89 100 90.00 16.91 90.00 18.64 90.00 18.64 90.00 18.64 95.56 16.67 93.33 24.07

Average 80.94 100 71.17 16.55 76.48 21.59 75.95 18.00 75.68 20.04 78.04 16.86 78.46 30.99

Table 6
Accuracy (Acc.) and retention (%) results obtained by: Orig., TS, ICF, GCNN and BSPS using k-NN, k = 1

Dataset Orig. TS ICF GCNN BSPS
Acc. % Acc. % Acc. % Acc. % Acc. %

Bridges 64.00 100 27.00 23.37 38.36 22.21 47.00 91.92 53.25 50.12
Echocardiogram 86.78 100 88.92 7.67 96.21 41.75 93.39 27.62 88.64 20.98
Glass 70.50 100 68.16 10.95 68.39 32.91 72.38 61.16 67.22 41.74
Iris 94.00 100 94.66 5.92 94.00 45.03 95.33 36.22 94.00 13.11
Liver 65.24 100 70.44 2.05 59.68 27.63 64.94 84.05 62.02 54.61
New Thyroid 95.80 100 93.96 3.82 92.05 53.22 95.36 30.28 93.07 13.12
Tae 58.29 100 58.20 9.19 56.25 5.59 51.11 45.55 59.62 49.52
Wine 94.93 100 94.93 4.80 89.82 44.44 94.96 79.02 94.96 11.67
Zoo 98.89 100 93.33 11.23 81.22 16.54 98.89 26.04 93.33 24.07

Average 80.49 100 79.55 8.83 76.04 29.85 79.25 53.54 78.46 30.99

Fig. 3. Accuracy obtained by the different subsets using the unseen (third partition) as testing set.

In the previous experiments, the value for k-NN was k = 3 but it is important to know the performance
of the prototype selection methods varying the k’s value, so we report results obtained using k = 1
(Tables 5–8, Fig. 4) and k = 5 (Tables 9–12, Fig. 5).
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Table 7
Results obtained by: Orig., DROPs and BSPS for numeric datasets using k-NN, k = 1

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Glass 70.50 100 62.60 17.96 68.29 23.78 68.64 19.78 67.27 22.38 69.59 19.38 67.22 41.74
Iris 94.00 100 82.67 5.41 95.33 14.00 96.00 11.11 96.00 11.63 94.00 8.44 94.00 13.11
Liver 65.24 100 58.26 22.83 62.58 28.60 60.58 24.83 63.72 27.15 64.04 26.09 62.02 54.61
New Thyroid 95.80 100 83.87 7.85 92.14 12.30 92.62 11.42 92.14 11.73 93.53 8.53 93.07 13.12
Wine 94.93 100 91.11 7.30 94.41 11.86 95.52 11.05 95.52 11.24 94.97 6.18 94.96 11.67

Average 84.09 100 75.70 12.27 82.55 18.11 82.67 15.64 82.93 16.83 83.23 13.72 82.25 26.85

Table 8
Results obtained by: Orig., TS, ICF, POP, POC-NN, GCNN and BSPS for numeric datasets using k-NN, k = 1

Dataset Orig. TS ICF POP POC-NN GCNN BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Glass 70.50 100 68.16 10.95 68.39 32.91 59.09 47.18 71.88 57.42 72.38 61.16 67.22 41.74
Iris 94.00 100 94.66 5.92 94.00 45.03 84.66 16.00 86.00 12.88 95.33 36.22 94.00 13.11
Liver 65.24 100 70.44 2.05 59.68 27.63 58.82 65.24 55.13 58.09 64.94 84.05 62.02 54.61
New Thyroid 95.80 100 93.96 3.82 92.05 53.22 87.98 13.90 93.03 15.34 95.36 30.28 93.07 13.12
Wine 94.93 100 94.93 4.80 89.82 44.44 93.85 34.51 93.23 40.82 94.96 79.02 94.96 11.67

Average 84.09 100 84.43 5.51 80.79 40.65 76.88 35.37 79.85 36.91 84.59 58.15 82.25 26.85
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Fig. 4. Scatter graphic from average results shown in Tables 7 and 8.

