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Abstract:  We propose a method for modulation of coherence and 
polarization of electromagnetic fields, employing two crossed zero-twisted 
nematic liquid crystal spatial light modulators. In contrast to a similar 
technique analyzed by Shirai and Wolf [J. Opt. Soc. Am A, 21, 1907, 
(2004)] our method provides a wide range simultaneous modulation of 
coherence and polarization. The dependence of the obtained results on 
different definitions of electromagnetic coherence is considered. 
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1. Introduction   
 
When using laser illumination, it is frequently needed to destroy completely or partially the 
spatial coherence of an optical field. Such a situation arises, for example, in coherent imagery 
when it is necessary to eliminate undesirable speckle patterns [1] or in the problem of 
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generating propagation-invariant fields when it is necessary to create a secondary source with 
a special structure of spatial coherence [2,3]. The most efficient method to produce the desired 
changes of coherence is based on the use of a computer controlled liquid-crystal (LC) spatial 
light modulator (SLM) [4,5]. In Ref. 5 it was shown that using a zero-twisted nematic LC 
SLM, under certain conditions one can obtain not only the changes of coherence but also the 
changes of polarization of the incident optical field. This technique can be efficiently 
employed to modulate coherence or polarization each taken separately. However it can not 
provide a wide range simultaneous modulation of both. To solve this problem, in the present 
paper we propose to use two crossed zero-twisted nematic LC SLMs with the different control 
signals. We also discuss the dependence of the obtained results on different definitions of the 
electromagnetic coherence. To ensure a thorough coverage of the total scope of the subject, 
we start the paper with a brief summary of the main results reported in Ref. 5.  

2. Statistical properties of the electromagnetic field passed through a zero-twisted 
nematic LC SLM with random transmittance  

We consider a stochastic stationary electromagnetic field propagating within a narrow solid 
angle around the z axis. According to the coherence theory in the space-frequency domain [6] 

such a field can be represented, at any typical point ),( yx=x  in some plane const=z  and at 

any frequency ,ν by the statistical ensemble 
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where Ex and Ey are the Cartesian components of the electric field vector E. For the sake of 
simplicity from now on we will omit the explicit dependence of the considered quantities on 
frequency .ν  The second order correlation properties of the electromagnetic field can be 

completely characterized by the so-called cross-spectral density matrix [7,8]     
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where the asterisk and the angle brackets denote the complex conjugation and the ensemble 
average, respectively. According to Wolf [7], the degree of coherence and the degree of 
polarization of the electromagnetic field are defined by the formulas  
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respectively, where Tr stands for the trace and Det denotes the determinant.  
      Now we consider the propagation of the electromagnetic field through a polarization-

dependent device with a random transmittance given by the Jones matrix .)(xT Let 

),( 21in xxW be the cross-spectral density matrix of the incident field. Then the cross-spectral 

density matrix of the transmitted field is given by the expression       

,)(),()(),( 221in1
 †

21out xTxxWxTxxW =                                (5) 

where the dagger denotes the Hermitian conjugation. Hence, taking into account the 
definitions given by Eqs. (3) and (4), one can conclude that, in the general case, the degree of 
coherence and the degree of polarization change on propagation through a polarization-
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dependent device with a random transmittance. To evaluate these changes, one has to specify 
the form of the incident electromagnetic field and the type of the polarization-dependent 
device. Following Ref. 5, as an incident field we will consider the linearly polarized spatially 
coherent Gaussian field given by the cross-spectral density  
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where 0E and ε  are positive constants, and θ is the angle that the direction of polarization 

makes with the x axis. It can be readily verified that for such a field 1),(η 21in =xx  and 

.1)(in =xP  As a polarization-dependent device in Ref. 5 it was employed a zero-twisted (or 

parallel-aligned) nematic LC SLM with the extraordinary axis aligned along the y direction. 
The transmittance of such a modulator is given by the matrix 

,
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is the so-called birefringence, on and en are ordinary and extraordinary indices of refraction, 

respectively, λ  is the wavelength, and  d  is the thickness of the crystal. It is assumed that the 
birefringence has the form 

 )φ(φ)(β 01 xx += ,                                                     (9) 

where 0φ is a constant which is much lager than π/2  and )φ(x is a zero mean random 

variable which is characterized by the Gaussian probability distribution density            
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with variance 2
φ

2 σ)(φ =x  and cross-correlation defined for two different points as 
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where 21ξ xx −=  and γ  is a positive constant characterizing the correlation width of 

function .)φ(x   

     By substituting Eqs. (6) – (9) into Eq. (5) and making use of Eqs. (A3) and (A8) from 
Appendix, one obtains 
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Then, substituting Eq. (12) into Eqs. (3) and (4), one finds 
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       To provide a physical insight into these results, let us discuss two special cases 

considered in Ref. 5, namely 0θ =  and .π/2θ =  In the first case 1η out=  and ,1out =P i.e. no 

modulation of coherence or polarization occur. In the second case 



































−−−=

2

2
2
φout

γ2

ξ
exp1σexp)ξ(η ,                                     (15) 

and .1out =P  This time, the LC SLM provides the modulation of coherence without changing 

the polarization of the incident field. In the intermediate case, i.e., when ,π/2θ0 <<  the 

spectral degree of coherence and the spectral degree of polarization of the field transmitted 
through the zero-twisted LC SLM decrease simultaneously in accordance with Eqs. (13) and 

(14). In this case the particular choice π/4θ =  provides the minimum possible value of the 

spectral degree of polarization, namely ,)2/σexp(
2
φ−  and the degree of coherence  
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The degree of coherence given by Eq. (16) is illustrated in Fig. 1 for several values of 

parameter .γ  The width of function ,)ξ(η out  which according to Ref. 1 is evaluated by  

