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1 Introduction

Multimedia systems deal with heterogeneous data, such
as text, graphics, images, audio, video and animations.
Generally, multimedia data is grouped into two types:
continuous media (e.g., audio and video) and discrete
media (e.g., text, data and images) (Geyer et al., 1996).
The main difference between these two types is that

while continuous media events are considered to be
executed during a period of time, discrete media events
are considered to be executed at specific timeless
points. One open research area in distributed multimedia
systems involves intermedia synchronisation. Intermedia
synchronisation concerns the preservation of temporal
dependencies among the application data from the time
of generation to the time of presentation. For example,
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in a one-to-many synchronous telemedicine session,
a specialist exposes to a group of colleagues his diagnosis,
which was obtained from the medical images of a patient
(e.g., radiography, magnetic resonance and tomography).
In this case, the specialist sends medical images (discrete
media) through a teleradiology tool and he makes use
of two continuous medias (audio and video) to give
comments about them. The intermedia synchronisation,
in this scenario, must ensure that at any reception
participant (Client) (see Figure 1), the images must be
presented according to the phrases pronounced with its
corresponding video. A simple on-site meeting situation
such as

“We distinguish in the next tomography . . . ”

(associated with the correspondent concurrent
presentation image action) is not simple to reproduce
on a telemedicine session since the communication
channels are asynchronous and independent, and the
media involved is heterogeneous (Balaouras et al.,
2000). The term next in the scenario establishes, at
an application level, a temporal dependency with the
remaining media involved. In such case, if temporal
dependencies are not ensured, it is possible that a
receiver can associate, without distinction, this phrase
with the current, the preceding or the following medical
image. Satisfying temporal dependencies is even more
complex for cooperative many-to-many multimedia
scenarios, where geographically distributed participants
simultaneously communicate. The present work mainly
focuses on this last kind of scenarios, where in principle
there are no global references, such as a wall clock or a
shared memory.

Figure 1 A telemedicine multimedia scenario example

Several works attempt to give a possible solution to
the intermedia synchronisation in distributed systems
(Bulterman et al., 2008; Geyer et al., 1996; Ishibashi
et al., 1999; Plesca et al., 2005; Shimamura et al., 2001);
however, as we will see in the related work section, these
works are far from resolving the problem. In this paper,
we propose an intermedia synchronisation mechanism
based on the logical mapping concept presented by
Morales Rosales and Pomares Hernandez (2006). We use
the logical mapping to specify, according to causal
dependencies, any kind of temporal relationship among

the multimedia data involved: continuous-continuous,
discrete-discrete, and discrete-continuous relations.
Our mechanism takes as base the specification obtained
by the logical mapping in order to establish ‘when’ a
multimedia data must be delivered, and consequently,
executed by a participant.

We emulate the mechanism considering some wide
network conditions and using MPEG-4 encoders
(Mackie et al., 2000). We note that even when the
audio and video are considered to be continuous, their
transmission using MPEG-4 (and similar encoders) is
in fact non-continuous since compression techniques,
such as silence compression and remotion of temporal
redundancy, are used. We show in this paper how our
mechanism takes into consideration this behaviour and
is able to reduce the intermedia synchronisation error
without needing to use previous knowledge of the system
nor global references.

This paper is structured as follows. Section 2
presents the most relevant related work. Next, in
Section 3, the system model is described, and the
background information is provided. In Section 4, the
temporal model concerning discrete and continuous
media is presented. The synchronisation mechanism
with a detailed description is shown in Section 5. The
emulation results are presented in Section 6. Finally, some
conclusions are given in Section 7.

2 Related work

Many works related to multimedia synchronisation exist.
We classify them according to the mode of execution,
namely: offline mode and inline mode. The offline
mode refers to when the specification of a temporal
scenario is manually made and previous to the media
data transmision. The most representative works in this
category are: the Object Composition Petri Net (OCPN)
model introduced by Little and Ghafoor (1990), the
timing and synchronisation model of SMIL (Bulterman
et al., 2008), and the time ontology model of OWL
(Hobbs and Pan, 2006). The main characteristic of the
works in this category is that they need complete previous
knowledge of the media data, the temporal dependencies
and/or the actions sequence order, before carrying out
the temporal specification.