According to the results shown in Tables 1–12, for k = 3 and k = 5, the method that obtained the
lowest accuracy was ICF which had good performance for k = 1. The performance of the other methods
was only slightly affected varying the value of k. For k = 1 and 3, in the average case for all the datasets
(Tables 1–2, 5–6), the best methods were TS and GCNN respectively, and for k = 5 (Tables 9–10) the
best method was DROP2 followed by BSPS.

BSPS is a prototype selection method which uses a classifier as evaluation function in the internal
selection process. In the above experiments we used k-NN as evaluation function, but in order to show the
performance of the prototype selection obtained for other classifiers, we carried out some experiments
using the subsets obtained by the prototype selection methods in the previous experiments (using k-NN,
k = 3) as training for: LWLR (Locally Weighted-Linear Regression) [4] which is an instance based
classifier, SVM (Support Vector Machines) [32] and feedforward backpropagation Neural Networks [8],
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Table 9
Accuracy (Acc.) and retention (%) results obtained by: Orig., DROPs and BSPS using k-NN, k = 5

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Bridges 64.18 100 64.18 27.37 65.73 31.58 61.91 12.67 62.27 23.16 62.55 25.26 60.00 62.10
Echocardiogram 93.21 100 92.50 14.93 92.89 19.70 92.89 18.18 91.71 18.18 90.70 19.40 93.21 20.42
Glass 65.41 100 60.63 28.14 65.35 33.80 61.10 19.42 63.51 29.07 59.72 28.66 61.30 46.00
Iris 93.33 100 91.67 9.04 93.00 15.48 93.33 14.30 93.33 14.37 91.67 11.78 93.33 16.82
Liver 66.37 100 65.17 28.86 65.77 38.20 66.61 23.8 64.60 32.82 68.70 31.18 67.63 59.48
New Thyroid 93.54 100 86.02 13.08 93.51 18.34 92.62 13.59 91.62 16.74 90.69 14.11 90.77 15.07
Tae 47.79 100 47.17 38.27 43.13 44.00 37.83 26.71 45.13 35.76 41.08 32.60 41.87 53.64
Wine 94.33 100 90.08 24.97 94.33 20.84 91.71 14.92 91.33 23.78 93.61 20.97 94.33 16.53
Zoo 93.33 100 91.11 26.42 91.11 28.52 87.78 24.81 90.00 27.53 93.33 25.56 93.33 24.69

Average 79.05 100 76.50 23.45 78.31 27.83 76.20 18.71 77.06 24.60 76.89 23.28 77.31 34.97

Table 10
Accuracy (Acc.) and retention (%) results obtained by: Orig., TS, ICF, GCNN and BSPS using k-NN, k = 5

Dataset Orig. TS ICF GCNN BSPS
Acc. % Acc. % Acc. % Acc. % Acc. %

Bridges 64.18 100 48.84 14.73 41.36 9.47 50.63 80.45 60.00 62.10
Echocardiogram 93.21 100 82.32 12.12 75.00 13.63 90.89 30.26 93.21 20.42
Glass 65.41 100 50.90 13.19 57.14 3.99 58.39 60.85 61.30 46.00
Iris 93.33 100 68.66 7.92 80.00 7.11 75.33 37.25 93.33 16.82
Liver 66.37 100 69.85 9.11 51.42 2.44 57.94 83.47 67.63 59.48
New Thyroid 93.54 100 92.66 7.23 81.81 4.29 93.98 30.64 90.77 15.07
Tae 47.79 100 42.00 19.93 40.20 6.91 46.25 34.42 41.87 53.64
Wine 94.33 100 90.49 9.04 74.70 4.68 94.33 78.71 94.33 16.53
Zoo 93.33 100 85.18 16.46 66.66 10.24 71.11 26.29 93.33 24.69

Average 79.05 100 70.10 12.19 63.14 6.97 70.98 51.37 77.31 34.97

Table 11
Results obtained by: Orig., DROPs and BSPS for numeric datasets using k-NN, k = 5

