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Abstract—Linear time-varying (LTV) systems have found a
niche of their own in the processing of continuous-time signals.
In this brief, it is shown how the reduction of the duration of
the transient response of a class of continuous-time LTV filters
may be seen as the combined effect of the increased dampening
of its amplitude response and the increase of the instantaneous
frequency of its damped oscillations. For this aim, an LTV system
whose damping factor and the damped frequency of its oscillations
may be specified as functions of time is used as a vehicle of
study. Time-varying eigenvalues are used to assess the behavior
of the proposed system. Simulation results are used to verify the
proposed mechanism behind the reduction of the duration of the
transient response in the LTV filters under study.

Index Terms—Continuous-time signal processing, linear time-
varying (LTV) systems, LTV filters, time-varying eigenvalues,
transient response duration.

I. INTRODUCTION

IN recent times, an increasing interest in continuous-time
systems with time-varying parameters has arisen. Following

this trend, a new class of filters whose describing differential
equations are linear time-varying (LTV) and do not involve
companding techniques has been developed as well in [1], [2].
These filters have found some applications in the field of
biomedical instrumentation in the acquisition of brainstem
auditory-evoked potentials [1] as well as in the compensation
of the dynamic response of load cells [2].

The general form of the LTV filters proposed in [1], [2] is
given by the following LTV scalar differential equation:

x′′(t) + 2ξ(t)ωn(t)x′(t) + ω2
n(t)x(t) = ω2

n(t)u(t) (1)

where u(t) and x(t) are the scalar functions that represent,
respectively, the input and output of the filter, whereas ξ(t) and
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ωn(t) are the time-varying parameters. If an analogy is made
with the linear time-invariant (LTI) differential equation

x′′(t) + 2ξωnx′(t) + ω2
nx(t) = 0 (2)

then the time-varying parameters ξ(t) and ωn(t) may be con-
sidered to define the damping ratio and the undamped natural
frequency of the homogeneous response of (1). In [1], the
performance of the LTV filter described by (1) is improved
compared to the response of a prototype LTI filter by shortening
the duration of its transient response. This is achieved by tuning
its parameters, particularly its undamped natural frequency, by
making it larger [1].

In this brief, it will be shown that the modulation of the
parameters of the LTV filter may be seen as a strategy to
simultaneously reduce the amplitude of its transient response
and to increase the frequency of its damped oscillations. The
rest of this brief will be organized as follows. In Section II,
the differential equation that describes an LTV system with
adjustable homogeneous response will be derived. This equa-
tion will be used to show in principle how an increase of the
coefficients of an LTV filter of the form given in (1) may
influence the amplitude of its transient behavior as well as its
damped oscillatory response. To obtain more information on
the dynamical behavior of the proposed system, time-varying
eigenvalues [3], [4] will be used. The basic theory behind
the time-varying eigenvalues will be presented in Section III.
In Section IV, the proposed mechanism for the reduction of
the duration of the transient response will be presented. A
formal proof of this mechanism based on the concept of the
time-varying eigenvalues will be given. The simulation results
that confirm the validity of the proposed mechanism will be
presented in Section V. Finally, some closing remarks will be
given in Section VI.

II. LTV SYSTEM WITH ADJUSTABLE

HOMOGENEOUS RESPONSE

To show how an increase of the coefficients of the LTV filter
described by (1) may influence its dynamic behavior, consider
a system modeled by the following second-order scalar LTV
differential equation:

x′′(t) + a1(t)x′(t) + a0(t)x(t) = u(t) (3)

where u(t) represents a known function of the time variable
t, x(t) is the unknown variable, and a1(t) and a0(t) are
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time-varying coefficients. It is required that the homogeneous
solution xh(t) of (3) satisfies

xh(t) = C1x1(t) + C2x2(t) (4)

where C1 and C2 are arbitrary constants, whereas x1(t) and
x2(t) are given by

x1(t) = e−
∫

σ(t)dt+j
∫

ωd(t)dt (5)

x2(t) = e−
∫

σ(t)dt−j
∫

ωd(t)dt (6)

where σ(t) and ωd(t) are continuous functions of t, which are
assumed to be bounded and to take values greater than zero for
all t. The function σ(t) may be seen as a function that defines
the decay rate of the solutions given in (5) and (6). If σ(t)
increases, then the homogeneous response of (3) will decrease
in magnitude. On the other hand, ωd(t) may be interpreted
as the instantaneous frequency of the damped oscillations of
the solutions of (3). If the magnitude of this term is increased
or decreased, it will not have any effect on the magnitude of

ej
∫

ωd(t)dt since it will always be equal to 1. However, if ωd(t)
changes in value, then the frequency of the damped oscillations
associated to the homogeneous response of (3) will change.