On the other hand, we have the inline mode. In this
mode the temporal specification is carried out at runtime.
Most works in this category are primarily based on
the identification and preservation of physical time
constraints by using a common reference (wall clock,
shared memory, mixer, etc.) (Balaouras et al., 2000;
Perkins, 2003). These works usually try to answer the
synchronisation problem by measuring and ensuring,
based on a timeline, the period of physical or virtual time
elapsed (δt) between certain points. Such points can be,
for example, the begin (x−), end (x+) and/or discrete
events (m1) of the media involved (see Figure 1).
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Few works address intermedia synchronisation at
runtime without the use of a global reference, which is
desirable when the media data have different sources
and the transmission delay is not negligible. These last
works are primarily based on the identification of logical
dependencies. There are two main works based on logical
dependencies: The protocol of Shimamura et al. (2001)
and the work of Plesca et al. (2005).

Shimamura et al. (2001) establishes six logical
precedence relations at an object level (top, tail, full,
partial, inclusive and exclusive). These relations are
specified based on the causal dependencies of the begin
(v−) and end (v+) points of the objects. The objects
are represented by intervals composed of messages. In
order to obtain a fine level synchronisation, Shimamura
introduces an interval segmentation mechanism that
arbitrarily divides the objects into predetermined fixed
length segments. This mechanism uses two logical
relations: the precedes relation and the concurrent
interval relation. The precedes relation of Shimamura is
defined as:

U → V if u+ → v−

while the concurrent relation is defined as:

U ‖ V if ¬(u+ → v−) ∧ ¬(v+ → u−).

We note that this mechanism can be inaccurate since it
does not clearly establish, at a segment level, a translation
of the possible timeline temporal interval relations
identified by Allen (1983) (before, meets, overlaps, starts,
finishes, includes, equals). Shimamura’s work, as a
consequence of an arbitrary segmentation and a broad
definition of the concurrent interval relation, determines
six of Allen’s seven basic relations as ‘concurrent’
(see Table 1). A pair of concurrently related segments
(intervals) means that no order can be established
between the messages that compose them. In other words,
it is not possible to clearly determine when the media data
must be executed.

Table 1 Allen’s relations with their corresponding
Shimamura’s relations

Allen’s relations Shimamura’s relations

U before V U precedes V

U equals V

U meets V

U overlaps V U concurrent V

U during V

U starts V

U finishes V

Plesca et al. (2005) have considered a practical
approach for intermedia synchronisation by using causal
dependencies. Plesca’s work uses causal messages as
synchronisation points to satisfy temporal dependencies

among continuous media. This work, in a heuristic
manner, introduces causal synchronisation points and
shows that these points can be useful, but it does not
resolve the problem of when causal messages must be
introduced.

3 Preliminaries

3.1 The system model

Participants: The application under consideration is
composed of a set of participants P = {i, j, . . . }
organised into a group that communicates by reliable
broadcast asynchronous message passing. A participant
can only send one message at a time.

Messages: We consider a finite set of messages M , where
each message m ∈ M is identified by a tuple m = (p, x),
where p ∈ P is the sender of m, and x is the local logical
clock for messages of p, when m is broadcasted. The set
of destinations of a message m is always P .

Events: Let m be a message. We denote by send(m) the
emission event and by delivery(p, m) the delivery event
of m to participant p ∈ P . The set of events associated to
M is the set E = {send(m) : m ∈ M} ∪ {delivery(p, m) :
m ∈ M ∧ p ∈ P}. The participant p(e) of an event e ∈ E
is defined by p(send(m)) = p and p(delivery(p, m)) = p.
The set of events of a participant p is Ep = {e ∈ E :
p(e) = p}.
Intervals: We consider a finite set I of intervals, where
each interval A ∈ I is a set of messages A ⊆ M sent by
participant p = Part(A), defined by the mapping Part :
I → P . We denote by a− and a+ the endpoint messages
of A, and due to the sequential order of Part(A), we
have that for all m ∈ A : a− �= m and a+ �= m implies
that a− → m → a+. We note that when |A| = 1 (discrete
media), we have that a− = a+; in this case, a− and a+ are
denoted indistinctly by a.