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Glass 65.41 100 60.63 28.14 65.35 33.80 61.10 19.42 63.51 29.07 59.72 28.66 61.30 46.00
Iris 93.33 100 91.67 9.04 93.00 15.48 93.33 14.30 93.33 14.37 91.67 11.78 93.33 16.82
Liver 66.37 100 65.17 28.86 65.77 38.20 66.61 23.8 64.60 32.82 68.70 31.18 67.63 59.48
New Thyroid 93.54 100 86.02 13.08 93.51 18.34 92.62 13.59 91.62 16.74 90.69 14.11 90.77 15.07
Wine 94.33 100 90.08 24.97 94.33 20.84 91.71 14.92 91.33 23.78 93.61 20.97 94.33 16.53

Average 82.60 100 78.71 20.82 82.39 25.33 81.07 17.21 80.88 23.36 80.88 21.34 81.47 30.78

two non instance based classifiers.
In Tables 13–15 and Figs 6–8 the results are shown. In this experiment we have tested only numeric

datasets because LWLR, SVM and Neural Networks are restricted to this kind of data. For each dataset,
the accuracy results obtained by the original training set (Orig.) and BSPS are reported, as well as the
retention results (%). According to results reported in Table 13 and Fig. 6, using LWLR, BSPS had a
good behavior since GCNN and BSPS obtained the best accuracy.

Based on Table 14 and Fig. 7, the best accuracy results using SVM was obtained by GCNN.
For Neural Networks (Table 15 and Fig. 8), in the average case, the best method in accuracy was

GCNN. For this classifier, BSPS was better than the other methods (excluding GCNN).
Almost all methods tested in Tables 13–15 are based on the k-NN rule but TS and BSPS allow us to
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Table 12
Results obtained by: Orig., TS, ICF, POP, POC-NN, GCNN and BSPS for numeric datasets using k-NN, k = 5

Dataset Orig. TS ICF POP POC-NN GCNN BSPS
Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %

Glass 65.41 100 50.90 13.19 57.14 3.99 54.54 29.17 62.12 57.42 58.39 60.85 61.30 46.00
Iris 93.33 100 68.66 7.92 80.00 7.11 77.33 16.00 86.66 12.88 75.33 37.25 93.33 16.82
Liver 66.37 100 69.85 9.11 51.42 2.44 60.00 61.46 54.49 58.09 57.94 83.47 67.63 59.48
New Thyroid 93.54 100 92.66 7.23 81.81 4.29 87.42 13.90 93.46 15.34 93.98 30.64 90.77 15.07
Wine 94.33 100 90.49 9.04 74.70 4.68 91.07 34.51 94.33 40.82 94.33 78.71 94.33 16.53
Average 82.60 100 74.51 9.30 69.01 4.50 74.07 31.01 78.21 36.91 75.99 58.18 81.47 30.78

Table 13
Accuracy results obtained using LWLR

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 TS ICF POP POC-NN GCNN BSPS
Glass 57.85 46.58 48.48 51.66 53.18 54.06 50.86 53.56 53.48 50.41 56.88 54.54
Iris 98.00 82.66 93.33 92.00 92.00 92.00 93.33 91.33 87.33 85.33 95.33 93.33
Liver 70.13 68.63 68.68 68.63 67.51 68.95 68.40 68.66 63.62 68.68 70.13 68.68
New Thyroid 91.16 77.83 78.28 75.43 78.88 79.18 79.15 77.27 73.85 64.02 76.19 79.15
Wine 92.15 80.26 80.65 78.53 78.23 83.63 80.93 85.88 78.59 86.40 92.15 83.26

