
Dependability for ESB systems in critical

environments based on self-healing and

checkpointing principles

by

MSc. Mariano Vargas-Santiago

Thesis submitted as a partial requirement for the degree of

Ph.D. in Computational Sciences

at the

Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)

2018, Tonantzintla, Puebla, Mexico

Advisors:

PhD. Saúl Eduardo Pomares-Hernández

Computational Science Coordination

INAOE

Ph.D. Lius Alberto Morales-Rosales

Faculty of Civil Engineering

CONACYT-Universidad Michoacana de San Nicolás de Hidalgo

c©INAOE 2018

All right reserved

The author gives to the INAOE the permission for reproducing and

distributing this document

A mi familia.

Agradecimientos

Agradezco al Consejo Nacional de Ciencia y Tecnología (CONACyT), al Instituto Nacional de

Astrofísica, Óptica y Electrónica (INAOE) de México, y también a la Universidad Michoacana

de San Nicolás de Hidalgo (UMSNH) por el apoyo proporcionado para y durante la realización

de este trabajo de tesis. En particular, al INAOE por permitirme desarrollar esta investigación

en sus instalaciones, y a la UMSNH por haber con�ado en mí.

Agradezco a mis asesores Dr. Saúl Eduardo Pomares Hernández, Dr. Luis Alberto

Morales Rosales, Dr. Hatem Hadj-Kacem, y Dr. Khalil Drira, que tuvieron un papel fun-

damental en mi desarrollo. Al Dr. Luis Alberto le agradezco por haberme apoyado en todo

durante mi estancia en la UMSNH. Y a todos ellos les agradezco de corazón la paciencia y

dedicación para conmigo, y por apoyarme incondicionalmente.

Quiero agradecer a mis sinodales: Dra. Angélica Muñoz, Dra. Hayde Peregrina, Dr.

René Cumplido, Dr. Gustavo Rodríguez y Dr. Khalil Drira por su tiempo, observaciones y

sugerencias realizadas durante el proceso de revisión de esta investigación.

Agradezco a mis padres, Alicia y Fernando, por haberme inculcado el espíritu de estudio,

y por ser mis guías en la vida. Agradezco a mi esposa y a mi niña por el esfuerzo que han

tenido que hacer para mantenerme junto a ellas, aún cuando no he estado físicamente a su

lado. A cada uno de los miembros de mi familia por su apoyo y los sacri�cios que han hecho

para que yo pudiera cumplir una de las metas de mi vida profesional.

Incluyo además, mi gratitud a los tantos amigos que compartieron conmigo durante

esta etapa, a todos aquellos que me apoyaron en las buenas y en las malas.

iv

Abstract

Ensuring dependability for computer systems based on fault tolerance is an open challenge.

Due to the complexity and heterogeneity of the interactions and services, o�ered by dis-

tributed systems, they make the administration and management of resources in highly dy-

namic environments exceed the capabilities of more experienced network administrators. As

a consequence, new paradigms emerge (autonomic computing) and the Service-Oriented Ar-

chitecture (SOA). In this dissertation, on the one hand, autonomic computing is focused on

solving the complexity of monitoring and diagnosing the behavior of the systems with low

resources and little human intervention. On the other hand, to consider the heterogeneity of

the systems, the SOA paradigm and the Enterprise Service Bus (ESB) were used for their

integration. Applications and systems are needed to intercommunicate with each other, of-

ten in unreliable environments such as the nature of the Internet. There are sophisticated

solutions, such as replication of services, rollback recovery, and self-healing, which increase

the systems' reliability. However, these approaches have drawbacks; for example, they af-

fect the performance of the system, have high implementation costs and/or can endanger its

scalability. On the other hand, to facilitate the self-management of the systems, in this dis-

sertation, we implement the Monitoring, Analysis, Planning and Execution (MAPE) control

cycle. An open challenge for the MAPE cycle is to e�ciently carry out the diagnostic and

decision-making processes, collecting data from which the system can detect, diagnose and

repair potential problems, that is, increase the dependability of the systems speci�cally with

fault tolerant mechanisms. A useful tool for this purpose is through the implementation of

communication-induced checkpointing (CiC) mechanism. The experimental results support

the viability of our proposals.

v

Resumen

Garantizar la con�abilidad (dependability) para sistemas computacionales basados en toleran-

cia a fallos es un reto que representa un desafío, aún abierto. Debido a la complejidad

y heterogeneidad de las interacciones de los servicios ofrecidos por los sistemas distribuidos,

estos hacen que la adminsistración y el manejo de los recursos en entornos altamente dinamicos

excedan las capacidades incluso de los adminstradores de red más experimentados. Como

consecuencia, surgen nuevos paradigmas: el cómputo autonómico (autonomic computing) y

el de la arquitectura orientada al servicio (SOA, Service-Oriented Architecture). En esta

disertación, por un lado, enfocamos al cómputo autonómico para resolver la complejidad de

monitorizar y diagnosticar con bajos recursos y poca intervención humana el comportamiento

de los sistemas. Por otro lado, para considerar la heterogeneidad de los sistemas se utilizó

el paradigma SOA y el bus de servicios empresariales (ESB, Enterprise Service Bus) para su

integración. Las aplicaciones y sistemas se necesitan intercomunicar entre sí, muchas veces en

ambientes no con�ables como lo es la naturaleza del Internet. Existen soluciones so�sticadas,

tales como: replicación de servicios, regresión en reversión, y auto-sanación, que aumentan

la con�abilidad del sistema. Sin embargo, esos enfoques tienen inconvenientes; por ejemplo,

afectan el rendimiento del sistema, tienen altos costos de implementación y/o pueden poner

en peligro su escalabilidad. En contraparte, para facilitar la autogestión de los sistemas,

en esta disertación, implementamos el ciclo de control de Monitoreo, Análisis, Plani�cación

y Ejecución (MAPE). Un desafío abierto para el ciclo MAPE es llevar a cabo de manera

e�ciente los procesos de diagnóstico y toma de decisiones, recolectando datos de los cuales el

sistema puede detectar, diagnosticar y reparar problemas potenciales, es decir, incrementar

la con�abilidad de los sistemas especí�camente con mecanismos tolerantes a fallas. Una

vi

herramienta útil para este propósito es mediante la implementación de puntos de control

inducidos por comunicación (CiC, communication-induced checkpointing). Los resultados

experimentales respaldan la viabilidad de nuestras propuestas.

Contents

Agradecimientos iv

Abstract v

Resumen vi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description . 3

1.2.1 Partial ordering algorithms for ESBs 3

1.2.2 Characteristics of checkpointing mechanisms and autonomic computing
for ESBs systems . 4

1.2.3 Merging autonomic computing and checkpointing mechanisms 4

1.3 Proposed solution . 6

1.4 Dissertation hypothesis and objectives . 7

1.4.1 Main objective . 7

1.4.2 Speci�c objectives . 7

1.5 Document organization . 7

2 Background and de�nitions 9

2.1 Software paradigms . 9

2.1.1 Autonomic computing . 9

2.1.2 Service-Oriented Architecture (SOA) 11

2.1.3 Enterprise Service Bus (ESB) . 12

viii

2.1.4 Basic functionalities of an ESB . 12

2.2 Distributed computing . 12

2.2.1 Communication patterns . 12

2.2.2 Happened-Before Relationship (HBR) 13

2.2.3 Immediate Dependency Relation (IDR) 14

2.2.4 Checkpoint and Communication Pattern (CCP) 15

2.2.5 Checkpointing mechanisms . 15

2.3 Fuzzy logic . 16

2.3.1 Fuzzy logic . 16

2.3.2 Fuzzy Inference System (FIS) . 17

3 Related work 19

3.1 Fundamentals and Web service faults analysis 20

3.1.1 Web services characteristics . 20

3.1.2 Web services composition models . 20

3.1.3 Web services composition recovery modes and fault types 21

3.1.4 Checkpointing mechanisms and their applicability to Web services com-
positions . 24

3.2 Fault tolerance techniques for Web services composition 26

3.2.1 Fault tolerance techniques for orchestration 26

3.2.2 Fault tolerance techniques for choreography 35

3.3 Discussion and open challenges . 37

3.4 Order of messages for Web services based environments 39

3.5 Fuzzy logic for Web services . 41

3.6 Conclusions of the review of fault tolerance for Web services 42

4 Fault Tolerance for Web Services Composition 44

4.1 Message Ordering Framework (MOF) . 45

4.1.1 Message Ordering Framework for collaborative Web service-based en-
vironments . 47

4.1.2 MOF's architecture . 48

4.1.3 Protocol primitives . 50

4.1.4 Mechanism speci�cation for IDR algorithm 52

4.1.5 Experimental results . 54

4.1.6 Conclusion of the Message Ordering Framework (MOF) 55

4.2 Fault tolerance for Web services . 56

4.2.1 Fault tolerance layer based on asynchronous checkpointing 58

4.2.2 Mechanism speci�cation for building CGSs 61

4.2.3 Conclusion of the fault tolerance layer approach 65

5 Autonomic computing and asynchronous checkpointing 66

5.1 Autonomic Web services based on asynchronous checkpointing mechanism . . 66

5.1.1 Architecture . 66

5.1.2 Performance measurements . 67

5.1.3 MAPE cycle . 68

5.1.4 Mechanism speci�cation for autonomic Web services composition . . . 69

5.1.5 Algorithm . 69

5.2 Results and discussion . 72

5.2.1 Experimental results . 72

5.3 Conclusions of the autonomic computing and asynchronous checkpointing . . 78

6 Dynamic Quasi-Asynchronous Checkpointing for Distributed and Collabo-

rative Environments 80

6.1 Fuzzy approach towards dependable business processes 80

6.1.1 Diagnostic model based on fuzzy non-functional dependencies 81

6.1.2 Experimental results . 85

6.1.3 Discussion of the fuzzy diagnosis model 89

6.1.4 Conclusion of the fuzzy diagnostic model 89

6.2 Dynamic checkpointing . 90

6.2.1 Dynamic checkpointing for CiC algorithms based on fuzzy non-
functional dependencies . 92

6.2.2 Using fuzzy logic for dynamically checkpointing processes 93

6.2.3 FCSE checkpointing window . 94

6.2.4 Performance evaluation . 95

6.2.5 Conclusion of the dynamic checkpointing approach 97

7 Conclusion and Future Work 99

7.1 Achievements . 99

7.1.1 Dissertation-derived articles . 100

7.2 Future work . 101

Acronyms 103

Notation 104

Appendix A (De�nitions and Fuzzy Rules) 116

List of Figures

1.1 Scenario of bank transaction. 2

1.2 Autonomic Service Bus . 5

1.3 Problem Description . 6

2.1 Checkpoint and Communication Pattern (CCP). 15

2.2 Triangular Function . 17

2.3 Fuzzy Inference System . 18

3.1 Fault Tolerance For Composite Web Services a Taxonomy. 27

4.1 Web Service Stack with Fault Tolerance . 45

4.2 Aircraft Distributed Collaboration . 46

4.3 Message Ordering Framework . 47

4.4 Membership . 48

4.5 Web Services Collaborative Communications 49

4.6 MOFs Protocol Stack . 49

4.7 Response Time measured when using Jboss Application Server. 55

4.8 Response Time measured when using Glass�sh Server. 56

4.9 Web Services composition Interactions . 57

4.10 Web Services Composition Architecture. 59

4.11 Standard BPEL Stack Protocol. 60

4.12 Consistent and Inconsistent CGS. 60

4.13 Building CGS. 61

xii

5.1 ESB with MAPE loop Architecture. 67

5.2 Autonomic Web services based on CiC protocols. 68

5.3 Response Time Measurement for the system implementing and without imple-
menting CiC. 74

5.4 Transactions per second Measurement for the system using and without using
CiC. 75

5.5 Standard Deviation for Response Time using and without using CiC. 76

5.6 Standard Deviation for TPS using and without using CiC. 77

6.1 Autonomic Web Service Architecture. 82

6.2 Input Fuzzy Set for the Response Time. 84

6.3 Input Fuzzy Set for CPU. 84

6.4 Input Fuzzy Set for Causal Distance. 85

6.5 Design using Fuzzy inference System. 85

6.6 Response Time Measurement for Web Services using and without using fuzzy
logic. 86

6.7 Standard Deviation for Web Services using and without using fuzzy logic. . . 87

6.8 Response Time and CPU. 89

6.9 Response Time and Memory. 89

6.10 General Scheme. 93

6.11 Example Scenario. 94

6.12 QoS Window. 95

6.13 Number of forced Checkpoints for 1000 sent messages. 96

6.14 Number of forced checkpoints for 2500 sent messages. 96

6.15 Number of forced checkpoints for 5000 sent messages. 97

List of Tables

2.1 Four aspects of self-management as they are now and would be with autonomic
computing. 10

3.1 Checkpointing for Local recovery of Web Services 30

3.2 Checkpointing for Global recovery . 33

3.3 Checkpointing for Byzantine Faults . 35

3.4 Checkpointing for Choreographies . 36

3.5 The order of messages for Collaborative Environments 40

4.1 Original JMS interfaces and equivalent . 51

4.2 Original JMS classes and equivalent . 51

4.3 Variable names and type . 52

4.4 Procedures and description . 52

4.5 Variable names and type . 62

4.6 Procedures and description . 64

5.1 Variable names and type . 70

5.2 Procedures and description . 70

5.3 Response Time . 73

5.4 Throughput . 78

6.1 Values of variables used in de�nition of membership functions. 84

6.2 Values for input/output membership functions. 88

1 Inference Rules. 117

xiv

RESUMEN xv

2 Inference Rules. 118

CHAPTER 1
INTRODUCTION

1.1 Motivation

Advancements in distributed systems technologies allow practically all devices to communicate
with one another. And the way of carrying them out has changed from the traditional client-
server design to more complex and sophisticated multi-tiered design model, where these are
deployed inside a local organization or across several interconnected enterprises.

There are several solutions, with tendencies to mitigate several communication require-
ments brought by this new multi-tiered paradigm, some of them are oriented to address
quality of service (QoS), scalability, interoperability, and others focus their e�orts in system
manageability and self-manageability for the communications solutions.

Diverse solutions were proposed at di�erent layers of the communication stack, for
instance, to address QoS, many network and transport TCP/IP based solution were proposed.
These kinds of proposals mainly present scalability issues and are not widely deployed due to
network constraints. Other e�orts are proposed to manage integrability and interoperability.

For such purpose the middleware was introduced couple of years ago. It deals with
interoperability and integrability requirements for distributed systems. Yet, still present
QoS and scalability issues while dealing with high volume transactions, i.e. high number of
concurrent transactions need to be supported.

As organizations collaborate on projects e�ciently through the vast computing power
of large scale distributed systems, these require a mean for diverse applications and programs
to intercommunicate information in an adequate and consistent form. Leslie Lamport points-
out that �A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable� [TVS07]. In other words, you know
yourself in a distributed system when a computer you did not know exists fails, and therefore
one of your local task cannot be ful�lled. Therefore, dependability arises to address a broad
spectrum of system characteristics, and many techniques have been introduced. For such aim,
dependability, addresses system reliability, availability and fault tolerance [SS17].

In fact, organizations seek dependability for their computer systems, components and
applications, by means of providing fault tolerance. With enough information previously
saved, the system can continue rendering services to users even when a set of nodes have
failed. Thus, one open challenge for systems' dependability is to o�er fault tolerance, espe-
cially for low computing power devices in heterogeneous environments. For instance, mobile
phones or any other device that support requesting services to a corporate enterprise by means

1

1.1. MOTIVATION 2

Web Browser Servlets/Web Service Clients

Web Service Providers Data Servers

Figure 1.1: Scenario of bank transaction.

of Web services or any other application. Particularly, solving fault tolerance issues like: mon-
itoring, detecting and recovering from runtime failures. To attack the fault tolerance issue
present for system dependability e�ciently, and considering that distributed systems suscep-
tibility to failures has hampered their vast computing potential, many techniques arise. A
promising technique for such purpose is rollback recovery. In this regard, communication in-
duced checkpointing (CiC) is a well-known and e�cient technique to pursue rollback recovery
addressing fault tolerance [CSPHPC13, SHRK16, VSPHRHK17].

To achieve fault tolerance processes, save its state called checkpoint, this is done during
the failure-free execution of the system, and upon a failure computer based systems gain a
way to restart from a previously saved state. Reducing the amount of work to be carried out,
as the system does not re-execute everything from the beginning. CiC's main goal is to save
consistent global snapshots (CGSs), one from each process, free of dangerous checkpointing
patterns (z-cycles and z-paths).

For example, Fig 1.1 represents an on-line purchase of some product. However, the
users are not aware of that is behind the service presented to them. Fig. 1.1 explicitly shows
each of the phases a client has to go through to complete its purchase. Here users start by
viewing a product through a Web browser, implicitly accessing Web application server or
servers, which in turn present their Web pages. These are implemented with frameworks
or servlets, and are accessed through Web Services typically by generating SOAP or REST
requests. The Enterprise Service Bus (ESB) interprets incoming messages and performs data
processing, only if required, and targets service providers. Web Service providers are based on
Web applications servers and also provide required operations or business logic and typically
access external databases to check if the product is in stock or not.

1.2. PROBLEM DESCRIPTION 3

1.2 Problem description

Computing systems complexity is overpassing the most experienced systems managers or ad-
ministrators, needing teams of experts for problem resolution, and being a time consuming
task for a human team. To mitigate this situation IBM's vision of autonomic computing
paradigm arises [KC03] as a promising solution; speci�cally tackling issues by implement-
ing self-healing. Furthermore, business processes are implemented broadly over distributed
systems where heterogeneity becomes another challenge. To assuage the heterogeneous inter-
communications issues between diverse services and applications the Enterprise Service Bus
(ESB) is the uttermost common integration approach [KDVSD+14]. Autonomic computing
(self-healing) and systems integration (ESB systems) can be better addressed by applying de-
pendability techniques like fault tolerance for instance. Systems' dependability is the ability of
such to avoid failures that are severe, frequent and a�ect the quality perceived by end users.
Notwithstanding that there exist sophisticated solutions that suggest dependability, they
have drawbacks: in systems performance, implementation costs [YCD+09], others jeopardize
scalability [AH11] and a few are for systems' diagnosis only [KDVSD+13] [KDVSD+14]. Def-
initely, there is a demand for more e�cient dependable solutions. Self-healing based on fault
tolerance can be achieved through checkpointing mechanisms which have gain a great level of
maturity. For a clear understanding of the challenges involved while developing dependability
for ESBs systems, having as foundation self-healing and checkpointing mechanism. We have
divided this section into three parts. Firstly, we explain why messages ordering is important
for systems that use the ESB system as their integration backbone. Secondly, we present the
characteristics of checkpointing protocols and self-healing within ESBs systems. Lastly, we
expose the problem of synthesizing self-healing and checkpointing protocols for an increased
dependable ESB system.

1.2.1 Partial ordering algorithms for ESBs

Before we can implement checkpointing mechanisms some considerations must be contem-
plated. For example, in distributed and heterogeneous networked environments intercommu-
nications are merely accomplished by business processes when exchanging messages, and the
order of how such events happened is well-known. Nonetheless, distributed systems are char-
acterized for not having a common reference of time. As illustrated by Lamport in [Lam78],
the concept of one event happening before another in a distributed system is shown to de�ne
a partial ordering of the events. Partial ordering of events is also called causal path or just
causality between events. In distributed systems there is no global physical time; yet, the
causality concept or an event happening before another, we could have an approximation of
it. The Happened-Before Relation (HBR) is described in detail in the background section of
this work. Since the appearance of the HBR, there have been a lot of works [Fid91], [RS96]
[Ray92] trying to e�ciently order events in distributed systems . For example, implementing
the notion of logical time using: scalar time, vector time and matrix time; developed by Lam-
port, Fidge, Mattern and Schmuck, respectively, and the matrix clocks was �rst informally
proposed by Michael and Fischer [KS08].

1.2. PROBLEM DESCRIPTION 4

We need to transfer the HBR concepts to guarantee a partial ordering of events for ESBs
systems. Despite, the previous contributions from recognized authors like Lesli Lamport, in
practice the HBR is expensive to set up. To obliterate that the HBR is expensive Pomares et
al. in [HFD04b] suggested an optimal way to assure causality between events for distributed
systems; the Immediate Dependency Relationship (IDR). Since, we want to say whether or
not two events are causally related, if so they can not constitute a consistent global snapshot
(CGS). The challenge here is to leverage the ESB system structure in order to achieve and
reduce at minimum the causal control overhead sent per message in the communication chan-
nels. In consequence, having a causal view of the system, eases the task of designing domino
e�ect free checkpointing protocols.

1.2.2 Characteristics of checkpointing mechanisms and autonomic computing for
ESBs systems

Checkpointing mechanisms have been used merely for distributed and parallel systems, and
have proved to be useful as a fault-tolerant mechanism, and address issues like: software
debugging and validation [KS08]. The collection of information in a checkpoint is important
for the process of computation recovery. If the information gathered is not useful, then our
system only su�ered degradation, however, if the checkpointing mechanism is e�cient, then
we gained a possible recovery point. Hence, the collected data must be useful, always, for
the system degradation to be minimum. Only few studies have attempted to systematize the
checkpointing paradigm in autonomic computing [OFD06] [CSPHPC13] and suggested it is
possible to merge self-healing and checkpointing mechanisms.

On the other hand, client applications usually use unreliable connection protocols when
invoking services and have random delays in the communication channels. These protocols do
not guarantee message ordering delivery in collaborative environments, sometimes they do not
support asynchronous messages exchange. Therefore, a more robust messaging mechanism
is needed. Sharing and discovering information in a collaborative context is demanded by
the industrial development of dynamic networks. In these scenarios, business partners need
to share and modify information remotely. Assuring message ordering is fundamental since
all the involved users should have the same view of the system, and data must be presented
coherently; also useful to build checkpoints or discarding such. Additionally, messages provide
the expected behavior for distributed applications.

1.2.3 Merging autonomic computing and checkpointing mechanisms

In an SOA context large number of concurrent interactions amongst providers and consumers
can take place, there is a competition for resources of shared services that can lead to unpre-
dictable conditions or events such as service unavailability, high response time, as consequence
not warranting reliability. Implementing SOA within complex business collaborative environ-
ments using Web services, are error prone because of unreliable Internet behavior during

1.2. PROBLEM DESCRIPTION 5

Knowledge

Base

Analyse

Execution

Planning

Monitoring

Autonomic

Manager

Resources

Managed

Elements

Figure 1.2: Autonomic Service Bus [Dio15].

run-time while they are still required to function correctly and be available on demand.

Failures may lead to terrible consequences such as augmenting execution time, higher
costs to run applications, destroyed systems, or system breaches. As a consequence, orga-
nizations shall establish a way to make their systems or business processes as dependable
as possible before they intend to automate them [VG10]. In anticipating these errors, orga-
nizations using core Web Services for their business processes require e�cient and seamless
solutions. In order to attack the problem of failures presented by Web Services, organi-
zations are extrapolating the autonomic computing paradigm into their business processes
as it enables them to detect, diagnose, and repair problems, and therefore improve system
dependability.

To improve both performance and therefore dependability such anomalies need to be
addressed by proposing e�cient approaches, and strategies. Business processes can require a
lot of human expertise, time and skills for their con�guration, for repairing and management.
Therefore it is mandatory avoiding managing systems manually because doing so becomes
more expensive and di�cult than doing so in an autonomic way. The initiative known as
autonomic computing aims at designing and building systems capable of managing themselves,
therefore monitoring and evaluating their state periodically for applying changes or taking
action to improve their performance, also to recover upon a failure.

Many works have been issued to improve the QoS o�ered by Web Services by means of
autonomic computing properties, i.e. implementing the MAPE cycle. Still, there is no uni�ed
or standardized form for implementing this cycle within Web Services, and neither for Web
Services composition. Some works treat each one of the MAPE loop phases as an individual
Web Service [GZ05, KGM11]. Others only tackle a single feature of the autonomic computing
paradigm, in particular self-healing [MSSD06, TZZ+05]. Tian et al., suggest to address the

1.3. PROPOSED SOLUTION 6

entire MAPE control loop adding other interfaces to confront functional and non-functional
Web Services' requirements [TZZ+05].

However, there is a correlation between the failure free execution time and the overhead
introduced by autonomic computing and checkpointing mechanisms. As consequence, there
is a need to consider it. Organizations that use Web Services for their business processes
require e�cient approaches that do not jeopardize their throughput, i.e. have small overhead.
This can be accomplished by making inferences from information gathered autonomously, and
with few to no human intervention at all.

As consequence, we propose to increase ESBs systems' dependability by implementing
the MAPE control loop, as shown in Fig. 1.2, building an Autonomic Service Bus.

1.3 Proposed solution

The contributions of this research are threefold. We propose the following, �rst for collab-
orative environments where interactions among di�erent parties take place, we consider the
order of messages exchanged, and propose a partial ordering algorithm for this matter. Sec-
ond, we propose to address Web Services fault tolerance by merging autonomic computing
with an asynchronous checkpointing mechanism. Finally, we propose an approach based on
fuzzy logic under which the amount of checkpoints can be reduced.

Figure 1.3: Problem Description.

We developed an Autonomic Service Bus (ASB) illustrated in Fig. 1.2. The ASB can
adapt to changes in the environment, by supporting fault tolerance.

1.4. DISSERTATION HYPOTHESIS AND OBJECTIVES 7

As illustrated by Fig. 1.2 the managed elements are components which can be moni-
tored: CPU and RAM. A common knowledge base is needed in order to make decisions based
on previous experiences, in other words based on the probability of systems' degradations.
These decisions are taken by adopting the MAPE loop cycle.

1.4 Dissertation hypothesis and objectives

The following hypothesis is proposed to lead our research:

For ESBs in dynamic critical environments, self-healing features such as: detect, diag-
nose and repair, can be e�ciently implemented with checkpointing mechanisms considering
QoS requirements.

1.4.1 Main objective

• To develop dependability capabilities based on QoS requirements for ESBs systems
through merging checkpointing mechanisms and autonomic computing.

1.4.2 Specific objectives

1. Identify fault tolerance issues in an SOA context to characterize systems' dependability
for collaborative environments.

2. To leverage the ESB system infrastructure and reduce at minimum the causal control
overhead sent per message in the communication channels, based on causal ordering.

3. To develop an e�cient fault tolerant mechanism based on self-healing and checkpointing
for rollback recovery.

4. To implement and deploy the self-healing MAPE control loop along with checkpointing
mechanisms to increase ESBs' dependability.

5. To reduce the generation of checkpoints considering QoS parameters for dynamic and
collaborative environments based on fuzzy logic and the MAPE control loop.

1.5 Document organization

The rest of this document is organized as follows. In chapter 2 the main concepts about
distributed systems, causal ordering, Service Oriented Architecture, Enterprise Service Bus,

1.5. DOCUMENT ORGANIZATION 8

Autonomic Computing and fuzzy sets are introduced.

In chapter 3 some works related to Web services compositions for both: orchestration
and choreographies are presented, we classify and present their advantages and drawbacks.
We also illustrate, fuzzy logic for Web services and their applicability from a point of view of
autonomic computing.

In chapter 4, the message ordering framework is presented. Firstly, we explain the rele-
vance the order of messages plays for systems consistency. Secondly, based on the Immediate
Dependency Relation (IDR), we detail our mechanism. The e�ectiveness of our framework is
also presented by showing performance test.

In chapter 5 we illustrate how checkpointing mechanisms can help out autonomic com-
puting, and then we present the MAPE control loop together with checkpointing mechanism,
specifying exactly where to implement.

In chapter 6 the fuzzy consistency system evaluation (FCSE) is de�ned. Based on the
FCSE, which evaluates QoS parameters, a dynamic checkpointing generation approach is
presented. The e�ectiveness of the resulting mechanism is veri�ed by simulations.

Finally, the conclusions and the future work of this research are summarized in chapter
7.

CHAPTER 2
BACKGROUND AND DEFINITIONS

2.1 Software paradigms

2.1.1 Autonomic computing

The notion of autonomic computing systems was proposed by IBM in 2001 [KC03], as a system
with monitoring and analysis capabilities of the states of its components. An autonomic com-
puting system can detect problems that arise from failure and continue operation performing
maintenance and/or adjustment parameters in QoS degradation without human intervention.
In general autonomic computing systems consider four major aspects: self-con�guration,
self-healing, self-optimization and self-protection, also known as S-CHOP. These four major
aspects are best summarized in Table 2.1, showing four aspects of self-management as they
are now and how should be under the autonomic computing paradigm.

Many of the big enterprises like HP, Sun, IBM are trying to evolve their system to the
autonomic computing paradigm, having as main goal the self-managing of systems. Often
autonomic computing systems are being tackled globally; for example Java programs with
self-healing and self-optimizing properties studied in [OFD06]. Other approaches are more
thorough or detailed for solving the self-healing issues; as examples, a model for diagnosis and
adaptation of the self-healing property into the ESB can be found in [KDVSD+13]; the authors
argue they transformed such ESB to an Autonomic Service Bus (ASB). But all the computing
is done o�-line, so the authors basically give a way to diagnose the ESB; predicting how one
variable a�ects another. Another thorough example, an ESB with self-healing capabilities
can be found in [AH11], where the authors propose a self-healing architecture for Airports
systems integration. We will focus on the self-healing property; which remains still as an open
challenge, and it is currently under study by academic researchers and by the industry.