3.2 Background and definitions

Happened-Before Relation for Discrete Media. The
Happened-Before relation is a strict partial order defined
by Lamport (1978) (i.e., irreflexive, asymmetric and
transitive) denoted by e → e′ (i.e., e causally precedes e′)
defined as follows:

Definition 3.1: The causal relation ‘→’ is the least
partial order relation on E satisfying the two following
properties:

1 For each participant p, the set of events Ep involving
p is totally ordered: e, e′ ∈ Ep ⇒ e → e′ ∨ e′ → e

2 For each message m and destination p ∈ P of m, the
emission of m precedes its delivery; i.e., send(m) →
delivery(p, m).
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By using ‘→’, Lamport defines that two events are
concurrent as follows:

e ‖ e′ if ¬(e → e′ ∨ e′ → e).

A behaviour or a set of behaviours satisfies causal order
delivery if the diffusion of a message m causally precedes
the diffusion of a message m′, and the delivery of m
causally precedes the delivery of m′ for all participants
that belong to P . Formally, we have:

Definition 3.2: Causal Order Delivery (broadcast case):
If send(m) → send(m′), then ∀p ∈ P : delivery(p, m) →
delivery(p, m′)

Partial Causal Relation (PCR). The PCR relation was
introduced by Fanchon et al. (2004) (Definition 3.2).
It considers a subset M ′ ⊆ M of messages. The PCR
induced by M ′ takes into account the subset of events
E′ ⊆ E that refer to send or delivery events of the
messages belonging to M ′. In our work, the PCR relation
is a non strict partial order (i.e., reflexive, asymmetric, and
transitive).

Definition 3.3: The partial causal relation ‘→E′ ’ is the
least partial order relation satisfying the two following
properties:

1 For each participant p ∈ P , the local restrictions of
→E′ and → to the events of E′

p coincide: ∀e, e′ ∈ E′
p :

e → e′ ⇔ e →E′ e′

2 For each message m ∈ M ′ and j ∈ P , the emission of
m precedes its delivery to j : j ∈ P ⇒ send(m) →E′

delivery(j, m).

Happened-Before Relation for Intervals. Lamport
(1986) establishes that an interval A happens before
another interval B if all elements that compose interval A
causally precede all elements of interval B. This definition
is used in the model presented in Section 4. However,
according to the specification of Intervals presented in
Section 3.1, the causal interval relation ‘→I ’ can be
expressed only in terms of the endpoints as follows:

Property 3.4: The relation ‘→I ’ is accomplished if the
two following conditions are satisfied:

1 A →I B if a+ →E′ b−

2 A →I B if ∃C | (a+ →E′ c− ∧ c+ →E′ b−)

where a+ and b− are the endpoints of A and B,
respectively, c− and c+ are the endpoints of C, and →E′

is the partial causal order (Definition 3.2) induced on
E′ ⊆ E, where E′, in this case, is the subset composed by
the endpoint events of the intervals in I. When |A| = 1,
we have that a− = a+ = a; and in this case, we consider
a → a.

Next, we present the simultaneous relation for intervals,
defined as follows:

Definition 3.5: Two intervals, A and B, are said to be
simultaneous ‘|||’ if the following condition is satisfied:

A ||| B ⇒ a− ‖ b− ∧ a+ ‖ b+.

The definition above means that one interval A can take
place at the ‘same time’ as another interval B.

Finally, we present the definition of causal delivery for
intervals based on their endpoints as follows:

Definition 3.6: Causal Broadcast Delivery for Intervals
If (a+, b−) ∈ A × B, send(a+) →E′ send(b−) ⇒ ∀p ∈ P ,
delivery(p, a+) →E′ delivery(p, b−), then ∀p ∈ P ,
delivery(p, A) →I delivery(p, B).