Average 81.86 71.19 73.88 73.25 73.96 75.56 74.53 75.34 71.37 70.97 78.14 75.79

Table 14
Accuracy results obtained using SVM

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 TS ICF POP POC-NN GCNN BSPS
Glass 65.34 58.72 60.17 62.48 62.03 56.99 59.09 59.97 54.93 57.46 66.80 61.90
Iris 96.00 93.33 95.33 94.00 93.33 95.33 94.66 96.00 85.33 94.00 94.66 94.00
Liver 69.91 68.26 68.26 68.26 67.97 68.56 69.73 67.97 60.10 68.56 69.73 69.73
New Thyroid 93.54 90.47 90.90 91.19 90.90 93.07 88.21 91.73 90.72 93.54 89.78 89.93
Wine 97.18 91.63 93.82 95.33 95.52 91.01 83.26 92.96 97.18 91.01 94.82 92.15

Average 84.39 80.48 81.70 82.25 81.95 80.99 78.99 81.73 77.65 80.91 83.16 81.54

Table 15
Accuracy results obtained using Neural Networks

Dataset Orig. DROP1 DROP2 DROP3 DROP4 DROP5 TS ICF POP POC-NN GCNN BSPS
Glass 60.79 45.28 50.88 55.17 49.89 49.95 57.00 38.09 34.95 45.69 46.66 59.00
Iris 96.00 80.66 84.00 90.00 90.66 80.66 72.59 95.33 79.33 72.00 91.33 83.33
Liver 72.45 62.36 65.42 63.51 65.51 65.26 64.16 61.11 55.07 67.25 67.69 65.42
New Thyroid 94.37 74.97 84.45 86.16 81.88 82.68 76.25 84.02 86.40 93.05 89.23 87.01
Wine 96.63 83.66 89.83 88.13 84.83 89.37 76.94 84.37 84.83 84.83 96.63 88.88

Average 84.05 69.39 74.92 76.59 74.55 73.58 69.39 72.58 68.12 72.56 78.31 76.73

use any classifier during the selection process. Therefore, some experiments with TS and BSPS using
other classifiers were done. In Table 16 we report results obtained by TS and BSPS using LWLR, SVM
and Neural Networks in the selection process. We can notice that using the same classifier in both
selection and classification, the accuracy results are better than those obtained in the previous experiment
(Tables 13–15). Based on the results, we can observe that for these classifiers, in the average case, BSPS
had the best performance.

In following sections, for BSPS and TS, we report the results obtained when the same classifier is used
in both selection and classification stages.
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Table 16
Results obtained by TS and BSPS using LWLR, SVM and Neural Networks classifiers during the selection process

Dataset LWLR SVM Neural Networks
Orig. TS BSPS Orig. TS BSPS Orig. TS BSPS

Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. % Acc. %
Glass 57.85 100 52.38 6.64 55.99 88.48 65.34 100 60.75 11.36 59.09 57.14 60.79 100 42.96 6.64 52.81 88.40
Iris 98.00 100 98.00 6.22 98.00 22.22 96.00 100 93.33 3.62 93.33 56.79 96.00 100 78.66 6.14 95.99 51.66
Liver 70.13 100 50.00 0.96 71.87 69.45 69.91 100 66.87 3.25 69.77 87.98 72.45 100 64.86 3.25 70.73 95.35
New Thyroid 91.16 100 92.92 7.12 92.59 49.48 93.54 100 70.45 3.82 92.61 56.42 94.37 100 79.43 4.08 92.09 75.52
Wine 92.15 100 88.88 2.49 93.26 46.25 97.18 100 93.88 4.93 98.14 10.18 96.63 100 84.90 7.42 93.30 49.48

Average 81.86 100 76.44 4.69 82.34 55.18 84.39 100 77.06 5.40 82.59 53.70 84.05 100 70.16 5.51 80.98 72.08
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Fig. 5. Scatter graphic from average results shown in Tables 11 and 12.
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Fig. 6. Scatter graphic from average results shown in Table 13.

3.2. Combining BSPS with other prototype selection methods

In order to reduce the BSPS runtimes we combined BSPS with other prototype selection methods.
We first apply a prototype selection method for reducing the sample and then we apply BSPS, that is,
BSPS is applied to previously reduced samples. Notice that, this pre-reduction is needed mainly in large
dataset since BSPS runtime depends on the number of prototypes in the dataset.
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For reducing the sample, we used ENN, DROP2. . . DROP5 and GCNN, that is, we applied the
combinations ENN + BSPS, DROP + BSPS and GCNN + BSPS.