To guarantee that the homogeneous solution xh(t) of the
system modeled by (3) is equal to (4), a1(t) and a0(t) must
satisfy the following set of linear algebraic equations:

[
x′

1(t) x1(t)
x′

2(t) x2(t)

] [
a1(t)
a0(t)

]
= −

[
x′′

1(t)
x′′

2(t)

]
. (7)

These equations are obtained after substituting (5) and (6) in
(3) with u(t) = 0. Given that x1(t) and x2(t) are linearly
independent functions, it is guaranteed that system (7) will have
an unique solution that is given by

a1(t) = 2σ(t) − ω′
d(t)

ωd(t)
(8)

a0(t) = (σ(t))2 + (ωd(t))
2 − σ(t)ω′

d(t)
ωd(t)

+ σ′(t). (9)

The function ωd(t) cannot be equal to zero because otherwise
x1(t) and x2(t) would not be linearly independent. Further-
more, if ωd(t) �= 0 for all t, then the time-varying coefficients
a1(t) and a0(t) will be defined for all t.

At this point, it is necessary to demonstrate that the solution
of (3) is bounded when u(t) is bounded. For this aim, the
following lemma is presented.

Lemma 1: Consider a system that is described by the follow-
ing system of differential equation:

x′(t) = F(t)x(t) + G(t)u(t) (10)

where x(t) is a vector that contains n state variables, u(t) is a
vector that contains p inputs, and F(t) and G(t) are matrices
of real continuous functions with appropriate dimensions. The
system will be bounded-input–bounded-state (BIBS) if the
following conditions are met.

1) The elements of F(t) and G(t) are bounded.
2) The homogeneous response of (10) shows an exponential

asymptotic stability.

Proof: See [5] for more details. �
Theorem 1: The response to a bounded input u(t) of the

system that is represented by (3) with the coefficients a1(t) and
a0(t) defined as given in (8) and (9) with functions σ(t) and
ωd(t) being positive for all t is also bounded. In other words,
the system is BIBO stable.

Proof: To demonstrate this theorem, it suffices to verify
if the state space representation of (3) using phase variables
satisfies the constraints given in Lemma 1 for BIBS stability.
Given that the output variable of the system under consideration
is a state variable, the existence of the aforementioned stability
will also imply BIBO stability. Equation (3) may be rewritten as

[
y′
1(t)

y′
2(t)

]
=

[
0 1

−a0(t) −a1(t)

] [
y1(t)
y2(t)

]
+

[
0
1

]
u(t) (11)

where y1(t) and y2(t) are equal to x(t) and x′(t), respectively.
Given that the functions σ(t) and ωd(t) are bounded, all the
entries of the system matrix of (11) are bounded. Moreover,
the entries of the input matrix present in (11) are bounded
as well.

The homogeneous response of (11) for an arbitrary initial
condition is given by

y1,h(t) =C1x1(t) + C2x2(t) (12)

y2,h(t) =C1 [−σ(t) + jω(t)] x1(t)

+ C2 [−σ(t) − jω(t)] x2(t) (13)

where C1 and C2 are arbitrary constants, and x1(t) and x2(t)
stand for the linearly independent solutions of (3) given in (5)
and (6). It should be noticed that the exponential asymptotic
stability of the homogeneous solutions of (3) when a1(t) and
a0(t) are defined as given in (8) and (9) is guaranteed provided
that σ(t) is always positive. Given that σ(t) and ω(t) are also
bounded functions, and that the solutions x1(t) and x2(t) are
exponentially asymptotically stable, the responses y1,h(t) and
y2,h(t) will be exponentially asymptotically stable as well.

Finally, given that the conditions given in Lemma 1 are
satisfied, it can be concluded that the system represented by (3)
is BIBO stable. �

III. TIME-VARYING EIGENVALUES

To further understand the dynamics of the system modeled
by (3), it is necessary to resort to the concept of time-varying
eigenvalues. The term was coined in [3] to denote quantities
that contain information on the stability of LTV systems. These
quantities are determined from LTV systems through the free
formulation of an eigenvalue-like problem from LTV systems.
There are many mathematical frameworks proposed in the
literature that consider the definition of quantities that match
the description given in [3] for the time-varying eigenvalues.
The interested reader may consult, for instance, the work of
Zhu, van der Kloet, and Neerhoff [6]–[8] on this subject.