4 The logical mapping model

The logical mapping model, introduced by Morales
Rosales and Pomares Hernandez (2006) for continuous
media (interval-interval relations), specifies a temporal
scenario based on the identification of logical precedences
among the media involved. Specifically, a logical
mapping translates a temporal relation (see Table 2)
to be expressed in terms of the causal relation and
simultaneous relation for intervals previously presented
(Definition 3.3 and Property 3.4). In order to fully
work with temporal relations among multimedia data
(continuous and discrete data), we consider in this paper,
in addition to the interval-interval relations (Allen, 1983),
the point-point relations (Vilain, 1982) for discrete media
and the point-interval relations (Vilain, 1982) when
discrete and continuous media coexist.

Table 2 Logical mapping

∀(X, Y ) ∈ I × I

A(X, Y ) ← – if x− → y−, {x ∈ X : delivery(Part(Y ), x)
→ send(y−)}

– otherwise, ∅
C(X, Y ) ← – if y+ → x+, {x ∈ X : send(x) → delivery

(Part(X), y+)} − A(X, Y )
– otherwise, X − A(X, Y )

D(X, Y ) ← – if x+ → y+, Y − {y ∈ Y : delivery

(Part(Y ), x+) → send(y)}
– otherwise, Y

B(X, Y ) ← – if y+ → x+, X − {A(X, Y ) ∪ C(X, Y )}
– otherwise, Y − D(X, Y )

W (X, Y ) ≡ C(X, Y ) ||| D(X, Y )

S(X, Y ) ≡ A(X, Y ) →I W (X, Y ) →I B(X, Y )

The logical mapping translation (see Table 2) involves
every pair of intervals of a temporal relation. For
every pair, each interval is labelled as X or Y ,
such that x− → y− or x− ‖ y−. Once the X and Y
intervals are identified, they are segmented into four
subintervals:1 A(X, Y ), C(X, Y ), D(X, Y ), and B(X, Y ).
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These data segments, along with the interval definition
in Section 3.1, become new intervals. (Henceforth, we
can refer them only as A, C, D, and B when there
is no ambiguity in the context.) Finally, the general
causal structure S(X, Y ) = A(X, Y ) →I W (X, Y ) →I

B(X, Y ), is constructed, where W (X, Y ) determines if
overlaps exist between the present pair. We note that
the data segments can be constructed at runtime as the
events occurs in the system, based on the happened-
before dependencies of their endpoints.

To summarise, five logical mappings are identified:
precedes, simultaneous, ends, starts, and overlaps.
These five logical mappings, as we will show, are sufficient
to represent all possible intermedia temporal relations.

Notice that the resulting logical mappings represent
synchronisation specification units, which are automatic
processable descriptions of a given temporal relation.

We will now present the establishment of the logical
mappings for point-point and point-interval relations.
The interval-interval relations have been presented
by Morales Rosales and Pomares Hernandez (2006)
(see Table 3).

4.1 Logical mapping for discrete media

Vilain establishes three possible basic point-point tem-
poral relations based on a timeline, which are before (<),
simultaneous (=) and after (>) (see Table 4 left column).

Table 3 Allen’s interval-interval relations and their logical mapping

Logical mapping
Allen’s relations Logical mapping Scenario example expressed on endpoints

U before V

precedes:

A →I B

a+ → b−

U equals V

simultaneous:

(C ||| D)
c−‖d−, c+‖d+

U meets V

overlaps:

U overlaps V
A →I (C ||| D) →I B

a+ → c−, a+ → d−

c−‖d−, c+‖d+

c+ → b−, d+ → b−

U during V

U starts V

starts:

(C ||| D) →I B

c−‖d−, c+‖d+

c+ → b−, d+ → b−

U finishes V

ends:

A →I (C ||| D)

a+ → c−, a+ → d−

c−‖d−, c+‖d+
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After applying Table 2 to each possible temporal relation,
we identify two logical mappings, which are precedes
and simultaneous (see Table 4, middle column). We can
see that these logical mappings are the same as defined
at an interval level for the continuous media. They
differ in the representation endpoints. For example,
when x < y (before relation), we have A = {x} and
B = {y}, and therefore, we obtain the logical mapping
A →I B. We have for this logical mapping an endpoint
representation a → b.

