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Resumen

Las ecuaciones que describen el comportamiento de un circuito electrónicos son no lin-

eales debido a circuitos con elementos no lineales, y el análisis en CD es el primer paso

que se sigue para el análisis de un circuito no lineal y encontrar la solución o soluciones

del sistema de ecuaciones. Los métodos basados en el algoritmo de Newton Raphson pre-

sentan desventajas para resolver problemas no lineales, además no son capaces de hallar

múltiples puntos de operación. Para mejorar los problemas anteriones los métodos de

homotoṕıa pueden hallar múltiples soluciones para un sistema de ecuaciones; sin embargo

la convergencia de los métodos de homotoṕıa dependen del punto de inicio, de los métodos

de trazado y de no-linealidades caracteŕısticas del sistema a resolver. La formulación de

la homotoṕıa requiere de técnicas adecuadas para el trazado de la curva; el algoritmo

de trazado usado en este trabajo es el método hiperesférico el cual fue elegido porque es

geométricamente claro lo cual facilita su programación. El método hiperesférico traza las

trayectorias usando esferas de radio fijo donde cada esfera cruza a la curva al menos en dos

puntos. No obstante al implementar en programación el método hiperesférico presenta al-

gunos problemas como lo es la reversión de la curva y la lentitud en el trazado de la misma.

En esta tesis se proponen dos metodoloǵıas para resolver problemas como la reversión y ag-

ilizar el trazado de la curva usando menos iteraciones. La primera metodoloǵıa propuesta

se basa en el cálculo del vector normal a la curva para detectar el problema de reversión

además de una metodoloǵıa para evitar la reversión. La segunda metodoloǵıa logra reducir

el número de iteraciones y el tiempo de cómputo durante el proceso de trazado de la curva.

Ambas estrategias son implementadas y programadas para el método de hiperesferas, y

son aplicadas para hallar la solución de diferentes casos de estudio obteniendo resultados

satisfactorios durante el trazado de la curva.
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Abstract

The equations describing the behavior of a electronic circuit are nonlinear due to nonlinear

elements and the DC analysis is the first step for analyzing a nonlinear circuit and also to

find the solution, or solutions, of the system of equations. Methods like Newton Raphson

algorithm present disadvantages to solve nonlinear problems besides are not capable to

find multiple solutions. To overcome above problems the homotopy methods can locate

multiple solutions for a system of equations; however homotopy methods convergence

depends of the starting point, the continuous methods and nonlinearities. The homotopy

formulation require suitable path tracking techniques to accurately trace the homotopy

curve, the algorithm to path-tracking used in this work is the spherical algorithm because

it is geometrically clear and this characteristic can facilitate its programming. However

during programming hyperspheres method there were some problems as reversion of the

path on the curve and slow for tracing. In this thesis, two proposed methodologies are used

to solve the above problems, the first proposed methodology is based in calculating the

normal vector to the curve for detecting the problem of reversion then the methodology

is used to avoid the problem of reversion. The second methodology is achieved during the

tracing of the homotopy curve to reduce the number of iterations and the computational

time. Both strategies are implemented and programmed for the hyperspheres method;

also several case studies are solved, and we found satisfactory results for the path tracking

problem.
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Chapter 1

Introduction

Finding the DC operating points is a essential task in electrical circuit simulation that in-

volves solving systems of non-linear algebraic equations (NAES). The NAES describe the

behavior of semiconductor devices employing nonlinear elements [10]. Traditional simula-

tion methods for solving nonlinear equations frequently exhibit difficulties of convergence.

This problem is tackled in the circuital simulators by using Newton-Rapshon (NR) method

and modified or damped NR [10, 11].

1.1 DC Analysis

The technologies are moved closer to their limits of performance where nonlinear effects

will assume greater importance. An important objective in the analysis of an electronic

circuit is to find its quiescent or DC operating point. Furthermore, the impact of the

computers on circuit analysis and circuit design as well as the advent of new electronic

devices and integrated circuits have generated much interest in nonlinear circuit theory

[5].

Such an analysis is necessary to establish the correct DC-bias conditions of the circuit

as required by the intended application. For example, the DC operating point is used

as the starting point for transient analysis (circuit response in the time domain). Circuit

design algorithms also need the dc operating point of the circuit. In this case, the operating

point is required to evaluate the DC performance of the current design under a given set

of constraints on the circuit components. In Most practical electronic circuits a constant

steady state resulting from D.C excitations is the most commonly used simulation mode.

If system performance is based on variations of the instantaneous signal variations then

there is a reference signal impressed by the energy source. In mode analysis of small signal

operation, signals vary slightly in the vicinity of the bias. Therefore if small incremental
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Chapter 1. Introduction

signal are presented, the behavior of nonlinear circuit depends not only on its topology

and the character of branches but also on the bias impressed. The design process for

analog integrated circuits always start the D.C analysis and verification of D.C signals.

1.2 Analysis of Nonlinear Circuits

Nonlinear circuits differ from linear circuits in that they may have no solution, an infi-

nite number of solutions, a unique solution or several solutions. All electronic circuits

are nonlinear, the defining relationships between the circuit variables (usually voltages

and currents) are nonlinear [9]. During the analysis of electronic circuits some electronic

elements are approximately linear in a relatively large operating region. Nonlinearities

are undesired in many applications such as filters and electronic amplifiers, while in other

applications as modulation, demodulation, coding and decoding the nonlinear effects are

essential for the suitable application. A very important class of non-linear applications is

transistor circuit for building logic circuits used in digital computers, unlike for the linear

circuits, there is no analytical method to solve nonlinear circuits. The nonlinearities stem

from nonlinear device models, which can contain polynomial or exponential terms, and

may not be smooth. Circuit simulators developed in the 1970 are characterized by us-

ing techniques for Newton-Raphson (NR) or one of its variants for iteration and implicit

integration of nonlinear differential equations and the use of transistor models. Design

engineers particularly in analog circuit design spend much time using the simulator to

find an operating point. In some cases, the difficulty of obtaining an operating point sig-

nals that something is wrong with the circuit and indicates that a redesign is needed. In

others cases the difficulty is simply an artifact of the simulators algorithm used to find and

operating point. For such a case the designers time spent finding a operating point has

contributed nothing to the design process [7]. Circuits that contain nonlinear elements

may have multiple discrete DC operating points. On the other hand circuits consisting

of positive linear resistor posses either one DC operating point, or, in special cases, a

continuous family of DC operating points. The interest in nonlinear circuit theory can be

attributed to two factors: the impact of the computers on circuit analysis and design, and

the advent of new devices and integrated circuits. In the analysis of nonlinear networks,

the first step is often the determination of the equilibrium points or operating points. This

problem amount to solving the nonlinear algebraic equation f(x, u) = 0 from the given

set of state equations ẋ = f(x, u) describing the network (where x is output, u is input

and ẋ is state variable), which is equivalent to finding solutions of the nonlinear resistive

network model obtained by shorting out all inductors and opening all capacitors in the
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1.2. Analysis of Nonlinear Circuits

original network.

1.2.1 Analog circuit containing diodes and transistors

The evaluation of the DC quiescent operating points of an analog electrical circuits have

three main purposes:

1. The verification of the correct DC values in the circuit.

2. The computation of the initial conditions for the nonlinear transient analysis.

3. The evaluation of the proper parameter values of the linearized, small-signal models

for the nonlinear devices, which are needed for linear AC analysis.

Commonly the Newton Raphson method is applied with some of its modifications for

DC analysis. Starting from a initial guess of the solution, we obtain iteratively improved

estimates of the actual solution until some convergence criterion is satisfied. Circuits con-

taining nonlinear elements may have multiple discrete DC operating points. Such circuits

consist of exponential diodes, Ebers-Moll modeled bipolar transistors and insulated-gate

field-effect transistors (FETs). A diode will be modeled by exponential function. Whereas

that a bipolar NPN transistor will be represented by Ebers-Moll model (See Figure 1.1 ).

BI

cIEI

RRIα FF Iα

FI
RI

E
E

B
B

C
C

Figure 1.1: Ebers-Moll model of a NPN transistor

This model consists of two exponential diodes, and two current transactors whose

currents are controlled by diode currents. After selecting a suitable mathematical model

for the electrical element then the equations describing the behavior of the circuit are

obtained; a circuits operating points are solutions of a system of nonlinear equations of

the form [6]:

F (x) = 0. (1.1)

where F represents the nonlinear expressions and x is the system variables.
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Chapter 1. Introduction

1.2.2 Number of DC operating points

Nonlinear circuits consisting of an arbitrary number of linear resistors and diodes posses

at most one DC operating point. Several fundamental result relate the topology of a

transistor circuit to the number of possible DC operating points. In general, any circuit

that does not posses a unique DC operating. One circuit that contains more than two

transistors may posses numerous operating points. Several methods has been proposed to

obtain upper bounds on the number of DC operating points of transistor circuits.

1.2.3 Iterative method for analysis of nonlinear circuits

The most significant feature of nonlinear analysis is the use of iterative methods. DC

analysis belongs to nonlinear resistive networks containing diodes and transistors. For a

transistor circuit, the DC analysis is realized by treating capacitors as open circuits an

inductors as short circuit. For time domain analysis is based on the choice of discrete

time instants tn, for n = 1, 2, 3....; where the input exitation may be an arbitrary function

of time. For solving the non-linear circuit equations the methods most used are iterative

methods particularly NR into DC analysis. The following essential advantages of the NR

method have to be emphasized:

� a good (quadratic) local convergence in the solution vicinity,

� reliability when implemented with a step-limiting mechanism in cases of circuits

including typical, monotonic and regular nonlinear characteristics when iterations

start from points not too far from the solution,

� simplicity in practical implementation [8].

These methods are robust and quadratically convergent when a good starting point,

enough close to a solution is supplied. Nonetheless the NR methods sometimes fail because

of the difficulty of finding a point sufficiently close to an unknown solution.

