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Abstract:  The van Cittert-Zernike theorem, well known for the scalar 
optical fields, is generalized for the case of vector electromagnetic fields. 
The deduced theorem shows that the degree of coherence of the 
electromagnetic field produced by the completely incoherent vector source 
increases on propagation whereas the degree of polarization remains 
unchanged. The possible application of the deduced theorem is illustrated 
by an example of optical simulation of partially coherent and partially 
polarized secondary source with the controlled statistical properties.  
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1. Introduction   

One of the central results of optical coherence theory is the van Cittert-Zernike theorem which 
shows that even completely incoherent source can generate a partially coherent optical field in 
the process of its propagation [1-5]. This theorem is formulated for a scalar optical field and 
hence does not take into account the vector nature of the light. At the same time, in the past 
few years an ever-growing attention is attracted to the theory of coherence of vector 
electromagnetic fields or, for brevity, vector coherence theory [6]. That is why it seems to be 
quite natural to try to generalize the van Cittert-Zernike theorem for the vectorial case. Such a 
generalization is just an object of the present paper. 
      The paper is organized as follows. In Section 2 we shortly review the basic concepts of the 
vector coherence theory. When doing so, we give preference to the definition of vector 
coherence proposed in Refs. [7,8] as the most consistent one (see the corresponding 
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justification in Ref. [6]). In Section 3 we deduce the vector version of the van Cittert-Zernike 
theorem.  An example of possible application of the deduced theorem is given in Section 4. 
Finally, the main results are summarized in Section 5.     

2. Background  

We consider a stochastic stationary electromagnetic field propagating within a narrow solid 
angle around the z axis. According to the coherence theory in the space-frequency domain 

[4,5] such a field at any typical point ( )yx,=x  in some plane const=z  and at any frequency  

ν  can be represented by the statistical ensemble 

                                                    ( ){ } ( ) ( ){ }ν,ν,ν, xxxE yx EE= ,                           (1) 

where Ex and Ey are the Cartesian components of the electric field vector E, written here as a 
row matrix. For the sake of simplicity later on we will omit the explicit dependence of the 
considered quantities on frequency .ν  The second order correlation properties of the 

electromagnetic field (1) can be completely characterized by the so-called cross-spectral 
density matrix [5] 

                              ( ) ( )[ ] ( ) ( )[ ]212121 ,, xxxxxxW jiij EEW ∗==        (i, j = x, y),                  (2) 

where the asterisk and the angle brackets denote the complex conjugate and the ensemble 

average, respectively. For ,21 xxx == the diagonal element Wii   becomes the spectral density, 

or power spectrum, of field component 

                                                      ( ) ( ) ( )
2

, xxxx iiii EWS == ,                                         (3) 

so that the spectral density of the hole field may be expressed as  

                                  ( ) ( ) ( ) ( ) ( ) ( )xxWxxxExEx ,Tr † =+== ji SSS ,                               (4) 

where the dagger denotes the Hermitian conjugate and Tr stands for matrix trace.  

     It may be shown [5] that 

                                               ( ) ( ) ( )2121, xxxx jiij SSW ≤ .                                               (5) 

Hence, one can define the quantitative measure of the correlation between the vector 

components iE and jE as the normalized absolute value of the cross-correlation function 

( )21, xxijW , i.e., 

                                              ( )
( )

( ) ( )21

21

21

,
,µ

xx

xx
xx

ji

ij
ij

SS

W
= ,                                            (6) 

   
which will be referred to as the coefficient of correlation. It is obvious that 

                                                          ( ) 1,µ0 21 ≤≤ xxij .                                                      (7) 

The vector components iE and jE are fully correlated when ( ) 1,µ 21 =xxij  and they are 

fully uncorrelated when ( ) .0,µ 21 =xxij  In classical coherence theory the coefficient of 

correlation given by Eq. (6), for ,ij =  is known as the spectral degree of coherence of a 

scalar wave field. This fact can serve as a key point for defining the degree of coherence of 
the vector electromagnetic field. 
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     In Ref. [8] the degree of coherence for the vectorial case is defined as the normalized 

Frobenius (or Euclidean) norm of the cross-spectral density matrix ( )21,xxW , i.e.,  

( )
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On making use of definition (6), one can rewrite Eq. (8) as follows: 
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As can be seen from Eq. (9), ( )21,µ~ xx  represents the power-weighted root-mean-square value 

of the correlation coefficients for all pairs (i, j). Equation (9), together with Eq. (7), states that 

( ) 1,µ~ 21 =xx  if, and only if, ( ) 1,µ
2

21 =xxij  for any pair (i, j), and ( ) 0,µ~ 21 =xx  if, and 

only if, ( ) 0,µ
2

21 =xxij   for any pair (i, j). In other words, the vector electromagnetic field is 

completely coherent when its components are fully self- and cross-correlated and it is 
completely incoherent when its components are fully self- and cross-uncorrelated. 
      As well known, the polarization is another manifestation of the correlation properties of a 
stochastic electromagnetic field that can be characterized by the cross-spectral density matrix 

taken for .21 xxx ==  When 

                                                       ( ) ( ) 