Table 4 Vilain’s point-point relations and their logical
mapping

Basic point Logical mapping
relations Logical mapping expressed on endpoints

x < y precedes:
a → b

y > x A →I B

simultaneous:
x = y c ‖ d

C ||| D

4.2 Logical mapping for discrete and continuous
media

Vilain’s point-interval algebra (Vilain, 1982) establishes
five basic temporal relations (see Table 5, left column).

We note that our model considers an additional temporal
relation called the simultaneous relation. This relation
is not considered by Vilain because by using a timeline,
a single discrete element (a point) cannot occur with
more than one element of an interval at the same
time (see Table 5, v during U point-interval relation).
By translating each temporal relation, we establish five
possible logical mappings (precedes, overlaps, ends,
starts, and simultaneous). We can see in Table 5 that
these logical mappings are sufficient to represent all
possible point-interval temporal relations. It is interesting
to note that by considering the continuous media and
the discrete media as intervals, the model can indistinctly
deal with both of them without a need for any particular
considerations.

5 Synchronisation mechanism

Our synchronisation mechanism fulfills at runtime three
main tasks: first, it performs the logical mapping
translation of a temporal scenario according to the
model previously presented; secondly, it carries out the
delivery of discrete and continuous media according to
the resultant logical mapping specification; and finally, it
takes corrective actions in order to reduce the possible
synchronisation error among the media data.

Table 5 Vilain’s point-interval relations and their logical mapping

Logical mapping
Vilain’s relations Logical mapping Scenario example expressed on endpoints

U before v

v after U

precedes:

A →I B

a+ → b

U starts v
starts:

(C ||| D) →I B
c− ‖ d, c+ → b− d → b−

U finishes v
ends:

A →I (C ||| D)
a+ → c−, a+ → d c− ‖ d

v during U
overlaps:

A →I (C ||| D) →I B

a+ → c−, a+ → d

c− ‖ d, c+ ‖ d

c+ → b−, d → b−

Not defined in
Vilain’s relations
U simultaneous v

simultaneous:

C ||| D
c− ‖ d, c+ ‖ d



An intermedia synchronisation mechanism 213

5.1 Logical mapping and causal delivery
algorithm

The algorithm uses four different causal messages: begin,
end, cut and discrete, and one type of FIFO messages
(fifo_p). The first three causal messages and the FIFO
message are used for the transmission of continuous
media. The algorithm initially defines a macro that
loads the send_continuous or the send_discrete function
according to the media type handled (see Table 6). Only
one reception function is defined since a participant is
able to receive continuous media or discrete media data.
Next, we describe the main components of the algorithm.

Messages. Formally, a message m in our algorithm is a
tuple m = (k, t, TP , H(m), data), where:

• k is a participant identifier.

• t = V T (p)[k] is the local participant clock value
with the identifier k when a causal message m
(begin, end, cut and discrete) is sent. The value of t
indicates the sequential number to which a causal
message belongs.

• H(m) contains identifiers of messages (k, t) causally
preceding causal message m. The information in
H(m) ensures the causal delivery of message m.
For (fifo_p) messages, structure H(m) is always
H(m) = ∅.

• TP is the type of message (begin, end, cut, discrete
and fifo_p).

• data is the structure that carries the media data.

Data Structures. The state of a participant p is defined by
three data structures: V T (p), CI(p) and last_fifo(p).

• V T (p) is the vector clock established by Mattern
(1989). The size of V T (p) is equal to the number of
participants in the group. Each participant p has an
element V T (p)[j], where j is a participant identifier.

• CI(p) is a set composed by entries (k, t), which is a
message identifier (the message diffused by the
participant identifier k with the logical clock
value t).

• last_fifo(p) has information about the last
(fifo_p) messages received by p. This structure is
important because it represents potential causal
messages.