As stipulated by the autonomic computing paradigm, systems must evolve to self-
management. To achieve a self-manageable system IBM introduces the notion of autonomic
managers and managed elements. Autonomic managers are in charge for the interaction and
communication with the outside world, in other words interpreted as human computer inter-
action and interactions with other elements. Also, as a bridge with the managed elements;
which at a time implement the MAPE (Monitoring, Analysis, Planning and Execution) con-
trol loop. The Monitoring phase is in charge of recollecting data, then the Analysis phase
searches for possible issues, sometimes based on probability, as for the Planning phase which
must plan ahead, if possible, what actions to take. Finally, the Execution phase executes
actions regarding previous phases [KDVSD+14]. However, experts in the �eld must choose

9

Background and Definitions 10

Table 2.1: Four aspects of self-management as they are now and would be with autonomic computing
reproduced from [KC03].

Concept Current computing Autonomic computing

Self-configuration Corporate data centers have multiple
vendors and platforms. Installing, con-
figuring, and integrating systems is
time consuming and error prone.

Automated configuration of compo-
nents and systems follows high-level
policies. Rest of system adjusts auto-
matically and seamlessly.

Self-optimization Systems have hundreds of manually
set, nonlinear tuning parameters, and
their number increases with each re-
lease.

Components and systems continually
seek opportunities to improve their own
performance and efficiency.

Self-healing Problem determination in large, com-
plex systems can take a team of pro-
grammers weeks

System automatically detects, diag-
noses, and repairs localized software
and hardware problems.

Self-protection Detection of and recovery from attacks
and cascading failures is manual.

System automatically defends against
malicious attacks or cascading failures.
It uses early warning to anticipate and
prevent systemwide failures.

Background and Definitions 11

the autonomic managers and the managed elements.

2.1.2 Service-Oriented Architecture (SOA)

Enterprises' software components or modules (usually deployed as services) running on two or
more enterprise's networks, are usually known as distributed enterprise applications. Most of
the time, the enterprise network is heterogeneous and it is composed of diverse computers, de-
vices, and operating systems. Since the network is heterogeneous, systems consist of di�erent
protocols for data exchange, technologies, and devices distributed across a network. In recent
years the industry environment has become increasingly distributed and heterogeneous across
multiple organizational and geographical boundaries, there is a strong demand to integrate
various distributed applications in order to enhance or increase enterprises' competitiveness.
SOA arises from previous technologies that in the past, or in their time, were good integration
technologies like: point-to-point and Enterprise Application Integration (EAI) [Cha04]. In a
point-to-point style all applications and/or services interfaces are programmed manually to
communicate among each other, which increases the costs of maintenance and development
[RH08]. To mitigate such complexity and heterogeneity imposed by the traditional point-to-
point integration technology the EAI arises, where all the communication passes through a
message broker; so programming this interface is only done once. However, this message bro-
ker also introduces a known point of failure to the network, what happens when this broker
fails, how does the communication among applications take place? Therefore, SOA arises as
a new paradigm that most of the organizations, nowadays follow, as applications and systems
are becoming more disperse and distributed around the world; mitigating the complexity
and heterogeneity of systems. SOA allows to reuse the code of an application facilitating
its integration following standards like XML (eXtensible Markup Language), SOAP (Simple
Object Access Protocol) to integrate the applications in a standards-based approach instead
of a vendor-based approach [UT06].

An SOA separates the monolithic approach of integrating applications or services. The
goal in SOA is to make each subsystem of a company present their capabilities through
adequate services; mostly by implementing Web services. SOA is an architecture that can
build business applications from a set of loosely coupled black box components [HBBK07].
SOA links together business process having an orchestrated well-de�ned service level. The
reuse of existing business applications is done adding a simple adapter to the black box
components regardless of how they were built. SOA takes the best software assets used and
packages them so that it lets you use them and reuse them, so you do not have to discard
software.

Any SOA system is built using di�erent units, services for a speci�c functionality, to
have complex systems. These systems usually involve various physical resources, i.e., network
resources, processing components, and of course the logical organization [Men07]. SOA gives
support for �exible connectivity and communication among applications by representing each
as a service with an interface that lets them communicate readily with one another.

Background and Definitions 12

2.1.3 Enterprise Service Bus (ESB)

On the one hand, SOA discovers applications and business functionalities as services through
an interface. On the other hand, the ESB can leverage the use of such interface; the SOA
paradigm and the ESBs together form complex systems following open standards; which
for businesses is of vital importance. An ESB was born as a solution for integration of
heterogeneous applications and thus, it has shown to be a powerful integration solution based
on open standards and as a basis for complex SOA environments [Men07].

In the context of highly distributed network and loosely coupled applications (given by
SOA); the ESB is a new approach to integration, also seen as a middleware layer that allows
the integration of heterogeneous applications, using a standards-based approach; in other
words, it is a standards-based integration platform. An ESB plays the role of connecting
heterogeneous applications and services in an SOA; it handles the transformation, routing,
and data mediation/adaptation [Cha04].

2.1.4 Basic functionalities of an ESB

The main and basic functionalities an ESB must integrate are: Virtualization, Mediation, and
intelligent Routing these functionalities are known as the core features of an ESB [AP11].

Virtualization: Virtualization, or proxying; in this role, the ESB acts as a proxy for
the service provider and handles the requests of the service consumer. The ESB can handle
authentication, authorization, and auditing, so the service provider can focus solely on the
business logic.

Mediation: Mediation, or message transformation; in this role, the ESB has the ca-
pability to take an incoming request and transform the message payload before sending it to
the end Web Service.

Routing: In this role, the ESB has the capability to route the incoming requests on a
single endpoint to the appropriate service. The ESB can look at a wide array of things like
the message content or the message header to determine where the request should be routed.

2.2 Distributed computing

2.2.1 Communication patterns

This section provides the background that characterizes distributed systems for the utilization
of the present communication-induced checkpointing (CiC) mechanism, as it is responsible
for the generation of checkpoints free of (i) domino e�ect and (ii) dangerous patterns. Based

Background and Definitions 13

on these premises, distributed systems have the following characteristics: there is no global
notion of time, processes do not share common memory and communicate solely by message
passing. In this context distributed computation consists of a �nite set of processes P =
{P1, P2, . . . , Pn}. We assume that channels have an unpredictable yet �nite transmission delay
and are reliable and asynchronous. Two types of events must be considered: internal and
external. Internal events are those that change the processes state, for instance a checkpoint, a
�nite set of internal events are denoted by Ei. External events are those that a�ect the global
state of the system, for instance send and delivery events. Let m be a message, send(m)
is the emission of m by a process p ∈ P and delivery(q,m) is the delivery event of m to
participant q ∈ P where p 6= q. The set of events associated to M is:

Em = {send(m) : m ∈M} ∪ {delivery(p,m) : m ∈M ∧ p ∈ P}

Thus the whole set of events is
E = Ei ∪ Em

2.2.2 Happened-Before Relationship (HBR)

A distributed system consist on various process or applications executed on diverse machines
distributed on di�erent parts of the planet to accomplish a task, where the user is not aware
of the execution that took place. One of the principal characteristic for a distributed system
is that:

◦ It has no global physical time; as a solution various works, starting with Lamport and the
scalar time representation back in 1978 [Lam78], have tried to realize an approximation
of it, this is known as logical time.

�As asynchronous distributed computations make progress in spurts, it turns out that
the logical time, which advances in jumps, is su�cient to capture the monotonicity property
associated with causality in distributed systems [KS08].�

Leslie Lamport de�ned the HBR trying to totally order events (sending or reception
of messages) in a distributed system [Lam78]. Because, the execution of a system may be
revealed examining how events took place (knowing if events occurred before, after or con-
currently with another event at another process); despite the lack of accurate clocks.

De�nition 1 (Lamport, 1978). The happened-before relation denoted by→, is formally
de�ned as the strict partial order on events such that:

• If events e1 and e2 occur on the same process and the occurrence of e1 preceded the
occurrence of e2 then e1 → e2.

• If e1 is the sending of a message of a process and e2 is the reception of the message by
another process, then e1 → e2.

Background and Definitions 14

• If there is an event e3 such that e1 → e2 and e2 → e3, then e1 → e3.

Other properties for the HBR are that: it is transitive, irre�exive and antisymmetric
as illustrated below:

• Given an event e1, e1 9 e1 (irre�exive property) 1

• Given e3 such that e1 → e2 and e2 → e3, then e1 → e3 (transitive property).

• Given two events e1 and e2, if e1 → e2 then e2 9 e1 (antisymmetric property).

De�nition 2(Lamport, 1978). Concurrent events: Two events e1 and e2 are concur-
rent if e1 9 e2 and e2 9 e1, denoted by e1 ‖ e2.

2.2.3 Immediate Dependency Relation (IDR)

The HBR in practice is expensive since it has to keep track of the relation between each pair
of events. In order to avoid that causality is expensive, Pomares et al. [HCR12] have worked
on the Immediate Dependency Relation (IDR). Which, minimizes considerably the amount
of control information sent per message to ensure causal ordering. The IDR is the transitive
reduction of the HBR, it is denoted by �↓� and it is de�ned as follows:

De�nition 3. (Pomares, 2004) Two events e1 and e2 ∈ E have an IDR �e1↓e2� if the
following restriction is satis�ed :

• e1 ↓ e2 if e1 → e2 and ∀ e3 ∈ E, ¬(e1→ e3→ e2).

1In this context, e1 9 e2 ≡ ¬(e1→ e2) this means that e1 does not happen before e2.

Background and Definitions 15

2.2.4 Checkpoint and Communication Pattern (CCP)

It is represented by its distributed computation

Pi . . .
C0
i C1

i C2
i C3

i

A
A
A
AU

A
A
A
AU �

�
�
��

�
�
�
�� A

A
A
AU

A
A
A
AU �

�
�
��

�
�
�
��

m2

m3

m6

m7
Pj . . .
C0
j C1

j C2
j C3

j

A
A
A
AU

A
A
A
AU �

�
�
��

�
�
�
�� A

A
A
AU

A
A
A
AU

A
A
A
AU

A
A
A
AU

m1
m4

m5
m8I2j

Pk . . .
C0
k C1

k C2
k C3

k

I1k I2k I3k

Figure 2.1: CCP [CSPHPC13].

consists on a set of incoming and out-
going messages and associated local
checkpoints.

Definition 2.1. (Netzer, 1995) A com-
munication and checkpoint pattern
(CCP) is a pair (Ê, Ei) where Ê is
a partially-ordered set modeling a
distributed computation and Ei is a set
of local checkpoints defined on Ê.

An example of a CCP is shown in Fig.
2.1; showing the checkpoint interval
denoted Ixk , with sequence of events
occurring at pk between Cx−1

k and Cx
k

(x > 0).

Simon et al. introduce an approach based on CiC, it attacks the overhead problem
as they demonstrate that not all forced checkpoints are necessary as stipulated by solutions
proposed so far [LM09]. Simon et al., introduce what they call save checkpoint conditions,
with those they identi�ed when a forced checkpoint can be removed and/or delayed, details
can be found in [CSPHPC13].

The HBR and the IDR are useful for event ordering over distributed systems; with
such information consistent global snapshots of the system may be created. So, if we have
events ordering we could know which events happened-before others or have a causal path,
these form inconsistent snapshots; in contrast if they are potentially concurrent or happened
at the same time they form a consistent snapshot [NX95]. Now that we have de�ned the
fundamentals needed to take a consistent global snapshot.

Next we give a brief introduction to checkpointing mechanisms, as these are in charge
for building consistent cuts of the system from check-pointed states.

2.2.5 Checkpointing mechanisms

A checkpoint is basically information gathered by a processor in a certain time, with such
information the processor can return to that checkpoint. A global snapshot consists of the
collection of checkpoints taken separately by each processor. AConsistent Global Snapshot
(CGS) identi�es checkpoints that do not have a causal path; they are not related by a message
or a sequence of messages. And a checkpointing algorithm collects checkpoints during the
system computation, so in case of failure the system can recover partially or totally.

Distributed systems are ubiquitous but are not fault-tolerant, yet need a whole lot of

Background and Definitions 16

computing which makes them susceptible to failures. Many studies try to develop new tech-
niques to add reliability and availability to distributed systems. One of such many techniques
is the one known as rollback recovery.

�Rollback recovery treats a distributed system application as a collection of processes
that communicate over a network. It achieves fault-tolerance by periodically saving the states
of a process during failure-free execution, enabling a restart from a saved state upon a failure
to reduce the amount of lost work. The saved state is called a checkpoint, and the procedure
of restarting from a previously check-pointed state is called rollback recovery� [KS08].

In the literature three di�erent checkpoint based rollback recovery techniques can be
found: asynchronous or uncoordinated checkpointing, synchronous or coordinated checkpoint-
ing and quasi-synchronous checkpointing or communication-induced. Checkpointing algo-
rithms save checkpoints on the stable storage or on the volatile storage depending on the
failure scenarios to be tolerated. These were explained brie�y, and their advantages as well
as their drawbacks are discussed in the related work section of this dissertation.

2.3 Fuzzy logic

2.3.1 Fuzzy logic

Definition 2.2. (Zadeh, 1965) Zadeh establishes that a set A is defined as a membership function
fA(x) that maps the elements of a domain or universe X with the elements of the interval [0, 1] :
fA(x) : X → [0, 1] representing the degree of membership of x in A.

Meaning that the closer the value of fA(x) to 1, the higher the degree of membership of x in
A.

A fuzzy set A can be represented as a set of pairs of values: each element x ∈ X with its
degree of membership in A.

A = (x, fA(x))|x ∈ X

Definition 2.3. (Ross, 2010) Fuzzification is the conversion of a precise quantity to a fuzzy quantity.

The most used fuzzi�er is based on the triangular function:

• Triangular function: fA(x) = max[min(
x− L
C − L

,
R− x
R− C

), 0], see Fig. 2.2.

L,C and R are real scalar values that delimit a fuzzy set A, being C the input value that has
the largest membership to A.

Background and Definitions 17

Figure 2.2: Triangular Function.

Definition 2.4. (Lee, 1990) Defuzzification is the conversion of a fuzzy quantity to a precise quantity.

Defuzzi�cation can be performed using the weighted average method. Such method is one of
the more computationally e�cient methods. Having as restriction that the output member-
ship functions must be symmetrical. It is given by the following algebraic expression:

∑
fA(ac)(ac)∑
fA(ac)

where
∑

denotes the algebraic sum and ac is the centroid of each symmetric membership
function, see Fig. 2.2. The weighted average method is formed by weighting each membership
function in the output by its respective maximum membership value.

Definition 2.5. (Lee, 1990) Linguistic variables. These are variables whose values are represented
using linguistic terms (low, medium, high, very high,etc.). The meaning of these terms are determined
through fuzzy sets. A linguistic variable is characterized by (v, T,X, g,m), where:

• v is the name of the variable.

• T is the set of linguistic terms of v.

• X is the universe of discourse of the variable v.

• g is a syntactic rule to generate linguistic terms.

• m is a syntactic rule that assigns to each linguistic term t its own meaning m(t), which
is a fuzzy set in X.

2.3.2 Fuzzy Inference System (FIS)

A fuzzy inference system (FIS) is a way to transform an input space in an output space,
using fuzzy logic. The FIS attempts to formalize, using the fuzzy logic, reasoning of human
language.

Related Work 18

Generally, a FIS has four modules as depicted in Fig. 2.3.

Figure 2.3: Fuzzy Inference System.

• Fuzzi�cation module: transforms the system inputs, which are crisp numbers, into mem-
berships to fuzzy sets. This is done by applying a fuzzi�cation function.

• Knowledge base: stores if-then rules provided by experts.

• Inference engine: simulates the human reasoning process by making fuzzy inference on
the inputs and if-then rules.

• Defuzzi�cation module: transforms the memberships to fuzzy sets, obtained by the
inference engine, into a crisp value.

The most used FIS are the Mamdani type [MA75] and the Sugeno type [TS85].

• In the Mamdani systems the inputs and the outputs of the inference engine are fuzzy

– If x is A and y is B then z is V

• In the Sugeno systems, the inputs of the inference engine are fuzzy and the output is
�crisp�

– If x is A and y is B then z = f (x, y)

CHAPTER 3
RELATED WORK

Web Services Composition has emerged as an important computing paradigm to create com-
plex business processes [Pet16]. In distributed heterogeneous environments, individual Web
services are used as fundamental elements to support fast and low cost development of a set of
interacting services, which form comprehensive businesses functionalities [CDK+02, LDB16].
Thus, according to prede�ned business requirements, Web Services Composition refers to the
process of adaptively composing a set of available Web services into a business process �ow.
Services composition dramatically reduces the cost and risks of building new business appli-
cations in the sense that existing business logics are represented as Web services and could
be reused [BHH10].

Web services are presented as a promising technology to implement Service Oriented-
Architecture (SOA) [Pas05, FF12, AMH10]. Composing such Web services implies using
standard-based languages which interact through Internet-based protocols. Notwithstanding
that these technologies readily allow creating large-scale systems, they are, however, prone
not only to incoming errors from the dynamic and unreliable Internet, but also to errors that
increase proportionally to the number of component counts [MBMS10, GJGT10]. Although
Web service composition have been heavily researched, several issues related to dependability
still need to be addressed. In this aspect, one primary concern is to provide fault han-
dling mechanisms [ZL10, ZL12, ZL13, ZL15]. Adopting robust fault tolerance mechanisms
is necessary because they reduce the risk of faults, and businesses can properly be auto-
mated. Therefore, fault tolerant business processes are a necessity, because failures may lead
to terrible consequences, for instance, increasing the execution time, elevating the costs of
the running applications, destroying or breaching the systems [VG10]. Clearly, organizations
need a way to guarantee consumers' needs, meaning, delivering the requested services and
delivering what the services are expected to do in a timely manner.

Composing Web services is achieved through integration approaches, such as choreogra-
phy and orchestration or a combination of these approaches [Pel03, KKM11, RFG12, KGI13].
Over the last decade, diverse works tackling fault tolerance for Web Services Composition
have appeared [SQV+14]. Many of them are based on the checkpointing paradigm. Never-
theless, trying to extrapolate the checkpointing paradigm into another paradigm like Web
services has proven to be a complicated task due to the dynamic nature under which Web
services interact, and even choosing which checkpointing technique is the most appropriate
one becomes a complicated task [VM14b, SHRK16]. For example, in the literature we can
�nd four di�erent checkpointing types of mechanisms: asynchronous or uncoordinated, syn-
chronous or coordinated, quasi-synchronous or communication-induced and message logging
based checkpointing. Regardless of which checkpointing mechanism is used, rollback recovery
increases the reliability and availability of distributed systems [KS08].

19

Related Work 20

3.1 Fundamentals and Web service faults analysis

This section presents the basis for checkpointing Web services composition, giving brief def-
initions on concepts like: Web services characteristics, Web services composition models,
checkpoint, checkpointing, rollback and their applicability to Web services composition, by
emphasizing their integration and describing how these two paradigms, i.e. how one can
bene�t the other. Also, we present an analysis concerning the types of faults in Web services
composition.

3.1.1 Web services characteristics

Standardization e�orts establish the restrictions for building Web services that exhibit the
following characteristics [Man03]:

• Web services are platform-independent and language neutral. They are accessed
through a well-known interface. Therefore, Web protocols ensure e�ortless integration
of heterogeneous distributed environments.

• Web services provide an API that can be called by other programs. This interface
applies the application-to-application programming technique that can be summoned,
for example, by BPEL or any other type of application. The API provides access to the
application logic.

• Web services are registered through a Web service registry, which enables service con-
sumers and organizations to easily �nd services that match their needs.

• Web services make interconnections �exible and adaptable because they add a layer
of abstraction to the environment. Therefore, Web services support loosely-coupled
connections between systems and communicate through their API by exchanging XML
messages.

Another aspect considered as non-functional requirement for Web services is:

• Quality of Service: Web service composition must agree on the level of QoS that has
to be met. One open challenge is to take into consideration QoS degradation when
applying checkpointing mechanisms.

3.1.2 Web services composition models

Service composition is fundamental in the SOA paradigm. It is oriented towards building
complex Web services from smaller components. Composition rules deal with the way in

Related Work 21

which di�erent services compose a coherent global service. In particular, they specify the
order in which services are invoked and the conditions under which a certain service may or
may not be invoked. The design of composing Web services is mainly carried out throughout
two composition techniques, namely choreography and orchestration.

Orchestration. In this composition model, the involved Web services are under the
control of a single endpoint central process (orchestrator). This process coordinates the
execution of various actions on the Web services involved in the composition. The Business
Process Execution Language (BPEL) [CGK+03] has become one of the predominant standards
for Web services composition [JGH09]. BPEL orchestrates the interactions between Web
services within a single part that controls and describes a process �ow or work-�ow. One core
feature o�ered by BPEL is the support for asynchronous communications, which is needed
between long-running applications based on Web services. BPEL provides an infrastructure
that manages data persistence.

Three basic fault handlers are provided by the BPEL engine: compensation handlers,
fault handlers, and event handlers [CGK+03].

• Compensation handlers are used to undo or reverse the e�ects of a previous activity,
specifying the actions to be executed.

• On the other hand, fault and event handlers execute actions at runtime for prede�ned
faults and/or events.

Nonetheless, BPEL only manages prede�ned faults speci�ed by application designers.

Choreography. This composition model presents an abstract description of protocols.
It o�ers a top view of the management rules which govern the interactions between the
involved services in a decentralized application. It di�ers from orchestration because the
former represents control from one member perspective. It allows each involved entity to
describe its part in the interaction, thus, being more collaborative. Choreography tracks the
message sequences among multiple entities and sources rather than a speci�c business process
that a single orchestrator executes [Pel03]. It is modeled by abstract processes. An abstract
process or business protocol speci�es the public message exchanges between the di�erent
entities.

Choreography uses the Web Service Choreography Interface (WSCI) which de�nes a
collaboration extension to the Web Services Description Language (WSDL). In other words,
it de�nes the overall choreography or message exchange between Web services. The speci�-
cation supports message correlation, sequencing rules, exception handling, transactions, and
dynamic collaboration [Pel03].

3.1.3 Web services composition recovery modes and fault types

In this section, we will �rst talk about the recovery modes that are common in literature
for composite Web services, then we categorize faults according to behavior, instant and

Related Work 22

origin of the faults. Afterwards, we will give the recovery strategies based on checkpointing
mechanisms.

Recovery modes. There are two types of recovery modes under which composite
Web services are currently recovered: global recovery and local recovery mode, described as
follows:

• Global Recovery Mode: If the overall system rolls back, not only does the failed
Web service roll back, but so do all others which are directly or indirectly af-
fected. This is known as global recovery (the overall system recovers). Exam-
ples of Web services composition that include this recovery mode are found in
[VG10, Vat12, CRA13, ACR13, ARC15, ARM15].

• Local Recovery Mode: This occurs when individual Web services fail and attempt to roll
back to a well-known point in time where it was working properly, without needing other
Web services to perform recovery actions. More e�orts have been put into this kind
of solution. Some examples can be found in [DMM+02, FLLL07, DTTV09, Zha07b,
GUR11, MMBJ09, RCA12, MMJ10, MJ13, VGBH11].

Categories of faults. In this survey the faults are classi�ed according to: behavioral
aspects and the moment and origin of the faults. According to behavioral aspects, the faults
can be grouped into permanent, intermittent, transient and byzantine faults.

Regarding byzantine faults, generally these are processes that may behave arbitrarily;
these may disseminate di�erent information to other processes, resulting or constituting a
serious threat to the integrity of a system [Zha07a]. Transient faults happen once and then
disappear, usually after time the system will behave normally. Intermittent faults happen,
then they go away and happen again, and so on, and so forth. These faults behave sporadically
and are hard to �x. Permanent faults are caused by system components and do not go away
until the component is replaced. Therefore, as found in the literature, byzantine faults are
rather cumbersome because no assumption can be made about them. These are di�cult to
trace and are sometimes even undetectable, for instance not knowing which server/service
has failed. Regarding transient, intermittent and permanent faults. In fail-stop faults, a
component stops working (temporarily or permanently) but it is assumed that any correct
component in the system is able to detect it. Therefore, for simplicity and without loss of
generality, in the rest of this work we classify the faults according to their behavior, into only
fail-stop faults and byzantine faults.

According to the moment and origin of the faults, Chan et al. in [CBS+09] have
introduced a taxonomy categorizing the faults into the following classes:

• Development faults, which occur during system development or maintenance.

• Operational faults that occur during service delivery. For instance, as presented in
[RCA12, CRA13] where Cardinale et al. consider faults during the execution process of
a Transactional Composite Web Service (TCWS). However, it can be considered as a

Related Work 23

fail-stop failure since it is detectable and the authors stipulate that they use replacement
of the entire failed Web service.

• Internal faults originating within the system boundary. For example, QoS degradation
faults due to a lack of resources [MJ13]. Concerning QoS degradation detection, also
grouped into fail-stop fault.

• External faults that originate outside the system boundary and are propagated into the
system by interaction or interface. For instance, [VG10], external faults may consider
integrity attacks to Web services composition.

• Hardware faults that originate in or a�ect the hardware. One example of this is a
system crash [DMM+02]. Other examples that consider this kind of faults are presented
in [Zha07b, MMBJ09].

• Software faults that a�ect programs or data. An example that considers this kind of
faults is presented in [Zha07b].

Fault Recovery strategies. Finally, we present the most common recovery strategies
found in literature overview, applied to Web services composition.

• Backward error recovery : after a failure occurs, Web services are rolled back to an
existing point in time where they were functioning properly. These are commonly based
on checkpointing mechanisms [DMM+02, VG10, VGBH11, GUR11, CRA13, Vat12,
DTTV09, Zha07b, RCA12, MMBJ09, MMJ10, MJ13].

• Forward error recovery : the failed Web services are replaced using substitution and/or
replacement [SP13], [IP14] of the failing or a subset of the failing Web services.

In forward error recovery, the system tries to repair the failure without stopping
its execution; some techniques include retry and recovery. For example, Shuchi and
Bhanodia use substitution of a subset of Web service that contains one or more failed
Web services and replaces such subset with an equivalent subset [SP13]; however, this
solution is not based on checkpointing. Only some works tackle Web services compo-
sition based on checkpointing using this kind of recovery type [RCA12, CRA13, ARC15].

There are two well-known techniques for fault tolerance in a distributed system: �active
replication" and �passive replication" [LML+11].

– Active Replication: Active Replication means creating redundant application
servers. When the system receives a request from the client, the request is for-
warded to all replicas, for example concerning Byzantine faults [Zha09].

– Passive Replication: Passive Replication means that only one server acts as the
primary one to do the assigned job. If it fails, the backup server takes over, for
example [YCD+09].

Related Work 24

In [MMSZ07], Monser et al. argue that active and passive replication can be done
by means of checkpointing. For example, checkpointing is used by replication strategies but
in di�erent ways: passive replication uses checkpointing during normal operation. Active
replication, on the other hand, do not use checkpointing during normal execution, but uses it
to initialize a new recovering replica. This work describes many other technologies to increase
the dependability and security of Web services. Regarding checkpointing mechanisms, they
point out ways to apply it to a typical Web services architecture; however, it is a merely
descriptive work and no evaluation was detailed.

3.1.4 Checkpointing mechanisms and their applicability to Web services compositions

• Checkpoint : refers to the information gathered by a processor in a certain time. With
such information the processor can return to that checkpoint [KT87].

• Consistent Global Snapshot (CGS): It identi�es checkpoints that do not have a causal
path; they are not related by a message or a sequence of messages.

• Rollback Recovery: it treats a distributed system application as a collection of processes
that communicate over a network. It achieves fault-tolerance by periodically saving the
states of a process during failure-free execution, enabling it to restart from a saved state
upon a failure to reduce the amount of lost work [KS08].

Considering the above premises, the literature presents four di�erent checkpointing
types of mechanisms oriented towards rollback recovery, namely, asynchronous or uncoor-
dinated checkpointing, synchronous or coordinated checkpointing, quasi-synchronous check-
pointing or communication-induced and message logging. These can save checkpoints on the
stable storage or on the volatile storage depending on the failure scenarios to be tolerated.

Asynchronous or uncoordinated checkpointing

Asynchronous checkpointing consists in each participant taking its own checkpoint, its main
advantages are that it eliminates the synchronization overhead imposed by synchronizing,
and it has low overhead during normal execution. The main �aw of this approach is that it
is susceptible to the domino e�ect; it is also known in the literature as rollback propagation
where processes that should not be rolled back are, in fact, rolled back.

This approach is not suitable for composite Web services because the system may revert
to an inconsistent state. For instance, let us suppose a bank business process where the bank or
the customer exchange money, the system suddenly fails. One possible inconsistent outcome
is that a state of an account A was recorded before the transfer to account B ; thus, the system
may revert to a state that represents losses for the customer or the bank.

Related Work 25

Synchronous or coordinated checkpointing

Synchronous checkpointing solves the domino e�ect �aw of uncoordinated checkpointing since
a process always restarts from its most recent checkpoint; however, all processes must orches-
trate their checkpoint activity to form a consistent global snapshot. The storage overhead is
reduced because in such technique each process maintains only one checkpoint on the stable
storage. Coordinated checkpointing guarantees checkpointing consistency in two main ways:

• Blocking: All processes must agree on when to take their checkpoints. An initiator
sends a control message to all other processes to take their checkpoints. When receiving
such message, the process can no longer send or receive messages, then takes a tentative
checkpoint and acknowledges the initiator. For Web services, this is unacceptable,
blocking incoming and outgoing messages can result in monetary losses.

• Non-Blocking: Based on piggybacked information, processes decide when to take their
checkpoints. For Web services composition, this technique is compatible; however, it
may not be suitable because of the high overhead and the high control information used.

Quasi-synchronous or Communication-induced Checkpointing (CiC)

In quasi-synchronous checkpointing, any of the involved processes take checkpoints based
on the control information piggybacked on the application messages they receive from other
processes. Upon the detection of dangerous patterns, like Z-paths, forced checkpoints are
taken. CiC is another way to avoid the domino e�ect since it allows processes to take some of
their checkpoints independently [KS08]. CiC is a well-known and studied mechanism which
takes into consideration the correlation between recovery overhead in case of failures, and
checkpointing overhead, in case of the system failure free execution. In the case of Web
services, this can be leveraged because checkpoints can be e�ectively generated, avoiding
non-useful checkpoints.