Specifically by users of SPICE by the .nodeset statement is sufficiently close to

the actual solution. Unfortunately the user either by not know the solution or may not

propose an approximate start point to the solution [2, 3]. Difficulties with convergence

may be especially hard if the simulator utilizes more complex nonlinear models, which

present a better approximation of real devices [9]. The most important nonlinear circuit

is the transistor, which can be modeled with high accuracy. In the above, the methods of

analysis have assumed the existence of a unique solution, the most circuit simulator are

based on previous assumption.

6



1.2. Analysis of Nonlinear Circuits

1.2.4 Mathematical representation of electronic devices

One of the first requirements for performing nonlinear circuit analysis is to define unam-

biguously an adequate set of modeling circuit primitives witch allows the transistor circuit

to be analyzed by computer programs.

A nonlinear circuit to be modeled for computer-aided analysis can be described in

different ways:

1. As analytical expression, is given as a unique mathematical function that depends

on one or more circuit variables.

2. As a table of numerical data, relating circuit variable for discrete values of the

independent variables.

3. As a piecewise-linear model witch approximates the actual element characteristics

by linear segment in different operating regions [9, 12].

It is well known that nonlinear circuits consisting of an arbitrary number of linear

resistor and diodes possess at most one DC operating point. Several fundamental results

relate the topology of a transistor circuit to the number of possible DC operating point.

Many transistor circuits are known to possess a unique DC operating point due to their

topology alone. Any circuit that does not posses a feedback structure possesses a unique

operating point. A circuit that contains more than two transistor may possess numerous

operating points. Most methods of analysis nonlinear circuits are based on the assumption

that there exist a unique solution of the circuit problem. Some switching circuits, such

as flip-flops and schmitt triggers, are know to possess two stable states. Then the circuit

analysis problem must be therefore allow more than one solution.

Parameter embedding methods, also known as continuation methods or homotopy

methods are robust and accurate numerical techniques employed to solve nonlinear al-

gebraic equations. They are used to find multiple solutions of equations that possess

multiple solutions. The main disadvantage of homotopy methods is their implementation

complexity and computational intensity.

Computational difficulties to establish the DC operating point of transistor circuits

are exacerbated by the exponential nature of the diode-type nonlinearities that model

semiconductor devices. Since the traditional methods for solving nonlinear equations

describing transistor circuits often exhibited convergence difficulties application of more

sophisticated mathematical techniques and tools such as parameter embedding methods,

continuation, and homotopy methods.

7



Chapter 1. Introduction

1.3 Computer algorithms

When a problem is solved through the use of a digital computer, an algorithm must be

developed, due to the complexity of the models that describe the behavior of modern

electronic circuits and heuristic approximation techniques that use as intermediate evalu-

ation steps to arrive at an acceptable solution is needed. The use of a digital computer is

subject to certain physical limitations, computer can perform a limited number of oper-

ations arithmetic operations (addition, subtraction, multiplication and division on finite,

rational numbers). Hence, other mathematical operations, such as differentiation and

integration, must be reduced to above elementary operations. Numerical analysis offer

numerical methods suitable for solving real-world problems by using the computer where

the main advantage a numerical approach is that, if a solution exist, we can find a numer-

ical procedure for the solution; although in a numerical approximation numerical errors

may occur, these errors modified the accuracy of the solution and many of the presented

numerical problems are closely related to nonlinear problems. Iterative methods form a

potent class of numerical methods for solving physical problems, particularity when non-

linearities are involved. An iterative method is based on the precess generates a sequence

of new approximations which hopefully converge to the correct solution, at each step of

approximation is called iteration, when the iterations lead to closeness to the solution we

say that the method converges for iterative methods are used to solve non-linear problems

that have the form (1.1)

Iterative methods is a class of numerical methods for solving nonlinear problems. An

iterative method generates a sequence successive approximations, using an initial point of

the solution is necessary to continue a sequence of new approximations which converge to

a correct solution where approximation step is called an iteration and when the successive

iterations are close to the correct solution, then the method converges [9].

1.4 Continuation or homotopy methods

The disadvantage of Newton′s method for solving sets of nonlinear equations is that its

convergence is only local and may require a very good initial guess of the solution. Ho-

motopy methods have been proposed as an alternative for obtaining global convergence in

hard problems where Newton′s method fails. Homotopy method is based to replace the

nonlinear problem by an easy problem which is trivial to solve. Next the easy problem

is deformed continuously into the original one, and during this deformation the path fol-

lowed by the solution is traced numerically. To finding a circuits DC operating points a

8



1.4. Continuation or homotopy methods

method used is the method of homotopy or continuation. This method entails embedding

a continuation parameter λ into a set of nonlinear equations H(x, λ). Numerical contin-

uation method are techniques for numerically approximating a solution curve, which is

implicitly defined by an undetermined system of equations. In the literature of numerical

analysis, the terms numerical continuation and path following are used interchangeably.

The solution curve is characterized by initial point, the initial value problems to trace the

solution curve, a numerical method is used. However, in general this is not an efficient

approach, since it ignores the contractive properties which the curve has in view of the fact

that it satisfies the homotopy equation. Instead a typical path following method consist

of a succession of two different steps:

� Predictor step: An approximate step along the curve, usually in the general direc-

tion of the tangent of the curve. The initial value problem provides motivation for

generating predictor steps in the spirit of the technology of numerical solution of

initial value problems.

� Corrector steps: One or more iterative steps which ai to bring the predicted point

back to the curve by iterative procedure (typically of Newton of gradient type) for

solving Homotopy curve [1].

The classical embedding methods assume that the solution path is parametrized with

respect to an explicit parameter which is identified with the last variable in Homotopy

curve. The equation is presented in the form

H(x, λ) = 0 (1.2)

In general, homotopies used in continuation methods can be divided into two main cat-

egories, Natural Parameter homotopies and Artificial Parameter homotopies. There are

different homotopy functions, basically all need a starting point, the homotopy method

introduce an extra variable and modify original system of equation and to obtain a new

system of equations. Geometrically the solutions of the augmented system can be inter-

preted as show Figure 1.2; where solutions S1, S2 and S3 are located at intersections of

the curve with the hyperplane λ = 1.

In the continuation method, an extra variable xn+1 in addition to system of n nonlinear

equations in n variables x = (x1, x2, . . . , xn) and modify a number of equations as:

F (x, λ) = 0, (1.3)

9
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x2

x1

λ

x0

x2

1

3

2

x0

Figure 1.2: Path tracking of a homotopy curve

is obtained a new system of n equations with n+1 variables, when λ = 0 the trivial solution

is found and when λ = 1 the continuation method allows all solutions lying on the solution

curve to be found. The solution curves associated with many practical problems, turn so

rapidly that existing algorithms either fail to converge, or become exceedingly slow. The

homotopic curve can be described by a parametric equation, where the curve to be the

arc-length starting from x0 initial point. The equation (1.4) is added to the system of

equations for solving method based on NR can be used

(ds)2 = (dx1)
2 + (dx2)

2 + . . .+ (dxn)
2 (1.4)

1.5 Motivation

In homotopy methods the computational efficiency depends on the homotopy function

as well as the curve-tracing algorithm and the initial solution algorithm [4]. For tracing

the curve solution the algorithm must be simple to understand and easy to program,

10



1.5. Motivation

the spherical algorithm the requirements and enables adjustments. In this algorithm the

sphere enclosed a part of the solution curve and always intersects the solution curve at least

two times then the corrector equation always has at lest two solutions. Spherical algorithm

is based on the predictor-corrector steps, where path tracking must be robust, in order

to ensure the calibration curve for each iteration. Nonetheless numerical problems can

occur such as reversion problem which traces curve to a reverse direction, causing repeated

solutions also canceling the characteristics of the formulation homotopic path as well as the

tracking error, CPU time and a large number of iterations. Above reasons require research

to improve a method of tracing that has characteristics of a simple implementation such

as the spherical method.
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Chapter 1. Introduction

1.6 Objective of the thesis

This research work is focused on to modify the algorithm for spherical predictor corrector

steps in order to avoid the reversion problem. The idea is based on the calculation of the

angle formed between the normal vector to the surface of the sphere and the variables

forming the plane. Additionally, it is proposed that the step size is variable using the

radius of curvature and the hyperbolic tangent function, that allows the curve to go more

slowly in the nonlinear part of the curve and runs more quickly when the curve exhibits

less non-linearities.

This work is organized as follow. In Chapter 2 are presented different formulations of

homotopy that exist in the literature as well as the traditional method of hyperspheres. To

the following Chapter modification occurs that make the path of the curve is efficient with

respect to the path of the curve and improve iteration number and CPU time; the above

using modifications to the problem of reversion and reducing the number of iterations

and the computational time. Further Chapter 4 contains different case studies that show

the usability of the improve spherical method; the proposed method is applied to solve

problems with 2,3,4,14 and 18 variables to ensure that the modification to the hypersphere

method is crrect, and also to show the improvement over the traditional hypersphere

method. Finally, in Chapter 5 the conclusions and future work are presented.

12



1.7. Summary

1.7 Summary

Find the operating point for a circuit is the first step in the analysis of DC for Non-linear

circuits. Nonetheless the the task of solve Non-linear equations is still not solved, so the

objective of the doctoral thesis is the proposed Improved spherical continuation algorithm

to trace the homotopy path-tracking.
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Chapter 2

Homotopy methods and path

tracking

Computation of one or more DC operating point of a nonlinear circuit, such as a very

large scale integration (VLSI) circuit, is one of the most important and difficult task in

an electrical circuit simulator. Most circuit simulators find DC operating points using the

NR method, however because of convergence issues the Homotopic continuation methods

(HCM) are used an alternative. Homotopic continuation methods (HCM) are proposed

as alternative

2.1 Formulation a system of equations

Conventionally, one analyzes a circuit to find its node voltages using Kirchhoffs Current

Law (KCL). A node voltage is calculated with respect to a common reference point.

Sometimes a branch current is also required; a branch current is the current flowing

between two nodes in the circuit. Before continuing, it is important to define KCL and

KVL. KCL states, ”The sum of currents flowing into and out of a node is zero and

KVL states, The sum of branch voltages around a closed loop in any circuit is zero”.