3.2.1. Experimental comparison among BSPS combinations
In this section, we report the results obtained by our combinations using k-NN, k = 3, these results

are shown in Table 17 and Fig. 9.
The ENN + BSPS, DROP + BSPS and GCNN + BSPS retention results were better than BSPS. The

BSPS accuracy results outperformed DROP + BSPS but they reduce the BSPS runtimes.
In Table 18, we show the average runtimes1 spent by these methods for each dataset. The results in

Table 18 show that the combination of BSPS with other methods indeed reduces the BSPS runtimes.
In Tables 19–21 and Figs 10–12, we show the results obtained by TS and the combinations of BSPS

using LWLR, SVM and Neural Networks in the selection process.

1These runtimes were obtained using an Intel Celeron CPU 2.4 GHz, 512 MB RAM.
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Fig. 9. Scatter graphic from average results shown in Table 17.
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Fig. 10. Scatter graphic from average results shown in Table 19.
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Fig. 11. Scatter graphic from average results shown in Table 20.

We can notice that although the BSPS combinations use methods based on the k-NN rule in the initial
step, BSPS allows obtaining good results by using other classifiers in the last step of the selection process.
In these experiments, for SVM and Neural Networks, all the BSPS combinations outperformed TS.

BSPS is a backward sequential technique for prototype selection, the counterpart of BSPS is FSPS
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Fig. 12. Scatter graphic from average results shown in Table 21.
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Fig. 13. Scatter graphic from average results shown in Table 23.

(Forward Sequential Prototype Selection) which starts with an empty set and at each step it includes
those prototypes that strictly enhance the accuracy (according to the evaluation function).

For prototype selection, starting from an empty set using FSPS will lead us to obtain bad accuracy
results because of the inclusion criterion of FSPS. Instead, we apply FSPS starting from an initial set,
which was obtained by ENN, DROP and GCNN methods, that is, as in the above experiment, we applied
ENN + FSPS, DROP + FSPS and GCNN + FSPS. The results are reported in Table 22.

Comparing Tables 17 and 22, we can observe that the accuracy obtained by the combinations of FSPS
was better than the obtained by BSPS and its combinations (Table 17). In addition, we can notice that
the subset sizes obtained by FSPS combinations were bigger than the obtained by the combinations of
BSPS.

In Tables 23–25 and Figs 13–15 we show the results obtained by the FSPS combinations and TS using
LWLR, SVM and Neural Networks in the selection process.

In these experiments, TS obtained the best reduction results but in accuracy, the FSPS combinations
outperformed TS. Among the FSPS combinations, the best accuracy results were obtained by ENN +
FSPS and GCNN + FSPS.
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Fig. 14. Scatter graphic from average results sown in Table 24.

0

20

40

60

80

100

60 65 70 75 80 85

Accuracy

R
et

en
ti

o
n

(%
)

Orig.

TS

ENN+FSPS

DROP2+FSPS

DROP3+FSPS

DROP4+FSPS

DROP5+FSPS

GCNN+FSPS

Fig. 15. Scatter graphic from average results sown in Table 25.

3.3. Restricted floating search for prototype selection

Since in BSPS there are not backtrack steps, it does not try to improve the quality of a subset by adding
prototypes. The backtrack steps can be done by the Sequential Floating Search (SFS) strategies [27]
which provide a good compromise between accuracy and reduction. SFS consists in applying conditional
inclusion/exclusion steps after each exclusion/inclusion in the set. This kind of search (as sequential
search) can be done in the backward and forward directions.

The backward SFS applies (after each exclusion step) a number of inclusion steps as long as the
classification results are better than the previously evaluated ones. The forward SFS is the counterpart
of backward SFS. These floating searches are very expensive therefore we propose a prototype selection
method based on the backward SFS but in a restricted way. Our method named Restricted Floating Pro-
totype Selection (RFPS) applies an exclusion process followed by the conditional inclusion of discarded
prototypes.