CiC can be implemented as a transparent mechanism, meaning that it does not require
modi�cations to target applications. In the case of composite Web services, the challenge
is to leverage the CiC mechanism in order to achieve and reduce to a minimum the causal
control overhead sent per message in the communication channels.

The characteristics that should be exploited by CiC for Web services composition are:

• CGSs can be formed easily as the CiC mechanism avoids dangerous patterns and guar-
antees consistency by means of forcing checkpoints when needed.

• The system will revert to the last CGS; therefore, it does not overwhelm the system
with unnecessary storage.

Related Work 26

Message logging based checkpointing

Message logging based checkpointing, oriented towards rollback recovery, consists in saving
or recording, by each process in a log, all received and sent messages. The main advantage of
this technique is that processes that do not su�er a failure do not need to be rolled back and
may continue their execution. However, recording so many messages is expensive in practice;
therefore, di�erent alternatives of this technique have been proposed. Pessimistic Logging,
Optimistic Logging and Causal Logging.

Currently, we have found in literature that most solutions for composite Web services
either are based on or implement this mechanism [DMM+02, Vat11, Vat12, AM15a, FLLL07].

To conclude this section, one can argue that asynchronous, synchronous and quasi-
synchronous checkpointing mechanism requires all participants or processes to rollback. How-
ever, some of their advantages are that they will most likely recover from their last known
CGS and guarantee a global recovery within a consistent state, except in the case of an
asynchronous mechanism.

3.2 Fault tolerance techniques for Web services composition

With the proliferation of Web services technology within enterprises, many studies emerged
for reliable service composition [IP14] and for composition recovery [GUR11]; nevertheless,
there is a need for a new and speci�c study to classify and give a taxonomy in the realm of
fault tolerant Web services that apply checkpointing mechanisms. Therefore, we propose a
novel taxonomy that addresses the techniques applied from the perspective of Web services
composition paradigms as Fig. 3.1 shows. It is because Web services depend on hardware
and software to function properly that the fault tolerance property must be enabled. Fault
tolerance is highly desired for Web services composition because it can ensure for long running
applications that they are accomplished in a timely manner.

In this section, fault tolerance approaches, drawbacks and issues for many approaches
are brie�y reviewed in the context of Web services composition for both integration ap-
proaches: orchestration and choreography. Fig. 3.1 shows an abstract view of fault tolerance
techniques categorized under orchestration and choreography reviewed in terms of a new
classi�cation, namely, global and local recovery, as they are the most used fault tolerance
techniques found in the literature overview.

3.2.1 Fault tolerance techniques for orchestration

Orchestration has become the predominant standard followed by enterprises for services com-
position, per se the most followed and applied standard is the Business Process Execution
Language (BPEL), although other standards exists like the Business Process Modeling No-

Related Work 27

Figure 3.1: Fault Tolerance For Composite Web Services : a Taxonomy.

Related Work 28

tation (BPMN), which is the core enabler of Business Process Management (BPM). Both
standards specify business rules and the order under which Web services interact to carry
out a systems functionality. This section brie�y reviews fault tolerance approaches that have
checkpointing mechanisms as main core in the context of BPEL and BPMN.

Firstly, we begin by reviewing many works that have local recovery as their main
strength .

The �rst time someone implied that checkpointing was a suitable option for Web services
was presented in [DMM+02], where Dialani et al. propose an infrastructure and claim that
it is transparent to Web services. Such solution mounted on top of the Web services protocol
stack, considering checkpointing based on message logging to restore and/or rollback a single
Web service. Yet, the authors also argue that their proposal needs small modi�cations to
recover globally. Nonetheless, such work is descriptive, yet it suggests the use of a local fault
manager and global fault manager.

Davis et al. patented a checkpointing technique for long running Web services
[DTTV09]. It ensures the survival of Web services when an application server crashes or
restart events occur. As stipulated by the author, the Web service state can be �revived" in
response to a restart event. Yet, this patent considers individual Web services. They patent
the idea that a checkpoint processor can be con�gured for coupling to individual Web services
through a Web services engine. This processor is in charge of running the logic programmed
to store and restore the corresponding checkpointed data from each of the failed Web ser-
vices. Additionally, it manages the corresponding cleaning actions like removing checkpoint
data that is no longer needed.

Fang et al. present a framework called Fault Tolerant SOAP (FT-SOAP) based on
previous integration middleware as is CORBA [FLLL07]. For interoperability reasons, at
the time of writing, the authors examine two implementation approaches: one for SOAP's
intermediary, and the other for Axis handler. Checkpointing is based on a logging mechanism
which logs incoming requests and checkpoints critical states periodically for backups. How-
ever, for the intermediary approach, we found disadvantages like incompatibility, between
their SOAP based logging service and other ones that do not implement such service, leading
to an inconsistent state after a service is recovered form a crash. Another disadvantage is
that, while checkpointing, the primary service is temporarily suspended until checkpointing
is completed. Nevertheless, state checkpointing has a great impact on performance. Clients
can experience delays while making an invocation to the primary Web services, because of
checkpointing its states to its backups.

Wenbing Zhao presents a fault tolerance framework using replication as the main tech-
nological approach [Zha07b]. Such work tackles the Web service server side replicating 3f +1
each client's incoming request. The author proposes to periodically perform garbage collec-
tion as not all replicas must be saved all the time. So, when the garbage collection performs
its corresponding actions, so does the checkpointing mechanism.

Rukoz et al. illustrate how a checkpoint mechanism can e�ectively be represented using
Petri-Nets [RCA12],providing a fault tolerant recovery scheme. Rukoz et al. propose a three
layer architecture: execution engine, engine thread and the actual Web services, located in

Related Work 29

the third tier. The execution engine manages the compensation order in case of failure. The
engine thread runs a thread; for each peered Web service, it manages the execution control.
If Web services fail, their approach is able to monitor and continue execution of the non-fail
Web services as far as possible and then resume their execution from the last checkpoint.

Migration and replacement and/or rollback are found in the literature as an attractive
way of guaranteeing Web services orchestration fault tolerance as found in [MMBJ09, MMJ10,
MJ13].

Marzouk et al. achieve strong mobility de�ned as �enabling a running application com-
ponent to be migrated from one host to another and to be resumed at the destination host
starting from an intermediary execution state called checkpoint " by means of source code
transformation [MMBJ09]. They propose transformation rules in order to take checkpoints
periodically. They also present three main transformation code aims: to maintain its updated
state, to capture and to save the state when a checkpoint position is reached, and to load a
checkpoint and to resume the execution starting from it.

Marzouk et al. stipulate that self-adaptivity is needed for applications operating under
highly dynamic environments where applications components fail, or sometimes when per-
formance degradations exists causing QoS' degradation [MMJ10]. The authors, identify that
other works focus on the unavailability of composite Web services and often use substitution
for recovering, causing high overhead. Because other works do not use checkpointing, they
have to restart all the orchestration. The authors discuss that their approach pursues the
self-healing property; in case of failure, the failed process is migrated to a di�erent server,
and in case of a QoS violation, a subset of running instances may be migrated to a new
server in order to decrease the initial host load. Marzouk et al. o�er a �exible solution at
runtime; the checkpointing policy dynamically changes, for instance, whenever the execution
context changes an execution manager decides whether to change the checkpointing policy.
Nevertheless, a recovery state is built after synchronizing all �ow branches. This permits
saving a consistent checkpoint. Yet, to our knowledge using synchronization for constructing
a consistent checkpoint makes this approach expensive because of the barrier imposed from
synchronizing; hence, this solution is slow and lacks concurrency.

The most complete work from Marzouk et al. can be found in [MJ13]. They present
both the transformation rules and the aspects for strong mobility. They also illustrate that
checkpoints can be forced based on policy-oriented techniques. Checkpointing techniques al-
low saving the state of an orchestration process and roll back to the last checkpoint taken;
upon a failure and by making use of aspects, source code transformation rules and strong
mobility only the non executed code will be resumed and executed. In this work, the authors
also take into account the quality of service (QoS), they do so by determining the checkpoint-
ing interval based on Markov chains and considering the required QoS of the mobile Web
services. This is a sophisticated proposal and the authors present transformation rules, an
adaptive dynamic computation of the checkpointing interval, and the selection of the mobility
techniques. They use synchronization of parallel branches executed within a BPEL process
and their work does not intend to build consistent global states from interacting business
processes. Instead, they are able to build a checkpoint state from a single Web service within
the BPEL process.

Related Work 30

Ta
bl

e
3.

1:
C

he
ck

po
in

tin
g

fo
rL

oc
al

re
co

ve
ry

of
W

eb
Se

rv
ic

es

R
ef

er
en

ce
G

lo
ba

l
or

L
oc

al
R

ec
ov

er
y

B
yz

an
tin

e
or

Fa
il-

St
op

Fa
ul

ts

Pe
ri

od
ic

or
A

da
pt

iv
e

C
he

ck
-

po
in

tin
g

B
ac

kw
ar

d
an

d/
or

Fo
rw

ar
d

R
ec

ov
er

y

Q
oS

-
A

w
ar

en
es

s
B

PE
L

or
B

PM

[D
M

M
+

02
]

L
oc

al
Fa

il-
St

op
Pe

ri
od

ic
B

ac
kw

ar
d

po
ss

ib
le

Fo
rw

ar
d

−
−
−
−

−
−
−
−

[F
L

L
L

07
]

L
oc

al
Fa

il-
St

op
Pe

ri
od

ic
B

ac
kw

ar
d

−
−
−
−

−
−
−
−

[D
T

T
V

09
]

L
oc

al
Fa

il-
St

op
Pe

ri
od

ic
B

ac
kw

ar
d

−
−
−
−

−
−
−
−

[Z
ha

07
b]

L
oc

al
Fa

il-
St

op
Pe

ri
od

ic
B

ac
kw

ar
d

−
−
−
−

−
−
−
−

[G
U

R
11

]
L

oc
al

Fa
il-

St
op

Pe
ri

od
ic

B
ac

kw
ar

d
−
−
−
−

−
−
−
−

[M
M

B
J0

9]
L

oc
al

Fa
il-

St
op

Pe
ri

od
ic

B
ac

kw
ar

d
−
−
−
−

B
PE

L
[R

C
A

12
]

L
oc

al
Fa

il-
St

op
A

da
pt

iv
e

B
ac

kw
ar

d
an

d
Fo

r-
w

ar
d

−
−
−
−

−
−
−
−

[M
M

J1
0]

L
oc

al
Fa

il-
St

op
Pe

ri
od

ic
B

ac
kw

ar
d

−
−
−
−

B
PE

L
[M

J1
3]

L
oc

al
Fa

il-
St

op
A

da
pt

iv
e

B
ac

kw
ar

d
C

he
ck

-
po

in
tin

g
ba

se
d

on
Q

oS

B
PE

L

[V
G

B
H

11
]

L
oc

al
Fa

il-
St

op
Pe

ri
od

ic
B

ac
kw

ar
d

−
−
−
−

B
PM

Related Work 31

Varela et al. argue that companies need to intercommunicate exchanging information
between business logics, thus deciding to deploy what is called Business Process Management
System (BPSM) [VGBH11]. BPSM helps to automate business processes, but in this context,
systems are error prone and cannot guarantee a perfect execution over time. Therefore, a new
paradigm called Business Process Management (BPM) arises. It is de�ned as a set of concepts,
methods and techniques to aid the modeling, design, administration, con�guration, enactment
and analysis of business processes. For the business processes life cycle, the BPM paradigm
follows diverse stages: design and analysis, con�guration, enactment and diagnosis; however,
each stage may introduce di�erent fault kinds. For companies a way to gain dependability
in early design stages is indispensable, promoting the reduction of possible faults and risks.
In this work, the authors propose to follow traditional or classic fault tolerant ideas such
as replication and checkpointing, among others, focusing on the service-oriented business
processes context. However, such approach requires the introduction of extra components
(sensors) into the business process design, extra time to check each sensor, and the recovery
of business process service in rollback.

Table 3.1 summarizes works that are based on checkpointing and are relevant for re-
covering a single Web service. Thus, it concerns local recovery.

Secondly, we review many works that carry out global recovery, where all participants,
in this case Web services, must build and recover from a consistent global snapshot of the
system. As an example, one can �nd that not many works focus their e�orts on this kind of
solution [VG10, Vat12, CRA13, ACR13, ARC15, ARM15].

Varela et al. identi�ed that while executing business processes, they are susceptible to
intrusion attacks, which can be the cause of severe faults [VG10]. Fault tolerance techniques
tackle such issues, decreasing risk of faults, and are therefore more dependable, with the
aim of achieving dependability before business processes automation. The authors claim
that fault tolerance techniques can be applied in order to solve issues related to integrity
attacks. Varela and Martínez proposed OPUS, a framework with many capabilities, developed
following the Model-Driven Development (MDD) and the Model Driven Architecture (MDA).
This framework has four layers: Modeling, Application, Fault Tolerance and Services. It is
the Fault Tolerance layer which is based on checkpointing and rollback recovery. However,
the authors do not mention which checkpointing mechanism they use. New and improved
checkpointing protocols are proposed in the literature, we believe that the recovery overhead
time can be reduced by making use of such improved protocols.

Vathsala et al. propose a way of building global checkpointing of orchestrated Web
services [Vat12]. To achieve global checkpointing, they make use of a checkpointing policy.
The authors contemplate a global set of checkpoints in order to avoid expensive re-invocation
of Web services that are synchronous, and therefore sequentially executed. To generate this
global set, the authors compute all possible sequence of calls for an orchestrated Web service.
Varela et al. introduce the notion of Call-based checkpointing for Web services, thus they
employ a set of checkpointing policies. These policies identify the calls within Web services;
for instance a one way request will checkpoint its state for further use later. Nevertheless,
Vathsala et al. address only one instance of the orchestration process, and do not take into
account interaction among multi-party orchestration processes.

Related Work 32

Cardinale et al. propose a checkpointing approach using colored Petri nets [CRA13].
This work is oriented towards Transactional Composite Web Service (TCWS), which present
an atomicity property; such statement establishes an all-or-nothing behavior. In case of
failure, their approach relaxes the aforementioned property to a something-to-all property.
This solution encompasses both forward and backward recovery. This is because a snapshot
is taken in by an advanced execution state; however, it must �rst give a partial result or
return something to the user. Then for the user to get all later, a possible restart of the
TCWS from the last snapshot is executed to complete the result. The main advantage of this
work is that checkpoints are only taken in case of failure, therefore the authors claim that
they do not increase the system overhead while the execution is free of failures.

Related Work 33

Ta
bl

e
3.

2:
C

he
ck

po
in

tin
g

fo
rG

lo
ba

lr
ec

ov
er

y

R
ef

er
en

ce
G

lo
ba

l
or

L
oc

al
R

ec
ov

er
y

B
yz

an
tin

e
or

Fa
il-

St
op

Fa
ul

ts

Pe
ri

od
ic

or
A

da
pt

iv
e

C
he

ck
-

po
in

tin
g

B
ac

kw
ar

d
an

d/
or

Fo
rw

ar
d

R
ec

ov
er

y

C
om

po
si

te
W

eb
Se

r-
vi

ce
s

A
pp

ro
ac

h

Q
oS

aw
ar

e-
ne

ss

[V
G

10
]

G
lo

ba
l

Fa
il-

St
op

Pe
ri

od
ic

(u
si

ng
in

te
gr

ity
se

ns
or

s)

B
ac

kw
ar

d
R

ec
ov

er
y

B
PM

−
−
−
−

[V
at

12
]

G
lo

ba
l

Fa
il-

St
op

A
da

pt
iv

e
B

ac
kw

ar
d

−
−
−
−

−
−
−
−

[C
R

A
13

]
G

lo
ba

l
Fa

il-
St

op
A

da
pt

iv
e

B
ac

kw
ar

d
an

d
Fo

r-
w

ar
d

Pe
tr

iN
et

s
−
−
−
−

[A
C

R
13

]
G

lo
ba

l
Fa

il-
St

op
A

da
pt

iv
e

B
ac

kw
ar

d
an

d
Fo

r-
w

ar
d

G
ra

ph
s

E
xe

cu
tio

n
Ti

m
e

[A
R

C
15

]
G

lo
ba

l
Fa

il-
St

op
A

da
pt

iv
e

B
ac

kw
ar

d
an

d
Fo

r-
w

ar
d

G
ra

ph
s

E
xe

cu
tio

n
Ti

m
e,

Pr
ic

e,
R

ep
ut

at
io

n
an

d
Tr

an
-

sa
ct

io
na

l
pr

op
er

tie
s

[A
R

M
15

]
G

lo
ba

l
Fa

il-
St

op
A

da
pt

iv
e

B
ac

kw
ar

d
an

d
Fo

r-
w

ar
d

G
ra

ph
s

E
xe

cu
tio

n
Ti

m
e

[V
at

11
]

G
lo

ba
l

Fa
il-

St
op

A
da

pt
iv

e
B

ac
kw

ar
d

−
−
−
−

−
−
−
−

Related Work 34

In works [ACR13, ARC15, ARM15] Angarita et al. present a runtime decision-making
model that chooses which recovery strategy is best suitable for a Web service within the
execution of a Composite Web Services (CWS). The strategies include retry, compensation or
checkpointing. In particular [ACR13] presents a preliminary model to select the best recovery
strategy in terms of impact on the CWS QoS. The authors extend their work to take into
account more QoS criteria to obtain a self-healing model [ARC15], presenting also the impact
that di�erent recovery strategies have on QoS and mention that their model chooses the
best recovery strategy. Regarding checkpointing, techniques can be implemented to relax the
all-or-nothing transactional property and still provide fault-tolerance, allowing users to have
partial results and resume the execution later. Finally, in [ARM15] Angarita et al. focus their
e�orts on providing a general model to support CWS executions, while maintaining required
QoS and providing dynamism regarding the selection of fault-tolerance strategies. For all their
works, they consider the dynamism of CWS execution, and the QoS's CWS during failure-free
execution. Their global solution recovers the entire CWSs. The most recent aim for this kind
of solution is to be integrated within dynamic CWS executions while maintaining the required
QoS in presence of failures; such solution is automatic and distributed. Fault-tolerant CWS
execution is based on transactional properties.

Vathsala et al. aim at providing a way to make Web services orchestration resilient
to faults [Vat11]. They propose an adaptive checkpointing policy named �Call Based Check-
pointing of Orchestrated Web Services�. Using policies the authors adapt the checkpointing
rate depending on the mean time between failures and the prediction execution time, a com-
parison is made and depending on the type of operation carried out during a certain time of
the executed orchestration, relying on policies decide whether or not to take a checkpoint.
Additionally, reduces the amount of checkpoints. One of the main advantages of this work is
that, upon a failure, the entire system does not need to be reseted from the beginning. When
Web services within the Web services composition become idle, the latest local checkpoint
becomes the global checkpoint of the composed application; and the call-based global check-
point is de�ned as a set of latest local checkpoints of each of the Web services that are active
during the call. Upon a failure, the application rolls back to the latest global checkpoint and
all messages replayed form the message logs. Execution continues without re-invoking the
�nished constituent Web services.

Table 3.2 summarizes works that are based on global recovery or the overall system
recovery that implies using checkpointing mechanisms.

Now we present works that consider a more troublesome kind of faults, speci�cally those
known as Byzantine faults.

Byzantine faults are arbitrary and di�erent users can experience diverse behavior of
the system; they are more troublesome than fault-stop. These are only considered by few
works [GG11, Zha07a, Zha09] for composite Web services; they implement replicas and fault
tolerance mechanism and use checkpointing.

Marimuthu and Gopal consider Byzantine fault tolerance based on replication [GG11].
This kind of works were not feasible due to its runtime e�ciency until the introduction
of the work presented by Castro and Liskov [CL+99]. Marimuthu and Gopal describe
an asynchronous protocol that combines failure masking with imperfect failure detection

Related Work 35

and checkpointing; however, no implementation detail or performance evaluations are car-
ried out regarding the checkpointing mechanism. This solution encompasses individual re-
quests/responses made to Web services and replicates them 2t+ 1 to mask Byzantine faulty
ones; however, this solution does not consider global recovery of the overall system.

In the works [Zha07a, Zha09], Wenbing Zhao presents a fault tolerance framework
capable of dealing with Byzantine faults, and not only crash faults. It does so by presenting
a framework called BFT-WS that operates on top of SOAP for interoperability reasons and
it is based on Castro and Liskov's BTF algorithm for e�ciency. The author argues that this
framework can overcome Web Services Reliable Messaging (WS-RM) drawbacks. In addition,
BFT-WS is backward compatible with WS-RM, and when there is no need to replicate Web
service it can run with the default WS-RM. Byzantine fault tolerance is achieved by replicating
the server and executing in the same order of all replicas. Regarding checkpointing, it is used
for garbage collection, where each replica periodically takes a snapshot of its state. The
author adds two additional operations for checkpointing and recovery, namely, get_state and
set_state. In order to update checkpoints while running the BFT algorithm, when a new
checkpoint becomes stable, the previous ones along with all the control messages prior to the
checkpoint are garbage collected. State restoration is also considered, for instance, when a
slow replica has fallen too far behind. Finally, the authors present evaluation of their BFT-
WS and claim that it has a low overhead compared to the complexity of this kind of solution.
The main di�erence between [Zha07a] and [Zha09] is that the former and most complete
work supports multi-tiered Web services and transactional Web services, while the latter only
considers single Web services.

Table 3.3: Checkpointing for Byzantine Faults

Reference Global
or Local
Recovery

Byzantine
or Fail-
Stop Faults

Periodic or
Adaptive
Check-
pointing

Backward
and/or
Forward
Recovery

[Zha07a] Local Byzantine Periodic Backward
[GG11] Local Byzantine Unknown Unknown
[Zha09] Local Byzantine Periodic Backward

Table 3.3 summarizes works that are most relevant for Byzantine faults which rely on
checkpointing.

3.2.2 Fault tolerance techniques for choreography

This section brie�y reviews checkpointing based fault tolerance approaches in the context of
Web services choreography and discusses their advantages and drawbacks.

Composite Web services create complex business processes; however, they are more
collaborative than orchestration. Web services are usually provisioned over the unreliable

Related Work 36

Internet, and are therefore susceptible to faults, so they must adopt fault tolerance techniques.
Nevertheless, in spite of these research challenges, there has neither been much involvement
from researchers, nor has it been tackled by the industry.

To make Web services resilient to faults, Vathsala and Mohanty propose recovering Web
services, by means of saving checkpoints in message logging [AM15a], considering that only
the failed Web services roll back, and it does not cause a chain of reactive services to rollback.
Vathsala and Mohanty perform checkpointing of choreographed Web service at three di�erent
development stages: design time, deployment time and at runtime.

• At design time, they use the choreography document and introduce checkpoint locations
at places where non-repeatable actions take place [VM14a].

• At deployment time, they consider Web services non-functional requirements, such as
QoS (response time, reliability, cost of service) and other quantities, like checkpointing
time and message logging time.

• At runtime, the authors in a near future will dynamically predict QoS values and dy-
namic composition of Web services. Therefore, they need response time prediction as
presented in [VM12, AM15b].

Table 3.4: Checkpointing for Choreographies

Reference Global or
Local Re-
covery

Byzantine
or Fail-
Stop
Faults

Periodic or
Adaptive
Check-
pointing

Backward
and/or
Forward
Recovery

QoS-
Awareness

[AM15a] Local Fail-Stop Adaptive Backward QoS
Check-
pointing
policy

[VM14a] Local Fail-Stop Adaptive Backward Unknown
[MVM14] Local Unknown Periodic Backward Unknown
[MD11] Local Fail-Stop Periodic Backward Unknown

Vathsala et al. identify the most appropriate checkpointing locations by means of their
model, where they model the choreography composition as a set of interaction patterns. An
introduction to this approach can be found in [VM14b] and details can be found in [VM14a].
Therefore, Vathsala et al. use QoS values obtained from a service, aiming at meeting services
execution times and constraint costs. To show the validity of their approach, Vathsala et al.
compare checkpointing Web services at design time and deployment time. This proposal aims
at introducing minimum overhead during failure free execution, as consequence Vathsala et
al. take when possible the minimum number of checkpoints.

Related Work 37

Muruganantham et al. address Web services choreography based on an automatic check-
point algorithm [MVM14]. This approach �rst locates Web services semantically or based
on a semantic search. As a second step, the Web services choreography is composed using
AND/OR operators. As third step, Muruganantham et al. developed an auto checkpoint-
ing algorithm. Checkpoints are used to mark Web services, if such is executed successfully
then the choreography moves to the next operation; otherwise, it restarts from a previous
checkpoint. However, this work is merely descriptive and no further details are given. It only
presents the system architecture and the rollback-recovery concept to enhance reliability.

Mansour and Dillon propose a new model for Web services modeling the error arrival
time as a function of the workload of the server [MD11]. In this work, checkpoints are
generated only when the broker realizes that the acceptance testing mechanism is deemed
as unacceptable for a Web service of the composite Web services assembly. Checkpoints
are associated with initiating a Web service and completion of a Web service. This work
considers design errors, hardware server errors and channel transmission errors. The authors
are aware that the broker constitutes a single point of failure, to deal with it, they use Triple
Modular redundancy and N-version Programming. Web services choreography is represented
by a graph, each node represents a Web service and edges are placed between interacting
Web services i.e. i to j. This is done sequentially, meaning that j is executed right after i
within the choreography. Using acceptance testing based on positive or negative values of the
quantity E(i, j) =M −R− t checkpoints are placed or rollback is executed, where M is the
maximum recovery time, R is the actual recovery time and t is the execution time of service
j. For instance, if E(i, j) is negative a checkpoint is inserted between Web service i and j and
so on for the next sequential task de�ned in the choreography.

Table 3.4 summarizes works that use checkpointing as their recovery technique within
Web services choreography.

3.3 Discussion and open challenges

For this literature survey, we found many papers that describe a diversity of approaches (re-
covery modes, type of faults considered, etc) highlighting the importance of standardization,
since there is no common solution from any of the authors. For instance, fault tolerant mecha-
nisms should be a means by which composite Web services recover: partially, totally, globally
and or locally. Not until there is a common agreement among researchers the applicability
of the approaches in industry will be hindered. Although all fault tolerance architectures
agree on where to place the fault tolerant capability within the Web services protocol stack,
a common problem found is that these solutions require special analysis models or familiarity
with mathematical models (Petri Nets, Markov Chains).

Despite the fact that taxonomies that classify faults exist, we found in our literature
survey that the treated faults are missing in many works.

Therefore, in this survey we propose a novel taxonomy for Web services composition
based on the currently most used standards, such as choreography and orchestration. Not

Related Work 38

many works are currently developed for choreography by means of checkpointing. Those
that exist, generate checkpoints automatically and in case of detecting a failure, only one
Web service applies a rollback-recovery strategy. Nonetheless, an open opportunity for Web
services choreography is global recovery instead of local or individual recovery, contemplating
non-functional requirements, such as QoS.

Only few works deal or contemplate QoS while checkpointing Web services composition.
In general, in this survey, checkpointing can be carried out periodically; nonetheless, this can
lead to inconsistent states or it can be carried out in an adaptive manner. We consider this
is the best way of doing so.

Another noteworthy fact is that only one work considers the checkpointing interval as
traditional checkpointing mechanisms for distributed systems do. A confusing fact is that
most works imply they use checkpointing as means for Web services and Web services com-
position fault tolerance, but fail to mention which mechanism they use, and whether it is
a distributed or a centralized solution. More work needs to be carried out for both orches-
tration and choreography leveraging quasi-asynchronous checkpointing advantages, such as
asynchronous execution and de-centralized nature.

Future trends indicate that there will be a time when choreographies interact against
other choreographies. Orchestrations will need to communicate or intercommunicate with
other orchestrations and possibly a combination of these aforementioned technologies. There-
fore, new and di�cult challenges can arise while adopting fault tolerance based on checkpoint-
ing mechanisms, which take into account QoS, and checkpointing interval, oriented towards
rollback recovery for emerging trends.

Other open challenges include not taking checkpoints at regular intervals of time or
periodically, since doing so can revert the system to an inconsistent state. Instead they could
depend on the interaction and quality of service among Web services both for existing trends
like BPEL and choreographies, as well as for new trends such as interactive BPEL processes.
In addition, it is a well-known fact that checkpointing mechanisms have a correlation between
recovery overhead, in case of failures, and checkpointing overhead, in case of system failure-free
execution. The question that remains as an open challenge involves the quality of service of
the involved business processes. Only one work stipulates that they do not incur an overhead
during the failure-free execution. Such solution only checkpoints when needed (when faults
happen). More challenges include: handling execution programs, partial failures, machine
crashes, and conserving data coherency across machines in such situations.

One last note, composite Web services are characterized by their loose coupling, dis-
tributed data and distributed components, as well as their asynchronous interactions. How-
ever, these are not completely supported by current works. For example, imposing a barrier to
synchronize �ows inhibits asynchronous interactions among components, which in turn, slows
down the system. Another clear example is when works report periodically-saved local check-
points; this may lead to global inconsistent states. The design of fault tolerant mechanism
for Web services composition based on checkpointing presents the following open questions:

To be e�cient the following questions arise:

Related Work 39

• How often and when must the checkpoints be taken? Most of the works take checkpoints
periodically and only some do it adaptively according the system behavior.

• Where or who shall take the checkpoints? Most works rely on proprietary models and
there is not a common agreement on such topic.