5.1.1 Algorithm description

Construction of logical mappings. In order to explain
how our algorithm creates a logical mapping (Table 2),
we take the pair (V, m1) depicted in Figure 2 from
the previous telemedicine scenario. The referenced lines
correspond to the algorithm shown in Tables 6–9. The
process of creating a logical mapping in our work
is made by identifying the causal boundaries of the
concerned segment(s) from left to right. In this example
(see Figure 2), we first identify Y = {m1} and X = V .
Then, we proceed to determine segment A(V, m1).
To achieve this, we identify the left causal boundary a−

as equal to x− = x1, and the right causal boundary as
equal to a+ = xk. The right endpoint a+ is determined
by the last (fifo_p) message received by participant i
(Lines 42–44 Table 8) before the discrete send event
(send(m1)) (Lines 51–52, Table 8). Once we know the
causal boundaries of A(V, m1), we determine the set of
messages that compose it (A = {x1, x2, . . . , xk}). After
interval segment A(V, m1) is identified, we proceed to
recognise the causal boundaries of the interval segments
C(V, m1) and D(V, m1). At this point, we can identify
the left causal boundary c− = xk+1. With the discrete
send event send(m1), we establish that D(V, m1) =
{m1}. However, it is only until the delivery event of
m1 at j (delivery(j, m1)) that we can identify the
right endpoint of C(V, m1). At the reception of m1
by participant j, our algorithm sends a cut message
(Lines 75–76, Table 9) that establishes the endpoint
of interval C(V, m1) (c+ = xk+l) and the beginning of
interval B(V, m1) (cut = b− = xk+l+1). As a result, we
have C(V, m1) = {xk+1, xk+2, . . . , xk+l}. Finally, with
the send event of x+, we have b+ = x+ = xn, and
consequently, B(V, m1) = {xk+l+1, xk+l+2, . . . , xn}.

For our purpose, interval A(V, m1) identifies the
messages of V that must be executed before discrete
point m1. Interval C(V, m1) identifies the messages of
V that are concurrent to m1 and that can be executed
in any order. Interval B(V, m1) identifies the messages

Table 6 Synchronisation Algorithm Part I
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Table 7 Synchronisation Algorithm Part II

Table 8 Synchronisation Algorithm Part III
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Table 9 Synchronisation Algorithm Part IV

of interval V that must be executed after message m1.
In other words, at a message level, the resulting logical
mapping establishes that message m1 will be executed
by all participants after message a+ = xk and before
message b− = xk+l+1.

Figure 2 Logical mapping for the pair (V, m1)

Performing causal order delivery. The resultant logical
mapping for the example scenario is A(V, m1) →I

(C(V, m1)|||D(V, m1)) →I B(V, m1). To carry out the
interval causal delivery at a h = Client in terms of their
endpoints we need to ensure that:

• delivery(h, a+) →E′ delivery(h, c−),

• delivery(h, a+) →E′ delivery(h, d),

• delivery(h, c+) →E′ delivery(h, b−) and

• delivery(h, d) →E′ delivery(h, b−).

Since a+ = xk, c− = xk+1, c+ = xk+l and b− = xk+l+1,
the procedure of delivery(h, a+) →E′ delivery(h, c−)
and delivery(h, c+) →E′ delivery(h, b−) is accomplished
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by the FIFO property implemented by lines 56 and
81 of Table 9. The procedure of delivery(h, a+) →E′

delivery(h, d) is achieved in the following way. Initially,
message a+ = xk is sent as fifo_p. To consider it as
a causal message, participant j includes information
concerning xk in its causal history (Lines 42–44 Table 8),
and attaches this information to structure H(m1) of
the message d = m1 before its send event (Line 48,
Table 8). The causal delivery condition (Line 58) detects
that the interval D(V, m1) (D(V, m1) = {m1}) must
be delivered after the delivery at h of xk, and the
FIFO condition (Line 56, Table 9) establishes that xk

must be delivered after the delivery of messages xk′ ∈
A(V, m1) ⊆ X , such that k′ < k. For the requirement of
delivery(h, d)→E′ delivery(h, b−), message b− = xk+l+1
has attached information on its structure H(b−) about
the message m1 (Lines 14–15, Table 7). The causal
delivery condition (Line 58, Table 9) establishes that b−

should be delivered at h after the delivery of m1.