RFPS starts applying a pre-processing step followed by the exclusion process and finally the conditional
inclusion is applied over the prototype set previously selected (S, S ⊂ T ).The exclusion process is carried
out by applying BSPS.



J.A. Olvera-López et al. / Prototype selection based on sequential search 619

The selection process in RFPS consists in analyzing (conditional inclusion) the prototypes discarded
from T (prototypes in the set D = T − S) for including in S those prototypes such that their inclusion
improves the classification, that is, a prototype p ∈ D is included in S only if the classification obtained
using S ∪ {p} is better than the obtained using S. We used ENN, DROPs or GCNN methods for the
pre-processing step.

The RFPS algorithm is as follows:

RFPS (Training set T): prototype subset S
//pre-proocessing
Let S = subset obtained after applying ENN, DROPs or GCNN over T
Best val = Classif(S)
Repeat //exclusion process

Worst = None
For each prototype p in S

S’ = S-{p}
Eval = Classifier(S’)
If Eval � Best val

Then Worst = p
Best val = Eval

If Worst �= None
Then S = S-{Worst}

Until Worst == None or |S| == 1
D = T-S
For each prototype pi in D //conditional inclusion

S” = S∪{pi}
Eval = Classifier(S”)
If Eval > Best val

Then Best val = Eval
S = S∪{pi}

Return S

The RFPS is a restricted floating search method because first, it applies only an exclusion process
followed by the conditional inclusion.

This restricted floating method can be done in the inverse direction (RFPS-Inv), that is, first applying
an inclusion process followed by the conditional exclusion.

3.3.1. Experimental comparison of RFPS and RFPS-Inv
We have applied both RFPS and RFPS-Inv using k-NN, k = 3 over the datasets used for testing BSPS.

The results are reported in Tables 26 and 27. In Table 26, ENN + RFPS is the RFPS method using ENN
for the pre-processing step and in the same way, for DROP2 + RFPS, . . . , DROP5 + RFPS, GCNN +
RFPS, the DROP2, . . . , DROP5 and GCNN methods were respectively used.

We can observe that RFPS outperformed to RFPS-Inv because this last method discards relevant
prototypes in the final exclusion step. In addition, the accuracy obtained by RFPS is better than the
obtained by the BSPS combinations (Table 17); this is because RFPS includes relevant prototypes
discarded in the exclusion steps.

As a consequence of the final inclusion step, the prototype sets obtained by RFPS are slightly bigger
than those obtained by RFPS-Inv and BSPS combinations.

As in previous experiments, in Tables 28–30 and Figs 16–18, the results obtained by RFPS using
LWLR, SVM and Neural Networks in the selection process are reported. Based on these results,
we can notice that because of the conditional inclusion, again RFPS outperforms BSPS combinations
(Tables 19–21).
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Fig. 16. Scatter graphic from average results shown in Table 28.
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Fig. 17. Scatter graphic from average results shown in Table 29.
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Fig. 18. Scatter graphic from average results shown in Table 30.

In Table 31 we report the runtimes spent by RFPS. We can observe that RFPS spent more runtime than
the BSPS combinations (see Table 18) because of the conditional inclusion but there is a small runtime
difference between them. In addition, both RFPS and BSPS combinations spent much less runtime than
BSPS.



J.A. Olvera-López et al. / Prototype selection based on sequential search 623

Ta
bl

e
31

R
un

tim
es

(i
n

se
co

nd
s)

sp
en

tb
y

R
F

P
S

D
at

as
et

E
N

N
+

R
FP

S
D

R
O

P2
+

R
FP

S
D

R
O

P3
+

R
FP

S
D

R
O

P4
+

R
FP

S
D

R
O

P5
+

R
FP

S
G

C
N

N
+

R
FP

S
B

ri
dg

es
10

83
.6

2
40

.1
0

25
.5

0
33

.4
0

32
.1

0
14

53
.6

8
E

ch
oc

ar
di

og
ra

m
46

5.
21

8.
50

7.
10

7.
50

8.
70

15
.1

3
G

la
ss

43
1.