,ξd)ξ(ηη
0

2
outout ∫

∞
=∆                                                   (17) 

may be associated with the so-called transverse coherence length of the field [6]. As it is 

obvious from Fig. 1, in the considered case ∞=∆ outη  for any value of parameter ,γ i.e. the 

transmitted field is practically coherent. Therefore, we can conclude that the technique 
analyzed in Ref. 5 does not provide the appropriate simultaneous modulation of coherence 
and polarization.  
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  Fig. 1. Degree of coherence given by Eq. (16), 2σφ =  and .3,2,1γ =  

  

3. Statistical properties of the electromagnetic field passed through two crossed zero-
twisted nematic LC SLMs with random transmittance  

To attain a wide range simultaneous modulation of coherence and polarization, we will place 
at the output of the first LC SLM, considered in the previous section, a second SLM (identical 
to the first one) with the extraordinary axis aligned along the x direction. The transmission 
matrix of the second SLM is  
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where the birefringence )(β2 x has the form 
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with 0φ  and )φ(x  of the same meaning as stated in the context of Eq. (9). The transmittance 

of the system formed by the crossed LC SLMs is given by   
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At first sight it seems that the above system of two crossed SLMs can be replaced by a sole 

twisted-90� LC SLM operating in the adiabatic limit [9]. But it is not the case since the Jones 

matrix for the twisted LC SLM differs from the one in Eq. (20) by the presence of a common 
exponential factor depending on birefringence too (see, e.g., Ref. 10).  

     By substituting Eqs. (6) and (20) into Eq. (5) and making use of formula (A8) from 
Appendix, we obtain 
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Then, substituting Eq. (21) into Eqs. (3) and (4), we find  
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As can be seen from Eq. (22) and (23), the output degree of coherence in this case does not 
depend on the direction of polarization of the incident field and the output degree of 

polarization reaches it minimum value of )σ2exp(
2
φ−  with the choice .π/4θ = The degree of 

coherence given by Eq. (22), for 2σφ =  and different values of ,γ  is plotted in Fig. 2. As can 

be seen from this figure, the curve )ξ(η out  is approximately asymptotic to the ξ  axis, and 

hence the transverse coherence length given by Eq. (17) tends to zero with the decrease of 
parameter .γ  This result confirms that our object is successfully achieved. 

 

 

  Fig. 2. Degree of coherence given by Eq. (22), 2σφ =  and .3,2,1γ =   

 

      Concluding this section, we note that the random function ,)φ(x which serves to change 

the birefringence of the LC SLM, can readily be generated with the help of the control 

computer. When doing this one has to calculate the needed value of the parameter φσ  

corresponding to the desired value of )(out xP  and then to choose the needed value of the 

parameter γ  from the desired plot of function .)ξ(η out  

4. Dependence of the results on alternative definition of the degree of coherence  

The above analysis of coherence modulation was done using Wolf’s definition of 
electromagnetic coherence given by Eq. (3). However, there are other possible definitions of 
the electromagnetic coherence [11-14]. It is obvious that applying these alternative 
definitions, one can develop the analysis done in previous sections, obtaining different results. 
Here, we do not set ourselves the task of recalculating the results for all known definitions of  
electromagnetic coherence (it is not a trivial mathematical problem). We will limit ourselves 
to only one of the alternative definitions, namely the definition given in Ref. 11.  

      According to Ref. 11, the degree of coherence of the electromagnetic field is defined as 

the normalized Frobenius norm of the cross-spectral density matrix ),( 21 xxW , i.e.,                    
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Then, substituting Eq. (21) into Eq.  (24), we obtain  
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In particular, for the choice π/4θ =  
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The behavior of the degree of coherence given by Eq. (26) in comparison with the one given 

by Eq. (22) is illustrated in Fig. 3. The difference between curves )ξ(η out  and )ξ(µout  is not 

so large to affect significantly the transverse coherence length, i.e. the main result of the 
previous section.  

 

 
 

Fig. 3. Degree of coherence given by Eq. (22) (solid line) and degree of  

                                     coherence given by Eq. (26) (dotted line), 2σφ =  and .2γ =   

 

5. Conclusion  

We have shown that the LC-based technique analyzed in Ref. 5 does not provide the 
appropriate simultaneous modulation of coherence and polarization. At the same time the 
proposed technique solves successfully this problem. Of course this technique is more 
complicated than the former one, but this is the price we pay to obtain the desired result. We 
have also shown that our results, as well as the results obtained in Ref. 5, depend on the used 
definition of the degree of electromagnetic coherence. Nevertheless this dependence can not 
be considered as significant in practice. The proposed technique can be used in practical 
applications to generate the secondary electromagnetic source with the desired statistical 
properties. 
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Appendix: To derivation of Eqs. (12) and (21) 

Taking into account Eq. (10), one can state the relation 
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Then, making use of well known Fourier-transform relation 

 









−=±−∫

∞

∞− 2

2
22

πexp
1

dφ)πφ2iexp()φπexp(
a

u

a
ua ,                      (A2) 

we find 














−=±

2

σ
exp)]φ(iexp[

2
φ

x .                                         (A3) 

      Now we will introduce a random variable 
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Employing Eq. (10), one can write the probability distribution of this function as 
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Calculating the square in Eq. (A6) and applying Eq. (11), we find             
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Then, by analogy with derivation of Eq. (A3), but this time for argument ,ψ  we find  
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Equations (A3) and (A8) are used in the text for derivation of Eqs. (12) and (21).  
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