We formulate equations to represent each branch current and apply KCL to sum the

currents at each node. Thus, is obtain simultaneous linear equations which must be

solved, as a matrixvector equation, to find the node voltages. The matrix is often called

the nodal admittance matrix, which contains the transconductances (partial derivatives

of each devices characteristic equations with respect to the circuit variables, i.e., the

Jacobian) of nonlinear devices as well as the conductances of linear devices e.g., resistors.

The solution vector contains node voltages and possibly branch currents, and the right-

hand side (RHS) vector contains the circuit excitations in the form of current sources.
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Chapter 2. Homotopy methods and path tracking

The admittance matrix is normally constructed using element stamps, which are briefly

discussed below. Later we will see how evolutionary methods have advantages over this

traditional technique. Element stamps are small component-specific tables containing

matrix and excitation data. The table indicates the component values to insert in the nodal

admittance matrix and in the RHS vector. For example, consider a linear conductance Glj

between two nodes l and j, with nodes voltages vl and vj . It is similarly possible to define

stamps for nonlinear elements, and such stamps form an efficient method for updating the

admittance matrix and RHS vector.

2.2 A basic Newton-Raphson method

The Newton procedure considered above will be illustrated graphically as shown in Figure

2.1. In the SPICE-like simulators, the Newton Raphson method is commonly used for

solving non-linear equations. This method is based on the following iterative equation:

xj+1 = xj − [J(xj)]−1f(xj) (2.1)

where xj+1 is the vector of unknowns variables for current iteration, while xj are values of

the unknown variables in the previous iteration [15]. The following essential advantages

x

f(x)

x2 x1 x0

(x2, y2)

(x1, y1)

(x0, y0)

Figure 2.1: Geometric interpretation of the Newton Raphson method

of the NR method have to be emphasized:
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2.2. A basic Newton-Raphson method

� a good local convergence in the solution vicinity, it is if the initial guess is sufficiently

close to a correct solution then the Newton-Raphson algorithm will always converge

to solution,

� reliability when implemented with a step-limiting mechanism in cases of circuit in-

cluding typical, monotonic and regular non-linear characteristics when iterations star

from points not too far from the solution in a robust implementation of the method,

� simplicity in practical implementation, however the algorithm calculates Jacobian

matrix and for the n-dimensional version of the NR the computational work is in-

creases.

Nonetheless although promising advantages occur successfully some weakness must be

exposed as disadvantages of the method:

� need for explicit formulae for derivatives,

� weak convergence when starting from a bad approximation to a solution,

� weak convergence in the cases of nonlinearities of rapidly changing slopes, negative

slopes, hysteretic ranges, discontinuities of derivatives [17].

2.2.1 Dependent techniques of Newton Raphson method

To help DC convergence experienced designers of analog circuits use several techniques

that still depend of NR methods for solving non-linear circuit equations [20].

1. Source-stepping algorithm a ramping function is used for the sources and the circuit

simulator provides a series of operating points until the response to the original set

of driving voltages is obtained.

2. Temperature-sweeping procedure, the temperature is swept starting from a accurate

value and a DC operating point of the circuit is found. Then the temperature is

increased and the new operating point is calculated. The process is repeated until

de DC operating point at the desired temperature is found.

3. Gmin- stepping this process consists of small conductances placed at each node of the

circuit and ground. The initial value of the conductance is chosen as large as possible

to ensure the convergence of NR method. The added conductances contribute to the

diagonal element of the circuits jacobian matrix and can force it to become row or

column sum dominant. When operating point of the circuit is found, it is used to set
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Chapter 2. Homotopy methods and path tracking

initial node voltage for the next step. The auxiliary conductances are decreased until

a default minimum value is achieved. The constant Gmin stops zeros from occurring

on the diagonal, which in turn prevents the matrix from becoming singular. This

procedure is equivalent to a large resistance (small conductance) being connected

between every node in the circuit and ground.

Some method has been proposed a damping algorithm to aid the convergence of NR;

the damping factor α is initialized to a small number where the increments of α should

be quite large for the first few iterations but should then decrease gradually. Hence, this

technique stops sudden large changes that occur between successive approximate solutions,

particularly over the first few iterations. All these techniques rely on the Newton-Raphson

method or its variant for solving non-linear circuit equations. They use the idea of the

continuation method where a parameter is varied over a range of values until the desired

operating point is found. These techniques do not all work for every problem. Hence,

commercial simulators employ a number of these techniques and will switch as necessary

between them if convergence problems arise. The homotopy approach involves formed

a simplified version of the circuit whose operating point is needed, finding an operating

point of this easier circuit, then ”sweeping” some quantity to generate a trajectory of

solutions. The terminus of the sweep is the operating point of the original circuit. Once

the operating points problem has been formulated as the solution of a system of non-

linear equations, the idea of sweeping can be made mathematically precise, and numerical

algorithms have been developed to follow the solution trajectories [14]. The continuation

methods also called homotopy methods are robust and accurate numerical techniques

employed to solve non-linear algebraic equations. They are used to find multiple solutions

[16, 13, 25, 27, 26, 14, 8, 9, 21]. Basically homotopy function is formulated from the

equations describing the behavior of the system and an additional parameter, obtaining

increased the system equations. This system of equations has two solutions when trivial or

known lambda equal to zero and the other the original solution of the system. There exist

many methods for constructing an augmented equation with the preceding properties.

Since the augmented systems has one more unknown than there are equations, there exist

in general a continuum of points, geometrically the solutions of the augmented system can

be interpreted as collection of space curves [7].
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2.3. Homotopy method

2.3 Homotopy method

The continuation methods are used to find all zeros of a non-linear functions

F (x) = 0 (2.2)

The homotopy or continuation method, in general this method involve embedding the

continuation parameter λ into a set of non-linear equation H(x, λ). The continuation

approach to finding zeros using a function

H(x, λ) (2.3)

where H : Rn+1 −→ Rn and x ∈ Rn and λ ∈ [0, 1], such that H(x, 0) ≡ F (x) while

H(x, 1) ≡ G(x) is a function with known zeros, the zero set

Γ(H) = (x, λ) : H(x, λ) = 0 (2.4)

is a union of curves and these curves can be individually traced from the known solution

set

Γ1(H) = x : H(x, 1) = 0 (2.5)

to find all solutions Γ0 of F (x). The functionH(x, λ) is called a homotopy, and a homotopy

path is a path (x(t), λ(t)) for t ∈ [0, 1] on which H(x, λ) = 0. One method to find all

the zeros is to choose a homotopy H(x, λ) such that each zero of F (x) is on a separate

connected component of the zero set of H(x, λ), and separate homotopy paths are followed

to fiend each zero of F (x). Using homotopy the zeros of F (x) can be located by tracing a

curve completely [12]. The solution is found by following a numeric integration procedure,

where λ is used as the integration parameter that varies from an initial value λ0 to a value

λ∗ where a solution x∗, to the original system is found.

2.4 Homotopic formulations

Several homotopy function can be constructed from nodal analysis formulated from Kirch-

hoff laws.

21



Chapter 2. Homotopy methods and path tracking

2.4.1 The Fixed-point homotopy

The formulation of fixed point homotpy is expressed as

H(x, λ) = (1− λ)G(x− a) + λF (x) (2.6)

where, λ is a continuation parameter, a is a random vector and the new parameter G ∈

Rn×Rn is embedded. This homotopy has a circuital interpretation in where F (x) are nodal

equation describing a transistor circuit, equation (2.6) represents an augmented circuit. A

branch consisting of a conductance λ
1−λ

G connected in series to a grounded voltage source

ak is connected to each node for every nodal equation. At λ = 0, the starting point of the

homotopy path, the adder branches include and voltage source, forcing the nodal voltages

to be equal to the elements ak. Then λ increases and added conductances are present in

the circuit. When λ = 1 the added branches are disconnected from the circuit and the

augmented circuit becomes identical to the original circuit.

2.4.2 The variable gain homotopy

The variable stimulus homotopy is based on the equation

H(x, λ) = (1− λ)G(x− a) + F (x, λα) (2.7)

where α is a vector consisting of transistor forward and reverse current gain. These current

gains are multiplied by λ. Setting λ = 0 forces all transistor current gains to zero at the

beginning at the continuation process. This solution point correspond to the dc operating

point of a circuit consisting of resistors and diodes only. Such a circuit always possesses

a unique dc operating point, and its dc equations can be solved easily. For example, an

efficient way to find the starting point of the homotopy path is to employ the variable-

stimulus homotopy to solve the non-linear circuit consisting of resistors and diodes only.

Then the variable-gain homotopy is used to find the dc operating points of the original

circuit, through small and carefully selected changes of λ, the circuit is slowly deformed

and the coupling of the transistors p-n junctions is introduced. For each instance of λ,

the circuit equations are solved is found. The original circuit and its dc operating point is

obtained when λ = 1, this combination of variable-stimulus and variable-gain homotopies

has been named the hybrid homotopy [19].
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2.5. Convergence of homotopy methods

2.4.3 The Newton homotopy

The Newton homotopy has similar properties to the Newton Raphson method and it is

formulation:

H(x, λ) = F (x)− (1− λ)F (x0), (2.8)

where F (x) are node equations for the circuit and F (x0) are node equations for the circuit

evaluated at the initial guess. The Newton homotopy has similar properties to the Newton

Raphson method, meaning that every homotopy path in regular domain crosses at the

same solution point [21].

2.4.4 The Double Bounded Homotopy

The Double Bounded Homotopy (DBH) was proposed by [22] as a homotopy that exhibits

closed paths with the following formulation.

H(f(x), λ) = C(λ− a)(λ− b) + exp(λ−a)(λ−b) ln(DF 2(x) + 1) (2.9)

where F (x) is the original equation system, λ is the continuation parameter, C and D are

arbitrary positive constants. This homotopy formulation contain two solution line a and

b; when both lines are applied to the homotopy, as a result the trajectory is forced to cross

the double solution lines. The Figure shows a closed path with symmetrical branches and

two solution lines.