To be consistent the following question arises:

• Which are the properties that must be satis�ed between checkpoints to establish consis-
tent global snapshots? None of the aforementioned works perform a formal veri�cation
that they actually rollback to consistent states.

To accomplish the distributed and asynchronous nature of a composite Web service the
following question arises:

• Which is the most suitable checkpointing technique that better adapts to the nature of
Web services composition? Most of the works are based on checkpointing for message
logging; however, message logging has disadvantages like possible rollback to systems'
inconsistent global states. None of the previous analyzed works is based on the quasi-
synchronous checkpointing technique. Such technique must be explored for fault toler-
ant Web services composition to leverage their distributed and asynchronous inherent
characteristics.

Yet before implementing checkpointing mechanisms, proposed solutions shall have a
means of knowing the order under which messages were executed. As distributed systems
execution in most cases rely their fault tolerance approaches in such information.

Next section illustrates some of the works or proposals for collaborative environments
based on Web services technology.

3.4 Order of messages for Web services based environments

In [WFB+04] the authors propose a collaborative system, a framework based on WS, in par-
ticular they implement their solution for conference control integrating various technologies;
controlling multipoint audio and video collaborations. In other words, it is a sophisticated
way of integrating collaborative applications like H.323, SIP and Access Grid into a single
environment. However, they do not take into account that messages need to be properly
presented to the end users, since they must have a coherent representation of the data.

Another work which attacks collaborative work environments is presented in [OC09],
the authors suggest a framework for the integration of heterogeneous technologies speci�cally
collaborative tools which have the necessity of interacting. Also they want to establish a

Related Work 40

commonly standardized approach, using Representational State Transfer (REST); an archi-
tectural style that speci�es constraints applied to WS inducing desirable properties, such as
performance and scalability. REST WS aimed at integrating di�erent data models, work�ow
engines or business rules. However, since the authors use REST, applications run in the World
Wide Web using HTTP protocol to transfer data, thus a more robust message ordering is
needed for preserving data coherence.

In [HDFD02] the authors propose a coordination protocol for collaborative engineering
activities while avoiding erroneous collaboration scenarios in distributed components and
applications. Although this work is not based on WS, it is based on causal message ordering,
speci�cally in the IDR reducing the overhead transmitted by each participant. However, WS
can provide the interoperability for complex collaborative environments.

Table 3.5: The order of messages for Collaborative Environments

Reference Aim Technology
used

Environment

[HDFD02] Avoid erroneous collaborative
scenarios

Causality tech-
niques and IDR

Distributed and
heterogeneous
engineering

[WFB+04] Integration of multiple collabo-
rative systems, conference (con-
trol framework)

Web services Distributed and
heterogeneous
video conferences

[OC09] Integration of collaborative
work environments

REST Web ser-
vices

Distributed and
heterogeneous
tools

Table 3.5 summarizes the related works. It shows the aim, the technology used and
the environment under which the authors propose their solutions. Despite that the di�erent
proposals come from the related works, some questions remain open such as: How to integrate
Web Services in dynamic environments in an autonomic way without losing the order of the
messages otherwise keeping information congruent?

Many other approaches have and still are proposed for message ordering [Sch11],
[Cha13], and [Ora14]. However, in [Cha13] to achieve message ordering the author makes
use of other software components like a message broker that temporally stores messages and
processes them in the order in which they were received. In [Sch11] the author presents a
way of message ordering by using labels and proxies; however in communication both ends
must agree on the initial label and sequence, then the proxy reads this label and re-orders
messages if they arrive out-of-order. The industry has also attacked the problem of message
ordering, for example Oracle R©[Ora14], proposes a strict message ordering using WebLogic
JMS; this is a value added proprietary software. To ensure message order with respect to the
processing order for a group of messages, theses are stored grouping them in a single unit
called Unit-of-Order.

On the other hand, since there exist a correlation between failure free execution time

Related Work 41

and checkpointing mechanism overhead, we consider to dynamically generate checkpoints
when needed. For such regard, we use fuzzy logic for diagnostic purposes.

Next section underlines fuzzy logic importance within Web services, and illustrates
how it is currently implemented by other works. However, we present how fuzzy logic can
mitigate practical issues related to autonomic computing, and where it should be placed for
this paradigm to properly function.

3.5 Fuzzy logic for Web services

Many Web Services provide similar functionalities, speci�ed in their functional contract Web
Service Description Language (WSDL), whereas there are a lot of similar Web services to
choose from. However, Web Services non functional requirements are much variable, from
users' perspective this can mean getting high or slow responses to their requests, depending
on which Web Service each user uses. Fuzzy logic has been a wide area of research it has been
used for diverse real world issues, and in Web services one can �nd di�erent approaches that
use fuzzy logic for diverse purposes. On the other hand, the autonomic computing paradigm
has many challenges which require to be ful�lled. Each phase from the MAPE control loop
has been addressed, by arti�cial intelligence and soft computing; directly or even as a casualty.
For example, the Monitoring phase is indirectly addressed in the literature when a set of Web
Services that present or share similar functionalities are assessed to automatically choose the
best one [KSS15, AAY11, �LL10, TT08]; which best meets users' requirements and gives
them a better user experience. The analysis and planning phase have also been addressed
indirectly, when for example a system is required to adapt to changes in the context, thus
the system must react by previously analyzing, and diagnosing the situation. Implicitly, after
this the system must plan ahead the corresponding actions in order to adapt to the context,
also known as self-con�guration/organization [GVAGM10].

On the one hand, fuzzy logic is mainly used for control, on the other hand, autonomic
computing deals with systems complexity and aims for self-manageable systems and compo-
nents. In particular, and for achieving such, the diagnostic process must consider all possible
scenarios where uncertainty is a key issue. Thus, more works that deal with the diagnostic
process are needed. Therefore, we illustrate how fuzzy logic aids such process. Next, we
illustrate related work that cover implicitly the aforementioned phases of the MAPE control
loop.

In [TT08] the authors present several works that deal with the Web Services selection
problem; Web Services are ranked in order to �nd the best one that ful�lls users' requirements
according to QoS presented or perceived. The authors illustrate several techniques for QoS
based service ranking, some threat such selection as a composition problem formalizing it as
a fuzzy constraint satisfaction problem. Other work uses the QoS based service selection as
a fuzzy multiple criteria decision making problem. Last, fuzzy logic is used to evaluate Web
Services QoS criteria, where weights are associated to QoS.

In [�LL10] the authors propose an architecture and a ranking algorithm for Web Services

Related Work 42

selection based on ontologies and modifying the Universal Description Discovery Integration
(UDDI). The authors store QoS-related semantics in the UDDI data model and make use of
that information in the fuzzy selection and ranking process.

In [AAY11] the authors illustrate that from a set of Web Services that share similar
functionalities, fuzzy logic can be used for decision model to select the best Web Service
among the set; based on the overall performance of the Web Services in the community. Also,
they propose an algorithm for ranking Web Services QoS attributes based on dependencies
between quality attributes.

In [KSS15] the authors use fuzzy logic for Web Services' selection problem, also con-
sidering semantic techniques. Thus they propose a system to dynamically discover and select
the best web service that matches the userâ��s speci�ed criteria. In other words, the authors
incorporate a semantic technology for e�ectively discovering Web Services based on its func-
tionality, and use fuzzy logic for selecting and ranking the Web Service that were previously
discovered semantically.

On the other hand, as autonomic computing has diverse research areas, such as
self-con�guration, the literature exhibits some works around it based on fuzzy logic. In
[GVAGM10], the authors argue that fuzzy logic is used for a middleware that they propose
to be self-organized, since it is able to adapt to the environment or context.

Yet, and according to the related work, currently there is no uni�ed or standardized way
of addressing autonomic computing, particularly on how to tackle the MAPE control loop.
However, arti�cial intelligence and soft computing principles are commonly used to address
problems like detection and diagnosis [KHKS09, HM08]. Also, probabilistic techniques have
been used to address the diagnosis process [KDVSD+14, KDVSD+13]; based on a probabilistic
model that allows representing the state of the Managed Element from its runtime parameters.
The diagnosis can determine when a parameter value is indicating an issue. In these works the
authors use a Bayesian network to help de�ne the stochastic properties among the parameters,
which is useful to know e�ects and causes of an issue, besides suggest the adaptive actions
required.

Despite the di�erent approaches reviewed from the related work, some questions remain
open such as: How to manage scalability of Web Services in an autonomic way to tackle
variable service requests? For dynamic environments, how to deal with their non-deterministic
conditions?

3.6 Conclusions of the review of fault tolerance for Web services

Although sophisticated solutions exist that merge checkpointing and Web services paradigms
and try to tackle Web services fault tolerance, most of these solutions focus merely on a
single Web service instance; for example, a Business Process Execution Language (BPEL)
process and apply substitution, transformation rules, migration or combinations of diverse
approaches. An identi�ed open challenge is to establish consistent global snapshots from

Fault Tolerance for Web Service Composition 43

check-pointed data for emerging trends such as: interactive business processes (BPEL), in-
teractive choreographies and interactive orchestrations.

We conclude that the price for achieving fault tolerance in some cases a�ects the scal-
ability of the system or has a negative impact on the systems performance, and oftentimes
dynamical environments are not taken into account. In this sense, an open challenge involves
the capability of having participants constantly entering and leaving the system. Thus, more
work has to be conducted to guarantee Web services composition fault tolerance; which will
provide a better quality perceived by the end user and organizations.

Finally, all the above works have been proven worthy of consideration, nonetheless,
it would be a milestone for checkpointing mechanisms for Web services composition fault
tolerance based on checkpointing if diverse work groups can establish open standards, for
instance, regarding when to checkpoint, optimal checkpointing intervals, and QoS driven
policies for checkpointing.

CHAPTER 4
FAULT TOLERANCE FOR WEB
SERVICES COMPOSITION

Recall, that in this dissertation we look toward dependable ESB system based on autonomic
computing and checkpointing mechanisms. At such aim, we address system dependability
by means of fault tolerance, however some considerations must be accomplished. First, mes-
sages give a view of the interactions that took place, or the execution of how a task was
accomplished. It is indispensable to have a consistent view (meaning that the order on how
messages were exchanged is important).

Since, checkpointing mechanisms are based on the interactions that took place, they
need a means for this ordering of messages to be correct, and coherent. And in practice, causal
ordering algorithms have high implementation costs, we follow the immediate dependency
relationship (IDR), as it obliterates this notion. Therefore, we focus our e�ort in e�cient
checkpointing mechanisms having as basis the IDR, and propose the architecture shown in
Fig. 4.1.

We propose to add a fault tolerance layer to the Web service stack, Fig. 4.1. A brief
description is given:

• Discovery Layer: For Web services there exist a repository called Universal Discovery
Description and Integration (UDDI). With this one can �nd where the service is located.

• Service Layer: The service layer usually consists of a Web Service Description Layer
(WSDL), which usually describes the Web service functionality.

• Information Layer: This layer is in charge of formating the messages. How it should
be interpreted by others and in what format.

• Packaging Layer: In this layer, the Simple Object Access Protocol (SOAP) is com-
monly used as it enables cross-platform integration regardless of any programming lan-
guage. SOAP, de�nes a modular packaging model and the encoding mechanisms for
encoding data within modules.

• Protocol Layer: This layer is in charge of the network communications between diverse
Web services, they can use di�erent transport network mechanisms: HTTP, SMTP,
JMS.

• Fault Tolerance Layer: This layer is responsible to deliver high dependability because
of the possibility of failures. Fault tolerance techniques usually rely on rollback recovery.

44

Fault Tolerance for Web Service Composition 45

ID
R

Discovery LayerUDDI

WSDL

XML

SOAP

HTTP/HTTPS,FTP,SMTP

CiC mechanism
Message Order

Service Layer

Information Layer

Packaging Layer

Protocol Layer

Fault Tolerance Layer

I
D

R

Figure 4.1: Web Service Stack with Fault Tolerance.

This general architecture can be used for any Web service based environment. Regard-
ing the Fault tolerance layer, this relies on rollback recovery mechanism which in turn rely
on checkpointing mechanism, and these depend on the order of messages.

As consequence, we propose an Message Ordering Framework, described next.

4.1 Message Ordering Framework (MOF)

Web services are changing the way we see distributed systems since they provide an architec-
ture for integrating applications running in heterogeneous distributed environments; therefore
these can be easily integrated, for example by an Enterprise Service Bus (ESB). Today, Web
Services are usually applications that describe, publish and are accessed over the Web using
open XML standards [CDK+02] [TTMR03], thus, Web Services are the basic compositions
for complex business processes. Web Services infrastructure provide a good foundation to
build a �exible and extensive exchange protocol [ZJ03]. However, client applications usually
use the HTTP as connection protocol when invoking Web Services. But, HTTP does not
guarantee message ordering delivery in collaborative environments, plus it does not support
asynchronous messages exchange; therefore, a more robust messaging mechanism is needed.
In this manner, Web Services can be con�gured so that client applications can also use the
Java Message Service (JMS) as their transport mechanism. JMS can be con�gured in two
di�erent message-based communication styles: point-to-point(P2P) and publish/subscribe.
In the P2P style each message is sent to a speci�c queue from where the receiver extracts
their messages. In the publish/subscribe style both publishers and subscribers dynamically
publish or subscribe to the content hierarchy. Because of JMS's simplicity, it has become one

Fault Tolerance for Web Service Composition 46

of the most used solutions for developing scalable collaborative applications.

Collaborative environments and solutions allow users to modify and share knowledge,
ideas and information among each other e�ectively. They have become very popular among
organizations because they give greater agility, than those oriented for an speci�c task within a
single enterprise. Also, collaborative environments minimize duplicate e�orts and reduce time
spent in resolution of issues, giving a better synergy between organizations, and thereby in-
creasing the e�ectiveness, and e�ciency of their collaborations [HDFD02] [WFB+04] [OC09].
Web-based mission critical environments have been a subject of study; in many cases Web
Services are used to discover a business functionality, presented as services, that are available
through the network and are shared and invoked by corporate partners. Sharing and discov-
ering information in a collaborative context is demanded by the industrial development of
dynamic networks. In distributed collaborative scenarios business partners need to share and
modify information remotely. For example, consider Fig. 4.2 (showing a product life cycle);
a set of aircraft partners need to maintain, support, develop, design and specify aircraft com-
ponents: gas turbines, engines, cabin, propellers, and wings. These collaborative processes
can be represented as Web services and expose their Computer-aided Design (CAD) systems
as such.

Rolls

Royce

MotorMotor

Aircraft Distributed

Engineering Tasks

specification Desing Development support maintenance

Gas

Turbine

Business

Partness

others

Renault

Airbus

Propeller

Cabine WingsWingsCabine

others

Renault

Airbus

Business

Partness

Gas

Turbine

specification Desing Development support maintenance

Figure 4.2: Aircraft Distributed Collaboration.

Assuring message ordering for collaborative environments is fundamental since all the
involved users should have the same view of the system and data must be presented coherently;
additionally the messages provide the expected behavior for the distributed applications.
For this purpose, causal ordering protocols are essential for exchanging information, however
their implementation is expensive to set up in distributed systems [KS08]. The optimal way of
diminishing such overhead is by implementing the Immediate Dependency Relationship (IDR).
Indeed, the IDR can ensure global causal delivery of messages in group communication and it
obliterates the notion that causality can be expensive to implement in distributed systems; it
considerably reduces the amount of control information; information carried in each message

Fault Tolerance for Web Service Composition 47

to preserve data integrity [HFD04a].

4.1.1 Message Ordering Framework for collaborative Web service-based environ-
ments

Collaborative environments need a more reliable transport mechanism particularly where the
order of the message matters, but JMS alone cannot grant order of messages, at least not for
a collaborative environment, for a single process it does. Therefore, the Message Ordering
Framework (MOF) is built over JMS, extending its properties. Furthermore, all commu-
nications passing through the MOF are enriched with low overhead, consisting on control
information, keeping track of the order of messages. MOF uses a messaging middleware,
namely a broker, over distributed heterogeneous networks to support the publish/subscribe
communication model linking autonomously various publishers and subscribers. MOF does
not depend on the Web Services in place; we present the scheme shown in Fig. 4.3 where the
ESB system is in charge of the memberships of the users, subscribing and departing them
automatically while maintaining causality properties as depicted in Fig. 4.4a for subscription
and 4.4b for departure.

User 1

User 2

User 3

User n

publishpublish

subscribesubscribe

ID
R

ID
R

ID
R

ID
R

Web

Service 1
Web

Service 2

Web

Service 3
Web

Service n

publishpublish

publishpublishpublishpublish

subscribesubscribe

subscribesubscribe

subscribesubscribe

Figure 4.3: MOF Scheme.

Membership subscription

Fig. 4.4a shows the subscription of a new user to the collaborative work environment. When a
participant or user wants to join he must send an admission request to the ESB which lets all
other users know that a new user is joining with the join_request(pk), this being the only non-
causal message. Afterwards the new user must wait until a join_service(pk, pn) is received.

Fault Tolerance for Web Service Composition 48

Once received, the new user must wait for the initialization phase init_join(pk, pi, V T (pi[i])),
where he is assigned its vector clock value. Finally, the user must send a join(pk) to the
ESB, which sends it to all other users. Once received, the user is properly integrated to the
collaborative environment.

Membership departure

Fig. 4.4b shows the departure of a user from the collaborative work environment. When
a user wants to leave the collaborative environment, �rst he must send a petition request
leave_request(pk), which is sent by the ESB to all other users announcing that a user will
leave the environment. Finally, the user leaving, sends the leave(pk) message to the ESB;
once received by all other participants the user has a proper departure from the collaborative
environment and thus causality is preserved among the rest of the participants.

Unique non-

causal message

Broker
Participant

pk

Remaining

Participants

join_request(pk)

join_service(pk,pn)

init_service(pk,pi,VT(pi)[i])

join(pk)

leave_service(pk)

leave_request(pk)

leave(pk)

Wait for

leave_service

Notify departure

of pk

Once receiving leave any

information concerning

pk is erased

Once receiving join pk

considered member

a)

b)

Wait for

join_service Reserve memory space

for a new participant pk

� Wait for n-1 messages

init_join

� Update its VT

Figure 4.4: Membership.

4.1.2 MOF’s architecture

The aim of the MOF is to propose an extensible framework for the JMS API which can be
exploited byWeb Services, particularly in collaborative work environments over heterogeneous
networks; this is based on the IDR having low overhead and maintaining the information's
coherence. A MOF is optimal because it transmits the minimal and necessary amount of
control information to completely preserve the causal order among messages or events; also
is able to manage interoperability and scalability because it is built for services and the IDR
is designed to deal with large distributed systems.

Fault Tolerance for Web Service Composition 49

Fig. 4.5a illustrates in detail the communications that take place in a collaborative
work environment, where publishing (providers of the service) of a topic/queue takes place
and subscribers (consumers of the service) can retrieve collaborative information. In either
way publish or subscribe the communication passes through the ESB and then it is delivered
to the MOF.

JMS Server

(Topic)

Publish/SubscribePublish/Subscribe

Publish/Subscribe Publish/Subscribe

Figure 4.5: Web Services Collaborative Communications

MOF's Architecture

Publish/Subscribe

Causal Properties

W
e
b
 S

e
r
v
ic

e
 C

a
ll

Figure 4.6: MOF’s Protocol Stack.

Fig. 4.6 shows the architecture of the MOF. The underlying Web Services are discovered
and managed by the ESB, it deploys Web Services as messages to the MOF.

The main actions of the rest of the components are:

Fault Tolerance for Web Service Composition 50

• the Web Services Call represents that Web Services are usually deployed in remote
servers hosted by a third party. The ESB provides the Web Services callback mechanism
as a proxy that can be accessed using JMS.

• The JMS adapter is needed to communicate with said proxy allowing the exposure of
the Web Services as a request that is then passed to the Causal Properties component.

• The Causal Properties component is in charge of maintaining the order of messages.
To achieve such messages requests or replies are enriched with the IDR. To keep it
optimal, attaining minimality, timestamped causal information per message corresponds
to messages linked by an IDR.

• The JMS Listener then listens to events and delivers or queues messages, that is, sub-
scribes or publishes the message to a queue or topic.

4.1.3 Protocol primitives

JMS API for publishing consists of six steps.

1. Perform a Java Naming and Directory Interface (JNDI) API lookup of the TopicConnec-
tionFactory and topic.

2. Create a connection and a session.

3. Create a TopicPublisher.

4. Create a TextMessage.

5. Publish of messages to the topic.

6. Close the connection, which automatically closes the session and TopicPublisher.

The subscription usually consists of seven steps.

1. Perform a JNDI API lookup of the TopicConnectionFactory and topic.

2. Create a connection and a session.

3. Create a TopicSubscriber.

4. Create a TextListener class and registers it as the message listener for the TopicSub-
scriber.

5. Starts the connection, causing message delivery to start.

6. Listen for messages published to the topic.

7. Close connection, which automatically closes the session and TopicSubscriber.

Fault Tolerance for Web Service Composition 51

Table 4.1: Original JMS interfaces and equivalent.

Original and Equivalent Interfaces
JMS Interface Equivalent Interface in MOF
Session CausalSession

Table 4.2: Original JMS classes and equivalent.

Original and Equivalent Classes
JMS Interface Equivalent Interface in MOF
writeMessage writeMessageCausal
onMessage onMessageCausal

For facilitating the task of programmers and for a fast adaptation of antique appli-
cations developed, we propose to follow the same dynamic of the JMS API; MOF follows
the same structure and philosophy of JMS. The JMS Interfaces that remain the same are:
ConnectionFactory, Connection, Destination.

Table 4.1, shows in one of the columns the original interfaces of JMS and the other
column the equivalent interfaces provided by our MOF. Table 4.2, shows in one of the columns
the original classes and the other column the equivalent classes provided by MOF.

We present the Interface CausalSession. It is used for creating two sessions that are
used for sending and receiving messages or publishing and subscribing respectively. JMS
imposes some restrictions; one of them corresponds to threading, that is a session may not
be worked by more than one thread at a time. Hence in the JMS publish/subscribe style two
sessions are mandatory.

Interface CausalSession
Constructor

CausalSession(Session session)
Creates two separate sessions one for the publisher and another one for the
subscriber.
Methods

void close()
Closes the causal session

C_TopicSession createTopicSession (boolean transacted, int
acknowledgment)
Creates two sessions pubSession and subSession

Now we present the class writeMessageCausal and onMessageCausal. The main class
implements the listener interface, particularly the MessageListener which is registered by
the TopicSubscriber. So when the TopicSubscriber created by the TopicSession receives a
message from its topic it invokes the onMessge() method which in our case, invokes the

Fault Tolerance for Web Service Composition 52

onMessageCausal() method.

Similarly the TopicSession and the TopicPublisher together are used to create the
Message that is used by the writeMessage() method. In our case we invoke the writeMes-
sageCausal before publishing a message to a topic.

Class onMessageCausal
Constructor

onMessageCausal()
Receives messages from the server and veri�es causal properties
Methods

void ProcessMessage(Message message)
Checks for JMS exception

void CheckDeliveryCondition (Message message)
Checks for causal order of the arriving message
otherwise it queues it

Class writeMessageCausal
Constructor

writeMessageCausal()
Before sending the message to the server adds its IDR from their neighbors
Methods

String buildMessage()
Builds a message with vector clock and updated
IDR

4.1.4 Mechanism specification for IDR algorithm

Table 4.3: Variable names and type

Variable Type Description
i, j integer i, j = 1, 2, . . . , n
k integer process identifier
tk integer local clock

message char[] information or data
Hm integer[] Hm = (k, tk)
m char[] m = (k, tk,message,Hm)
CIi integer[] CIi = (k, tk)

V T (pi)[i] vector vector clock for Pi

Table 4.4: Procedures and description

Procedure Description
initialization() All variables are set to

zero or empty set.
diffusion(m) Builds a message m.
send (m) Sends in broadcast mode

a message.
receive (m) Receives a message from

any other process.
queue (m) Queues a message not

received in causal order.
delivery(m) Users can use data

carried by m.

Fault Tolerance for Web Service Composition 53

Algorithm 4.1: TheMinimalBroadcastCausalProtocol(MBCP)

Input: message
Local variables: m is the quadruplet m = (k, tk,message,Hm) where k is the local process
identifier, tk is the value of the local clock, message is the structure that carries the data, Hm

is the immediate history of m.
V T (pi)[i] is a vector clock, pi is any process, i, j have values from 1, 2, ..., n being n the
number total number of processes.
CI represents control information, it is a set of entries cik,tk = (k, tk)
Output: Causal ordered messages
For more information about variables and procedures, please see Table 4.3 and Table 4.4

procedure initialization()1

V T (pi)[j] = 0 ∀j : 1, 2, ..., n2

CIi ← ∅3

end procedure4

procedure diffusion(m)5

V T (pi)[i] = V T (pi)[i] + 16

Hm ← CIi7

m = (i, ti = V T (pi)[i],message,Hm)8

Send(m)9

CIi ← ∅10

end procedure11

procedure receive(m) for pj , i 6= j12

m = (k, tk,message,Hm)13

if not(tk = V T (pj)[k] + 1 and tl ≤ V T (pj)[l] ∀ (l, tl) ∈ Hm) then14

queue(m)15

else16

delivery(m)17

V T (pj)[k] = V T (pj)[k] + 118

if ∃cis,t′ ∈ CIj |k = s then19

CIj ← CIj\{cis,t′}20

CIj ← CIj ∪ {(k, tk)} CIj ← CIj\Hm21

end procedure22

Following the IDR principle, proposed by Pomares [Her15], protocols can transmit the mini-
mal and su�cient amount of control information to preserve the causal order of messages.

Messages. A message m exchanged is a quadruplet m = (k, tk,message,Hm) 1, where:

• k is the local process identi�er.

• tk is the value of the local clock, in the original source.
1Each process generates this tuple, when communicating to other process or processes

Fault Tolerance for Web Service Composition 54

• message is the structure that carries the data, relevant to each process.

• Hm is the immediate history of m, contains the identi�ers of the messages that imme-
diately precede m.

Data structures. The status of a process k are de�ned by the following structures.

• V T (pi)[i] is the vector clock established by Mattern and Fidge. The size of V Tp()[] is
equal to the number of participants involved in the collaborative environment. The size
of the vector is equal to n.

• CIi is the structure of control information CIi which contains a set of entries cik,tk =
(k, tk). Each entry in CIi denotes a message that is not ensured by participant pi of
being delivered in a causal order.

We present the minimal broadcast causal protocol (MBCP) implemented in the Algo-
rithm 4.1. Thus, the MOF extends JMS making it more reliable, and also scalable. Basically
the when a user is receiving a JMS message our MOF uses the onMessageCausal method and
implements the Algorithm's 4.1 steps 12 through 22. When a user sends a JMS message
our MOF uses the writeMessageCausal method and implements the Algorithm's 4.1 steps
5 through 11.

4.1.5 Experimental results

In order to show that our framework does not have a great impact on the overall performance
of the systems, we performed several performance tests. Speci�cally, we measured response
time as a key performance indicator. For performance testing we implement our framework
within the following hardware: on a workstation with 16 GB RAM with Windows 7 64-bit as
operating system. Two middleware or brokers (Jboss version 5.1 and Glass�sh version 4.0)
were used, �rst the WSO2 Application Server was used to deploy to Web services, similarly
Glass�sh was used to deploy Web services, and for performance tests diverse Java clients were
emulated.

We test di�erent Web services capable of interacting with each other, emulating a
collaborative work environment see Fig. 4.5. Fig. 4.7 and Fig. 4.8 show quantitatively the
variation of the response time; increased according to the number of processes involved, this
is to be expected in broadcast mode since the worst case is being evaluated, when all the
participants transmit at the same time. In theory the probability of this happening is very
low when you have quite a lot processes. This is a problem of the environment in which Web
services are collaborating, and working, rather than the proposed approach. In our proposal
the response time remains almost constant, as illustrated in Fig. 4.7 and Fig. 4.8, even as
the number of processes in the system increases.

Fault Tolerance for Web Service Composition 55

0

50

100

150

200

250

300

350

 Response Time

Jboss Application Server

T
im

e
 i
n
 m

s

Number of processes
1020 3040 50 60 70 80 90 100

400

110 120 130140 150 160 170 180190 200 210
Without IDR

With IDR

Figure 4.7: Response Time measured when using Jboss Application Server.

4.1.6 Conclusion of the Message Ordering Framework (MOF)

It is vital to respect the order under which messages are exchanged, as these shared func-
tionalities correspond to a common task, by di�erent organizations. The information must
respect the order of execution since for distributed systems it represents the behavior of the
system.

One of the pioneers in the ordering of messages was Leslie Lamport, he proposes to
carry out a strict order between pairs of messages exchanged by di�erent processes. But their
the happened before relationship (HBR) is expensive to implement in practice. Therefore
di�erent approaches arise, but often they are the company's own software and sometimes
they do not always follow standards.

Our approach follows standards, is based on JMS, has interoperability it is oriented
to collaborative environments based on Web services. The Web services interface is used
to support collaborations between di�erent organizations. In addition, the performance tests
conclude that our approach is scalable, since they illustrate a behavior that does not negatively
impact the system even when the number of processes involved increases greatly. In other
words, the immediate dependency relationship (IDR) becomes acceptable or viable in its
implementation. For higher number of processes the system performance is scalable as shown.

Fault Tolerance for Web Service Composition 56

0

200

400

600

800

1000

1200

1400

 Response Time

Glass

R
e
s
p
o
n
s
e
 T

im
e
 i
n
 m

s

Num
10 20 30

Figure 4.8: Response Time measured when using Glassfish Server.

Recall that the underlying architecture illustrated by Fig. 4.1 is oriented towards indi-
vidual Web services. On the other hand, in this Section we continue using the same architec-
ture, yet oriented towards a more complex approach, namely, Web services composition.