What follows now is a brief summary of how the time-
varying eigenvalues may be computed for (3) according to
the formulation given by Zhu and Johnson [6]. Using this
framework, it is possible to assess in a convenient way the
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dynamic behavior of (3). An arbitrary nth-order scalar LTV
differential equation of the form

x(n)(t)+an−1(t)x(n−1)(t) + · · · + a1(t)x′(t) + a0(t)x(t)=0
(14)

where x(t) is the unknown function, and ai(t), i =
0, 1, . . . , n − 1, are time-varying coefficients has an associated
nth-order differential operator Da of the form

Da = δn + an−1(t) · δn−1 + · · · + a1(t) · δ + a0(t) (15)

where δ and · represent the operations of differentiation with
respect to the variable t and the scalar multiplication by the
preceding scalar function, respectively. In this expression, δi,
i = 2, 3, . . . , n, represents the ith-order derivative with respect
to t. With the aid of operator (15), (14) may be rewritten as

Da {x(t)} = 0. (16)

Operator (15) may be rewritten as a composition of first-order
differential operators as [6]

Da = [δ − λn(t)·] ◦ [δ − λn−1(t)·] ◦ · · · ◦ [δ − λ1(t)·] . (17)

In this expression, each of the first-order differential operators is
enclosed in square brackets, and the symbol ◦ is used to denote
the composition of two operators. Furthermore, the operator on
the left of ◦ is applied to the result obtained from the application
of the operator on the right of ◦ to a given function. The
quantities λi(t), i = 1, . . . , n, are known as the time-varying
eigenvalues associated to the differential operator (15).

According to [6], if a set of n linearly independent solutions
xi(t), i = 1, . . . , n, is known for (14), then it is possible to
determine each of the time-varying eigenvalues associated to
(15) as

λi(t) =
d

dt
ln

Ωi(t)
Ωi−1(t)

(18)

where Ωi(t) and Ω0(t) are defined as

Ωi(t) = detWi(t) (19)

Ω0(t) = 1 (20)

and Wi(t) is given by

Wi(t) =

⎡
⎢⎢⎣

x1(t) x2(t) · · · xi(t)
x′

1(t) x′
2(t) · · · x′

i(t)
...

...
. . .

...
x

(i−1)
1 (t) x

(i−1)
2 (t) · · · x

(i−1)
i (t)

⎤
⎥⎥⎦ . (21)

From the previous expressions, it should be noted that the
time-varying eigenvalues defined in this way are not unique
since any set of linearly independent homogeneous solutions
of (3) may be used to formulate a valid set of time-varying
eigenvalues. For a given scalar LTI system, the solutions of its
associated characteristic equation always define a valid set of
time-varying eigenvalues [4].

IV. REDUCTION OF THE DURATION OF THE TRANSIENT

RESPONSE IN THE PROPOSED SYSTEM

In this section, time-varying eigenvalues will be used to
determine under which conditions the transient response of the
system proposed in (3) may be reduced in duration. Using the
formulas given in the previous section, a set of time-varying
eigenvalues for the second-order differential operator associ-
ated to (3) may be computed by using the set of homogeneous
solutions given in (5) and (6). Substituting (5) and (6) in
(18)–(21), the following time-varying eigenvalues λ1(t) and
λ2(t) are obtained:

λ1(t) = −σ(t) + jωd(t) (22)

λ2(t) = −σ(t) +
ω′

d(t)
ωd(t)

− jωd(t). (23)

Before presenting the main result of this brief, it must be
demonstrated that the time-varying eigenvalues given in (22)
and (23) represent the rates of instantaneous exponential growth
of the homogeneous solutions x(t) and x′(t) of (3). For this
purpose, the following definition is introduced.

Definition 1: The instantaneous exponential growth rate of a
nonnegative function f(t) for a given time instant t0 is equal
to the derivative of ln f(t) that is evaluated at t = t0. For the
function f(t) = eαt, for instance, its instantaneous exponential
growth rate is equal to the constant α for any time instant t0.
If α > 0, then f(t) will increase. However, if α < 0, then f(t)
will decay to zero.

Lemma 2: The time-varying eigenvalues λ1(t) and λ2(t) as
given in (22) and (23) determine, respectively, the instantaneous
exponential growth rates for x(t) and x′(t) in (3) when a1(t)
and a0(t) are given as in (8) and (9).