2.5 Convergence of homotopy methods

Choosing a good initial point for the homotopy method is fundamental to guarantee con-

vergence of the homotopy methods. In circuit terms a good initial point may be a solution

of a linear circuit. The election of the initial point has influence on the length of the path

and the number of iterations to trace the solution curve. Tracing solution curves is a basic

problem that is widely encountered in science and engineering. For example, to obtain the

driving-point characteristics and transfer characteristics of non-linear resistive circuits, it

is necessary to solve and equation of the form (2.10), where xn−1 denotes either the driving
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Figure 2.2: DBH Homotopy

point voltage or current [10].

F1(x1, x2, · · · , xn, xn+1) = 0,

F2(x1, x2, · · · , xn, xn+1) = 0,

F3(x1, x2, · · · , xn, xn+1) = 0,
...

Fn(x1, x2, · · · , xn, xn+1) = 0,

(2.10)

Then applying the homotopy method to (2.10) the following system of equations is ob-

tained by

H1(F1(x), λ) = 0,

H2(F2(x), λ) = 0,
...

Hn(Fn(x), λ) = 0,

(2.11)

where (2.11) contain n number of equations and n+ 1 are number of unknown variables.

This causes the system can not be solved using conventional algebraic methods. The
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2.6. Path tracking homotopy

predictor-corrector algorithm is based on two steps

� Predictor steps. An approximate step along the curve, usually in the general direc-

tion of the tangent of the curve. The initial value problem provides motivation for

generating predictor steps in the spirit of the technology of numerical solution of

initial value problems.

� Corrector steps. One or more iterative steps which aim to bring the predicted point

back to the curve by iterative procedure (typically of Newton or gradient type) for

solving (2.11).

2.6 Path tracking homotopy

Homotopy methods require suitable path tracking to accurately trace the homotopy curves;

otherwise the homotopy simulation can miss solutions or not find any solution at all.

Nonetheless the implementation of standard path-tracking techniques is a difficult task

[4, 5, 2, 3, 24, 1]. The path tracking based on the predictor-corrector algorithm, its can

approximate the curve using tangents lines while in the corrector step an extra equation is

needed in the system (2.11). Where the equation is formed by the differentiation of H(x, t)

with respect to arclength along the solution path. The Figure 2.3 shows the predictor point

for (xj, λj) calculated from the equation,

(x̄j+1,λ̄j+1) = (xj , λj) + h ∗ t (2.12)

where h is step length and t is a normalized tangent vector to the homotopy trajectory.

After finding the predictor point is necessary to return to the homotopy trajectory by us-

ing a corrector step (xj+1, λj+1). To path tracking the homotopy curve a starting point is

(x̄j+1, λ̄j+1)

(xj+1, λj+1)

C
o
r
r
ecto

r

λ

x

(xj , λj) Predic
tor

Figure 2.3: Predictor-corrector scheme
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proposed X0, then the predictor-corrector scheme is applied to find a solution implement-

ing zero strategy, now repeat the process taking as starting point the solution found in

previous iteration. The dc driving-point and transfer characteristics of nonlinear circuits

are the multivalued curves that arise from the nature of the circuit. These curves cannot

be analyzed by general-purpose circuit simulators. One known method for analyzing these

kinds of characteristic curves is the backward differentiation formula (BDF) curve-tracing

algorithm proposed by [6]. In this method, the circuit equations f(x) = 0, where the in-

put voltage is assumed to be a variable, are analyzed by the predictor-corrector algorithm

where the arc-length of the solution curve in n + 1 dimensional space is the parameter.

However, it is not clear that this method is practical for large-scale circuits. The method

of hyperspheres uses the predictor-corrector scheme for implementation, where the spheres

are used for plotting the curve of homotopy [11, 23].

2.7 Hyperspherical algorithm for tracing curves

Mentioned previously algorithm for tracing solution curves that uses hyperspheres. Each

sphere encloses the curve and has at least 2 intersections (the corrector equation has at

least 2 solutions). Where (c1, c2, · · · , cn+1) are points on the solution curve and are also

the centers for spheres. The intersections of the sphere and the solution curve are solutions

of the following system of n + 1 equations:

F1(x1, x2, · · · , xn, xn+1) = 0,

F2(x1, x2, · · · , xn, xn+1) = 0,

F3(x1, x2, · · · , xn, xn+1) = 0,
...

Fn(x1, x2, · · · , xn, xn+1) = 0,

(x1 − c1)
2 + (x2 − c2)

2 + · · ·+ (xn+1 − cn+1)
2 = r2

(2.13)

Curve is traced solving the system of nonlinear equations of the form (2.13). In each

iteration the solution that has just been obtained is used that the center of the new sphere.

During the corrector step, the radius of the sphere is shortened if Newtons method does

not converge. Corrector equation has at least two solutions one of witch is situated in

the forward direction and another of witch situated in the backward direction. Using

sufficiently small spheres, Newton method will converge to the rightful solution on the

corrector step. Where rightful solution is situated in the forward direction (Forward

Solution FS) . If the solution is located in the backward direction (Backward Solution BS)
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then the reversion of the curve tracing appears and is called ”reversion phenomenon” (see

2.5). If the radius of the new sphere is the same as the previous one, the reversion solution

can be detected because the reversion solution is the same as the previously obtained

solution. Predictor step can be considered as a step of the Euler method for solving the

differential equation that describes the homotopy trajectory. Predictor step is based on

tangent predictions, secant predictor, interpolation predictor, Taylor polynomial predictor

and corrector step is based in NR method.

2.8 Find zero strategy

When the curve is tracked past λ = 1, the algorithm enters an ”end game” [18], phase to

compute the solution in the hyperplane λ = 1. The algorithm start from two points very

near to λ = 1 ,then the points are interpolated to obtain a closest point to λ = 1 to have

a closest point to the solution. The interpolation can de used Hermite cubic.
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Figure 2.5: Forward Solution (FS) and Backward Solution (BS)

2.9 Summary

The spherical method to trace the solution curve is simple a geometrically clear. Nonethe-

less reversion phenomenon during the trace of the curve causes problems in tracing, finding

solutions previously found and spending computation time. The contributions in this the-

sis are the proposition and implementation of improvements to the hyperspherical method.

The improvements are the methodology to detect the phenomenon of reversion and correct

the trajectory and a methodology for varying the radius of the sphere conforming to the

shape of the curve homotopic.
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Chapter 3

Proposed methodology for the

variable radius in the spherical

method

3.1 Introduction

In this chapter is presented an Improved Spherical Method to trace the path homotopy

using hyperspheres. Notwithstanding for implementation to path tracking algorithm used

in homotopy continuation system exhibits advantages and disadvantages. The reversion

problem is an issue identified as disadvantage for The Spherical Method. Such problem

must be attacked to improve the path to find the solutions. Then another significant

disadvantage is the the computation time spent to trace the solution curve. The strategy

to avoid the problem of reversion is established, besides is proposed a methodology to

trace the homotopy path using different values for the radius of the sphere for the spherical

method. The above reduce the number of iterations for path homotopy.

3.2 Reversion problem in Spherical algorithm

The Spherical Algorithm is implemented using Predictor-Corrector to path tracking, the

proposed scheme is described as follow: The proposed MSA scheme is described as follows:

� Predictor: The predictor point is given using Figure 3.1. Using the point o1 as the

center of the first sphere and o2 as the center of the second sphere; prediction point

is calculated by obtaining k1. The last point will be used as initial point for the NR

method until find the point o3 used as the center of the next sphere.
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1S

2S

3S

1o

2o

3o1k
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Homotopy trajectory

Figure 3.1: Hyperspheres algorithm

A B
Dd

C

curve

Predictor 
Point

Figure 3.2: Predictor point.

The step predictor is calculated by addition of vectors by Figure 3.2, where A contain

previous solution B is a center of the sphere and Dd is the predictor point.

The implementation of standard path-tracking techniques is a difficult task; the Spherical

Algorithm has a clear geometrical interpretation, which facilitates its implementation in

programming. The Spherical Algorithm use spheres of dimensions n + 1, where n + 1

is the number of variables in a set of nonlinear equations, such spheres are allocated

over the solution curve. The spheres used in the Spherical Algorithm have at least two

intersections over the homotopy path. The homotopy formulation contains n equations

and n + 1 variables, where xi(i = 1, ..., n) represent the variables of the system and xn+1

is the homotopy parameter λ. So here the number of equations is less than the number

of variables; to solve this issue is added the sphere equation. The equation that describes
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3.2. Reversion problem in Spherical algorithm

the behavior of the sphere with center c and radio r is represented by

S(X) = (x1 − c1)
2 + (x2 − c2)

2 + ...+ (xn+1 − cn+1)
2 − r2 = 0. (3.1)

Then the augmented system using homotopy formulation contains the same number of

equations as variables using the (3.1)

H1(F1(x), λ) = 0,

H2(F2(x), λ) = 0,
...

Hn(Fn(x), λ) = 0,

S(x1, x2, · · · , xn, λ) = 0.