5.2 Correction of the synchronisation error

The main objective of the present section is to show
how it is possible to reduce the synchronisation error
among the media data by using the resulting logical
mapping specification of a temporal scenario. First of all,
we note that we work only with the interval endpoints
of the logical mapping specification. We take the causal
messages (endpoints) as synchronisation points. Each
time that an endpoint is received by a participant,
we take two corrective actions. First, we delay the
delivery of messages when they do not satisfy the causal
dependencies, and secondly, we discard messages when
the maximum waiting time (∆il) is exceeded. In our case,
we establish the value of ∆il according to the maximum
synchronisation error tolerated between the type of media
involved (Hac and Xue, 1997).

Waiting time period. In order to determine how much
time a message m must wait from its reception to its
delivery, we define the following function:

wait(m) : i = Part(m)
{∀m′ = (l, t′) ∈ H(m),

(a) t′ ≤ V T (p)[l] or

(b) receive_timep(m) + remainder_timem′(i, l)
≤ current_time(p)}

where receive_timep(m) returns the reception time of m
at participant p, the function current_time(p) has the
existing time at p and the remainder_timem′(i, l) returns
the possible wait time for the reception of m′. In general,
the function remainder_timem′(i, l) for a message m′ is
defined as follows:

remainder_timem′(i, l)

=

{
∆il − (last_rcvp(i) − last_rcvp(l)), if > 0,

0 otherwise.

The ∆il is the maximum waiting time established between
the media data with sources i and l, and the last_rcvp(k)
gives the time when the participant p has received the last
message by a participant k.

Therefore, the wait(m) function establishes that a
message m sent by the participant i (i = Part(m))
and received by a participant p will be immediately
delivered after each message m′ = (l, t′) that belongs to
H(m) has been either delivered at p (first condition)
or the maximum waiting time ∆il has elapsed (second
condition). If the second condition is satisfied, then
message m′ is discarded by participant p, and every
message m′′ = (l, t′′) such that t′′ > V T (p)[l] and t′′ < t′

is also discarded.
Once the function wait(m) is defined, it can be

inserted at line 59 of the algorithm (Table 9). In Figure 3,
we show an example of the behaviour of the wait(m)
function. In this case, the delivery of message m1 is
delayed until the delivery of a+ since a+ immediate
precedes the sending of m1 and consequently, it belongs
to H(m1). Since a+ has not been delivered to p, vector
V T (p) does not satisfy the first condition of the wait()
funtion. In this scenario, message a+ is delivered because
it arrives before the expiration of the maximum waiting
time ∆ij ; otherwise, this message will be discarded.

Figure 3 Example of synchronisation error correction

5.3 Measuring the synchronisation error

In order to evaluate the impact of the
synchronisation mechanism proposed in this paper,
we define two equations, the rcv_synch_errorp(m)
and dlv_synch_errorp(m). The function
rcv_synch_errorp(m) estimates the synchronisation
error by p at the reception of a causal message m, and
dlv_synch_errorp(m) estimates the synchronisation
error at the moment of the delivery of m, which is
measured after applying the correction mechanism.

The rcv_synch_errorp(m) is defined as follows:

rcv_synch_errorp(m)

=

∑
(l,t′)∈H(m) receive_timep(m) − last_rcvp(l)

|H(m)| . (1)

The dlv_synch_errorp(m) is defined as follows:

dlv_synch_errorp(m)

=

∑
(l,t′)∈H(m) delivery_timep(m) − last_dlvp(l)

|H(m)| (2)
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where delivery_timep(m) returns the delivery time of m
at participant p, and last_dlvp(l) gives the time when
participant p has delivered the last message saw from
participant l.