Proof: From (18)–(21), the following relation may be
obtained for λ1(t):

λ1(t) =
d

dt
ln x1(t). (24)

Given that the right side of (24) matches Definition 1 for the
instantaneous exponential growth rate of x1(t), λ1(t) defines
the instantaneous rate of exponential growth of an arbitrary
homogeneous solution of (3) and, therefore, is correlated to the
growth of x(t).

λ2(t) is defined as

λ2(t) =
d

dt
ln

detW2(t)
x1(t)

(25)

where W2(t) is given by

W2(t) =
[

x1(t) x2(t)
x′

1(t) x′
2(t)

]
. (26)

The right part of (25) also satisfies Definition 1 for the in-
stantaneous exponential growth rate of the scalar expression
detW2(t)/x1(t). In this expression, the matrix W2(t) con-
tains in its columns a complete set of solutions for (11) when
u(t) = 0. The determinant present in (25) may be interpreted as
the oriented area of the parallelogram defined by the homoge-
nous solutions of (11) in the phase plane of the state variables
y1(t) and y2(t). These variables are equal to x(t) and x′(t),
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respectively, in (3). The area covered by the solution vectors
in the phase plane will increase or decrease in time, and its
growth rate will depend on the growth rate of each of these state
variables. Using (24) and (25), the instantaneous exponential
growth rate of the area covered by the solution vectors may be
expressed as

d

dt
ln detW2(t) = λ1(t) + λ2(t). (27)

If the determinant of W2(t) is divided by x1(t), as done on
the right side of (25), then the following expression is obtained:

detW2(t)
x1(t)

= −2jωd(t)e
−
∫

σ(t)dt−j
∫

ωd(t)dt

= −2jωd(t)x2(t). (28)

The right side of (28) is similar to the last term of the derivative
of the solution x2(t) of (3) as

x′
2(t) = −σ(t)x2(t) − jωd(t)x2(t). (29)

This means that the contribution done by y1(t) to the area
spanned in the phase plane by the homogeneous solutions of
(11) is “eliminated” since x1(t) is also a component of the
homogeneous solution of y1(t) in (11). Moreover, if the instan-
taneous exponential growth rate is determined for (28) and for
−jωd(t)x2(t), the result will be the same since both expres-
sions differ by a scalar factor that does not influence their in-
stantaneous exponential rate of change. Therefore, the influence
of y2(t) in the growth of the area spanned in the phase plane by
the homogeneous solutions of (11) is obtained. Given that y2(t)
is equivalent to x′(t) in (3), it may be concluded that λ2(t) is re-
lated to the instantaneous exponential growth rate of x′(t). �

It should be noticed that the time-varying eigenvalues calcu-
lated from the solutions given in (5) and (6) are complex quanti-
ties since they were calculated from complex-valued solutions.
In this particular case, however, it is easy to demonstrate that
the real parts of λ1(t) and λ2(t) define the exponential rate of
growth of the magnitudes of x(t) and x′(t).

Lemma 3: The real parts of λ1(t) and λ2(t), as given in
(22) and (23), define the exponential rate of growth of the
magnitudes of x(t) and x′(t), respectively, in (3) when a1(t)
and a0(t) are given as in (8) and (9).

Proof: The magnitude of x1(t) is given by

|x1(t)| = e−
∫

σ(t)dt. (30)

From this expression, the following relation holds true:

Re λ1(t) =
d

dt
ln |x1(t)| . (31)

As mentioned in Lemma 2, the determinant of W2(t) in
(25) may be interpreted as the oriented area spanned by the
homogeneous solutions of (11) in the phase plane formed by
y1(t) and y2(t). If the magnitude of the oriented area spanned
by the homogeneous solutions of (11) is now “normalized”

(or divided) by the magnitude of x1(t), then the following
expression may be formulated:

Re λ2(t) =
d

dt
ln

|detW2(t)|
|x1(t)| . (32)

�
Lemmas 2 and 3 may now be used to prove the main result

of this brief.
Theorem 2: Assuming that σ(t) and ωd(t) adopt the follow-

ing form:

σ(t) =σr + f(t)U(t − t0) (33)

ωd(t) =ωdr
+ αe−βtU(t − t0) (34)

where f(t) is a monotonically decreasing nonnegative function
for t ≥ t0 that tends to zero in a finite time, U(t) stands for the
unit step function, and σr, ωdr

, α, and β are positive constants,
the following statements are true for t ≥ t0.