(3.2)

By solving the system of equations (3.2) using the Newton Raphson method the inter-

section of the sphere with the curve is found, updating the center of following sphere

during traced of homotopy path. The spheres (S1, S2, · · · ) are located in succession along

the path following of the solution curve. Figure 3.3 contain at least two solutions, the

solution o4 is in forward direction and solution o2 is in reverse direction. Solution in the

reverse direction is a comeback for the traced homotopy curve, which caused a problem

to programming implementation of the spherical algorithm. The Figure 3.4 shows the

3o

2
o

4o

r

Figure 3.3: Sphere intersecting with the curve at two points

path by using successive spheres. where (S1, S2, · · · ) are the needed spheres for tracing

the homotopy path to find a solution or solutions and (O1, O2, · · · ) are consecutive centers

for spheres. The ”reversion problem” must be attended to guarantee that the path has

been traced completely, the following section shows a solution proposed from detection

and correction of the reversion problem. The Figure 3.5 shows a successful case of forward

path.
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Figure 3.4: Solution curves with spheres

3.3 Strategy to detect the reversion phenomenon

This section describes the proposed strategy to detect the reversion problem to trace path

tracking. Mainly the problem of ensure the existence of reversion phenomenon resides in

numerical problems. The successive intersections of the sphere with the solution curve are

numerically close. Using fixed radius for the spheres could aid help detect the reversion

phenomenon. Nonetheless, the backward and forward solutions are really close numeri-

cally, making it difficult to differentiate between then. The strategy proposed is based on

calculating normal vector angles for the solution (o2, o4) of the sphere and is compared

the angles instead of numerical solutions [2, 1]. As already stated, determining the dif-

ferences between the forward direction o4 and the backward direction o2 it is not an easy

task. Therefore, calculating normal vector angles for both solutions o2 and o4 as depicted

Figure 3.6 can help solve to discern among solutions. For conducting this proposal begins

with the calculation of the gradient of the sphere equation (3.3)

∇S = S ′

x1
x̂1 + S ′

x2
x̂2 + · · ·+ S ′

λλ̂ (3.3)

The gradient is a generalization of the usual concept of derivative to the functions of

several variables and represents the slope of the tangent of the graph of the function.
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Figure 3.5: (A) Forward path. (B) Path back.

In others words is the derivative of each of the system variables and λ. Then using the

gradient of the sphere equation the normal vector ~n is obtained by

~n =
∇S

‖∇S‖
(3.4)

The notation ‖∇S‖ represents the Euclidean norm of ∇S. Then as mentioned previously

its necessary to obtain the angle of ~n calculate by

θxi
= cos−1 S ′

xi

‖∇S‖
, i = 1, 2, . . . , n+ 1 (3.5)

where θxi
is the angle with respect to the coordinate axis, i correspond to the number of

system variables and n+ 1 = λ. The Figure 3.7 shows the normal vector to the sphere ~n

with their respective angles for each axis (θx1 , θx2 , . . . , θλ). Now, instead of comparing o2

and o4 directly, we use the angles of their normal vectors for an efficient comparison. The

calculated angles depends on the number of variables in the system, during programming

Spherical Method should be done comparing the angles of the previous solution with the

angles of the current solution. In the case where the angles are equal then the reversion

is detected, otherwise the path is traced.
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Figure 3.6: Normal vector into the sphere
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Figure 3.7: Angle to normal vector.

3.4 Strategy to avoid the reversion phenomenon

Now, instead of comparing o2 and o4 directly, we use the angles of their normal vectors

for an efficient comparison avoiding numerical problems. After detecting the reversion

phenomenon, we have to modify the corrector step to get back to the trajectory, by

increasing the radius a δr inducing the corrector step to converge to the forward solution.

Then, we propose the point k2 + δr that result in k′

2 as initial point for NR (see Figure

3.8). This technique creates a perturbation in the corrector step that can induce the

convergence to the forward solution. For this work the step size takes values of δr which

coincides with the sphere radius r, where δr is an increase in the radius. The proposed

to avoid the reversion problem in the spherical method will be tested later using different
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Figure 3.8: Proposed reversion strategy.

study cases. Next is presented a methodology to adapt the radius of the sphere with

respect to the shape of the curve achieving fewer iterations for tracing a path homotopy.

3.5 Proposed methodology to accelerate the course

of the curve on the spherical algorithm

Homotopy methods are characterized by slowness to the path tracking, such problem

caused by the path tracking. This work use the spherical algorithm to trace the homotopy

path, in original spherical algorithm consecutive spheres having the same size radius,

nonetheless when the curve has a change shape of the path is suitable a decreased radius

and when the curve not change shape then radius size must be increased [3]. The proposed

strategy in this work consists in changing the radius size for the area based on prior

knowledge of the behavior of the curve and its folds; the larger the radius of curvature,

the flatter the curvature of the surface. Conversely, the shorter the radius of curvature,

the steeper the curvature of the surface, using the calculation of the radius of curvature
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provides information on the behavior of the curve obtaining

ρ = |
(1 + (x′

i)
2)

3
2

x′′

i

| (3.6)

where x′

i, x
′′

i represent differentiation of first and second order respectively. Differentiation

must be numeric to involve only the points where the sphere intersects the curve and reduce

complexity by involving all variables in the system of equations. Numerical differentiation

of first order is calculated using:

x′

i =
xi − xi−1

h
(3.7)

xi and xi−1 are a current iteration and a preceding iteration and h is the distance between

them (See Figure 3.9).

ix
1−ix

h

Figure 3.9: Numerical differentiation.

Now the differentiation of second order can be calculated using differentiation of first

order as

x′′

i =
x′

i − x′

i−1

h
(3.8)

where x′

i is first order differentiation evaluated in the current iteration and x′

i−1 is first

order derivative evaluated in the previous iteration.

Using (3.7) and (3.8) to obtain (3.6) for each variable x1, x2, · · ·xn belonging to the

system of equations. For calculating the radius of curvature is necessary parametrization

of the curve, notwithstanding in this work the radius of curvature for each variable is

obtained and then an average of the calculated radius of curvature. Then the average

radius of curvature of each system variable is obtained by,

ρav =
ρx1 + ρx2 + · · ·+ ρxn

n
(3.9)
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algorithm

Figure 3.10: Hyperbolic tangent function.

where n is the number of variables. The radius of the sphere is calculated using the radius

of curvature (3.9), within an asymptotic function as (3.10).

r = f(ρav) = tanh(ρav) =
Aeρav − Be−ρav

Ceρav +De−ρav
(3.10)

The asymptotic function has a maximum value and a minimum value that depends on the

radius of curvature, the Figure 3.10 shows the function behavior where radio size can take

minimum and maximum values depending on the curvature of the path. The value of C

and D is 1, lup y llow are values for the radius of the sphere when the radius of curvature

tends to hight value or a low value. For the following system of equations with exponential

terms will be used to calculate the radius of curvature by,

F1(x1, x2) = (4x1 + 8)e−(x1+2)2 − x2
2 + 24x1e

−3x2
1−(x2−2)2 + (12x1 − 36)e−2(x1−3)2 − x2

2 +

8x1e
−2x2

1−2(x2+1)2 + (6x1 + 6)e−3(x1+1)2−3(x2−2)2 = 0,

F2(x1, x2) = (8x2 + 8)e−2x2
1−2(x2+1)2 + 6x2e

−2(x1−3)2 − x2
2 + 4x2e

−(x−1+2)2 +

(8x2 − 16)e−3x2
1−(x2−2)2 + (6x2 − 12)e−3(x1+1)2−3(x2−2)2 .

(3.11)

Calculating the radius of curvature for the variables x1, x2 respectively obtained Thus

most of the iterations is maintained a radius 0.1 without exceeding limit and ensuring

that when the radius of curvature tends to reduces the the lower limit radius 0.03. The

equation for obtain radius of the sphere (3.14).

r = f(ρav) =
0.1eρav − (0.03e−ρav)

eρav + e−ρav
(3.12)

To ensure that the function operates properly to estimate the size of the radius of the
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Radius of Curvature radio(r)

0.21 0.07
0.29 0.08
0.81 0.09
1.62 0.1
23.3 0.1

Table 3.1: Numerical solutions to the equation (3.11)

hypersphere the limit is obtained. The radius of curvature is always greater than zero, so

when folds are presented in the curve radius of curvature will be close to zero and radius

should be closer to the value of 0.03 for the specific case of interval (from 0.03 to 0.1).

Calculating the limit of the function when it approaches zero (for values of the radius of

curvature very close to zero) the lowest value of the radius is obtained.

r = lim
ρav→0

0.1eρav − (0.03e−ρav)

eρav + e−ρav
= 0.03 (3.13)

Then the limit of the function is calculated for large values of curvature radius finding the

limit equal to 0.1.

r = lim
ρav→∞

0.1eρav − (0.03e−ρav)

eρav + e−ρav
= 0.1 (3.14)

Calculated limits assure a range of values that are established at the beginning of the

path of the curve to avoid falling into numerical problems due to the very small radios or

jumps of the curve caused by very large radius sphere. To trace the curve of homotopy

(??) applying (3.14) to resizing the radio for spheres obtaining the Figure 3.11. The

Figure 3.11 shows the traced of the solution curve where the points separated are spheres

traced with a radius 0.1 and the other cases the radius decrease size. Equation (3.9) is a

hyperbolic tangent function used to find the appropriate value of the radius of the sphere

to the shape of the curve homotopic having as parameter the radius of curvature at each

point of the curve. Sphere radio size can increase using the hyperbolic function exponent

with a constant K

f(ρav) = tanh(ρav) =
eKρav − 1

eKρav + 1
(3.15)

At each iteration the curvature radius is calculated to obtain the radius of the sphere

suitable for tracing the trajectory.
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Figure 3.11: Path tracking of studio case.

3.6 Aspects to consider in tracing curve

As mentioned in the previous chapter path tracking starts with λ = 0 until λ = 1, where

the solutions are encountered. Following the predictor-corrector scheme when it comes to

λ = 1, should be necessary to follow a series of steps until you find the solution.

� Find zero strategy: The finding zero strategy should be established immediately

after the path bounces or crossing λ = 1 depending on the formulation homotopic.

The strategy used in this paper is based on a monitoring a change of sign of ∆λ

found after the corrector point. Such procedure is realized by multiplying ∆λ of two

consecutive predictor step.

sign(∆λj+1∆λj) (3.16)

The sign of ∆λ changes after bouncing from point k1 to point k2 as shown in Figure

3.12, where ∆λj = k2 − k1 and ∆λj+1 = k2 − k3.

Figure ?? shows the solution, which the method applies NR for a more approximate

solution.
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Homotopy path

1k

2k
3k

Solution Line

Figure 3.12: Find zero strategy

3.7 Conclusions

The strategies proposed improve tracing the trajectory aforementioned avoiding problems

during the implementation of the method of path using spheres. The angles of the normal

vector show that the reversion problem can be detected using the proposed methodology.