=

10

01
,, xxxxW xxW ,                                            (10) 

the field is said to be completely unpolarized, and when 

                                                                 ( ) 0,Det =xxW ,                                                    (11) 

where Det stands for determinant, the field is said to be completely polarized. The 
polarization can be evaluated quantitatively by the degree of polarization defined as [3-5] 

                                                       ( ) ( )
( )[ ]

2/1

2
,Tr

,Det4
1 










−=

xxW

xxW
xP .                                         (12) 

Of course, for the completely polarized field ( ) 1=xP  and for completely unpolarized field 

( ) .0=xP  It may be shown that the polarization properties of a stochastic electromagnetic 

field can be characterized by the degree of coherence ( )21,µ~ xx  as well [7]. On making use of 

the relation 

                                     ( ) ( )[ ] ( ) ( )[ ]xxWxxWxxWxxW ,,Tr,Tr,2Det  †2 −= ,                       (13) 

one finds  

                                                      ( ) ( ) 1,µ~2 2 −= xxxP .                                               (14) 

Equation (14) reveals an important fact: the completely coherent electromagnetic field is 
necessarily completely polarized. Indeed, for completely coherent field the equality 

( ) 1,µ~ 21 =xx  holds for each pair ( ),, 21 xx including the case ,21 xxx ==  and hence ( ) .1=xP  

Equation (14) shows also that the minimum possible value of ( )xx,µ~  is .2/1      
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3. Vector generalization of the van Cittert-Zernike theorem 

Now we will consider the propagation of the electromagnetic field given by the statistical 
ensemble (1) in free space between two parallel planes normal to the z axis. Let 

( ) ( ) ( ) ( )xx
z

ii EE   and  
0 ′  be the fluctuating orthogonal field components (i = x, y) in the source 

plane 0=z  and any transverse plane ,0constant >=z  respectively. Applying the paraxial 

approximation, it may be shown (see [4]) that these components are related by the following 
formula:  

( )( ) ( )( ) ( )
( )∫ =

′




 ′−′







=

0

20
d

λ

π
iexp

λ

π2
iexp

λi

1
 

z
i

z
i z

Ez
z

E xxxxx ,                 (15) 

where λ  is the wave length. On substituting for 
( )( )xz
iE   from Eq. (15) into Eq. (2), one finds 

the following expression that describes the propagation of the cross-spectral density matrix W 
in free space: 

( )( )
( )

( )( ) ( ) ( )[ ]
( )∫∫ =

′′






 ′−−′−′′=

0
21

2
11

2
2221

0

221 dd
λ

π
iexp,

λ

1
, 

z

z

zz
xxxxxxxxWxxW .   (16) 

On making use of Eq. (16) and definitions (8) and (12), one can determine the degree of 

coherence and the degree of polarization of the field in the plane constant=z .  It is obvious 

that these quantities will, in general, change on propagation. Such changes are known as 
correlation-induced spectral changes [9]. Below we will examine the correlation-induced 
spectral changes of the electromagnetic field generated by the completely incoherent source. 

     Let us consider that the field in the source plane 0=z  is completely incoherent. The 

orthogonal components of such a field are statistically independent and self-uncorrelated. 
Hence, the completely incoherent source can be characterized by the cross-spectral density 

matrix
( ) ( )21
0 , xxW ′′  with the diagonal elements   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
)0(

1
)0(

2
0

1
*0

21
)0(

δη, xxxxxxxx 1 ′−′′′=′′=′′ iiiiii SSEEW          (17) 

and off-diagonal elements 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0, 2
0

1
*0

2
0

1
*0

21
)0( =′′=′′=′′ xxxxxx jijiij EEEEW ,            (18) 

where η  is a positive constant, ( ).δ  is the two-dimensional Dirac delta function, and the 

components 
( )0
iE  are assumed, without loss of generality, to be the fluctuations with zero 

mean. On substituting for
( )( )21
0 ,xxW ′′  from Eqs. (17) and (18) into Eq. (16) and making use 

of the filtering property of delta function, we find    

           ( )
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∆⋅′−′





−−=′′ ∫ =

d
λ

π2
iexp

zλ

π
iexp

zλ

η
,

0

02
2

2
1221

)(

z
SW

z
i

z
ii        (19) 

and 

                                                             ( ) 0, 21
)( =′′ xx

z
ijW ,                                                      (20) 

where .12 xxx −=∆  As can be seen from Eq. (19), each field component reaching the plane 