1) The coefficients a1(t) and a0(t) given in (8) and (9) will
satisfy the following relations:

a1(t) > 2σr (35)

a0(t) >σ2
r + ω2

dr
. (36)

2) The real part of the time-varying eigenvalues λ1(t)
and λ2(t) associated to (3) will satisfy the following
relations:

Re λ1(t) < −σr (37)

Reλ2(t) < −σr. (38)

3) The homogeneous response of the system represented by
(3) will decay faster compared to the homogeneous re-
sponse of the system described by the following equation:

z′′(t) + 2σrz
′(t) +

(
σ2

r + ω2
dr

)
z(t) = u(t). (39)

Proof: To prove Statements 1 and 2, the direct substitution
of σ(t) and ωd(t), as given in (33) and (34), in (8), (9), (22) and
(23) leads to functions that are greater for t ≥ t0 compared to
the constants indicated in (35)–(38).

To prove Statement 3, it should be noticed that a set of time-
varying eigenvalues for the system described by (39) is given
by −σr ± jωdr

. These eigenvalues were calculated from the
solutions of the characteristic equation associated to (39). Given
that σr > 0, it can be demonstrated that the real parts of the
eigenvalues of (39) define the exponential decay rates for z(t)
and z′(t). The homogeneous response of the system described
by (3) will also exponentially decay to zero since the real parts
of λ1(t) and λ2(t) as given in (22) and (23) are negative for all
t. According to Statement 2, the real parts of λ1(t) and λ2(t)
are smaller than −σr for t ≥ t0. Therefore, the homogeneous
response of the system represented by (3) will decay faster
compared to the homogeneous response of (39) for t ≥ t0. �
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V. VERIFICATION OF THE PROPOSED MECHANISM

FOR THE REDUCTION OF THE DURATION

OF THE TRANSIENT RESPONSE

The proposed mechanism in Theorem 2 for the reduction of
the duration of the transient response will be validated for an
example. It will be assumed that it is desired to improve in
a given time interval the transient response of the following
dynamical system:

z′′(t) + 10z′(t) + 386z(t) = u(t). (40)

For (40), the solutions of its characteristic equation are equal to
−5 ± 19j.

According to the strategy proposed in [1] for the improve-
ment of the transient response in filters of the form given in (1),
the magnitude of the coefficients of (40) has to be increased in
time to shorten the duration of its transient response. Assuming
that the functions σ(t) and ω(t) implicit in the definition of
system (3) take the following form:

σ(t) = 5 + 4U(t)e−15t (41)
ωd(t) = 19 + 18U(t)e−15t (42)

where U(t) is the input step function, system (3) should have an
improved transient behavior compared to the response of (40).
For these functions, the coefficients a1(t) and a0(t) given in (8)
and (9) for t ≥ 0 are equal to

a1(t) = 10 + 8e−15t +
270

18 + 19e15t
(43)

a0(t) = 386 + 724e−15t + 340e−30t +
210

18 + 19e15t
. (44)

From these expressions, it is clear that the coefficients of the
system given in (3) will be greater than the coefficients of the
reference LTI system given in (40) for t ≥ 0.

The responses of the systems represented by (3) and (40),
respectively, were simulated in Simulink assuming that the in-
put u(t) is a sequence of pulses, as shown in Fig. 1. The results
of the simulation are depicted in Fig. 2. As can be seen, the
output of the system modeled by (40) shows a large overshoot
for any transition of the input signal, whereas the response of
the modeled equation by (3) has no overshoot for the first pulse.
However, once σ(t) and ωd(t) are approximately equal to 5
and 19, respectively, for t > 4/15, there is no difference in the
behavior of these systems.

VI. CONCLUSION

In this brief, it has been shown that the shortening of the
duration of the transient response for a particular class of LTV
filters may be understood as the consequence of the increased
dampening of their transient response and the increase of the
instantaneous frequency of their damped oscillations. For that
aim, an LTV system whose transient response may be specified
in terms of functions that define the magnitude of the damping
factor and the instantaneous frequency of its damped oscil-
lations has been proposed. The results obtained by means of
computer simulations confirmed that the mechanism suggested
in this brief may be responsible for the reduction of the duration
of the transient response of the time-varying filter modeled by
(1) when its coefficients are temporarily increased.

Fig. 1. Input u(t).

Fig. 2. Output x(t) of system (3) and z(t) of system (40).
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