Then after detecting the problem of reversion a correction of the trajectory is applied by

increasing the radius of the sphere to increase the likelihood that the solution obtained on

the corrector step is the right solution for the sphere.
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Homotopy path

1k

2k
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Solution Line

Figure 3.13: Approximate solution
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Chapter 4

Case studies

In this Chapter, different case studies are presented in order to be solved to improve

aspects of computation time, and number of iterations complete path curve homotopy

avoiding the problem of reversion. The system of equations to be solved; the strategy to

detect the problem of reversion is applied and tested in the first case study to verify its

operation.
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Chapter 4. Case studies

4.1 Non-linear circuit with two tunnel diodes

The study case shows a circuit with two tunnel diodes, one voltage source and a series

resistor as is shown in Figure 4.1 [3, 2].

1v

2v

E=30

R=13.3

1i

2i

+

+

−

−

Figure 4.1: Two tunnel diode circuit.

The non-linear expression for each tunnel diode model is shown follow

g1(v1) = 2.5v31 − 10.5v21 + 11.8v1,

g2(v2) = 0.43v32 − 2.69v22 + 4.56v2. (4.1)

After applying the Kirchoff laws, we obtain equilibrium equations for the system

F1(v1, v2) = E − Rg1(v1)− (v1 + v2) = 0,

F2(v1, v2) = g1(v1)− g2(v2) = 0. (4.2)

Applying the DBH homotopy to (4.2), results an augmented system with n+1 equations

and n + 1 variables

H1(f1, λ) = 40λ(λ− 1) + exp(λ(λ− 1)) ln(0.01(30− 33.25v31

+ 139.65v21 − 157.94v1 − v2)
2 + 1) = 0,

H2(f2, λ) = 40λ(λ− 1) + exp(λ(λ− 1)) ln(0.01(2.5v31 + 10.5v21

+ 11.8v1 − 0.43v22 + 2.69v22 − 4.56v2)
2 + 1) = 0,

(v1 − c1)
2 + (v2 − c2)

2 + (λ− c3)
2)− 0.36 = 0. (4.3)

The Spherical method is applied to the system of equations and the results are in table
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4.1. Non-linear circuit with two tunnel diodes

4.1, where reversion is detected using the calculus of normal vector. Then the strategy to

Iter. x1 x2 λ angle(x1) angle(x2) angle(λ)
1 7.164878945 21.584487168 0.5 102.5/102.5 24.1/24.1 110.3/110.3
2 7.158354005 21.557119274 0.489587336 103.2/77.4 15.9/155.8 98.6/69.6
3 7.151475984135986 21.528269750 0.485070949 103.3/76.7 14.9/164.0 96.6/81.3

Table 4.1: Numerical results of path tracking in backward direction.

avoid reversion problem is applied, obtaining the following results Table 4.2 The Figure

Iter. x1 x2 λ angle(x1) angle(x2) angle(λ)
1 7.164878945 -21.584487168 0.5 102.5/102.5 24.1/24.1 110.3/110.3
2 7.158354005 -21.557119274 0.510412663 103.2/77.4 15.9/155.8 81.3/110.3
3 7.151475984 -21.528269750 0.514929050 103.3/76.7 14.5/165.0 84.4/96.6

Table 4.2: Numerical results of path tracking in backward direction.

4.2 shows the solutions founded using Spherical method and the methodology to avoid

the reversion. As a result of tracing the homotopy path, the nine operation points of the

circuit has been located (see Table 4.3) all solutions, iteration number for each solution,

and the error using mean squares are shown.
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Figure 4.2: Homotopy path for (4.7)

Solution Iteration v1 v2 Error =
√

f2
1 + f2

2

S1 106 2.305222063 0.705560377 1.3E-10
S2 143 2.277597006 1.857491731 3.3E-10
S3 205 2.224729753 3.693043974 6.5E-10
S4 249 1.775503561 3.707177714 8.8E-11
S5 316 1.702657758 1.809029946 1.4E-10
S6 349 1.666377840 0.739343469 5.8E-11
S7 533 0.228266851 0.828626137 1.2E-11
S8 558 0.219854573 1.672951409 1.03E-10
S9 628 0.199790592 3.754217099 1.10E-11

Table 4.3: Numerical solutions to the equation (4.7).

Using a step size of 0.03 and 722 iterations, all solutions has been founded using DBH

homotopy. The Figure 4.3 show the variable v1 versus λ and the Figure 4.4 show the

variable v2 versus λ for the nine solutions.
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4.1. Non-linear circuit with two tunnel diodes

(a) Homotopy path proyected over v1-λ (b) Zoom to solutions of (a)

(c) Zoom to solutions of (a) (d) Zoom to solutions of (a)

Figure 4.3: The projection v1 over λ.
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Chapter 4. Case studies

(a) Homotopy path proyected over v2-λ (b) Zoom to solutions of (a)

(c) Zoom to solutions of (a) (d) Zoom to solutions of (a)

Figure 4.4: The projection v2 over λ.

As presented in Chapter 2, there are different homotopy functions; each one with

advantages and disadvantages for specific case studies. The DBH homotopy show ad-

vantages as reliable stop criterion; nonetheless the homotopy formulation require higher

number of iterations while Newton homotopy needed a lower number of iterations. Taking

into account all above mentioned contributions to methodology for variable radius can be

applied in order to reduce the iteration number for traced solution curve. The homotopic

formulation used for a system of equations increased f(x, λ) is the Newton homotopy as

follow.

H1(f1, λ) = 30− 33.25v31 + 139.65v21 − 157.94v1 − v2 − (1− y)f(x0),

H2(f2, λ) = 2.5v31 − 10.5v22 + 11.8v1 − 0.43v32 + 2.69v22 − 4.56v2 − (1− y)f(x0),

(v1 − c1)
2 + (v2 − c2)

2 + (λ− c3)
2)− r = 0. (4.4)

In order to trace the homotopy path spherical algorithm is applied, the proposed method-

ology the proposal resizes radius of the sphere with relation to the calculation of the radius
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4.1. Non-linear circuit with two tunnel diodes

Table 4.4: Numerical results for the first case study

CPU time Iteration number

same size radio (0.06) 7.03 205
diferent size radio (0.06-0.1) 6.1 146

of curvature is applied too [4]. A comparison of the simulation results using spheres of

fixed radius versus variable radius, see Figure 4.10. The number of iterations is notoriously

(a) (b)

Figure 4.5: (A) Radius size constant. (B) Radius size variable.

reduced and therefore there are a difference in CPU time; using in both cases the Newton

homotopy formulation.
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Chapter 4. Case studies

(a) Homotopy path proyected over v1-λ using
Newton Homotopy

(b) Zoom to solutions of (a)

(c) Zoom to solutions of (a) (d) Zoom to solutions of (a)

Figure 4.6: The projection v1 over λ using Newton Homotopy.
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4.1. Non-linear circuit with two tunnel diodes

(a) Homotopy path proyected over v1-λ using
Newton Homotopy

(b) Zoom to solutions of (a)

(c) Zoom to solutions of (a) (d) Zoom to solutions of (a)

Figure 4.7: The projection v1 over λ using Newton Homotopy.
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Chapter 4. Case studies

4.1.1 Mathematical example

In order to validate the proposed path tracking algorithm, we will solve to the following

problem [1]

F1(x1, x2) = 4(x2
1 + x2

2 − 1)x1 + 16((2x2
1 − 1)2

+ (2x2
2 − 1)2 − 2/3)(2x2

1 − 1)x1 = 0,

F2(x1, x2) = 4(x2
1 + x2

2 − 1)x2 + 16((2x2
1 − 1)2

+ (2x2
2 − 1)2 − 2/3)(2x2

2 − 1)x2 = 0. (4.5)

Applying the DBH homotopy to (4.5), we obtain the following system of equations

H1(f1, λ) = λ(λ− 1) + exp(λ(λ− 1)) ln(0.09((4v21 + 4v22 − 4)v1

+ 16(2v21 − 1)2 + 16(2v22 − 1)2 − 32/3)(2v21 − 1)v1)2 + 1) = 0,

H2(f2, λ) = λ(λ− 1) + exp(λ(λ− 1)) ln(0.09((4v21 + 4v22 − 4)v2

+ 16(2v21 − 1)2 + 16(2v22 − 1)2 − 32/3)(2v22 − 1)v2)2 + 1) = 0,

(v1 − c1)
2 + (v2 − c2)

2 + (λ− c3)
2) = 0.0009. (4.6)

where last equation correspond to the equation of the sphere. The parameters homotopy

a = 0, b = 1, C = 3, D = 0.03 and the ratio size is r = 0.03 using DBH homotopy.

Without a methodology for avoiding the reversion the results are shown in Table 4.5,

where in the first iteration λ = 0.5 and the second iteration λ go back to λ = 0.47.

Iter. x1 x2 λ angle(x1) angle(x2) angle(λ)
1 0.931862833 -0.931862833 0.5 90.2/90.2 89.7/89.7 179.5/179.5
2 0.931707573 -0.931707573 0.470000000 89.7/90.8 90.2/89.1 0.41/178
3 0.931242105 -0.931242105 0.440004014 89.1/91.4 90.8/88. 1.25/177.9

Table 4.5: Numerical results of path tracking in backward direction.

Applying the proposed methodology to find the solutions in forward direction, the

numerical solutions are shown in Table 4.6, where λ = 0.5 in the first iteration at the

second iteration λ = 0.53 tracing the trajectory circumvent the reversion phenomenon.