4.2 Fault tolerance for Web services

With the widespread adoption of the Service-Oriented Architecture (SOA) paradigm most
organizations deploy their functionalities and business processes as Web services. Following
SOA's architectural model for service composition it allows, even dynamically, the creation
and building of intensive distributed software; from a combination of diverse services de-
veloped independently [IP14]. These functionalities and services are usually represented by
Web services, locally or externally, they can form complex business processes by means of
two composition models such as: orchestration and choreography; these arise to mitigate the
creation and development of such compositions [RFG12]. For orchestration the predominant
standard used is the Business Process Execution Language (BPEL). An important capability
of BPEL is that it supports both synchronous and asynchronous communication modes, these
communicate among BPEL and/or choreographies at large-scale, situation that is rapidly in-

Fault Tolerance for Web Service Composition 57

crementing both on real world deployments as well as within research community, yet little
explored [RFG12]. For example, many BPEL orchestrations may need to communicate with
other value added BPEL orchestrations provided by other organizations, as depicted in Fig.
4.9. Such �gure illustrates the most basic interaction among two BPEL processes, indepen-
dently of the internal process each BPEL process carries out, it also illustrates the need for
interaction between diverse BPEL processes even if they are implemented on local form or
on a external remote place.

Client
Application

BPEL Process

Async
Web

Service

<invoke>

<invoke>d1 <receive>

Wait for
callback

<receive>

d2

d3 <receive>

<invoke>

<invoke>

<receive>

Wait for
callback

<receive>

d2

d3

<receive>
Async
Web

Service

BPEL Process

Figure 4.9: Web Services composition Interactions

One can frequently �nd this kind of interactions on large-scale systems, even when using
service compositions models for Web services its complexity due to size and interactive actions
is still elevated. Even though Web Services are used within complex business collaborative
environments, they are error prone because of unreliable Internet behavior during run-time
while they are still required to function correctly and be available on demand. To tackle the
fault tolerance problem faced by business processes, problematic organizations require the
adaptation of fault tolerant mechanism capable of detecting, diagnosing and repair problems,
aiming at increasing systems dependability. Failures may lead to terrible consequences such
as augmenting execution time, higher costs to run applications, destroyed systems, or system
breaches. As a consequence, organizations must maintain a way to make their systems or
business processes as dependable as possible before they intend to automate them [VG10].

Nowadays there are sophisticated solutions for improving system reliability but have
some drawbacks, for example, they a�ect the performance of the systems, they have a high
cost of implementation [YCD+09], and/or may endanger the scalability of the system [AH11].
Also, several solutions contemplate only one BPEL process [MMBJ09], [MMJ10], [MJ13] and
therefore do not include scenarios where there is interaction; an open challenge to this type
of scenario is to increase its dependability, making them more fault tolerant.

We have made a study concerning the checkpointing mechanisms, in order to decide

Fault Tolerance for Web Service Composition 58

which is the most appropriate on the Web services environment, that su�er faults as: Qual-
ity of Service (QoS) violations, inadequate Service Level Agreement (SLA) and temporary
software/hardware failures. We found that asynchronous checkpointing mechanisms are not
feasible for this context of Web services because this mechanism is highly susceptible to the
issue known as the domino e�ect, i.e. have a high probability that processes may revert to
the beginning of their execution [KS08]. The domino e�ect occurs when cascading rollback
happens without �nding a consistent point of the system, the worst case is when returning
to the beginning of the system execution. On the other hand, there are two known mod-
els for synchronous checkpointing mechanisms: blocking and non-blocking. Using blocking
checkpointing for Web services represent losses because the ban of request from clients to be
processed. Using non-blocking checkpointing to our understanding are not used because of the
large overhead introduced and generated. The checkpointing mechanism for interactive Web
services environments which supports the described shortcomings, is the quasi-synchronous
or communication-induced since it is not prone to the domino e�ect and generates low over-
head, control information, within the system. Such information is used to identify dangerous
patterns such as zigzag paths and cycles, in the presence of them the system will not be able
to build a consistent global snapshot as stipulated by the authors in [CSPHPC13].

Therefore, we addressed the dependability problem demanded by the new trends, such
as interactions between di�erent BPEL processes, interaction between various choreographies
or combinations of these techniques, by implementing a fault tolerance layer. Attacking inter-
active BPEL system fault tolerance, incrementing system dependability, in a distributed and
e�cient way by using the quasi-synchronous mechanism known as communication-induced
checkpointing (CiC). In general, the purpose of CiC is to build consistent global snapshots
(CGSs) and to have a checkpoint of each process in a non-volatile storage to survive failures
or undo unwanted situations. A CGS can be used within the Web services paradigm for: fault
tolerance, software veri�cation and debugging.

4.2.1 Fault tolerance layer based on asynchronous checkpointing

Business infrastructures are more complex and increasingly decentralized among business
processes, when they o�er a service they are transparent to users who are not aware of
all interactions (often asynchronous). This environment, demands robust fault tolerance
mechanisms, considering always the consistency of information, that is, scenarios where the
order of the messages is important. Hence, it is vital to build a consistent snapshot from which
the system can be recovered if a fault occurs. To anticipate these limitations we suggest a
robust fault tolerance mechanism, based on the notion of quasi-asynchronous checkpoints
where control information enrich messages, in order to keep consistency and avoid dangerous
patterns. Each BPEL process has su�cient control information to decide when it is safe
to take a checkpoint free of domino e�ect. Although the implementation of the CiC has a
mechanism of generating checkpoints free of domino e�ect, it is not enough, there is a need
also to have a means of collecting checkpoints, i.e., a coherent set of checkpoints to which
rollback the system.

Fault Tolerance for Web Service Composition 59

Architecture

The proposed approach is suitable for distributed heterogeneous environments, which consists
on interactive BPEL processes and need a robust fault tolerance mechanism. We believe
that the order and timing of communication events are relevant, therefore we extrapolate
the principles of CiC to the compositions of Web services. In general, all communications
that pass through the mechanism of CiC are enriched with small overhead, consisting of
control information to carry the message order and also for the generation of checkpoints.
The architecture is designed to provide interoperability between services and systems having
di�erent technologies, through adapters and interfaces using standards-based Web services
technology (as shown in Fig. 4.10).

Async
Web

Service

User

BPEL Process (1) BPEL Process (2)

Async
Web

Service

BPEL Process (n)

Async
Web

Service

BPEL Process (3)

Async
Web

Service

C
iC

C
iC

C
iC

C
iC

<invoke>

<receive>

<invoke>

<invoke><invoke>

<receive>

<receive> <receive>

Figure 4.10: Architecture of interactive BPEL Processes.

Furthermore, each BPEL process implements the CiC mechanism, i.e. each re-
quest/response made passes through the mechanism CiC, and based on information super-
imposed within the message exchanged by any BPEL process decide whether or not to take
a checkpoint. Because messages allow interaction between various business processes with-
out losing their individual BPEL autonomy, we propose the following architecture, shown
in Figure 4.11 at protocol stack level. Where the base is XML, to be independent of the
implementation platform. The XML Schema provides the type of system for XML messages.
Which they can be transported by any type of communication protocol as it is SOAP. The
interface can be represented through WSDL. The behavior for Web services is described by
standards such as: BPEL (orchestration) and WSCI (choreography). Finally, it is necessary
to have Fault Tolerance mechanism, the former based on checkpointing mechanisms.

Fault Tolerance for Web Service Composition 60

Encabezado

Fault Tolerance

Behavior

Interface

Message

Type

Data

Checkpointing WS

BPEL/WSCI

WSDL

SOAP

XML Schema

XML

Figure 4.11: Standard BPEL Stack Protocol.

Building CGSs

The checkpoints are properly generated by the mechanism CiC without dangerous patterns
as zigzag cycles, zigzag paths and causal paths. Therefore checkpoints are generated without
inconsistencies. Now we need a mechanism for collecting a set of checkpoints and capture
CGSs, as shown in Figure 4.12. Netzer and Xu [NX95] identi�ed that checkpoints in presence
of zigzag paths and causal paths cannot constitute a CGS [NX95].

BPEL1

BPEL2

BPELn

m1

m2

m4

m5

W
eb

 S
er

vi
ce

s

Cc1
0

Cc2
0

Cp1
0

Cc1
1

Cc2
1

Cp1
1

Time

M0

m3

Cc1
2

Cc2
2

Cp1
2

M1Consistent Global
 Snapshot

Inconsistent Global
Snaphots

Consistent Global
 Snapshot

Figure 4.12: Consistent and Inconsistent CGS.

Fault Tolerance for Web Service Composition 61

Fig. 4.12 depicts that M0 and M1 build CGS while C1
c1, C

2
c2 and C

2
p1 cannot be part of

a CGS; because of messages m4 and m5 for instance, although no causal path exists between
C1
c1 and C2

p1 a zigzag path does formed by the aforementioned messages. This means that
no CGS can be formed from the checkpoints involved in a zigzag path, in other words no
CGS can be built that contains C1

c1 and C2
p1. However, the state from which each BPEL

process restarts when a fault occurs (after an incident of one or more BPEL processes) must
be consistent. Fig. 4.13 shows the interactions made by the BPEL processes, each message
passes through the Web service (CiC); within each business process interaction travels a
unique identi�er. Each message also contains the last checkpoint performed by that BPEL
process. To build a CGS, the responsible entity needs at least one checkpoint from each
process; in distributed systems checkpoints are collected due to messages exchanged through
a communication channel. To extrapolate this concept to BPEL processes, the notion of
port will serve the same function as a channel. Through ports, each event (send or receive
message) interaction between BPEL processes, is sent in copy to the Web service (CiC).

BPEL1

BPEL2

BPELn

WSCiC

Figure 4.13: Building CGS.

In case that a message is not received by the Web service (CiC) from any BPEL pro-
cesses, represented by P = {P1, P2, . . . , Pn} this problem is solved by adding a timer. This
timer is triggered after a BPEL process is idle for n seconds, for example process Pi has not
exchanged information with any other business process Pj .

4.2.2 Mechanism specification for building CGSs

In order to build consistent global snapshots from previously taken by each process separately,
we follow the principles of the IDR and use the following:

Fault Tolerance for Web Service Composition 62

Messages. A message m exchanged is a quadruplet m = (k, tk,message, C)
2, where:

• k is the local process identi�er.

• tk is the value of the local clock, in the original source.

• message is the structure that carries the data, relevant to each process.

• C is the last known checkpoint.

• V T (pi)[i] is the vector clock. The size of V Tp()[] is equal to the number of participants
involved in the collaborative environment.

• S[] is an array that holds n checkpoints, one for each process.

• Cpi[i] holds the last known checkpoint of a process.

Algorithm for building CGS

It is necessary to reverse the system to a point in time that is consistent, where there are no
orphan messages, which are seen as received in a process but not seen as sent.

Table 4.5: Variable names and type

Variable Type Description
i, j integer i, j = 1, 2, . . . , n
m char[] m = (k, tk,message, C)
k integer process identifier
tk integer local clock

message char[] information or data
Cpi[i] integer[] checkpoint for Pi

V T (pi)[i] vector vector clock for Pi

S[] integer[] an array that contains a checkpoint for each process
Old_C integer[] local variable to save a checkpoint.

2Each process generates this quadruplet, when communicating to other process or processes

Fault Tolerance for Web Service Composition 63

Algorithm 4.2: Bulding CGSs
Input: C(pi)[i] : is a local checkpoint
Local variables : m is the quadruplet m = (k, tk,message, C) where k is the local process
identifier, tk is the value of the local clock, message is the structure that carries the data, C is
the last known checkpoint, V T (pi)[i] is a vector clock
Output: S : The consistent global snapshot built from n checkpoints
For more information about variables and procedures, please see Table 4.5 and Table 4.6

procedure initialization() ; // All variables are set to zero or empty set1

S ← ∅2

V T (pj)[j] = 0 ∀ j : 1, . . . , n3

S ← initial_CGS(BPEL1, BPEL2, . . . , BPELn) ; // Immediately build first CGS4

end procedure5

procedure messageDifusion(m) ; // A BPEL process uses this procedure before sending m6

C(pi)[i]← get_last_checkpoint()7

V T (pi)[i] = V T (pi)[i] + 18

m = (k, tk = V T (pi)[i],message, C)9

diffuse (m)10

end procedure11

procedure reception(mc) ; // A BPEL process uses this procedure for receiving m12

mc = (k, tk,message, C) ; // To ensure causal delivery of m13

if ¬(tk = V T (pj)[k] + 1) then14

queue(m)15

else16

deliver(m)17

if S[i] = ∅ then18

S[i] = Cpi[i]19

else20

S[i] = UPDATE(C)21

if S == full then22

foreach i = {0, . . . , n} do23

Sj [i] = S[i]24

else25

check_timer()26

S[i] = ask_for_LastCheckpoint()27

end procedure28

procedure UPDATE (C)29

Old_C = S[i]30

if C ∈ Zigzag OR C ∈ C_path then31

S[i] = Old_C32

else33

S[i] = Cpi[i]34

end procedure35

procedure ask_for_LastCheckpoint () ; // Used when no checkpoint has been received36

from a specific BPEL process

send(m_checkpoint)37

receive(m_checkpoint)38

S[i] = Cpi[i]39

end procedure40

Fault Tolerance for Web Service Composition 64

Table 4.6: Procedures and description

Procedure Description
initialization() All variables are set to zero or empty set.
initial_CGS(BPEL1, BPEL2, . . . , BPELn) Ask each BPEL process for their initial checkpoint.
get_last_checkpoint() Gets last checkpoint known for a BPEL process (because two

checkpointing methods: one based on message exchanged and the
other periodically)

messageDifusion(m) Builds a message, adding a vector clock and checkpoint values.
diffuse (m) Sends a message with its corresponding copy to WSCiC .
reception (mc) Receives a message from any other process, and verifies causal

order is preserved.
queue (m) Queues a message not received in causal order.
delivery(m) Users can use data carried by m.
check_timer() Returns true or false, depending if a timer has expired.
UPDATE (C) Updates or stays with a checkpoint for a process
ask_for_LastCheckpoint () It retrieves a checkpoint for a particular BPEL process.
send (m_checkpoint) sends a special message requesting a checkpoint value.
receive (m_checkpoint) receives a special message, that contains a checkpoint value of a

BPEL process.

Jointly CiC and the proposed algorithm have the ability to revert the system to the
last known CGS and continue operation therefrom.

Algorithm 4.2 can build CGSs from a set of checkpoints taken by the CiC mechanism.
The initialization phase, lines 1-5 starts S as an empty set, S stores a set of checkpoints
one for each business process. Similarly, the vector time V T (pj)[j] is set to zero for each
process. To preserve causality among exchanged messages, the reception carried out by the
Web service (CiC) uses lines 12-17.

On the other hand, when a BPEL process sends a message to another BPEL process
it also sends this message as a copy to the Web service CiC. Which is re�ected in lines
6-11, previously both V T (pj)[j] and C(pj)[j] are updated, i.e. their vector time and the
last checkpoint known from such business process. That is to say, when a BPEL process
sends a message it needs �rst to know which was its last saved checkpoint, line 7. After, for
maintaining a causal order between messages exchanged by various processes, each process
update their vector time, line 8.

When the Web service CiC receives message from any BPEL process �rst checks that
the causality of the system is maintained, lines 11-16. The process for building a CGS, is
illustrated in lines 18-28. As a �rst step, the checkpoint coming from any BPEL process is
extracted, as initially S is empty, the checkpoint is immediately assigned, line 19. When S
contains a set of checkpoints, one from each process, an initial CGS is built. And when S
contains elements the checkpoint value simply updated line 21.

The UPDATE procedure, lines 29-35, �rst verify that the received checkpoint does
not belong or is involved in the set of causal paths or the set of zigzag paths, line 31. If
the checkpoint is involved in such paths, the variable S keeps the old checkpoint, line 32,
otherwise it is updated, line 34.

To verify that a CGS has been built at least one checkpoint from each process is needed,

Autonomic Computing and Asynchronous Checkpointing 65

if S is full, line 22, then a consistent CGS is saved as Sj . Being Sj the assembly of CGSs to
which the system can be rollback in case of failure. In addition, the situation when checkpoint
of a process is not received, is also contemplated; in such case a timer is checked, in the case
that the timer runs out, the involved process is requested to send its last known checkpoint,
lines 36-40.

4.2.3 Conclusion of the fault tolerance layer approach

We presented an approach on how to construct consistent global snapshots for collaborative
environments where there are intercommunications (interactions) among di�erent BPEL pro-
cesses. It is vital to have robust fault tolerance mechanisms, since without them sometimes
to alleviate a wrong situation it is necessary to re-execute the entire business process, which
entails high execution times. Checkpointing mechanisms are not directly applicable to Web
services and much less to compositions, at the time of writing this work, the need to use the
CiC checkpointing mechanisms for interactive BPEL processes had not been considered. The
proposed approach does not represent a negative impact on system performance, as it is a
scalable, distributed, asynchronous, and low-cost implementation solution.

We can modify our approach to be adaptive, for example, by making use of Quality
of Service (QoS) parameters for generating checkpoints. Therefore, it will be an approach
that would be activated only when it is detected that the system is not functioning prop-
erly, resulting in reduction of dependence between overload during error-free execution and
generation of checkpoints.

CHAPTER 5
AUTONOMIC COMPUTING AND
ASYNCHRONOUS CHECKPOINTING

In Section 4, we introduced asynchronous checkpointing for Web services compositions, in
this Section we discuss its integration with another paradigm such as autonomic computing.
Autonomic computing relies on the MAPE control loop. We identify what parts can be tackled
by it, and what parts can be addressed by an asynchronous checkpointing mechanism.

5.1 Autonomic Web services based on asynchronous checkpointing
mechanism

5.1.1 Architecture

The proposed approach is suitable to increase system dependability for distributed hetero-
geneous environments; it leverages the Enterprise Service Bus (ESB) infrastructure which
provides an integration backbone for systems integration. Additionally the ESB ensures
interoperability and o�ers several features such as: service discovery, intelligent routing, mes-
sage processing and service orchestration assuring proper format between service providers
and consumers, no matter which programming language they are written on [Cha04].

In general the functional properties or functional contract of a Web service are exposed by
the Web Service Description Language (WSDL), in other words how the service must behave.
Whereas the non-functional properties of a Web service are represented by the Quality of
Service (QoS) parameters, also for Web service composition, which must be monitored and
analyzed in order to conclude if the service is behaving in an adequate form or not. Monitoring
an individual Web service and global Web services compositions is challenging because of the
particularity presented in each case; since eachWeb service is unique. Performance parameters
can be monitored under diverse scopes, for instance by the client side obtaining parameters
like latency, throughput and error rate to name a few.

The architecture is designed to provide interoperability between diverse services and systems
having di�erent technologies through standards-based adapters and interfaces that use Web
services technology (as shown in Fig. 5.1). Furthermore, each Web service follows the MAPE
loop from the autonomic computing paradigm. The service layer represents the invocation
or the execution of a required task or service from which performance information will be
extracted.

66

Autonomic Computing and Asynchronous Checkpointing 67

Web Service
MAPE loop

Service Layer

Custom
Applications

Web Service
MAPE loop

Service Layer

Service
Orchestration

Web Service
MAPE loop

Service Layer

Java
Applications

Web Service
MAPE loop

Service Layer

Enterprise
Applications

Web Service
MAPE loop

Service Layer

Legacy
Applications

Figure 5.1: ESB with MAPE loop Architecture.

5.1.2 Performance measurements

We proposed an asynchronous checkpointing mechanism to support fault tolerance, therefore,
we measure systems' performance before and after implementing the CiC mechanism system
architecture.

We have chosen the performance measurements pertinent to network tra�c to evaluate
the performances before and after applying CiC architecture. We measured the average
response time αt and the throughput βt, in terms of Transactions Per Second (TPS), for
measuring the application services and CiC performance.

Average response time (AV GRT)

It is de�ned as the average time taken by Web service from the time of sending request by
a client till the time of receiving the reply from the Application Server. To calculate the
response time we use two timestamps, when the client sends a request (t1) and the time when
the response is received (t2). Then the response time is calculated as:

RT = t2 − t1 (5.1)

This is done for each request/response in the system in play. Latter we average all
exchanged messages in the system, as consequence obtaining AV GRT .

Autonomic Computing and Asynchronous Checkpointing 68

Monitoring

Analyze Planing

Execution

SP1 SP2 SPN

……..

Request
service

Knowledge
Base

Update
Checkpoint/

rollback

Taskx

Result

Request Response

Actions:
 Restart WS
 Redirect to

anoter WS
 Rollback
 No action

Figure 5.2: Autonomic Web services based on CiC protocols.

Throughput (βt)

For interactive systems, the system's throughput is de�ned as the ratio of total number of
request to the total time, which has a correlation with response time. We de�ne the Web
services systems performance βt as the amount of data processes by a Web service in a given
time interval.

5.1.3 MAPE cycle

Business processes must be dependable so they are available when requested; solutions that
suggest augmenting Web services dependability must also be scalable and even autonomic
[TZZ+05]. In this work we propose an approach which follows the autonomic computing
MAPE cycle based on CiC protocols (as shown in Fig. 5.2).

As illustrated in Fig. 5.2, the Monitoring module will initiate the petition, sending a request
through the Enterprise Service Bus system; which is in charge of routing, adapting or medi-
ating the request if necessary, in other words the service layer is called. Then the Monitoring
module computes the QoS parameters as are response time and the performance. These
events shall be converted into XML-based messages and stored in a common knowledge base,
shared by all Web services. The Analyze module uses a Diagnosis Engine that checks the
extracted information to decide if the behavior of the Web service is normal or if it su�ers any
anomaly or fault. In other words, it identi�es patterns in the logs looking for speci�c problems
that occurred [GZ05]. If the Web service presents normal parameters then such Web service is
immediately returned from Analysis module to the Web service invoking a service. However,
the message is forward to the analysis process that checks the new aggregate values with the

Autonomic Computing and Asynchronous Checkpointing 69

aim of predicting the immediate future state of the system, based on Hidden Markov Model
(HMM) [HGDJ08], Bayesian Networks [KDVSD+14, KDVSD+13] or any other method that
supports prediction. When the QoS parameters are predicted as abnormal, an alert will be
sent to the scheduler who will schedule the next forced checkpoint(s). So that later the Exe-
cution module realizes them. After that if the degradation happens and the system can not
continue then we would enter the rollback recovery stage.

5.1.4 Mechanism specification for autonomic Web services composition

The proposed autonomic Web service composition ful�lls at runtime the following tasks: �rst,
from the previously built consistent global snapshots it detects when to checkpoint and follows
the MAPE control loop for this purpose. Second, it detects when the Web service composition
is functioning properly and when it is not.

Our mechanism is speci�ed by the Autonomic Web service composition algorithm, based
on messages exchanged by individual Web services. A brief description of the main compo-
nents of the algorithm is provided:

Data structures. The status of a process k are de�ned by the following structures.

• WS[i] is the structure that holds monitored data about each individual Web service.

• FWS[i] is the structure used for symptoms presented by each Web service, ∅ means the
Web service is functioning correctly.

• D[] is the structure that stores diagnostic information about a Web service.

• P [] is the structure that stores plans for a Web service, based on prede�ned policies.

5.1.5 Algorithm

We present Algorithm 5.1, that aims at implementing the autonomic computing paradigm
and integrating checkpointing mechanism. The aim of our algorithm is to tackle Web services
composition.

Autonomic Computing and Asynchronous Checkpointing 70

Table 5.1: Variable names and type

Variable Type Description
WS[] integer[] monitored data
CPU integer 0− 100 CPU usage

Memory integer 0− 100 RAM usage
RT integer response time in ms

FWS[i] char[] stores symptoms of a Web service
D[] char[] stores diagnostic information Pi

P [] char[] stores plans for an individual Web service
DG char[] stores global diagnostic for Web service composition
PG char[] stores global plan for Web service composition.
wsid integer Web service identification
pid integer process identification

wsdescr document Web service description (WSDL)
wspolicy document Web service policy

processpolicy document Policy associated to a process
policy document Set of constraints

Table 5.2: Procedures and description

Procedure Description
Initialization() All variables are set to zero or empty set.
Initial_CGS(WS1,WS2, . . . ,WSn) Ask each Web service for their initial checkpoint.
MAPE WS1,WS2, . . . ,WSn Each Web service runs the MAPE control loop.
CheckPolicies() Checks Web services and global policies, and returns symptoms.
Get_Last_CGS () Gets the last known consistent global snapshot.
Find_Best_Diagnostic (FWS[i]) Queries the knowledge base for the best diagnostic, that match a set of

symptoms Sx.
Classify_Symptoms (FWS[i]) Updates the knowledge base with a set of symptoms and generates a new

diagnostic D.
Generate_Plan (D[]) Creates a plan P for a diagnostic D.
Find_Best_Plan (D[]) Queries the knowledge base searching for the best plan.
Build_Global_Diagnostic (D[]) Queries the knowledge base searching for a set of diagnostics and builds a

global diagnostic.
Find_Best_Global_Plan(DG[] ∩ P []) Queries the knowledge base searching for a set of plans and builds a global

plan.
Execute (action, PG) Executes each action in the global plan set.
Get_Ws_Description(wsid[e]) Returns a Web service description document.
Get_Ws_Policy(wsdescr) Returns a policy for a Web service.
Get_Process_Policy(pid[e]) Returns a policy for a process.
validate (policy, wsdescr) Returns a set of symptoms if a problem is detected by comparing the system

and Web service behavior.

Algorithm 5.1 initializes all variables (lines 1 to 4), for instance line 3 builds and assigns
to C the systems' initial consistent global snapshot (CGS). The MAPE loop is represented
by lines 5 to 24; for each Web service the algorithm starts the Monitoring by checking the
Web service policies and process level at the time of calling the CheckPolicies. Checking
that Web service satis�es the constraints stipulated in their policies. During any time of this
computation period a new CGS can be build. Validate is used to detect a set of symptoms
returning a non-empty set when the Web service speci�cations and policies are not met. For
the best case, when the entire composite is functioning correctly a �no problem� is returned

Autonomic Computing and Asynchronous Checkpointing 71

Algorithm 5.1: Autonomic Web Services Composition
Input: WSi : Web services monitored data such as: CPU,Memory,RT,
Local Variables: FWS[i] functioning of a Web service, Sx sympthoms for a Web service, D
set of diagnostics from analysis, P set of plans, wsdescr is the Web service functional
requirements, wspolicy current policy associated to a Web service, processpolicy rules a
specific Web service, policy global policy for Web service composition
Output: PG : Recovery plan for the Web service composition.
For more information about variables and procedures, please see Table 5.1 and Table 5.2

procedure Initialization ()1

Sx← ∅, P ← ∅, FWS ← ∅ D ← null2

C ← Initial_CGS(WS1,WS2, . . . ,WSn)3

end procedure4

procedure MAPE(WS1,WS2, . . . ,WSn)5

foreach WS[i], i = {1, . . . , n} do6

FWS[i]← CheckPolicies()7

if FWS[i] == 0 ∀ FWS[i], i = 1, 2, . . . , n then8

return “No problem found for Composite WS"9

else10

Get_Last_CGS(())11

foreach ∀FWS[i], i = 1, 2, . . . , n do12

if FWS[i] 6= 0 then13

D[]← Find_Best_Diagnostic(FWS[i])14

if D[] = NULL then15

D[]← Classify_Symptoms(FWS[i])16

P []← Generate_Plan(D[])17

else18

P []← Find_Best_Plan(D[])19

DG ← Build_Global_Diagnostic(D[])20

PG ← Find_Best_Global_Plan(DG[]) ∩ P []21

for action ∈ PG do22

Execute(action, PG)23

end procedure24

procedure CheckPolicies()25

wsdescr ← Get_Ws_Description(wsid)26

wspolicy ← Get_Ws_Policy(wsdescr)27

processpolicy ← Get_Process_Policy(pid)28

policy ← processpolicy ∩ wspolicy29

Sx← V alidate(policy, wsdescr)30

return (Sx)31

end procedure32

Autonomic Computing and Asynchronous Checkpointing 72

(lines 8 and 9).

Otherwise in order to have a consistent view of the system and to have a proper ver-
i�cation and diagnostic the last known CGS is retrieved from the common Knowledge Base
(KB), line 11.

Then the vector containing the set of symptoms is Analyzed to �nd the best known diagnosis,
retrieved from the KB, this is done for each individual Web service of the composition. When
no diagnosis is found, line 15, the symptoms are classi�ed, line 16, and a new diagnosis
is generated as well as a new plan, line 17. Contrarily, when the diagnostic is found, line
19, a Plan is retrieved from the KB. This is suitable for individual Web service, however
concerning a composite Web service the system must build a global diagnostic of how the
overall composite is behaving, line 20. The same solution is applied to individual plans, i.e.
from a set of individual plans a global plan is generated that constitutes the overall system,
line 21. Finally, each action must be executed from the overall global plan carrying out a
series of actions, lines 22 and 23, like rollback, restart a speci�c Web service etc.

5.2 Results and discussion

In order to show that autonomic Web services based on asynchronous checkpointing (specif-
ically communication-induced checkpointing) do not incur in a negative e�ect on the overall
performance of systems, we performed several performance tests. Speci�cally, we measured
response time and transactions per second as a key performance indicators. For testing re-
sponse time and performance (throughput) we implement our proposed solution using the
following hardware: a workstation with 16 GB RAM with Windows 7 64-bit as operating sys-
tem. The WSO2 Application Server was used to deploy Web services, and for performance
tests diverse concurrent Java clients were emulated, in order to have an approximate real
world deployment.