0=z is not already self-uncorrelated.  If we recall the definition (6) and use Eq. (19), we 

obtain the following formula for the spectral degree of coherence of the field component: 
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Taking into account that the integral in the numerator of Eq. (21) represents the Fourier 

transform operator with the spatial frequency zλ/x∆ , we come to the following conclusion: 

the spectral degree of coherence of the field component in the far zone of the completely 
incoherent source is equal to the normalized Fourier transform of power spectrum of 
corresponding field component across the source. In the scalar coherence theory this result is 
known as the van Cittert-Zernike theorem. 
     To generalize the van Cittert-Zernike theorem for the vectorial case, we substitute first 
from Eqs. (19) and (20) into definition of the degree of coherence of the electromagnetic field 
Eq. (8), i.e.,  
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It may be readily shown that 
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where 
( )( )x′0S  is the power spectrum of the source defined by Eq. (4). On substituting from 

Eq. (23) into Eq. (22), we obtain finally 
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Equation (24) represents the vector generalization of the van Cittert-Zernike theorem, which 
can be formulated as follows: the spectral degree of coherence of the electromagnetic field in 
the far zone of the completely incoherent source is equal to the normalized root-mean-square 
absolute value of the Fourier transforms of power spectra of field components across the 
source.  
     Now we will examine the polarization properties of the electromagnetic field in the far 
zone of the incoherent source. On making use of definition (12), or alternatively Eq. (14), we 
obtain the following formula for the degree of polarization of the field in the far zone of the 
incoherent source:  

                                                     ( ) 1α4α4 2)( +−=xzP ,                                              (25) 

where 

                           

( )( )
( )

( )( )
( )∫
∫

=

=

′′

′′
=

0

0

0

0

d

d

α

z

z
x

S

S

xx

xx

.                                                 (26) 

Equations (25) and (26) show that the degree of polarization of the completely incoherent 
electromagnetic field does not change on propagation and depends only on the energy 
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distribution between the field components in the source plane. In particular, for completely 

unpolarized source, when 
( )( ) ( )( ) ,00 xx ′=′ yx SS the equality ( )=x)(zP 0 takes place, i.e., the 

generated field remains completely unpolarized on propagation. On the contrary, when 
( )( ) ( )( ) ,0 or0

00 =′=′ xx yx SS  it takes place the equality ( )=x)(zP 1, i.e., the generated field 

remains completely polarized on propagation. In general case the vector version of the van 
Cittert-Zernike theorem given by Eq. (24) must necessarily be supplemented with Eq. (25). 

4. Example of theorem application  

As an example of possible applications of the deduced theorem we consider the problem of 
optical simulation of partially coherent and partially polarized secondary source with the 
controlled statistical properties. Such a simulation may be realized by means of the modified 
Mach-Zehnder interferometer sketched schematically in Fig. 1. 

 

M

MPrimary source 
plane ( 0)x,

Secondary source 
plane ( ,z)x

BS P1 OW1

OW2
P2 BS

z2 z3

z1

z4  
 

Fig. 1 Modified Mach-Zehnder interferometer: BS – beam splitter; M – mirror; P – polarizer; 
OW – optical wedge. 

Let us consider that the completely incoherent circular source of radius R and of uniform 

power spectrum 
( )0
0S  is placed in the input plane (primary source plane) of the interferometer. 

Let polarizers P1 and P2 be chosen to transmit only x component and only y component of the 
incident field, respectively, and let optical wedges OW1 and OW2 be chosen to attenuate the 
power spectra of the optical fields at the opposite arms of the interferometer in the ratio 

( )α1:α − with α being the desired coefficient of attenuation. Then, assuming that the distance 

4321 zzzzz +++=  between the primary source plane and the secondary source plane is large 

enough, the degree of coherence of the generated secondary source can be calculated using 
Eq. (24), i.e.,  
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Calculating the integral in Eq. (27) (see, e.g. [3]), we find  
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where ( ).1J  is the Bessel function of the first kind and the first order.  
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     The function ( ) ξ/ξ2 1J   decreases steadily from the value unity when 0ξ =  to the value 

zero when ./0.61λ ξ Rz=   Correspondingly, the radius of the area where the degree of 

coherence (28) exceeds 0.88 of its maximum value is approximately given by  

   
R

z
r

2

λ
16.0coh = .                                                        (29) 

As well known, this radius can serves as the numerical measure of coherence. Hence, 
changing the distance z (really z4), one can control the coherence of the produced vector field 
over a rather wide range. On the other hand, varying the attenuation coefficient ,α one can 

control the degree of polarization given by Eq. (25) within the range from zero to unity. 

5. Conclusion  

We have generalized the well known van Cittert-Zernike theorem for the case of vector 
electromagnetic fields. The deduced theorem shows that the degree of coherence of the 
electromagnetic field produced by the completely incoherent vector source increases on 
propagation whereas the degree of polarization remains unchanged. The possible application 
of the deduced theorem has been illustrated by an example of optical simulation of partially 
coherent and partially polarized secondary source with the controlled statistical properties.  
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