The solutions S1, S2, S3, S4, S5, S6, S7 found are shown in Figure 4.8 traced with 119

iterations. The Table 4.7 show 7 solutions from a total 25 furthermore of the accuracy

and the number of iterations related to the path tracking of (4.6). The 7 solutions are

showed Figure 4.9:
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4.1. Non-linear circuit with two tunnel diodes

Iter. x1 x2 λ angle(x1) angle(x2) angle(λ)
1 0.931862833 -0.931862833 0.5 90.2/90.2 89.7/89.7 179.5/179.5
2 0.931707573 -0.931707573 0.530000000 89.7/90.8 90.2/89.1 179.5/1.25
3 0.931242105 -0.931242105 0.559995985 91.4/89.1 90.8/88.5 178.7/2.09

Table 4.6: Numerical results of path tracking in forward direction

Figure 4.8: Homotopy path for (4.6)

Now the Newton homotopy is applied to (4.7),

H1(f1, λ) = (4v12+4v22−4)v1+(16(2v21−1)2+16(2v22−1)2−32/3)(2v21−1)v1−(1−λ)f(x0)

H2(f2, λ) = (4v21+4v22−4)v2+(16(2v21−1)2+16(2v22−1)2−32/3)(2v22−1)v2−(1−λ)f(x0),

(v1 − c1)
2 + (v2 − c2)

2 + (λ− c3)
2)− r = 0. (4.7)

Next the methodology for spheres of variable radius is applied, the results of simulation

seen in Figure 4.10 indicate the comparison from fixed radius spheres versus variable radius

spheres respectively . The iteration number is improved in the case of the variation in size

of radius for the sphere in the spherical tracing method applied to the path homotopic.

The projected solutions regarding λ parameter are shown Figure 4.11; it shows that points

to the first figure are closest with respect at the where size is not fixed radius. Must be

emphasized that the solutions have symmetric values and figures only appear 12 repeated
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Solution Iteration v1 v2 Error =
√

f 2
1 + f 2

2

S1 19 0.853356743 -.853356743 3E-15
S2 26 0.707106781 -0.707106781 8.61E-14
S3 34 0.521327409 -0.521327409 3.29E-11
S4 61 -1.71E-16 1.70E-16 2.4E-11
S5 87 -0.521327409 0.521327409 2E-15
S6 96 -0.707106785 0.707106785 2E-15
S7 103 -0.853356744 0.853356744 9.6E-11

Table 4.7: Numerical solutions to the equation (4.6)

solutions. The table 4.8 shows the results with all the solutions. The comparison of results

Solution Iteration x1 x2

S1 27 -0.457846075 -0.88583237
S2 36 -0.52105087 -0.52233449
S3 42 -0.706918715 -0.705518887
S4 46 -0.856403500 -0.840392018
S5 52 -0.887998886 -0.459719460
S6 60 -0.788768474 0.000686285
S7 67 -0.887951404 0.459867289
S8 74 -0.853645422 0.851469150
S9 78 -0.706365080 0.703951513
S10 83 -0.521087102 0.522784769
S11 90 -0.459290981 0.887511352
S12 107 0.000467550 0.783519531
S13 117 -0.000003365 -0.000071349
S14 126 -0.000102981 -0.785701888
S15 143 0.457897013 -0.885735694
S16 150 0.521107681 -0.52255104
S17 156 0.706976322 -0.70475460
S18 160 0.854672950 -0.845544717
S19 166 0.888023651 -0.459737787
S20 174 0.788560647 0.001018800
S21 180 0.887897377 0.459769872
S22 187 0.854728259 0.847735395
S23 191 0.706625443 0.705505264
S24 195 0.521211842 0.521668777
S25 204 0.457859208 0.885858576

Table 4.8: Numerical solutions to the equation (4.6)
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4.1. Non-linear circuit with two tunnel diodes

(a)

(b)

Figure 4.9: (a) Radius size constant. (b) Radius size variable.

fixed-radius versus variable-radius are showed table 4.9 where the iteration number has

reduced and consequently has happened the same with the computation time.

Table 4.9: Numerical results for the first case study

CPU time Iteration number

fixed radius (0.03) 7.4 205
variable radius (0.03-0.1) 14.3 462
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(a)

(b)

Figure 4.10: Projection of x1 versus x2.

4.1.2 Circuit with two tunnel exponential diodes

For the diode circuit Figure 4.1 the polynomial expression is replaced by exponential terms

i1,2 = Ip(
V

Vp
)e

1− V
Vp + I0e

q

KT
V (4.8)

where E = 1, R = 20Ω, Ip = 100E − 03, Vp = 50E − 03, I0 = 1E − 09 and q
KT

= 40. As

a result the path tracking are show the projection of Iv1 , v2, v3 over λ. The Figure 4.13

show that the method has found 5 five solutions into the homotopy path.
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4.1. Non-linear circuit with two tunnel diodes

(a) (b)

Figure 4.11: (a) x1 versus λ. (b)x2 versus λ.

The 5 solutions are showed in table 4.10. Furthermore Newton homotopy function

Solution Iteration Iv1 v2 v3 Error =
√

f2
1 + f2

2

S1 45 -0.048873941 0.022521177 0.011260588 1.1E-13
S2 52 -0.042175710 0.156485795 0.147132103 6.5E-10
S3 70 -0.018919917 0.621601653 0.418182617 1.5E-11
S4 77 -0.028280221 0.434395575 0.428548398 2.4E-11
S5 80 -0.009914377 0.801712456 0.400856225 2.3E-09

Table 4.10: Numerical solutions for the circuit Figure 4.1 with exponential terms.

is applied to find the solutions Figure 4.1 using diode functions with exponential terms,

where all solutions are founded. The projection of Iv1, v2 and v3 versus λ
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(a) Homotopy path proyected over Iv1 -λ (b) Zoom to solutions of (a)

(c) Homotopy path proyected over v2-λ (d) Homotopy path proyected over v3-λ.

Figure 4.12: The projection Iv1 , v2, v3 over λ.

Using the method with strategy for variable radio could find all solutions with fewer

iterations where all solutions were shown Table 4.11. The solutions found using the

Solution Iteration Iv1 v2 v3

S1 32 -0.028280220 0.434395581 0.005847176
S2 36 -0.042175710 0.156485796 0.009353691
S3 39 -0.048873941 0.022521177 0.011260588
S4 47 -0.042175710 0.156485796 0.147132104
S5 52 -0.033613653 0.327726928 0.163863464
S6 55 -0.018919917 0.621601656 .203419036
S7 84 -0.009914377 0.801712451 0.400856225
S8 87 -0.018919917 0.621601653 0.418182617
S9 92 -0.028280221 0.434395574 0.428548398

Table 4.11: Numerical solutions to the equation (4.8)

methodology of variable Table 4.12, the results show fewer iterations and consequently
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4.1. Non-linear circuit with two tunnel diodes

(a) Homotopy path proyected over Iv1 -λ (b) Zoom to solutions of (a)

(c) Homotopy path proyected over v2-λ

Figure 4.13: The projection IIv1, v2, v3 over λ.

computation time is also decreased. Obtaining a great advantage of the methodology of

variable radius on fixed radius using the spherical algorithm for tracing the curve.

Table 4.12: Solutions third case study

Solution Iter.(r=0.03) CPU time (sec.) Iter.(r=0.03-0.1) CPU time (sec.)

S1, S2, . . . , S9 110 7.1 92 6.6
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4.1.3 Four-transistor multistate circuit

The next circuit contain four-transistor shown Figure 4.14 Bipolar transistor is replaced

2V

4K

30K

4K

30K

30K

4K

30K
4K

10K

10V
5K

0.5K

0.5K

10.1K

10.1K

12V

12V

Figure 4.14: A four-transistor multistate circuit

by the simplified EbersMoll model Figure 4.15.

Replacing each bipolar-junction transistor by simplified EbersMoll model [1], obtain

four nonlinear equations involving the four unknown base- emitter voltages v1, v2, v3, v4

where I0 = 10E − 06.

f1 = 6.103168I0(exp(40v1)− 1) + 4.36634v2 + 2.863168(exp(40v2)− 1)− 12

f2 = 5.4v1 + 3.58I0(exp(40v1)− 1) + 6.62I0(exp(40v2)− 1) + v3

+ 0.7I0(exp(40v3)− 1) + 0.5I0(exp(40v4)− 1)− 22

f3 = 6.103168I0(exp(40v3)− 1) + 2.863168I0(exp(40v4)− 1) + 4.36634v4 − 12

f4 = 1v1 + 0.7I0(exp(40v1)− 1) + 0.5I0(exp(40v2)− 1) + 5, 4v3

+ 3.58I0(exp(40v3)− 1) + 6.62I0(exp(40v4)− 1)− 20 (4.9)
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4.1. Non-linear circuit with two tunnel diodes

C

B

E

C

E

B
Dv

DIα

)1(0 −= Dv
D eII

Figure 4.15: Ebers-Moll model

Applying homotopy function is obtained:

H1(f1, λ) = (6.10exp(−06)(exp(40v1)− 1) + 4.36v2 + 2.86exp(−06)

(exp(40v2)− 1)− 12 + (λ− 1)(−6.10exp(−06)− 12)

H2(f2, λ) = 6.10exp(−06)(exp(40v3)− 1) + 2.86exp(−06)(exp(40v4)− 1)

+ 4.36v4 − 12 + (λ− 1)(−14.18− 2.86exp(−06))

H3(f3, λ) = v1 + 0.7exp(−06)(exp(40v1)− 1) + 0.5exp(−06)(exp(40v2)− 1)

+5.4v3+3.58exp(−06)(exp(40v3)−1)+6.62exp(−6)(exp(40v4)−1)−20+(λ−1)(−20.5−7.31exp(−06))

H4(f3, λ) = 5.4v1 + 3.58exp(−06)(exp(40v1)− 1) + 6.62exp(−6)(exp(40v2)− 1)

+v3+0.7exp(−06)(exp(40v3)−1)+0.5exp(−06)∗(exp(40v4)−1)−22+(λ−1)∗(−24.70−4.079exp(−06))

H5(f3, λ) = (v1 + c1)
2 + (v2 − c2)

2 + (v3 − c3)
2 + (v4 + λ)2 + λ2 − 0.1e− 01 (4.10)

For this study case has been applied the Newton homotopy and using and arbitrary initial

point the improved Spherical Algorithm is used to trace the path. The table 4.13 shows

the solutions found in different paths with solution number, initial point, iteration number

using fixed radius, iteration number using variable radius and solutions. The results show

No. Initial − point (0.03) (0.03-0.1) Solution

S1 (-0.5,0,0,-0.5) 138 56 (-1.42801288,0.18413951,0.19101314,-4.45638520
S2 (-0.5,-0.5,-0.5,-0.5) 204 80 (0.19011567,-4.201978519,0.186391138,-3.239254017)
S3 (0.5,0.5,0.50.5) 42 18 (0.13548515,0.17382002,0.14379723,0.16926345)
S5 (-1,0,-1,0) 35 15 (-0.84596284,0.18413802,-1.30050829, 0.18413802)
S5 (0,0,-1,0) 183 73 (0.19411919, -5.41008207, -1.88740370, 0.18413976)
S6 (0.1,0.1,-0.1-0.1) 134 55 (0.14428324,0.17020052,0.18921466,-3.95577056)
S7 (-0.1,-0.1,0.1,0.1) 160 65 (0.19204522, -0.19204522, 0.15082057,0.16393479)

Table 4.13: Numerical solutions to Four-Transistor Multistate Circuit
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Chapter 4. Case studies

benefits in the number of iterations and the computation time for the variable radius

against the fixed radius of the sphere, using the spherical algorithm for the tracing of

solution curve.
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4.1. Non-linear circuit with two tunnel diodes

4.1.4 Example with 14 variables

The following case study is the diode-transistor circuit that contain four transistor and

one diode as shown in Figure 4.16, where the diodes have an exponential function.