5.2.1 Experimental results

Fig. 5.3, Fig 5.5, Fig. 5.4 and Fig. 5.6 show the behavior of the system when evaluating
its performance. For this purpose several iterations of the scenarios were performed (in
particular each scenario was executed 100 times). That is, for 20 consumers, 2,000 samples
were collected, for 30, 3,000 were collected in increments of 10 to reach 200 where 20,000
samples were collected. Subsequently, their average was obtained for the response time and
for the transactions per second. The response time measures the time from when the customer
sends a request to the credit approval service until the customer receives back his response.
Transactions per second measure how many transactions are executed over a certain period
of time. We also, illustrate the respective standard deviation for response time and TPS.

From Fig. 5.3 in a quantitative way, it can be observed that although the average response

Autonomic Computing and Asynchronous Checkpointing 73

Table 5.3: Response Time

#of Processes RTnoCiC RTCiC Inc% STDnoCiC STDCiC

20 11.89 18.89 59% 1.81 3.21
30 11.64 18.91 62% 2.56 6.24
40 12.42 19.36 56% 3.37 10.19
50 13.0 19.82 52% 4.74 18.10
60 14.08 20.83 48% 6.61 16.22
70 15.05 22.12 47% 8.05 20.04
80 15.91 21.52 35% 9.01 21.03
90 16.25 23.65 46% 11.25 28.14

100 16.79 23.58 40% 12.16 30.01
110 17.41 24.70 42% 14.12 24.75
120 18.66 29.52 58% 19.26 29.74
130 21.17 30.15 42% 20.75 24.78
140 23.00 32.14 40% 21.47 31.54
150 22.92 25.81 13% 25.78 27.25
160 22.33 25.34 13% 25.92 28.98
170 22.00 25.19 15% 26.12 28.94
180 19.91 26.26 32% 29.15 29.95
190 24.49 25.92 15% 30.12 32.20
200 23.18 26.16 12% 31.36 33.01

time AV GRT is increased, approximately 30%, this increase is maintained for both 20 cus-
tomers requesting the credit approval service and 200 clients. We observed during the initial
emulation with low number of consumers, the average response time is slightly higher than
the existing solution without the CiC mechanism. However, with increasing clients' requests,
more users using Web services concurrently, our CiC mechanism performs better with reduced
average response time. Interactive environments present diverse challenges, one of them has
to due with their resource usage, yet our approach remains constant even when the number
of consumers increases.

The emulation results for the systems' throughput (βt), in terms of Transactions Per
Second (TPS), are shown in Fig. 5.4. Its behavior is quite similar to the one exhibit by the
average response time. In the early stage of the emulation we observe not much enhancement
in β in comparison to Web services that do not implement the CiC mechanism. Nevertheless,
when many clients are in play a maximum gain is observed in throughput. Generally, the
enhancements in all the performance measurements were observed by applying our approach
on the existing Web services considering many concurrent consumers.

The aforementioned �gures give guide to argue that our approach is scalable and with low
implementation cost (in terms of performance impact). Since the values recommended by
ITU G.1010, which attempts to standardize the use of Web services, are not violated for the
response time. ITU stipulates the following values: preferred = 0− 2 seconds, acceptable =
2− 4 seconds and unacceptable = 4 to in�nity

Table 5.3 shows the incremented percentage for the response time while adopting or not the
CiC mechanism. When 200 clients use concurrently the same scenario, case most seen in
real life, saving snapshots from the system incurs some performance degradation. However,
we addressed systems' fault tolerance feature by means of an asynchronous checkpointing

Autonomic Computing and Asynchronous Checkpointing 74

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Number of processes

Ti
m

e
in

m
s

Web Services’ Average Response Time

RT no CiC
RT CiC

Figure 5.3: Response Time Measurement for the system implementing and without implementing
CiC.

Autonomic Computing and Asynchronous Checkpointing 75

0 20 40 60 80 100 120 140 160 180 200
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Number of processes

T
PS

Web services’ Average TPS

TPS no CiC
TPS CiC

Figure 5.4: Transactions per second Measurement for the system using and without using CiC.

Autonomic Computing and Asynchronous Checkpointing 76

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Number of processes

Ti
m

e
in

m
s

Web Services’ Standard Deviation Response Time

STD no CiC
STD CiC

Figure 5.5: Standard Deviation for Response Time using and without using CiC.

Autonomic Computing and Asynchronous Checkpointing 77

0 20 40 60 80 100 120 140 160 180 200
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Number of processes

T
PS

Web services’ STD for TPS

STD no CiC
STD CiC

Figure 5.6: Standard Deviation for TPS using and without using CiC.

Autonomic Computing and Asynchronous Checkpointing 78

Table 5.4: Throughput

of Processes TPSnoCiC TPSCiC Inc% STDnoCiC STDCiC

20 0.064 0.097 34% 0.014 0.053
30 0.060 0.104 42% 0.017 0.061
40 0.062 0.110 43% 0.019 0.062
50 0.064 0.099 35% 0.021 0.055
60 0.069 0.111 38% 0.024 0.062
70 0.075 0.116 36% 0.031 0.065
80 0.079 0.112 30% 0.037 0.063
90 0.081 0.124 35% 0.042 0.071

100 0.084 0.124 32% 0.043 0.070
110 0.090 0.131 32% 0.051 0.081
120 0.095 0.135 32% 0.055 0.084
130 0.111 0.140 30% 0.061 0.091
140 0.120 0.154 21% 0.067 0.095
150 0.108 0.146 22% 0.063 0.088
160 0.108 0.148 27% 0.062 0.093
170 0.119 0.150 28% 0.068 0.092
180 0.119 0.164 21% 0.068 0.094
190 0.121 0.167 27% 0.069 0.098
200 0.123 0.160 23% 0.071 0.091

mechanism. In this regard, the system can restore its execution from previous executed
events, i.e. from a consistent global snapshot.

Table 5.4 shows the systems' performance degradation, here we compare system performance
when using the CiC mechanism and when not using it.

Therefore, given evidence from the performance tests we can conclude that system perfor-
mance is not a�ected when the mechanism of communication-induced checkpointing (CiC) is
implemented, the underlying actions corresponding to the rest of the MAPE loop should be
seamlessly executed.

5.3 Conclusions of the autonomic computing and asynchronous check-
pointing

We suggested an approach that implements the Monitoring Analyze Plan and Execute
(MAPE) control loop within Web services based on checkpointing protocols. Afterwards,
we presented a Web services compositions to support fault tolerance using an asynchronous
communication-induced checkpointing (CiC) which is domino e�ect free. To prove the feasi-
bility of this using an asynchronous checkpointing mechanism, speci�cally an algorithm that
leverages the communication-induced checkpointing, oriented for Web services compositions
interactions. Our algorithm can be applied to Web services since it supports an asynchronous
communication and a non-coordinated execution. Our approach reduces forced checkpoints
by establishing certain triggering rules that we call safe checkpoint conditions. The results
show that the CiC mechanism does not introduce high overhead to current Web services

Dynamic Quasi-Asynchronous Checkpointing 79

compositions.

Merging these two widely used paradigms, autonomic computing and checkpointing protocols,
is a challenge that remains open. However, we showed how a CiC mechanism can help
upon autonomic computing. Besides, we consider an adaptive CiC based on the systems
performance. Therefore, the implementation of an Autonomic Service Bus (ASB) based on
CiC protocols will be taken into account.

Another area of interest concerns optimizing the number of checkpoints, this reduction of
checkpoints is considered a good strategy since it reduces a large amount of communication
overhead that is generated by the communication-induced checkpointing mechanisms. The
aforementioned strategy can be carried out by predicting quality of service variation, which
represents how the systems behave during a certain period.

CHAPTER 6
DYNAMIC QUASI-ASYNCHRONOUS
CHECKPOINTING FOR DISTRIBUTED
AND COLLABORATIVE ENVIRONMENTS

Before we de�ne our approach for dynamically checkpointing, we introduce our fuzzy diag-
nostic model. Then, we de�ne the fuzzy consistency evaluation system on which we rely for
the dynamic generation of forced checkpoints.

There is a correlation between the failure free execution time and the overhead intro-
duced by checkpointing mechanisms. As consequence, there is a need to consider it. Orga-
nizations that rely on Web Services for their business processes, need not to introduce high
overhead. This can be accomplished by making inferences from information gathered au-
tonomously, and with small to no human intervention. At such aim, we propose using fuzzy
logic for the diagnostic process brought-up by the MAPE control loop.

6.1 Fuzzy approach towards dependable business processes

Software applications have su�ered many changes in the way they are designed; many
paradigms arise for integrating diverse technologies and applications in heterogeneous en-
vironments [SQV+14]. Currently, most organizations follow and apply the Service-Oriented
Architecture (SOA) paradigm, where individual pieces of software and applications are inte-
grated to carry out complex functions; thus SOA standard allows heterogeneous applications
to interact. Yet, Internet's unreliable nature not only in its communication channels and
protocols increases the need for fault tolerant systems and applications.

In a SOA context large number of concurrent interactions amongst providers and consumers
can take place, this competition for resources of shared services can lead to unpredictable con-
ditions or events such as service unavailability, high response time, having as consequence not
warranting reliability. To improve both performance and therefore reliability such anomalies
need to be addressed by proposing e�cient approaches and strategies. Yet, these complex
systems can require a lot of human expertise, time and skills for their con�guration, for repair
and management. Therefore it is mandatory avoiding managing systems manually because
doing so becomes more expensive and di�cult.

IBM proposed an initiative known as Autonomic Computing which aims at designing and
building systems capable of managing themselves, therefore monitoring and evaluating their

80

Dynamic Quasi-Asynchronous Checkpointing 81

state periodically for applying changes or taking action to improve its performance, also
to recover upon a failure. Other improvements include reliability, security and availability
properties [C+06]. Autonomic Computing introduces the Autonomic Elements consisting on
Autonomic Manager and components named as Managed Elements. The Autonomic Manager
is an entity that manages the Managed Elements. The Autonomic Manager is composed
by a MAPE (Monitoring, Analysis, Planning and Execution) control loop with a shared
knowledge base, where observations, analysis results and self- managing plans are considered
[KDVSD+14].

The goal of this work is to prove the feasibility of using fuzzy logic for ranking and determining
QoS behavior for Web services compositions in collaborative environments, and therefore the
diagnostic process can formulate corrective strategies following the MAPE loop of autonomic
computing. We show how fuzzy logic can be used to implement the diagnostic process for Web
services. With di�erent observations made for Web services running under di�erent workload
conditions, we built a Fuzzy Inference System (FIS) which is the central part to carry out
inferences that allow to discover or predict future performance degradations for Web services.

On the other hand, many di�erent solutions are aimed at rising Web services features, for
example, Web services replication [DJ07]. Self-healing Web services [AH11, GZ05, MSSD06]
its name is self-explanatory, autonomic Web services [BJPK+05, TZZ+05] aiming for less
human intervention among other solutions. In the literature we could also �nd other works
aim for Web services selection problem .

Many works have been issued in order to improve the QoS o�ered by Web Services by
means of Autonomic Computing properties, i.e. implementing the MAPE cycle. Still, there
is no uni�ed or standardized form for implementing this cycle for Web Services, and Web
Services composition. Some works treat each one of the MAPE loop phases as an individual
Web Service [GZ05, KGM11]. Others only tackle a single feature of the autonomic computing
paradigm, in particular self-healing [MSSD06, TZZ+05]. Tian et al., suggest to address the
entire MAPE loop adding other interfaces to confront functional and non-functional Web
Services' requirements [TZZ+05].

6.1.1 Diagnostic model based on fuzzy non-functional dependencies

In a SOA context dynamic and unpredictable conditions must be considered, for example, ser-
vice consumers and service providers are competing for shared resources as are Web Services.
Therefore the Autonomic Manager must deal with such conditions and take corresponding
actions. We propose using FIS as knowledge representation of the Managed Element, in order
to use this as a model for diagnostic and learning processes. To estimate how Web Services
composition's behave one can take into account the fuzzy non-functional dependencies, i.e.,
quality of service (QoS).

Fig. 6.1 shows the architecture of the Autonomic Web Service. The Web Services in-
stances and the underlying infrastructure are the managed elements. These managed elements
are monitored and controlled by Autonomic Mangers via touch-point interfaces.

Dynamic Quasi-Asynchronous Checkpointing 82

Knowledge baseMonitor Execution

Analyze Plan

Autonomic
Manager

Touchpoint
Sensors Executors

Web Service

Web Service
instances and

underlying
resources

Symptoms

Diagnostic and
request of change

Change
plan

Managed Elements

Figure 6.1: Autonomic Web Service Architecture.

The functions carried out by the Autonomic Manager are:

• The monitoring phase takes actions like aggregating data from runtime executions of
the managed elements to detect the occurrence of symptoms so they can be analyzed.
Unacceptable response times, known as deviations, coming from Service Level Agree-
ments (SLA) established between service consumers and providers are an example of
symptoms.

• The analyzing phase uses the diagnosis model based on fuzzy logic. The diagnostic pro-
cess discovers causes and e�ects to take corresponding actions, for example, corrective
measures. To evaluate Web Services our model has a FIS as a diagnostic model.

• Policies give the runtime con�guration for components, and therefore managing of those
policies when changes occur. These are de�ned on a shared knowledge base containing
prede�ned policies, and providing semantics and syntax for the deployed services. To
trigger corrective actions information about rules to implement the self-management
functions of the autonomic behavior of the Web Services.

Nonetheless, the Autonomic Manager is able to learn about the Web Services behavior
through the monitoring. The Autonomic Manager updates the FIS with monitoring data
under normal operation condition and also for undesirable situations.

Dynamic Quasi-Asynchronous Checkpointing 83

The fuzzy-consistency system

A relation between input and output of non-functional QoS variables can be easily established
in the form of if-then rules; the systems' behavior can be described by using simple rules. In
this paper, we take advantage of fuzzy logic to measure overall QoS, under di�erent workloads,
to manage QoS changes and therefore the diagnosis process.

We measure QoS parameters associated to messages exchanged among di�erent pro-
cesses, explicitly we propose a QoS temporal association. For this purpose, we de�ne the
fuzzy-consistency system in such a way that we can know the degree of system behavior among
messages. Therefore, we compute the overall QoS considering information among exchanged
messages and their individual QoS.

The FCSE can be formulated in the form of a fuzzy-consistency system (FCS). Let the
FCS relate QoS parameters like: response time, CPU and memory percentage usage in the
following way:

�how good the behavior of the systems is at a certain time t regarding QoS parameters".

To achieve this, we de�ne three linguistic variables:

• response time (RT) is used to indicate the time it took a process from sending a request
to receiving a response.

• CPU percentage usage is used to indicate performance metrics during a certain time.

• and the Memory percentage usage also used to indicate performance metrics during a
certain time.

The state of the FCSE and its degree is determined with the Mamdani fuzzy inference
system (FIS) [MA75], a brief de�nition is given below:

a) Fuzzi�cation: For the Mamdani FIS, we fuzzify the inputs and the output using
triangular and symmetric fuzzi�er (see De�nition 2.3). For each linguistic variable, we de�ned
�ve fuzzy sets related to �ve linguistic terms as follows:

• for the Response Time: VG(e) related to very good, G(e) related to good, A(e) related
to average, B(e) related to bad, and VB(e) related to very bad.

• for the CPU: CPU_L(e) related to low, CPU_M related to medium, CPU_H related
to high, and CPU_VH related to very high.

• and �nally for the Memory MEM_L(e) related to low, MEM_M(e) related to medium,
MEM_H related to high, and MEM_VH related to very high.

Dynamic Quasi-Asynchronous Checkpointing 84

Table 6.1: Values of variables used in definition of membership functions.

Variable Values of membership functions

Response Time

Set L C R
VG σ0 − σ2 σ0 σ2
G σ0 σ2 σ4
A σ2 σ4 σ6
B σ4 σ6 σ8
VB σ6 σ8 σ8 + σ2

CPU

CPU_L ε0 − ε2 ε0 ε2
CPU_M ε0 ε2 ε4
CPU_H ε2 ε4 ε6
CPU_VH ε4 ε6 ε8

Memory

MEM_L ϕ0 − ϕ2 ϕ0 ϕ2

MEM_M ϕ0 ϕ2 ϕ4

MEM_H ϕ2 ϕ4 ϕ6

MEM_VH ϕ6 ϕ8 ϕ8 + ϕ2

In this way, Table 6.1 resumes the input fuzzy sets for each variable.

The graphical representation of the fuzzy sets are described for each variable, for ex-
ample, for the response time linguistic variable as shown in Fig. 6.2, and Fig. 6.3 and Fig.
6.4 respectively represent CPU and memory linguistic variables.

0.5

1
VG G A B VB

q

δ0 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

Figure 6.2: Input Fuzzy Set for the Response
Time.

0.5

1
CPU_L CPU_M

q

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6

CPU_H CPU_VH

Figure 6.3: Input Fuzzy Set for CPU.

b) Fuzzy inference: Once the inputs and outputs of the Mamdani FIS are de�ned, as
shown in Fig. 6.5, the degree of the overall QoS is determined by the inference rules shown
in Table 1 and Table 2, presented in Appendix 7.2.

Dynamic Quasi-Asynchronous Checkpointing 85

0.5

1
MEM_L MEM_M

q

β0 β1 β2 β3 β4 β5 β6

MEM_H MEM_VH

Figure 6.4: Input Fuzzy Set for the memory.

0.5

1

q

0 1 2 3 4 5 6

Memory

0.5

1

q

0 1 2 3 4 5 6

CPU

0.5

1

q

0

1 2 3 4 5 6 7 8

Response Time

Qos FIS

Rules

0.5

1

q

α0

α1 α2 α3 α4 α5 α6 α7 α8

QoS

0.5

1

q

β0 β1 β2 β3 β4 β5 β6

Memory

0.5

1

q

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6

CPU

0.5

1

q

δ0

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

Response Time

Qos FIS

Rules

0.5

1

q

α0

α1 α2 α3 α4 α5 α6 α7 α8

QoS

0.5

1

q

β0 β1 β2 β3 β4 β5 β6

Memory

0.5

1

q

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6

CPU

0.5

1

q

δ0

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

Response Time

Qos FIS

Rules

0.5

1

q

α0

α1 α2 α3 α4 α5 α6 α7 α8

QoS

0.5

1

q

β0 β1 β2 β3 β4 β5 β6

Memory

0.5

1

q

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6

CPU

0.5

1

q

δ0

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

Response Time

Qos FIS

Rules

0.5

1

q

α0

α1 α2 α3 α4 α5 α6 α7 α8

QoS

Figure 6.5: Design using Fuzzy inference System.

6.1.2 Experimental results

Experimental setup

In order to show that the diagnostic phase for Web Services based on fuzzy non-functional de-
pendencies do not have a great impact on the overall performance of the system, we performed
several performance tests. Speci�cally, we measured response time as a key performance in-
dicator. For testing we implement our proposed solution within the following hardware: on
a workstation with 16 GB RAM with Windows 7 64-bit as operating system. The WSO2
Application Server was used to deploy to Web Services, and diverse concurrent Java clients
were emulated, in order to have an approximate real world deployment. We used Jfuzzylogic
1 for its compatibility with JAVA.

Fig. 6.6 shows that although the average response time is increased, this increase is
maintained for both 10 customers requesting concurrently a Web Service and 200 clients. We
observed during the initial emulation with low number of consumers, the average response
time for the fuzzy logic diagnostic mechanism is slightly higher than the existing solution
for Web services running no diagnostic process. However, with increasing clients' requests,
more users use Web Services concurrently, our fuzzy mechanism performs better with reduced
average response time. Interactive environments present diverse challenges, one of them has
to due with their resource usage, yet our approach remains constant even when the number
of consumers increases.

Fig. 6.6 and Fig. 6.7 shows the behavior of Web Services when evaluating performance,
showing response time and the standard deviation respectively. For this purpose several
iterations of the scenarios were performed (in particular each scenario was executed 100
times). That is, for 20 consumers, 2,000 samples were collected, for 30, 3,000 were collected
in increments of 10 to reach 200 where 20,000 samples were collected. Subsequently, average

1http://jfuzzylogic.sourceforge.net/html/index.html

Dynamic Quasi-Asynchronous Checkpointing 86

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Number of processes

Ti
m

e
in

m
s

Web Services’ Average Response Time

RT no fuzzy logic
RT using fuzzy logic

Figure 6.6: Response Time Measurement for Web Services using and without using fuzzy logic.

Dynamic Quasi-Asynchronous Checkpointing 87

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Number of processes

Ti
m

e
in

m
s

Web Services’ Standard Deviation

RT no fuzzy logic
RT using fuzzy logic

Figure 6.7: Standard Deviation for Web Services using and without using fuzzy logic.

Dynamic Quasi-Asynchronous Checkpointing 88

Table 6.2: Values for input/output membership functions.

Variable Values of membership functions

Response Time

Set L C R
VG −2.5 0 2.5
G 0 2.5 5
A 2.5 5 7.5
B 5 7.5 10
VB 7.5 10 12.5

CPU

CPU_L −33.33 0 33.33
CPU_M 0 33.33 66.67
CPU_H 33.33 66.67 100
CPU_VH 66.67 100 133.3

Memory

MEM_L −33.33 0 33.33
MEM_M 0 33.33 66.67
MEM_H 33.33 66.67 100
MEM_VH 66.67 100 133.3

QoS

QoSVH −1.25 0 1.25
QoSH 0 1.25 2.5
QoSA 1.25 2.5 3.75
QoSL 2.5 3.75 5
QoSVL 3.75 5 6.25

of those samples was obtained and the response time was computed. Even though using
fuzzy logic increments the response time, we gain the ability to diagnose possible incorrect
outcomes in a fast manner.

Membership function tuning

This section gives the considered input and output values for the membership functions. For
instance, the response time has as range 0 to 10 seconds. CPU and Memory usage have as
range 0 to 100. And QoS range 0 to 5. This is better illustrated in Table 6.2.

We de�ned the overall QoS set related to �ve linguistic terms as follows:

• for the QoS: QoSVH(e) related to very high, QoSH(e) related to high, QoSA(e) related
to average, QoSL(e) related to low, and QoSVL(e) related to very low.

Therefore when the QoS has values near to zero, then QoS would be very high. And
when QoS is near to 5 this means the system is having degradation problems, and the QoS
is very low.

Dynamic Quasi-Asynchronous Checkpointing 89

Figure 6.8: Response Time and CPU. Figure 6.9: Response Time and Memory.

6.1.3 Discussion of the fuzzy diagnosis model

The input values are QoS parameters monitored from the monitoring phase and are injected
into the FIS system for their analysis, these values are input data in a speci�ed range according
to the given parameter. Each input and output variable value is given a membership function.
For example for the overall QoS as output its input QoS parameters are response time, CPU
and memory.

We have de�ned fuzzy rules using the linguistic variables for our fuzzy inference engine.
We de�ned all possible combinations of rules, 80 rules for the overall QoS, this experiment
implies the use of low number of inputs, hence, the computational time was not a distin-
guishing factor. Yet, it is possible to summarize di�erent combinations. Fuzzy conjunction
(AND), interpreted as a min function, was applied for all the rules.

Shown in Table 1 are the QoS rules for Web services. As an example, rule number 16
in the table: when the response time is very good in order of ms, CPU usage is very high in
order of (76%to100%) and the memory is also very high (76%to100%) then the overall QoS is
inference to be low. Another example, when the overall QoS is very high it can be inference
by rule number 1, implying that the response time is very good, the CPU usage is low and
the memory used is also low.

The dependency amongst input and output is shown by plotting the surface of the
system. Fig. 6.8 displays the dependency of the QoS based on the response time and CPU
input variables. It is clear that when CPU is low (in its usage), and response time is very
good (fast response) then the QoS is very high (system is behaving optimally). Also when
response time is very bad (response takes seconds) and CPU is very high then QoS will be
very low (system is su�ering bad degradation). Fig. 6.9 depicts the dependency of the QoS
based on response time and memory usage. The �gure shows that the QoS is very high when
the memory is low, and the response time is very good.

6.1.4 Conclusion of the fuzzy diagnostic model

We illustrated a diagnostic model based on fuzzy logic, o�ering a close representation of the
real conditions of a managed element using a FIS as a knowledge base. The FIS permits

Dynamic Quasi-Asynchronous Checkpointing 90

making inference for the observed evidences, and gives a precise diagnosis. To adjust to the
changing conditions and requirements for the managed elements, we proposed an approach
for the diagnosis model; still having the capability of learning and updating the knowledge
base. New variables of interest can be easily added and it is also easy to make inferences from
these variables.

We show results for integrating the diagnosis process for Web Services. First, the
variables and their states were de�ned as linguistic variables for establishing membership
functions and then establish inference rules. Subsequently, results for the diagnosis process
were exposed.

Unlike related work our proposal integrates both autonomic computing and fuzzy logic
to make and ease the diagnosis process for the MAPE cycle. Our approach allows managed
elements to discover the degradation of system components and make an inference based on
the kind of e�ect a fault has.

The proposed approach could be extended for tackling Web Services fault tolerance
by means of checkpointing, which allows saving states in the managed elements over time.
Plus, taking into account non-functional requirements for Web Services can lead to a dynamic
checkpointing mechanism.

6.2 Dynamic checkpointing

Distributed systems are ubiquitous and are found practically everywhere, and are used in
everyday life without the users knowing they using such infrastructure. Individual users as
well as organizations bene�t from distributed systems, allowing them to render tasks that
could not be accomplished by individual computers or processes. Distributed systems apply
the divide and conquer approach, where complicated tasks are separated into smaller parts
and distributed among several computers across a networked collaboration infrastructure.

In a nutshell, distributed systems are bene�cial to users and organizations as process-
ing cycles are easily executed plus they allow sharing resources, therefore organizations can
collaborative on projects e�ciently. For example, a vast group of members can be working
upon solving challenging problems, while working locally or spanned across the planet using
the aggregated computing power of large scale distributed systems [KS08]. However, these
systems are prone to errors and may appear to be less dependable than individual systems.
As stipulated by Leslie Lamport, you know yourself in a distributed system when a computer
you did not know exists fails, and therefore one of your local task cannot be ful�lled. To
mitigate the issues mentioned by Leslie Lamport di�erent works have been introduced. Thus,
dependability arises to address a broad spectrum of system characteristics, and many depend-
ability techniques have been introduced, addressing systems reliability, availability and fault
tolerance to mention some [SS17]. In fact, organizations seek dependability for their com-
puter systems, components and applications, providing fault tolerance, so that with enough
information previously saved the system can continue providing services to users even when
a set of nodes have failed. Thus, one open challenge for systems' dependability is to o�er

Dynamic Quasi-Asynchronous Checkpointing 91

fault tolerance, especially for low computing power devices in heterogeneous environments.
For instance, mobile phones or any other device that support requesting services to a corpo-
rate enterprise by means of Web services or any other application. Particularly, solving fault
tolerance issues like: monitoring, detecting and recovering from runtime failures.

To address systems' dependability issues based on fault tolerance in an e�cient way,
and considering that distributed systems susceptibility to failures has hampered their vast
computing potential. Many techniques arise, indeed a promising technique for such pur-
pose is rollback recovery. In this regard, communication induced checkpointing (CiC) is
a well-known and e�cient technique to pursue fault tolerance based on rollback recovery
[CSPHPC13, VSPHRHK17]. To achieve fault tolerance processes save their state called
checkpoint, this is done during the failure-free execution of the system. When a failure oc-
curs systems have gained a manner to restart from a previously saved state, this reduces the
amount of work re-executed. CiC's main goal is to save consistent global snapshots (CGSs)
[KS08], one from each process, free of dangerous checkpointing patterns (z-cycles and z-paths)
[CSPHPC13, SHC+16]. To build CGSs today's solutions trigger forced checkpoints when de-
tecting dangerous patterns, nevertheless, not all triggered forced checkpoints are necessary
as they generate increments in storage space, resource usage and computing processing when
saving checkpoints. Therefore, the least number of forced checkpoints taken the better.

The literature presents di�erent communication-induced and index-based checkpointing
mechanisms. The HMNR protocol [HMNR00] or Fully Informed (FI) [Tsa05] exchanges rich
information about processes causal past. Therefore, new versions of the FI appeared in the
literature, proposing a better strategy to reduce the overhead introduced by the FI mechanism.
For instance, Tsai introduces the LazyFI approach [Tsa07], applying the lazy strategy for
incrementing FI's logical clocks. Another variant but this based on FI, is introduced by Luo
and Manivannan [LM08a, LM09], called Fully Informed aNd E�cient (FINE), the authors
establish a stronger checkpointing condition using the same control information preserved
by FI. Also there exist an optimized version applying the lazy strategy called LazyFINE
due to Lou and Manivannan [LM11, LM08b]. Another variant based on FI and addressing
system scalability, because of the reduction in information exchanged, delaying the number of
forced checkpoints and therefore reducing them, due to Simon et al. [CSPHPC13, SHC+13,
SHC+16].

Despite the bene�ts CiC brings to distributed systems, CiC monitoring is considered to
have a high computational cost, whereas all the communication overhead exchanged by each
participant or process, because of the amount of storage space needed to save the checkpoints
[JF17, VSPHRHK17]. CiC algorithms have overhead but save enough information to have the
ability to recover to a consistent state; when processes exchange application messages these
piggyback information about a process local checkpoint. CiC, however, considers system con-
sistency as it plays an important role, therefore upon the detection of dangerous checkpointing
patterns additional checkpoints are taken [CSPHPC13, SHC+13, SHC+16, GVB17].

Currently, there is not an optimal checkpointing protocol for all checkpoints and com-
munication patterns regardless on how each mechanism takes their forced checkpoints. And
which rules they apply to trigger or take checkpoints.