6 Emulation results

We have tested our synchronisation mechanism
considering some WAN network characteristics such
as transmission delay and partial order delivery. To
emulate a WAN network behaviour, we use the NIST
Net emulation tool (Carson and Santay, 2003). In order
emphasise the potential situation of unphased media data,
we construct an emulation environment, see Figure 4,
that consists of a group of four distributed hosts, three
of them transmitting live multimedia data, while the
other functions only as Client (Host Z). Each host has
two input and one output communication channels. The
sending hosts only transmit one media (audio, video
or images), see Figure 4. For the audio and video,
we use MPEG-4 encoders of the MPEG4IP project
(Mackie et al., 2000). For the case of audio, the silence
compression MPEG-4 CELP mode is used. In this mode,
we send a begin message each time that the TX_Flag
equals to 1 (indicates voice activity), and a frame is
send as an end message each time that TX_Flag �= 1
(indicates no or low voice activity). For the remaining
audio frames, we send them as fifo_p messages. For
the case of video, the video was encoded as a single
video object into a single video object layer with a rate
of 25 frames/s, the Group of Pictures (GoP) pattern
is set to IBBPBBPBBPBB. The I frames are sent as
begin messages, and the last B frames of the patterns
are send as end messages. The rest of the video frames
are sent as fifo_p messages. To emulate the sending
of images we randomly generate and transmit discrete
events, approximately each 1200ms based on a random
variable with normal distribution. These data are sent
as discrete messages. In this scenario, each host has the
synchronisation mechanism running and only the Client
measures the synchronisation error by using equations (1)
and (2). For simplicity, we consider only one maximum
waiting time for every pair of media data ∆ = 240ms,
which is the maximum synchronisation error established
for image-audio in real time in Hac and Xue (1997).

Figure 4 Emulation architecture

With this configuration, we present two tests; one with
optimal conditions, which means that the transmission
delay considered among the media data does not surpass
the synchronisation error tolerate; while in the other,
the transmission delay can be greater than the the
synchronisation error, resulting in not accomplishing of
the required QoS. The traffic conditions are presented in
Table 10.

Table 10 Transmission delay established for emulation

Data type Source Target Test 1 (ms) Test 2 (ms)

Video/audio Host X/Y Host Z 300 ± 120 300 ± 180

Still images Host W Host Z 200 ± 50 200 ± 100

Test 1. Under optimal conditions, we can see in Figure 5
that the estimated error at the reception time remains
acceptable; nevertheless, our mechanism, at the moment
of the media delivery, reduces the synchronisation error
that in this case is close to zero during almost the entire
transmission.

Figure 5 Test 1 graphics results: audio and video
(300 ± 120ms); still images (200 ± 50ms)

Figure 6 Test 2 graphics results: audio and video
(300 ± 180ms); image (200 ± 100ms)
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Test 2. For the second test, we can see in Figure 6 that
at the reception time, the synchronisation error surpasses
in several points the maximum error tolerated. This effect
can produce, at application level, the loss of coherency
among the media played. In this case, after applying our
mechanism, the error is decreased, making it acceptable
in nearly all cases.

7 Conclusions

We have presented an intermedia synchronisation
mechanism that mainly focuses on distributed multimedia
data. The mechanism addresses the problem of satisfying
any temporal dependencies for continuous-continuous,
discrete-continuous, and discrete-discrete relations.
Its core is the use of logical mappings, which specify
temporal relations without using global references based
on the causal dependencies of the media involved.
In order to be efficient, the proposed mechanism uses the
specification of logical mappings based on the endpoints.
In our work, these endpoints are sent as causal messages
which determine synchronisation points for any reception
process. To demonstrate the viability and effectiveness
of the synchronisation mechanism, we carry out the
emulation of the mechanism considering some aspects
of a WAN network environment and using MPEG-4
encoders. The emulation results show the benefits of our
mechanism by reducing in all cases the synchronisation
error of the system.

We note that further work is needed in order to
consider more network and media conditions, such as loss
of messages and intra-stream lifetime constraints. Our
attention is focused in this direction, and we expect to
have some interesting contributions shortly.
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Note

1We consider in our model that an interval can be empty. In
such case, the following properties apply:
− ∅ →I A ∨ A →I ∅ = A and ∅ ||| A ∨ A ||| ∅ = A.