65
84

.4
7

51
.3

0
87

.9
0

55
.2

0
22

5.
84

Ir
is

36
6.

31
13

.8
0

11
.2

0
10

.3
0

12
.6

0
33

.1
2

L
iv

er
14

35
.1

0
37

2.
00

16
9.

80
17

0.
40

12
4.

70
23

45
.0

8
N

ew
T

hy
ro

id
12

79
.5

5
24

.9
0

16
.3

0
17

.5
0

12
.6

0
52

.1
8

Ta
e

57
.0

3
39

.7
0

21
.3

0
30

.6
0

36
.9

0
16

.3
1

W
in

e
84

3.
92

19
.2

0
24

.5
0

21
.3

0
13

.9
0

64
9.

83
Z

oo
15

32
.6

2
19

.3
7

19
.6

0
17

.8
0

14
.7

0
20

.5
7

A
ve

ra
ge

83
2.

78
69

.1
2

38
.5

1
44

.0
8

34
.6

0
53

4.
64



624 J.A. Olvera-López et al. / Prototype selection based on sequential search

0

20

40

60

80

100

60 65 70 75 80 85 90
Accuracy

R
et

en
ti

o
n

(%
)

Orig
DROP1
DROP2
DROP3
DROP4
DROP5

GCNN
ICF
POP
POC-NN
TS
BSPS
ENN+BSPS
DROP2+BSPS
DROP3+BSPS
DROP4+BSPS

DROP5+BSPS
GCNN+BSPS
ENN+FSPS
DROP2+FSPS
DROP3+FSPS
DROP4+FSPS
DROP5+FSPS
GCNN+FSPS
ENN+RFPS
DROP2+RFPS
DROP3+RFPS
DROP4+RFPS
DROP5+RFPS
GCNN+RFPS

Fig. 19. Scatter graphic of the results obtained by all the prototype selection methods using k-NN, k = 3.

4. Discussion

In Section 3.1, we introduced the BSPS prototype selection method based on backward sequential
search. In our experiments, BSPS obtained small subsets but with a slight reduction in the classification
accuracy, on the average case.

Due to the high complexity of BSPS, this method is useful for small datasets. On the other hand, for
medium-large datasets we can apply the combinations of BSPS that were proposed in Section 3.2. These
combinations reduce the BSPS runtimes.

In BSPS and its combinations there are not backtrack steps, therefore in Section 3.3 we proposed two
Restricted Floating Prototype Selection methods (RFPS and RFPS-Inv) which allow including/excluding
prototypes previously discarded/included that contribute for a better accuracy.

In Figs 19–22, as a summary, we show the graphics of the average results obtained (using k-NN
with k = 3, LWLR, SVM and Neural Networks respectively) by all the methods tested along the
experimental section. In these results, the five datasets where all the methods can be applied were used
(numeric datasets without missing values). Among our methods, we have omitted RFPS-Inv since it
is outperformed by RFPS. On these figures, our methods are represented by the icons in dark color
meanwhile the other methods by the icons in light color.

The best accuracy results using k-NN were obtained by GCNN and DROP3. Among our sequential
methods, the best were ENN + FSPS and GCNN + FSPS.

Using classifiers different from k-NN, GCNN and the DROPs were outperformed in accuracy by some
of our methods which can use the same classifier in both the selection and classification stages. For
LWLR (Fig. 20) the best accuracy was obtained by BSPS, GCNN + RFPS and ENN + FSPS. For SVM
and Neural Networks (Figs 21–22), the best accuracy was obtained by ENN + RFPS and ENN + FSPS.
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Fig. 20. Scatter graphic of the results obtained by all the prototype selection methods using LWLR.
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Fig. 21. Scatter graphic of the results obtained by all the prototype selection methods using SVM.

From Fig. 21, we can see that even though SVM is itself a prototype selection method, better accuracies
can be obtained by applying a prototype selection method before SVM.