Therefore, we propose an architecture that supports fault tolerance, based on dynamic

Dynamic Quasi-Asynchronous Checkpointing 92

generation of checkpoints. Even though CiC checkpointing solutions already reduce the num-
ber of forced checkpoints taken, we argue that not all are necessary. We consider taking
into account the probability of the system to su�er a failure, thus considering system degra-
dation as a key factor when checkpointing. Speci�cally considering services non-functional
requirements such as Quality of Service (QoS) parameters. Degradation problems can be
detected while monitoring services' QoS, and lead to dynamic checkpointing in accordance to
processes or services requirements. Our approach reduces the number of forced checkpoints
by considering QoS requirements, for example, to meet the Service Level Agreements (SLAs)
between processes. In this regard, we evaluated the system using fuzzy logic and propose
a fuzzy-consistency system evaluation (FCSE), illustrated in previously. We identi�ed when
useless checkpoints can be avoided regarding QoS and considering system consistency, thus
using fuzzy logic for systems' assessment purposes along with CiC mechanisms. Our ap-
proach was simulated using ChkSim [VB05] and Jfuzzylogic 2. We showed that our proposal
is more e�cient than current solutions. In this interest, we compared three of the most ef-
�cient solutions reported in the literature, based on communication-induced checkpointing
(CiC) , namely Delayed Checkpointing Fully Informed (DCFI) proposed by Simon et. al
[CSPHPC13], HMNR also called Fully Informed (FI) proposed by Helary et. al [HMNR00],
and Fully Informed aNd E�cient (FINE) proposed by Luo and Manivannan [LM09].

6.2.1 Dynamic checkpointing for CiC algorithms based on fuzzy non-functional de-
pendencies

General scheme

We propose a general scheme oriented towards heterogeneous and distributed environments,
yet dependable enough to guarantee system fault tolerance upon failures, as illustrated in Fig.
6.10. Interactive processes necessitate dependability (explicitly fault tolerance), we consider
the order of messages as well as their timing in communication events as these are relevant to
system consistency, therefore we extrapolate the principles of CiC to the general architecture
namely Fault Tolerance layer, illustrated by Fig. 4.1 and used in Fig. 6.10. CiC does not only
guarantee consistency in message order but establishes consistency when building consistent
global snapshots. Regarding the Analysis layer, this is in charge of detecting abnormal
situations and to decide based on extracted information from messages and logs if the behavior
of the system is normal, su�ers any abnormality or if it is in a faulty state. With the aim
of predicting the immediate future sate of the system, one can use arti�cial intelligence and
soft computing, for example, based on autonomic computing [VSMRPHD18]. Or any other
approach that supports predictions like Hidden Markov Model (HMM) [HGDJ08], Bayesian
Networks [KDVSD+14, KDVSD+13] or Fuzzy Logic. We use Fuzzy logic for the Analysis
layer, namely, as its foundation or basis, particularly Fuzzy Consistency System Evaluation
(FCSE), thus computing the overall QoS crisp value at a given time, as explained further on.
Plus the FCSE does not incur in performance degradation. The Monitoring phase recollects

2http://jfuzzylogic.sourceforge.net/html/index.html

Dynamic Quasi-Asynchronous Checkpointing 93

Pk Pl Pm

Pi Pj

Fault Tolerance
Analysis/FCSE

Monitoring

Fault Tolerance
Analysis/FCSE

Monitoring

Fault Tolerance
Analysis/FCSE

Monitoring

Fault Tolerance
Analysis/FCSE

Monitoring

Fault Tolerance
Analysis/FCSE

Monitoring

Figure 6.10: General Scheme.

data from each of the processes for the system in play. The monitoring initiates the petitions,
sending and receiving processes' requests/responses. Also, computes the QoS parameters as
response time, CPU and Memory percentage usage.

6.2.2 Using fuzzy logic for dynamically checkpointing processes

On one hand we have the Fault Tolerance layer based on CiC checkpointing, on the other hand
we have the dynamic generation of checkpoints based on the FCSE. Thus, we can diminish
the common notion that CiC mechanisms have high implementation cost. A relation between
input and output for non-functional requirements such as QoS parameters can be easily
established in the form of if-then rules; the systems' behavior can be described by using these
simple rules. We take advantage of fuzzy logic by measuring FCSE, under di�erent workloads,
therefore we are able to manage QoS changes. Implying that di�erent CiC algorithms have
the ability of dynamically generating checkpoints.

Case study: Web services

Web services based on communication-induced checkpointing can be better explained through
an example. For instance, consider the Stock Quote Web service composition. Where many
consumers of a service invoke multiple stocks brokers to �nd out on which to invest, for clients
that pay a subscription, premium users, they are able to receive in real-time the stock quote
service.

Dynamic Quasi-Asynchronous Checkpointing 94

WS
1

WS2

WS1

m1

W
e
b
 S

e
r
v
ic

e
s

C1

0

C2

0

C1

0

C1

1

C2

1

C1

1

1

2

C2

2

C1

2

M1

C
o
n
s
is

t
e
n
t

G

lo
b
a
l

S
n
a
p
s
h
o
t

Inconsistent Global

Snaphots

C C

mm3

m2 C
o
n
s
is

t
e
n
t

G

lo
b
a
l

S
n
a
p
s
h
o
t

M0

Time
Figure 6.11: Example Scenario.

The simplest case is shown in Fig. 6.11 where two service consumers make a petition
to a stock broker or service provider, however it shows the need for building consistent global
snapshots (CGS). As stipulated by Netzer and Xu in presence of zigzag paths and causal
paths cannot constitute a CGS [NX95]. Fig. depicts that M0 and M1 build CGS while C1

c1,
C2
c2 and C

2
p1 cannot be part of a CGS; because of messages m4 and m5 for instance, although

no causal path exists between C1
c1 and C

2
p1 a zigzag path does formed by the aforementioned

messages. This means that no CGS can be formed from the checkpoints involved in a zigzag
path, in other words no CGS can be built that contains C1

c1 and C
2
p1.

6.2.3 FCSE checkpointing window

Recall that the membership functions and their values are presented in Table 6.2.

We ran di�erent scenarios with diverse values for QoS parameters, and followed an
exponential distribution; simulating real world conditions. Therefore, the crisp values for the
FCSE varies from 0 to 5 after evaluated by the FIS system; better illustrated in Fig. 6.12, we
named this the FCSE window. For instance, this window can be very rigorous, meaning that
forced checkpoints are taken when the output computed crisp value of the FCSE satis�es that
it is equal to 0.625 or lower. And we call relax window to that one allowing a more degraded
system, having an FCSE output crisp value of 4.375. Also, we consider intermediate crisp
values between the rigorous window and the relaxed window and evaluate windows with the
following values: 0.625, 1.25, 1.875, 2.5, 3.125, 3.75, 4.375.

Dynamic Quasi-Asynchronous Checkpointing 95

0.5

1
VH H A L VL

q

0

0.625

1.25 1.875 2.5 3.125 3.75 4.375 5
Figure 6.12: FCSE Window.

6.2.4 Performance evaluation

We compare the performance of three di�erent CiC algorithms, namely DCFI, FI and FINE.
These were chosen because they are recent algorithms and the most e�cient algorithms re-
ported in the literature. We simulated and analyzed these three algorithms using the dis-
tributed checkpointing simulator ChkSim [VB05] and JFuzzyLogic. ChkSim simulator, mod-
els distributed systems in a deterministic manner, reproducing the same behavior for two or
more algorithms, and allows running a simulation as many times as necessary. As metric and
as key performance indicator we took the number of forced checkpoints generated by each
checkpointing algorithm.

The performance was analyzed for several scenarios. For the sake of space, we only
present three scenarios: one with 1000, one with 2500, and one with 5000 messages and
varying the QoS window. Each scenario was made with a uniform distribution among events
(send, delivery and checkpoints), and by varying the number of processes from 10, 20,. . . ,
150. Moreover, for each scenario, 100 iterations were executed with di�erent communication
and checkpoint patterns.

Fig. 6.13, Fig. 6.14 and Fig. 6.15 show that the number of forced checkpoints presented
by DCFI is the lowest, however it has a strong correlation with the QoS window, for a rigorous
QoS the number of forced checkpoints is almost the same as the one observed for DCFI without
using our approach. Yet, as the window relaxes the number of forced checkpoints reduces
drastically. Furthermore, the number of forced checkpoints of DCFI represents on average a
3% gain with respect to FI, while for FINE, it represents on average a 1.5% gain with respect
to FI.

To conclude this section, based on results presented in Fig. 6.13, Fig. 6.14 and Fig.

Dynamic Quasi-Asynchronous Checkpointing 96

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

Number of processes

N
um

be
ro

fF
or

ce
d

C
he

ck
po

in
ts

1000 Messages (100 Iterations)

DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

FINE(FCSE 1.25)

FI (FSCE 1.25)

DCFI(FCSE 1.875)

FINE(FCSE 1.875)

FI (FSCE 1.875)

DCFI(FCSE 2.5)

FINE(FCSE 2.5)

FI (FSCE 2.5)

DCFI(FCSE 3.125)

FINE(FCSE 3.125)

FI (FSCE 3.125)

DCFI(FCSE 3.75)

FINE(FCSE 3.75)

FI (FSCE 3.75)

Figure 6.13: Number of forced Checkpoints for 1000 sent messages.

0 20 40 60 80 100 120 140 160

0

50

100

150

200

250

300

350

400

Number of processes

N
um

be
ro

fF
or

ce
d

C
he

ck
po

in
ts

2500 Messages (100 Iterations)

DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

FINE(FCSE 1.25)

FI (FSCE 1.25)

DCFI(FCSE 1.875)

FINE(FCSE 1.875)

FI (FSCE 1.875)

DCFI(FCSE 2.5)

FINE(FCSE 2.5)

FI (FSCE 2.5)

DCFI(FCSE 3.125)

FINE(FCSE 3.125)

FI (FSCE 3.125)

DCFI(FCSE 3.75)

FINE(FCSE 3.75)

FI (FSCE 3.75)

Figure 6.14: Number of forced checkpoints for 2500 sent messages.

Dynamic Quasi-Asynchronous Checkpointing 97

0 20 40 60 80 100 120 140 160

0

100

200

300

400

500

600

700

800

Number of processes

N
um

be
ro

fF
or

ce
d

C
he

ck
po

in
ts

5000 Messages (100 Iterations)

DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

FINE(FCSE 1.25)

FI (FSCE 1.25)

DCFI(FCSE 1.875)

FINE(FCSE 1.875)

FI (FSCE 1.875)

DCFI(FCSE 2.5)

FINE(FCSE 2.5)

FI (FSCE 2.5)

DCFI(FCSE 3.125)

FINE(FCSE 3.125)

FI (FSCE 3.125)

DCFI(FCSE 3.75)

FINE(FCSE 3.75)

FI (FSCE 3.75)

Figure 6.15: Number of forced checkpoints for 5000 sent messages.

6.15 we can argue, that our approach correlates both cost (QoS parameters: response time,
CPU, Memory) and bene�t (how well the system behaves) in the following way:

• When QoS is very high this implies saving checkpoints. Because, there are enough
resources available, and the cost of storing checkpoints is minimum.

• When QoS is very low this implies not saving many checkpoints. Because, there not
enough resources available, yet some are saved for preserving consistency upon a failure.

6.2.5 Conclusion of the dynamic checkpointing approach

We presented a fuzzy logic approach for dynamically checkpointing distributed and collabo-
rative environments. In this regard, we consider the system degradation to determine when
to take checkpoints, carried out through a fuzzy consistency system evaluation, identifying
useless forced checkpoints. Three di�erent approaches that use the communication-induced
checkpointing algorithm were compared while implementing our proposal. Experimental re-
sults demonstrate our e�ciency, as we managed to reduce the number of forced checkpoints,
because we took into account the quality of service (QoS) of the system at a given time. The
generation of checkpoints is carried out dynamically, since it is considered both a window of
rigorous quality of service as well as a relaxed window. For any, the delayed checkpointing

Conclusion & Future Work 98

algorithm presented the best performance, having the least number of forced checkpoints. In
all cases, all algorithms: DCFI, FINE and FI reduced their forced checkpoints generation;
the DCFI algorithm is more e�cient than the current solutions FI and FINE. The results
show that FINE generates on average only a 1.5% gain with respect to FI, while that DCFI
generates on average a 3% gain with respect to FI, but the number of forced checkpoints are
reduced depending on the QoS window associated to the corresponding case.

CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Achievements

During the development of this research, some original and innovative �ndings were reached.
These �ndings can be useful to solve some open problems related to distributed systems, as
we explain below.

• The usefulness of the IDR. Causal ordering is an important research subject in dis-
tributed systems since allows to provide reliability for some applications, preserving the
asynchronous execution of the system. However, for certain applications, for example
Web services and Web services composition, where degradation of the system is com-
monly seen, ensuring the causal order based on the happened-before relation (HBR) is
rigid, and negative as using it a�ects the performance of the system.

In this dissertation we proposed a message ordering framework (MOF) for collaborative
environments, based on JMS and on the IDR for the problem causally preserving the
order of messages. Thus, diminishing the common notion that this kind of solutions
cause degradation to the system. In addition, our framework is generic and can be
exploited by any Web service-based system.

• The usefulness of CiC mechanisms. CiC aims to built consistent global snapshots
(CGSs), therefore reduce the computational cost upon failures. In such regard, we
proposed an algorithm to build CGSs oriented to increase fault tolerance for interactive
Web services compositions. This approach is also generic, we added CiC to the fault
tolerance layer of the protocol stack, therefore, individual Web services, and/or Web
services compositions can exploit it.

• The usefulness of Autonomic Computing. Autonomic Web services is another
important research area in distributed systems and autonomic computing, since they
are self-manageable entities that preserve in most cases important business transactions
and functionalities for organizations. On one hand, by implementing the MAPE control
loop systems' complexity is mitigated. However, not all the cycle can be focused by
this paradigm itself, it can be aided by checkpointing mechanisms for the planning and
execution of recovery actions, as shown in this work.

• The usefulness of the Fuzzy Consistency System Evaluation. We also proposed
a fuzzy consistency system evaluation (FCSE) to infer a degree of system behavior
among messages. In this sense, the FCSE can be used to determine if forced check-
points dealing with certain messages is mandatory or such forced checkpoints can be

99

Conclusion & Future Work 100

discarded. Thereby, by applying QoS parameters criteria, based on the fuzzy consis-
tency system evaluation the performance of the system can be improved. Therefore,
correlating system degradation with the generation of checkpoints makes our solution
feasible for low computer power devices and components.

7.1.1 Dissertation-derived articles

Author's publications

• International journals: 4

• International conferences: 2

• National conference: 1

International journals

• M. Vargas-Santiago, Hernandez, S. E. P., Rosales, L. A. M., & Kacem, H. H. (2016).
Fault Tolerance Approach Based on Checkpointing towards Dependable Business Pro-
cesses. IEEE Latin America Transactions, 14(3), 1408-1415.

• M. Vargas-Santiago, S.E. Pomares-Hernández, L.A. Morales-Rosales, & H. Hadj-
Kacem (2017). Message Ordering Framework for Collaborative Web Services-Based
Environments. IEEE Latin America Transactions, (Accepted to be published, 2017-
2018).

• M. Vargas-Santiago , S.E. Pomares-Hernández, L.A. Morales-Rosales, & H. Hadj-
Kacem (2017). Survey on Fault Tolerance Approaches based on checkpointing mecha-
nisms . Journal of Software, 12(7), 2017.

• M. Vargas-Santiago, L.A. Morales-Rosales, S.E. Pomares-Hernández, & K. Drira
(2017). Autonomic Web services based on Asynchronous checkpointing. IEEE Access,
vol. PP, no. 99, pp. 1-1. doi: 10.1109/ACCESS.2017.2756867

International Conferences

• Abdennadher, I., Bouassida Rodriguez, I., Jmaiel, M., Santiago, M. V., & HernÃ¡n-
dez, S. P. (2015, November). Towards a Decision Approach for Autonomic Systems
Adaptation. In Proceedings of the 13th ACM International Symposium on Mobility
Management and Wireless Access (pp. 77-80). ACM.

• M. Vargas-Santiago, S.E. Pomares-Hernández, L.A. Morales-Rosales, & H. Hadj-
Kacem (2017). Towards Dependable Web Services in Collaborative Environments Based
on Fuzzy Non-functional Dependencies. In 2017 International Conference in Software
Engineering Research and Innovation(CONISOFT).

101

National Conference

• M. Vargas-Santiago, Hernandez, S. E. P., Drira, K., Dominguez, E. L., & Clark, R.
H. Message Ordering Framework for Collaborative Web Services-Based Environments.
Encuentro Nacional de Ciencias de la Computación (ENC 2014)

7.2 Future work

For future work we can consider the following ideas:

• Packet loss. We consider reliable communication channels and the development of
our mechanism was based on speci�c system model considerations. We support fault
tolerance upon failures of the system, we do not implement techniques for supporting
packet loss. It is necessary to develop or implement methods for the detection and the
recovery of lost messages (for example forward error correction, however this is a totally
di�erent problem or issue). Nevertheless, the packet loss tolerance was not part of the
objectives of this dissertation. In the future we can take this as consideration.

• Smart cities. We could implement an Autonomic Service Bus for interconnecting all
type of smart devices, like: cameras, tra�c control devices, cellphones, vehicles and any
other component that supports and need to share information.

Acknowledgment. This Thesis was supported by the National Council of Science and
Technology of Mexico (CONACyT) through CVU under Grant 417439.

102

103

Acronyms

AC Autonomic Computing
ACS Autonomic Computing System
ASB Autonomic Service Bus
BPEL Business Process Execution Language
BPM Business Process Management
B2B Business To Business
CiC Communication induced Checkpoint
CGS Consistent Global Snapshot
CCP Checkpoint and Communication Pattern
CP Checkpointing Protocol
CWS Composite Web Service
DCFI Delayed Checkpointing Fully Informed
EAI Enterprise Application Integration
ESB Enterprise Service Bus
FCS Fuzzy Consistency System
FCSE Fuzzy Consistency System Evaluation
FI Fully Informed
FINE Fully Informed aNd E�cient
FIS Fuzzy Inference System
HBR Happened Before Relationship
IDR Immediate Dependency Relationship
JNDI Java Naming and Directory Interface
MAPE Monitoring Analyzing Planning Executing
MOF Message Ordering Framework
P2P Point-to-Point
QoS Quality of Service
REST REpresentational State Transfer
RT Response Time
SLA Service Level Agreement
SOA Service Oriented Architecture
SOC Service Oriented Computing
SOAP Simple Object Access Protocol
TCWS Transactional Composite Web Service
TPS Transactions Per Second
UDDI Universal Description Discovery Integration
WS Web Service
WSCI Web Service Choreography Interface
WSDL Web Service Description Language
WS-RM Web Service Reliable Messaging
XML eXtensible Markup Language

Notation

∅ Empty set
∪ Union
\ Di�erence
∃ Exists
∀ For all
pi, pj Processes
WSi Web service monitored information
BPELi Business Process Execution Language
Sx Set of symptoms associated to a Web service
D Set of diagnostics associated to a Web service
P Set of plans associated to a Web service
PG Recovery plan for the Web service composition
→ Happened-Before Relation (HBR)
↓ Immediate Dependency Relation (IDR)
← Assignation operator
C(pi)[i] Is a local checkpoint
S Set of snapshots
m Is the quadruplet m = (k, tk,message,Hm)
k Is the local process identi�er
tk Is the value of the local clock
message Is the structure that carries the data
Hm Is the immediate history of m.
V T (pi)[i] Is a vector clock
CI Is a set of entries cik,tk = (k, tk) that represents control information
CIi Is a set of entries cik,tk = (k, tk) of a speci�c process.

104

Bibliography

[AAY11] Mohamed Almulla, Kawthar Almatori, and Hamdi Yahyaoui. A qos-based
fuzzy model for ranking real world web services. In Web Services (ICWS),
2011 IEEE International Conference on, pages 203�210. IEEE, 2011.

[ACR13] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Dynamic recovery
decision during composite web services execution. In Proceedings of the Fifth
International Conference on Management of Emergent Digital EcoSystems,
pages 187�194. ACM, 2013.

[AH11] Issam Al Hadid. Airport enterprise service bus with self-healing architecture
(aesb-sh). International Journal of Aviation Technology, Engineering and
Management (IJATEM), 1(1):1�13, 2011.

[ALR+01] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental
concepts of dependability. University of Newcastle upon Tyne, Computing
Science, 2001.

[AM15a] Vani Vathsala Atluri and Hrushikesha Mohanty. Time and cost aware check-
pointing of choreographed web services. In Distributed Computing and In-
ternet Technology, pages 207�219. Springer, 2015.

[AM15b] Vani Vathsala Atluri and Hrushikesha Mohanty. Web service response time
prediction using hmm and bayesian network. In Intelligent Computing, Com-
munication and Devices, pages 327�335. Springer, 2015.

[AMH10] Ahmed Al-Moayed and Bernhard Hollunder. Quality of service attributes
in web services. In Software Engineering Advances (ICSEA), 2010 Fifth
International Conference on, pages 367�372. IEEE, 2010.

[AP11] Sanjay P Ahuja and Amit Patel. Enterprise service bus: A performance
evaluation. Communications and Network, 3(3):133�140, 2011.

[ARC15] Rafael Angarita, Marta Rukoz, and Yudith Cardinale. Modeling dynamic
recovery strategy for composite web services execution. World Wide Web,
pages 1�21, 2015.

[ARM15] Rafael Angarita, Marta Rukoz, and Maude Manouvrier. Dynamic com-
posite web service execution by providing fault-tolerance and qos monitor-

105

106

ing. In Service-Oriented Computing-ICSOC 2014 Workshops, pages 371�377.
Springer, 2015.

[BHH10] Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. Testing web services:
A survey. Department of Computer Science, King�s College London, Tech.
Rep. TR-10-01, 2010.

[BJPK+05] Alberto Bartoli, Ricardo Jiménez-Peris, Bettina Kemme, Cesare Pautasso,
Simon Patarin, Stuart Wheater, and Simon Woodman. Adapt: towards
autonomic web services. Distributed Systems Online, 2005.

[C+06] Autonomic Computing et al. An architectural blueprint for autonomic com-
puting. IBM White Paper, 31, 2006.

[CBS+09] K.S.May Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and Sam
Guinea. A fault taxonomy for web service composition. In Elisabetta
Di Nitto and Matei Ripeanu, editors, Service-Oriented Computing - ICSOC
2007 Workshops, volume 4907 of Lecture Notes in Computer Science, pages
363�375. Springer Berlin Heidelberg, 2009.

[CDK+02] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the web services web: an
introduction to soap, wsdl, and uddi. IEEE Internet computing, 6(2):86�93,
2002.

[CGK+03] Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, S Weer-
awarana, et al. Business process execution language for web services, version
1.1. 2003.

[Cha04] D. Chappell. Enterprise service bus. O'Reilly Media, Inc., 2004.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173�186, 1999.

[CRA13] Yudith Cardinale, Marta Rukoz, and Rafael Angarita. Modeling snapshot of
composite ws execution by colored petri nets. In Resource Discovery, pages
23�44. Springer, 2013.

[CSPHPC13] Alberto Calixto-Simon, Saúl E. Pomares-Hernandez, and Jose R. Perez-Cruz.
A delayed checkpoint approach for communication-induced checkpointing in
autonomic computing. In 2013 Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, pages 56�61, June 2013.

[Dio15] Code Diop. An autonomic service bus for service-based distributed systems.
PhD thesis, Toulouse, INSA, 2015.

[DJ07] Schahram Dustdar and Lukasz Juszczyk. Dynamic replication and synchro-
nization of web services for high availability in mobile ad-hoc networks. Ser-
vice Oriented Computing and Applications, 1(1):19�33, 2007.

107

[DMM+02] Vijay Dialani, Simon Miles, Luc Moreau, David De Roure, and Michael Luck.
Transparent fault tolerance for web services based architectures. In Euro-Par
2002 Parallel Processing, pages 889�898. Springer, 2002.

[DTTV09] Douglas B Davis, Yih-shin Tan, Brad B Topol, and Vivekanand Vellanki.
Checkpointing and restarting long running web services, July 14 2009. US
Patent 7,562,254.

[FF12] John Footen and Joey Faust. The service-oriented media enterprise: SOA,
BPM, and web services in professional media systems. CRC Press, 2012.

[Fid91] Colin Fidge. Logical time in distributed computing systems. Computer,
24(8):28�33, 1991.

[FLLL07] Chen-Liang Fang, Deron Liang, Fengyi Lin, and Chien-Cheng Lin. Fault
tolerant web services. Journal of Systems Architecture, 53(1):21 � 38, 2007.

[GG11] D Ganesh Gopal. A novel approach for e�cient resource utilization and
trustworthy web service. International Journal of Computer Science and
Security (IJCSS), 5(2):168, 2011.

[GJGT10] Ínigo Goiri, Ferran Julia, Jordi Guitart, and Jordi Torres. Checkpoint-based
fault-tolerant infrastructure for virtualized service providers. In Network
Operations and Management Symposium (NOMS), 2010 IEEE, pages 455�
462. IEEE, 2010.

[GUR11] Le Gao, Susan D Urban, and Janani Ramachandran. A survey of transac-
tional issues for web service composition and recovery. International Journal
of Web and Grid Services, 7(4):331�356, 2011.

[GVAGM10] Charles Gouin-Vallerand, Bessam Abdulrazak, Sylvain Giroux, and Mounir
Mokhtari. A software self-organizing middleware for smart spaces based on
fuzzy logic. In High Performance Computing and Communications (HPCC),
2010 12th IEEE International Conference on, pages 138�145. IEEE, 2010.

[GVB17] Islene C. Garcia, Gustavo M. D. Vieira, and Luiz Eduardo Buzato. A
rollback in the history of communication-induced checkpointing. CoRR,
abs/1702.06167, 2017.

[GZ05] S. Gurguis and A. Zeid. Towards autonomic web services: Achieving self-
healing using web services. ACM SIGSOFT Software Engineering Notes,
30(4):1�5, 2005.

[HBBK07] Judith Hurwitz, Robin Bloor, Carol Baroudi, and Marcia Kaufman. Service
oriented architecture for dummies. John Wiley & Sons, 2007.

[HCR12] SE Pomares Hernandez, JR Perez Cruz, and M Raynal. From the happened-
before relation to the causal ordered set abstraction. Journal of Parallel and
Distributed Computing, 72(6):791�795, 2012.

108

[HDFD02] S Pomares Hernandez, Khalil Drira, Jean Fanchon, and Michel Diaz. An
e�cient multi-channel distributed coordination protocol for collaborative en-
gineering activities. In 2002 IEEE International Conference on Systems Man
and Cybernetics (SMC�02), Hammamet (Tunisie), pages 6�9, 2002.

[Her15] Saúl Eduardo Pomares Hernández. The minimal dependency relation for
causal event ordering in distributed computing. Applied Mathematics & In-
formation Sciences, 9(1):pp�57, 2015.

[HFD04a] Saul Pomares Hernandez, Jean Fanchon, and Khalil Drira. The immediate
dependency relation: an optimal way to ensure causal group communica-
tion. In ANNUAL REVIEW OF SCALABLE COMPUTING, EDITIONS
WORLD SCIENTIFIC, SERIES ON SCALABLE COMPUTING, pages 61�
79, 2004.

[HFD04b] SE Pomares Hernandez, Jean Fanchon, and Khalil Drira. The immediate
dependency relation: an optimal way to ensure causal group communication.
Annual Review of Scalable Computing, 3:61�79, 2004.

[HGDJ08] Riadh Ben Halima, Mohammed Karim Guennoun, Khalil Drira, and Mo-
hamed Jmaiel. Providing predictive self-healing for web services: a qos mon-
itoring and analysis-based approach. Journal of Information Assurance and
Security, 3(3):175�184, 2008.

[HM08] Markus C Huebscher and Julie A McCann. A survey of autonomic comput-
ing�degrees, models, and applications. ACM Computing Surveys (CSUR),
40(3):7, 2008.

[HMNR00] J-M Hélary, Achour Mostefaoui, Robert HB Netzer, and Michel Raynal.
Communication-based prevention of useless checkpoints in distributed com-
putations. Distributed Computing, 13(1):29�43, 2000.

[IP14] Anne Immonen and Daniel Pakkala. A survey of methods and approaches
for reliable dynamic service compositions. Service Oriented Computing and
Applications, 8(2):129�158, 2014.

[JF17] Bentolhoda Jafary and Lance Fiondella. Optimal checkpointing of fault tol-
erant systems subject to correlated failure. In Reliability and Maintainability
Symposium (RAMS), 2017 Annual, pages 1�6. IEEE, 2017.

[JGH09] Meiko Jensen, Nils Gruschka, and Ralph Herkenhöner. A survey of attacks on
web services. Computer Science - Research and Development, 24(4):185�197,
2009.

[KC03] Je�rey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41�50, 2003.

[KDVSD+13] Roberto Koh-Dzul, Mariano Vargas-Santiago, Code Diop, Ernesto Exposito,
and Francisco Moo-Mena. A smart diagnostic model for an autonomic service
bus based on a probabilistic reasoning approach. In Ubiquitous Intelligence

109

and Computing, 2013 IEEE 10th International Conference on and 10th In-
ternational Conference on Autonomic and Trusted Computing (UIC/ATC),
pages 416�421. IEEE, 2013.

[KDVSD+14] Roberto Koh-Dzul, Mariano Vargas-Santiago, Codé Diop, Ernesto Exposito,
Francisco Moo-Mena, and Jorge Gómez-Montalvo. Improving esb capabilities
through diagnosis based on bayesian networks and machine learning. Journal
of Software, 9(8), 2014.

[KGI13] Ajay Kattepur, Nikolaos Georgantas, and Valerie Issarny. Qos composition
and analysis in recon�gurable web services choreographies. In Web Services
(ICWS), 2013 IEEE 20th International Conference on, pages 235�242. IEEE,
2013.