According to these results, we can notice that the best retention was obtained by ICF and TS but there
is a trade off between retention and accuracy since the best ones in retention are not the best in accuracy
and vice versa.
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Fig. 22. Scatter graphic of the results obtained by all the prototype selection methods using Neural Networks.

Another experiment consisted in evaluating the performance of the methods with different missing
values proportion in the data. In particular, we used the Iris data (which has not missing values) where
5%, 10%, 15%, 20% and 25% of the data were randomly changed as missing. We evaluated some of
the prototype selection methods (GCNN, DROP3, POC-NN, TS) and some of our best methods (ENN
+ FSPS, DROP4 + RFPS) according to Fig. 19. The results obtained are shown in Table 32.

Based on these results, we can notice that missing values affects the accuracy since the more number
of missing values, the lower accuracy is. The best methods and the less affected by the missing values
were DROP3, ENN + FSPS and DROP4 + RFPS.

4.1. Experiments with synthetic data

Finally, we present some experiments to visualize the prototype selection in a two-dimensional prob-
lem. We tested an artificial dataset with a complex frontier, this frontier was created by hand and randomly
we created prototypes over each class side. The dataset consists of 330 prototypes per class. The results
obtained after applying some methods compared in previous sections are depicted in Figs 23–24. For
each method, we show in parenthesis the obtained accuracy.

All methods shown in Figs 23–24 preserved prototypes near to the frontier. These border prototypes
give useful information to preserve the class discrimination regions. These results just showed the kind
of prototypes selected by some of the methods in a two dimensions problem. In problems with more
than two dimensions, our methods also had a good performance as it can be seen in the results shown in
Section 3.

5. Conclusions and further extensions

The quality of the training set in supervised classification problems is very important because based on
it new prototypes will be classified. Unfortunately, in the practice the samples contain prototypes with a
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Fig. 23. Results obtained in the synthetic data experiment by: DROP3, DROP4, DROP5, TS, POP and ICF.

null or even negative contribution for classification accuracy; therefore, it is necessary to select from the
original sample a training subset such that it does not contain irrelevant prototypes.

In this paper, we have explored the sequential search for prototype selection. We proposed three
sequential prototype selection methods; the first of them is BSPS, based in backward sequential search
that constitutes an alternative for reducing the training data. Based on our experimentation we can say
that BSPS significantly reduces the size of the original sample preserving good classification accuracy.
The first point is a desirable condition for classifiers, especially for instance-based classifiers, because if
we provide a small training sample they will reduce their runtimes at the classification stage.

From the experimental results, when our proposed methods were compared against other methods,
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Fig. 24. Results obtained in the synthetic data experiment by: POC-NN, BSPS, GCNN, GCNN + BSPS, DROP4 + BSPS,
DROP2 + FSPS, DROP5 + RFPS and ENN + BSPS.

we found that BSPS has a good compromise between classification accuracy and sample reduction. In
addition, our method obtained better results than other well-known methods such as DROP1, ICF and
tabu search.

In order to reduce the runtimes of BSPS, we proposed methods that consist in combining BSPS
with other prototype selection methods (ENN, DROPs and GCNN). The results obtained show that our
combinations slightly reduce the accuracy obtained by BSPS but they spend less runtime.

In addition, we have proposed two restricted floating search methods (RFPS and RFPS-Inv) for
prototype selection. These methods allow backtrack steps, which cannot be done in BSPS and its
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combinations. According to our experimentation, RFPS was better than RFPS-Inv. Due to the conditional
inclusion in RFPS, this method spends more runtime than BSPS combinations but both RFPS and BSPS
combinations spend much less runtime than BSPS.

Finally, we want to remark that when k-NN is required for classification, the best methods for prototype
selection in our experiments were DROPs and GCNN; but when we use other classifiers as LWLR, SVM
or Neural Networks, some of our methods had the best performance. This is due to the fact that our
methods (and tabu search) can use the same classifier for both selection and classification steps.

As future work, we are going to test some heuristics for reducing the order dependence of our methods.
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