[KGM11] Mohamed-Hedi Karray, Chirine Ghedira, and Zakaria Maamar. Towards a
self-healing approach to sustain web services reliability. In Advanced Infor-
mation Networking and Applications (WAINA), 2011 IEEE Workshops of
International Conference on, pages 267�272. IEEE, 2011.

[KHKS09] Amina Khalid, Mouna Abdul Haye, Malik Jahan Khan, and Shafay Shamail.
Survey of frameworks, architectures and techniques in autonomic computing.
In Autonomic and Autonomous Systems, 2009. ICAS'09. Fifth International
Conference on, pages 220�225. IEEE, 2009.

[KKM11] Aarti Karande, Milind Karande, and BB Meshram. Choreography and or-
chestration using business process execution language for soa with web ser-
vices. International Journal of Computer Science Issues IJCSI, 11:224�232,
2011.

[KS08] Ajay D Kshemkalyani and Mukesh Singhal. Distributed computing: princi-
ples, algorithms, and systems. Cambridge University Press, 2008.

[KSS15] Raj Kumar, R Sureshkumar, and B Saravanabalaji. Description logic pro-
gram and fuzzy logic based web service selection. International Journal of
Applied Engineering Research, 10(9):6662�6667, 2015.

[KT87] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for dis-
tributed systems. IEEE Transactions on Software Engineering, (1):23�31,
1987.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558�565, 1978.

[LDB16] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. Web service
composition: a survey of techniques and tools. ACM Computing Surveys
(CSUR), 48(3):33, 2016.

[LM08a] Yi Luo and D Manivannan. Fine: A fully informed and e�cient
communication-induced checkpointing protocol. In Systems, 2008. ICONS
08. Third International Conference on, pages 16�22. IEEE, 2008.

110

[LM08b] Yi Luo and D Manivannan. Theoretical and experimental evaluation of
communication-induced checkpointing protocols in f e family. In Perfor-
mance, Computing and Communications Conference, 2008. IPCCC 2008.
IEEE International, pages 217�224. IEEE, 2008.

[LM09] Yi Luo and D Manivannan. Fine: A fully informed and e�cient
communication-induced checkpointing protocol for distributed systems.
Journal of Parallel and Distributed Computing, 69(2):153�167, 2009.

[LM11] Yi Luo and D Manivannan. Theoretical and experimental evaluation of
communication-induced checkpointing protocols in and families. Perfor-
mance Evaluation, 68(5):429�445, 2011.

[LML+11] Jonathan Lee, Shang-Pin Ma, Shin-Jie Lee, Chia-Ling Wu, and Chiung-
Hon Leon Lee. Towards a high-availability-driven service composition frame-
work. Service Life Cycle Tools and Technologies: Methods, Trends and Ad-
vances, pages 221�243, 2011.

[MA75] Ebrahim H Mamdani and Sedrak Assilian. An experiment in linguistic syn-
thesis with a fuzzy logic controller. International journal of man-machine
studies, 7(1):1�13, 1975.

[Man03] Ann Thomas Manes. Web Services: A Manager's Guide. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[MBMS10] A. Moody, G. Bronevetsky, K. Mohror, and B.R. De Supinski. Design, mod-
eling, and evaluation of a scalable multi-level checkpointing system. In High
Performance Computing, Networking, Storage and Analysis (SC), 2010 In-
ternational Conference for, pages 1�11. IEEE, 2010.

[MD11] Houwayda Elfawal Mansour and Tharam Dillon. Dependability and rollback
recovery for composite web services. Services Computing, IEEE Transactions
on, 4(4):328�339, 2011.

[Men07] Falko Menge. Enterprise service bus. In Free and open source software con-
ference, volume 2, pages 1�6, 2007.

[MJ13] Soumaya Marzouk and Mohamed Jmaiel. A policy-based approach for strong
mobility of composed web services. Service Oriented Computing and Appli-
cations, 7(4):293�315, 2013.

[MMBJ09] S. Marzouk, A. Maalej, I. Bouassida, and M. Jmaiel. Periodic checkpointing
for strong mobility of orchestrated web services. In Services-I, 2009 World
Conference on, pages 203�210. IEEE, 2009.

[MMJ10] S. Marzouk, A. Maalej, and M. Jmaiel. Aspect-oriented checkpointing ap-
proach of composed web services. In Florian Daniel and FedericoMichele
Facca, editors, Current Trends in Web Engineering, volume 6385 of Lecture
Notes in Computer Science, pages 301�312. Springer Berlin Heidelberg, 2010.

111

[MMSZ07] Louise E Moser, P Michael Melliar-Smith, and Wenbing Zhao. Building
dependable and secure web services. Journal of Software, 2(1):14�26, 2007.

[MSSD06] A. Moga, J. Soos, I. Salomie, and M. Dinsoreanu. Adding self-healing be-
haviour to dynamic web service composition. In Proceedings of the 5th
WSEAS International Conference on Data Networks, Communication and
Computers, Bucharest, Romania, pages 206�211, 2006.

[MVM14] B. Murugananthan, K. Vivekanandan, and D. Mondal. Rollback recovery
approach for complex composite web services to enhance reliability of service.
Interantional Journal of Engineering Research and Technology, 3(2):2289�
2292, 2014.

[NX95] R. Netzer and J. Xu. Necessary and su�cient conditions for consistent global
snapshots. IEEE Transactions on Parallel and distributed Systems, 6(2):165�
169, 1995.

[OC09] Luis Oliva and Luigi Ceccaroni. Rest web services in collaborative work
environments. In CCIA, pages 419�427, 2009.

[OFD06] Michael J Oudshoorn, M Muztaba Fuad, and Debzani Deb. Towards auto-
nomic computing: Injecting self-organizing and self-healing properties into
java programs. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND AP-
PLICATIONS, 147:384, 2006.

[Pas05] James Pasley. How bpel and soa are changing web services development.
IEEE Internet Computing, 9(3):60�67, 2005.

[Pel03] Chris Peltz. Web services orchestration and choreography. Computer,
36(10):46�52, 2003.

[Pet16] Charles J Petrie. Web service composition. Springer, 2016.

[Ray92] Michel Raynal. About logical clocks for distributed systems, 1992.

[RCA12] Marta Rukoz, Yudith Cardinale, and Rafael Angarita. Faceta*: Checkpoint-
ing for transactional composite web service execution based on petri-nets.
Procedia Computer Science, 10:874 � 879, 2012. ANT 2012 and MobiWIS
2012.

[RFG12] Mohsen Rouached, Walid Fdhila, and Claude Godart. Web services compo-
sitions modelling and choreographies analysis. Web Service Composition and
New Frameworks in Designing Semantics: Innovations: Innovations, page 1,
2012.

[RH08] AM Riad and QF Hassan. Service-oriented architecture�a new alternative to
traditional integration methods in b2b applications. Journal of Convergence
Information Technology, 3(1):41, 2008.

[RS96] Michel Raynal and Mukesh Singhal. Logical time: Capturing causality in
distributed systems. Computer, 29(2):49�56, 1996.

112

[SHC+13] Alberto Calixto Simon, Saul E Pomares Hernandez, Jose Roberto Perez Cruz,
Pilar Gomez-Gil, and Khalil Drira. A scalable communication-induced check-
pointing algorithm for distributed systems. IEICE TRANSACTIONS on
Information and Systems, 96(4):886�896, 2013.

[SHC+16] Alberto Calixto Simón, Saul E Pomares Hernandez, Jose Roberto Perez Cruz,
Riadh Ben Halima, and Hatem Hadj Kacem. Self-healing in autonomic dis-
tributed systems based on delayed communication-induced checkpointing.
International Journal of Autonomous and Adaptive Communications Sys-
tems, 9(3-4):183�200, 2016.

[SHRK16] Mariano Vargas Santiago, Saul Eduardo Pomares Hernandez, Luis Al-
berto Morales Rosales, and Hatem Hadj Kacem. Fault tolerance approach
based on checkpointing towards dependable business processes. IEEE Latin
America Transactions, 14(3):1408�1415, 2016.

[�LL10] Ioana �ora, Gabriel Laz r, and Silviu Lung. Mapping a fuzzy logic ap-
proach for qos-aware service selection on current web service standards. In
Computational Cybernetics and Technical Informatics (ICCC-CONTI), 2010
International Joint Conference on, pages 553�558. IEEE, 2010.

[SP13] Gupta Shuchi and Bhanodia Praveen. A fault tolerant mechanism for com-
position of web services using subset replacement. Architecture, 1:2, 2013.

[SQV+14] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia Szabo,
Scott Bourne, and Xiaofei Xu. Web services composition: A decade�s
overview. Information Sciences, 280:218�238, 2014.

[SS17] Daniel Siewiorek and Robert Swarz. Reliable Computer Systems: Design and
Evaluatuion. Digital Press, 2017.

[TS85] Tomohiro Takagi and Michio Sugeno. Fuzzy identi�cation of systems and its
applications to modeling and control. IEEE transactions on systems, man,
and cybernetics, (1):116�132, 1985.

[Tsa05] Jichiang Tsai. An e�cient index-based checkpointing protocol with constant-
size control information on messages. IEEE Transactions on Dependable and
Secure Computing, 2(4):287�296, 2005.

[Tsa07] Jichiang Tsai. Applying the fully-informed checkpoiniting protocol to the
lazy indexing strategy. Journal of information science and engineering,
23(5):1611�1621, 2007.

[TT08] Vuong Xuan Tran and Hidekazu Tsuji. Qos based ranking for web ser-
vices: Fuzzy approaches. In Next Generation Web Services Practices, 2008.
NWESP'08. 4th International Conference on, pages 77�82. Ieee, 2008.

[TTMR03] S. Tai, Stefan Tai, Thomas A. Mikalsen, and Isabelle Rouvellou. Using
message-oriented middleware for reliable web services messaging. In ISSN
0302-9743, pages 89�104, 2003.

113

[TVS07] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: princi-
ples and paradigms. Prentice-Hall, 2007.

[TZZ+05] Wenhu Tian, Farhana Zulkernine, Jared Zebedee, Wendy Powley, and Pat
Martin. Architecture for an autonomic web services environment. In Web
Services and Model-Driven Enterprise Information Services, Proceedings of
the Joint Workshop on Web Services and Model-Driven Enterprise Informa-
tion Services, WSMDEIS 2005, In conjunction with ICEIS 2005, Miami,
USA, pages 32�44. Citeseer, 2005.

[UT06] Ken Ueno and Michiaki Tatsubori. Early capacity testing of an enterprise
service bus. In Web Services, 2006. ICWS'06. International Conference on,
pages 709�716. IEEE, 2006.

[Vat11] A Vani Vathsala. Optimal call based checkpointing for orchestrated web
services. International Journal of Computer Applications, 36(8), 2011.

[Vat12] A Vani Vathsala. Global checkpointing of orchestrated web services. In
Recent Advances in Information Technology (RAIT), 2012 1st International
Conference on, pages 461�467. IEEE, 2012.

[VB05] Gustavo MD Vieira and Luiz E Buzato. Chksim: A distributed checkpointing
simulator. Technical Report IC-05-034, 2005.

[VG10] Angel Jesus Varela Vaca and Rafael Martínez Gasca. Opbus: Fault toler-
ance against integrity attacks in business processes. In Álvaro Herrero, Emilio
Corchado, Carlos Redondo, and Ángel Alonso, editors, Computational Intel-
ligence in Security for Information Systems 2010, volume 85 of Advances in
Intelligent and Soft Computing, pages 213�222. Springer Berlin Heidelberg,
2010.

[VGBH11] Angel Vaca, Rafael M. Gasca, Diana Borrego, and Sergio Pozo Hidalgo.
Fault tolerance framework using model-based diagnosis: towards dependable
business processes. International Journal on Advances in Security, 4(1 and
2):11�22, 2011.

[VM12] A Vani Vathsala and Hrushikesha Mohanty. Using hmm for predicting re-
sponse time of web services. In Proceedings of the CUBE International In-
formation Technology Conference, pages 520�525. ACM, 2012.

[VM14a] A. Vani Vathsala and Hrushikesha Mohanty. Interaction patterns based
checkpointing of choreographed web services. In Proceedings of the 6th Inter-
national Workshop on Principles of Engineering Service-Oriented and Cloud
Systems, PESOS 2014, pages 28�37, New York, NY, USA, 2014. ACM.

[VM14b] A. Vani Vathsala and Hrushikesha Mohanty. A survey on checkpointing web
services. In Proceedings of the 6th International Workshop on Principles of
Engineering Service-Oriented and Cloud Systems, PESOS 2014, pages 11�17,
New York, NY, USA, 2014. ACM.

114

[VSMRPHD18] Mariano Vargas-Santiago, Luis Morales-Rosales, Saúl Pomares-Hernández,
and Khalil Drira. Autonomic web services enhanced by asynchronous check-
pointing. IEEE Access, 6:5538�5547, 2018.

[VSPHRHK17] Mariano Vargas-Santiago, Saúl Pomares-Hernandez, Luis A. Morales Ros-
ales, and Hatem Hadj-Kacem. Survey on web services fault tolerance ap-
proaches based on checkpointing mechanisms. Journal of Software, 12(7),
2017.

[WFB+04] Wenjun Wu, Geo�rey C Fox, Hasan Bulut, Ahmet Uyar, and Harun Altay.
Design and implementation of a collaboration web-services system. 2004.

[YCD+09] Jianwei Yin, HHanwei Chen, Shuiguang Deng, Zhaohui Wu, and Calton Pu.
A dependable esb framework for service integration. Internet Computing,
IEEE, 13(2):26�34, 2009.

[Zha07a] Wenbing Zhao. Bft-ws: A byzantine fault tolerance framework for web ser-
vices. In EDOC Conference Workshop, 2007. EDOC'07. Eleventh Interna-
tional IEEE, pages 89�96. IEEE, 2007.

[Zha07b] Wenbing Zhao. A lightweight fault tolerance framework for web services.
In Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence, pages 542�548. IEEE Computer Society, 2007.

[Zha09] Wenbing Zhao. Design and implementation of a byzantine fault tolerance
framework for web services. Journal of Systems and Software, 82(6):1004�
1015, 2009.

[ZJ03] Liang-Jie Zhang and Mario Jeckle. The next big thing: Web services collab-
oration. In Web Services-ICWS-Europe 2003, pages 1�10. Springer, 2003.

[ZL10] Zibin Zheng and Michael R Lyu. An adaptive qos-aware fault tolerance
strategy for web services. Empirical Software Engineering, 15(4):323�345,
2010.

[ZL12] Zibin Zheng and Michael R Lyu. Optimal fault tolerance strategy selection for
web services. InWeb Service Composition and New Frameworks in Designing
Semantics: Innovations, pages 218�237. IGI Global, 2012.

[ZL13] Zibin Zheng and Michael R Lyu. Qos-aware fault tolerance for web services.
In QoS management of Web services, pages 97�118. Springer, 2013.

[ZL15] Zibin Zheng and Michael R Lyu. Selecting an optimal fault tolerance strategy
for reliable service-oriented systems with local and global constraints. IEEE
Transactions on Computers, 64(1):219�232, 2015.

115

Online References

[Cha13] Chanaka, F. (2013, December 09). Building an In-Order, Guaranteed Delivery Mes-
saging System for Your Enterprise with WSO2 Products. Retrieved March 28, 2016, from
goo.gl/pf8hac, Guaranteed Delivery Messasing System

[Ora14] Oracle R©. (2014, February 12). Fusion Middleware Programming JMS for Oracle
WebLogic Server. Retrieved March 28, 2016, from https://docs.oracle.com/cd/E24329_

01/web.1211/e24387/toc.htm, Oracle WebLogic Server

[Sch11] Schumacher, D. (2011, July 15). In-Order Message Delivery. Retrieved March
28, 2016, from http://www.dalnefre.com/wp/2011/07/in-order-message-delivery/, In-
Order Message Delivery

goo.gl/pf8hac
https://wso2.com/library/articles/2013/12/building-an-in-order-guaranteed-delivery-messaging-system-for-your-enterprise-with-wso2-products/
https://docs.oracle.com/cd/E24329_01/web.1211/e24387/toc.htm
https://docs.oracle.com/cd/E24329_01/web.1211/e24387/toc.htm
https://docs.oracle.com/cd/E24329_01/web.1211/e24387/toc.htm
http://www.dalnefre.com/wp/2011/07/in-order-message-delivery/
http://www.dalnefre.com/wp/2011/07/in-order-message-delivery/
http://www.dalnefre.com/wp/2011/07/in-order-message-delivery/

APPENDIX A

A.1 Definitions

Throughout this thesis we have mentioned concepts like reliability, domino-e�ect and depend-
ability. Here we present, as possible, their formal de�nitions.

Reliability: The IEEE (1990) de�ned it as: �The ability of a system or component to perform
its required functions under stated conditions for a speci�c period of time".

Domino-e�ect: The phenomenon of cascaded rollback is called the domino e�ect. Just to
clarify, consider the situation where the sender of a message m rolls back to a state that
precedes the sending of m. The receiver of m must also roll back to a state that precedes m's
receipt; otherwise, the states of the two processes would be inconsistent because they would
show that message m was received without being sent, which is impossible in any correct
failure-free execution.

Dependability: the classical de�nition of dependability encompasses the attributes of reli-
ability, availability, safety, integrity and maintainability. Avizienis et al. [ALR+01] gave two
de�nitions for dependability:

• �The ability to deliver service that can be justi�ably trusted."

• �The ability to avoid service failures that are more frequent and more severe than is
acceptable"

A.2 Fuzzy Rules

In this appendix we show the fuzzy rules used for diagnostic purposes, as presented in Chapter
6. Shown in Table 1 and Table 2 for illustration.

116

Definitions 117

Table 1: Inference Rules

1. If (RT is VG) and (CPU is CPU_L) and (MEM is MEM_L) then (QoS is QoS_VH)
2. If (RT is VG) and (CPU is CPU_L) and (MEM is MEM_M) then (QoS is QoS_H)
3. If (RT is VG) and (CPU is CPU_L) and (MEM is MEM_H) then (QoS is QoS_H)
4. If (RT is VG) and (CPU is CPU_L) and (MEM is MEM_VH) then (QoS is QoS_A)
5. If (RT is VG) and (CPU is CPU_M) and (MEM is MEM_L) then (QoS is QoS_VH)
6. If (RT is VG) and (CPU is CPU_M) and (MEM is MEM_M) then (QoS is QoS_H)
7. If (RT is VG) and (CPU is CPU_M) and (MEM is MEM_H) then (QoS is QoS_A)
8. If (RT is VG) and (CPU is CPU_M) and (MEM is MEM_VH) then (QoS is QoS_L)
9. If (RT is VG) and (CPU is CPU_H) and (MEM is MEM_L) then (QoS is QoS_A)
10. If (RT is VG) and (CPU is CPU_H) and (MEM is MEM_M) then (QoS is QoS_A)
11. If (RT is VG) and (CPU is CPU_H) and (MEM is MEM_H) then (QoS is QoS_L)
12. If (RT is VG) and (CPU is CPU_H) and (MEM is MEM_VH) then (QoS is QoS_L)
13. If (RT is VG) and (CPU is CPU_VH) and (MEM is MEM_L) then (QoS is QoS_A)
14. If (RT is VG) and (CPU is CPU_VH) and (MEM is MEM_M) then (QoS is QoS_A)
15. If (RT is VG) and (CPU is CPU_VH) and (MEM is MEM_H) then (QoS is QoS_L)
16. If (RT is VG) and (CPU is CPU_VH) and (MEM is MEM_VH) then (QoS is QoS_L)
17. If (RT is G) and (CPU is CPU_L) and (MEM is MEM_L) then (QoS is QoS_H)
18. If (RT is G) and (CPU is CPU_L) and (MEM is MEM_M) then (QoS is QoS_H)
19. If (RT is G) and (CPU is CPU_L) and (MEM is MEM_H) then (QoS is QoS_A)
20. If (RT is G) and (CPU is CPU_L) and (MEM is MEM_VH) then (QoS is QoS_L)
21. If (RT is G) and (CPU is CPU_M) and (MEM is MEM_L) then (QoS is QoS_H)
22. If (RT is G) and (CPU is CPU_M) and (MEM is MEM_M) then (QoS is QoS_A)
23. If (RT is G) and (CPU is CPU_M) and (MEM is MEM_H) then (QoS is QoS_L)
24. If (RT is G) and (CPU is CPU_M) and (MEM is MEM_VH) then (QoS is QoS_L)
25. If (RT is G) and (CPU is CPU_H) and (MEM is MEM_L) then (QoS is QoS_A)
26. If (RT is G) and (CPU is CPU_H) and (MEM is MEM_M) then (QoS is QoS_A)
27. If (RT is G) and (CPU is CPU_H) and (MEM is MEM_H) then (QoS is QoS_L)
28. If (RT is G) and (CPU is CPU_H) and (MEM is MEM_VH) then (QoS is QoS_L)
29. If (RT is G) and (CPU is CPU_VG) and (MEM is MEM_L) then (QoS is QoS_A)
30. If (RT is G) and (CPU is CPU_VH) and (MEM is MEM_M) then (QoS is QoS_A)
31. If (RT is G) and (CPU is CPU_VH) and (MEM is MEM_H) then (QoS is QoS_L)
32. If (RT is G) and (CPU is CPU_VH) and (MEM is MEM_VH) then (QoS is QoS_L)
33. If (RT is A) and (CPU is CPU_L) and (MEM is MEM_L) then (QoS is QoS_A)
34. If (RT is A) and (CPU is CPU_L) and (MEM is MEM_M) then (QoS is QoS_A)
35. If (RT is A) and (CPU is CPU_L) and (MEM is MEM_H) then (QoS is QoS_L)
36. If (RT is A) and (CPU is CPU_L) and (MEM is MEM_VH) then (QoS is QoS_L)
37. If (RT is A) and (CPU is CPU_M) and (MEM is MEM_L) then (QoS is QoS_A)
38. If (RT is A) and (CPU is CPU_M) and (MEM is MEM_M) then (QoS is QoS_A)
39. If (RT is A) and (CPU is CPU_M) and (MEM is MEM_H) then (QoS is QoS_L)
40. If (RT is A) and (CPU is CPU_M) and (MEM is MEM_VH) then (QoS is QoS_L)
41. If (RT is A) and (CPU is CPU_H) and (MEM is MEM_L) then (QoS is QoS_A)
42. If (RT is A) and (CPU is CPU_H) and (MEM is MEM_M) then (QoS is QoS_A)
43. If (RT is A) and (CPU is CPU_H) and (MEM is MEM_H) then (QoS is QoS_L)
44. If (RT is A) and (CPU is CPU_H) and (MEM is MEM_VH) then (QoS is QoS_L)
45. If (RT is A) and (CPU is CPU_VH) and (MEM is MEM_L) then (QoS is QoS_A)
46. If (RT is A) and (CPU is CPU_VH) and (MEM is MEM_M) then (QoS is QoS_L)
47. If (RT is A) and (CPU is CPU_VH) and (MEM is MEM_H) then (QoS is QoS_L)
48. If (RT is A) and (CPU is CPU_VH) and (MEM is MEM_VH) then (QoS is QoS_VL)
49. If (RT is B) and (CPU is CPU_L) and (MEM is MEM_L) then (QoS is QoS_A)

Definitions 118

Table 2: Inference Rules

50. If (RT is B) and (CPU is CPU_L) and (MEM is MEM_M) then (QoS is QoS_A)
51. If (RT is B) and (CPU is CPU_L) and (MEM is MEM_H) then (QoS is QoS_L)
52. If (RT is B) and (CPU is CPU_L) and (MEM is MEM_VH) then (QoS is QoS_L)
53. If (RT is B) and (CPU is CPU_M) and (MEM is MEM_L) then (QoS is QoS_A)
54. If (RT is B) and (CPU is CPU_M) and (MEM is MEM_M) then (QoS is QoS_A)
55. If (RT is B) and (CPU is CPU_M) and (MEM is MEM_H) then (QoS is QoS_L)
56. If (RT is B) and (CPU is CPU_M) and (MEM is MEM_VH) then (QoS is QoS_L)
57. If (RT is B) and (CPU is CPU_H) and (MEM is MEM_L) then (QoS is QoS_A)
58. If (RT is B) and (CPU is CPU_H) and (MEM is MEM_M) then (QoS is QoS_A)
59. If (RT is B) and (CPU is CPU_H) and (MEM is MEM_H) then (QoS is QoS_L)
60. If (RT is B) and (CPU is CPU_H) and (MEM is MEM_VH) then (QoS is QoS_L)
61. If (RT is B) and (CPU is CPU_VH) and (MEM is MEM_L) then (QoS is QoS_A)
62. If (RT is B) and (CPU is CPU_VH) and (MEM is MEM_M) then (QoS is QoS_A)
63. If (RT is B) and (CPU is CPU_VH) and (MEM is MEM_H) then (QoS is QoS_L)
64. If (RT is B) and (CPU is CPU_VH) and (MEM is MEM_VH) then (QoS is QoS_VL)
65. If (RT is VB) and (CPU is CPU_L) and (MEM is MEM_L) then (QoS is QoS_A)
66. If (RT is VB) and (CPU is CPU_L) and (MEM is MEM_M) then (QoS is QoS_A)
67. If (RT is VB) and (CPU is CPU_L) and (MEM is MEM_H) then (QoS is QoS_L)
68. If (RT is VB) and (CPU is CPU_L) and (MEM is MEM_VH) then (QoS is QoS_L)
69. If (RT is VB) and (CPU is CPU_M) and (MEM is MEM_L) then (QoS is QoS_A)
70. If (RT is VB) and (CPU is CPU_M) and (MEM is MEM_M) then (QoS is QoS_A)
71. If (RT is VB) and (CPU is CPU_M) and (MEM is MEM_H) then (QoS is QoS_L)
72. If (RT is VB) and (CPU is CPU_M) and (MEM is MEM_VH) then (QoS is QoS_L)
73. If (RT is VB) and (CPU is CPU_H) and (MEM is MEM_L) then (QoS is QoS_A)
74. If (RT is VB) and (CPU is CPU_H) and (MEM is MEM_M) then (QoS is QoS_A)
75. If (RT is VB) and (CPU is CPU_H) and (MEM is MEM_H) then (QoS is QoS_L)
76. If (RT is VB) and (CPU is CPU_H) and (MEM is MEM_VH) then (QoS is QoS_VL)
77. If (RT is VB) and (CPU is CPU_VH) and (MEM is MEM_L) then (QoS is QoS_A)
78. If (RT is VB) and (CPU is CPU_VH) and (MEM is MEM_M) then (QoS is QoS_L)
79. If (RT is VB) and (CPU is CPU_VH) and (MEM is MEM_H) then (QoS is QoS_VL)
80. If (RT is VB) and (CPU is CPU_VH) and (MEM is MEM_VH) then (QoS is QoS_VL)

	Agradecimientos
	Abstract
	Resumen
	Introduction
	Motivation
	Problem description
	Partial ordering algorithms for ESBs
	Characteristics of checkpointing mechanisms and autonomic computing for ESBs systems
	Merging autonomic computing and checkpointing mechanisms

	Proposed solution
	Dissertation hypothesis and objectives
	Main objective
	Specific objectives

	Document organization

	Background and definitions
	Software paradigms
	Autonomic computing
	Service-Oriented Architecture (SOA)
	Enterprise Service Bus (ESB)
	Basic functionalities of an ESB

	Distributed computing
	Communication patterns
	Happened-Before Relationship (HBR)
	Immediate Dependency Relation (IDR)
	Checkpoint and Communication Pattern (CCP)
	Checkpointing mechanisms

	Fuzzy logic
	Fuzzy logic
	Fuzzy Inference System (FIS)

	Related work
	Fundamentals and Web service faults analysis
	Web services characteristics
	Web services composition models
	Web services composition recovery modes and fault types
	Checkpointing mechanisms and their applicability to Web services compositions

	Fault tolerance techniques for Web services composition
	Fault tolerance techniques for orchestration
	Fault tolerance techniques for choreography

	Discussion and open challenges
	Order of messages for Web services based environments
	Fuzzy logic for Web services
	Conclusions of the review of fault tolerance for Web services

	Fault Tolerance for Web Services Composition
	Message Ordering Framework (MOF)
	Message Ordering Framework for collaborative Web service-based environments
	MOF's architecture
	Protocol primitives
	Mechanism specification for IDR algorithm
	Experimental results
	Conclusion of the Message Ordering Framework (MOF)

	Fault tolerance for Web services
	Fault tolerance layer based on asynchronous checkpointing
	Mechanism specification for building CGSs
	Conclusion of the fault tolerance layer approach

	Autonomic computing and asynchronous checkpointing
	Autonomic Web services based on asynchronous checkpointing mechanism
	Architecture
	Performance measurements
	MAPE cycle
	Mechanism specification for autonomic Web services composition
	Algorithm

	Results and discussion
	Experimental results

	Conclusions of the autonomic computing and asynchronous checkpointing

	Dynamic Quasi-Asynchronous Checkpointing for Distributed and Collaborative Environments
	Fuzzy approach towards dependable business processes
	Diagnostic model based on fuzzy non-functional dependencies
	Experimental results
	Discussion of the fuzzy diagnosis model
	Conclusion of the fuzzy diagnostic model

	Dynamic checkpointing
	Dynamic checkpointing for CiC algorithms based on fuzzy non-functional dependencies
	Using fuzzy logic for dynamically checkpointing processes
	FCSE checkpointing window
	Performance evaluation
	Conclusion of the dynamic checkpointing approach

	Conclusion and Future Work
	Achievements
	Dissertation-derived articles

	Future work

	Acronyms
	Notation
	Appendix A (Definitions and Fuzzy Rules)