12V

0.1K 0.1K

8K 8K

4K 4K

30K

1K

0.1K

10K

4K 10K

1K

i 1

2

3

4 5

6

7

8

9

10

11
12

13

Figure 4.16: Example circuit with 14 variables.

Bipolar transistor is replaced by Ebers-Moll model Figure 4.17.

C

B

E

Ci

Ei

EDFiα

CDRiα

CDi

EDi

Figure 4.17: Ebers-Moll model used in example circuit with 14 variables.

The Ebers-Moll model is defined by

[

ie

ic

]

=

[

1 −0.01

−0.99 1

][

10−9(e40vbe − 1)

10−9(e40vbc − 1)

]
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The equilibrium equations are obtained from the modified nodal analysis by:

f1 =
37

20000v1 −
1

4000v2 −
1

4000v6 −
1

1000v9 −
1

4000v12 −
1

10000v13 + IE

f2 = − 1
40000v1 +

3
8000v2 +

3
8000v5 + 9.90E − 09 exp40v4−40v3 +1E − 10− 1E − 08 exp40v4−40v2

f3 =
1

100v3 − 1E − 08 exp40v4−40v3 +9.90E − 09 + 1E − 10 exp40v4−40v2

f4 =
1

8000v4 −
1

8000v6 + 1E − 10 exp40v4−40v3 −1E − 08 + 9.90E − 09 exp40v4−40v2

f5 =
1

8000v2 +
1

8000v5 + 1E − 10 exp40v5−40v7 −1E − 08 + 9.90E − 09 exp40v5−40v6

f6 =
1

4000v1 −
1

8000v4 +
3

8000v6 + 9.90E − 09 exp40v5−40v7 +1.010E − 08 exp40v5−40v6 −1E − 08 exp40v8−40v6

f7 =
1

100v7 − 1E − 08 exp40v5−40v7 +9.90E − 09 + 1E − 10 exp40v5−40v6

f8 =
1

30000v8 −
1

30000v9 + 1E − 08 exp40v8−40v6 −1.E − 08

f9 =
1

1000v1 −
1

30000v8 +
31

30000v9 + 9.90E − 09 exp40v11−40v10 +1E − 10 + 1E − 08 exp40v11−40v9

f10 =
1

100v10 − 1E − 08 exp40v11−40v10 +9.90E − 09 + 1E − 10 exp40v11−40v9

f11 =
1

10000v11 −
1

10000v12 + 1e− 10 exp40v11−40v10 −1E − 08 + 9.9E − 09 exp40v11−40v9

f12 = − 1
4000v1 −

1
10000v11 +

7
20000v12 + 9.9E − 12 exp40v13 +1E − 10− 1E − 08 exp40v13−40v12

f13 = − 1
10000 + 11

10000v13 + 1E − 10 exp40v13 −1E − 08 + 9.90E − 09 exp40v13−40v12

f14 = v1 − 12,

(4.11)

Applying the Newton homotopy and going through the curve using the methodology

for variable radius spherical method we obtain the solution in Table 4.17.

The results fixed radius versus variable radius are showed in table 4.15.

The results indicate a considerable decrease in the number of iterations with respect to

the use of a fixed radius for each sphere. Notwithstanding a path connecting the solutions

will not be found and trajectories were taken with a solution While the CPU time also is

reduced for fixed radius and variable radius respectively. The projection of variable versus

the λ parameter can be plotted, Figure 4.18 shows IE versus λ and v13 versus λ.
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4.1. Non-linear circuit with two tunnel diodes

Table 4.14: Solutions for example with 14 variables

Sol S1 S2 S3

IE −0.0100 -0.0089 -0.0086

v1 12 12 12

v2 0.8839 5.9958 0.4057

v3 0.2775 0.0849 0.3655

v4 0.5908 0.3686 0.6858

v5 0.6318 0.7126 0.3494

v6 0.8128 0.4364 6.7966

v7 0.3153 0.3907 0.0704

v8 1.0745 0.6990 7.0386

v9 11.6475 0.6354 11.8399

v10 0.0000 0.0000 0.0000

v11 0.0388 0.0388 0.0388

v12 0.0387 0.0387 0.0387

v13 0.3214 0.3214 0.3214

Table 4.15: Solutions fixed radio-variable radio

Initial point Sol. Iter.(r=0.03) CPU time(sec) Iter.(r=0.03-0.1) CPU time(sec)

(0, 10, 10, 10, 10, 0, 10,
10, 10, 10, 10, 10, 10, 10) S1 478 696.2 180 601.7
(0, 12, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0) S2 478 696.2 172 601.7
(0.5, 0.5, 0.5, 0.5, 0.5, 0.5,0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) S3 476 696.2 171 601.7
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(a) (b)

Figure 4.18: (a) Radius size constant. (b) Radius size variable.

Table 4.16: Result Multistate Circuit fixed radio-variable radio

Solution Iter.(r=0.03) CPU time (sec.) Iter.(r=0.03-0.1) CPU time (sec.)

S1 2545 5118.003 865 1835.6

4.1.5 Multistate Circuit

We finally present a case study containing an increased number of transistors and diodes

resistors regarding above case studies; the Figure 4.19 shows the circuit for solving. The

Ebers Moll model used for this circuit is above Figure 4.17 and the diode model is defined

by

id = 10−9(e40u − 1). (4.12)

After obtaining the system of equations we proceed to give a solution using the method-

ology proposed in this work. We choose a starting point (−15,−15,−15,−15,−15,−15,

−15,−15,−15,−15,−15,−15,−15,−15,−15,−15,−15,−15) obtaining a path with a so-

lution.

Iteration number and CPU time are showed in Table 4.16, the solution founded is in

Table ??.

Finally the results obtained for this case study indicates a decrease of the number of

iterations using the proposed methodology for present work Figure 4.20, 4.21, 4.22 .
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Table 4.17: Solutions Multistate Circuit

Sol S1

IE −0.0347

v1 12

v2 8.2950

v3 8.0239

v4 0.2842

v5 0.3276

v6 0.5148

v7 0.5148

v8 0.7824

v9 1.0244

v10 5.1209

v11 0.6756

v12 0.9813

v13 0.7824

v14 1.0244

v15 5.1209

v16 0.6756

v17 0.9813
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Figure 4.19: Multistate Circuit

4.2 Results and Discussion

The Spherical algorithm has been used with modifications to avoided the reversion problem

during steps predictor-corrector for the path tracking. The case studies presented in this

chapter have demonstrated that the problem of reversion has been successful detected and

avoided. The above has prevented the errors when the curve is traced in the direction

backwards further disturbance to the method of tracing has caused the corrector step follow

the path on the homotopy curve. The examples 1 and 2 shows the calculus of the angle

of normal vector, taking advantage of that numerically the angles are totally different for

each solution (forward and backward). In all examples is used the methodology to avoid

the reversion problem to the traced of solution curve. The double bounded homotopy

and Newton homotopy were used, where the first the stop criterium is a great advantage

to decide the number of iterations. Moreover Newton homotopy has the characteristic of

connecting the solutions using fewer iterations and diverges when it has already come to

the path containing solutions. In general, all homotopy formulation needs a method of

tracing, where the path is numeric traced and depends of the step size which is already

defined in the beginning to the conventional Spherical Method. Step size has numerical

relation to the size of the sphere radius, which is set to a fixed value. In the case studies

presented in this chapter for tracing the curve is used variable radius of the spheres,

where previously it is possible to know the behavior of the curve using the radius of

curvature. To obtain radius of curvature is calculated numerical differentiation using

iteration points for a current iteration and a subsequent iteration, where CPU time for

such numerical calculations is not significant as can be seen in Table 4.4, Table??. The

results are successful with respect to tracing of the path solution whereas the number of
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iterations is reduced and the CPU time is less than the radius fixed for the spheres.
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4.3 Summary

In this chapter different study cases show correct detection and circumvent the reversion

problem. Furthermore the proposed methodology for implementing a variable radius for

spheres resulted successful in reduce the number of iterations for the trace of the trajec-

tory. But nevertheless in the first case studies are presented as case studies to find all

solutions of the system; but in the case studies where the number of variables increases

the election of starting point increases its complexity. Therefore the absence of an estab-

lished methodology for choosing the starting point; results in the path trajectories which

not contain all solutions. However the methodologies reversion and variable radius have

satisfactory performance in all study cases.
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4.3. Summary

(a) Homotopy path proyected over Iv1 -λ (b) Homotopy path proyected over v1-λ

(c) Homotopy path proyected over v2-λ (d) Homotopy path proyected over v3-λ.

(e) Homotopy path proyected over v4-λ. (f) Homotopy path proyected over v5-λ.

Figure 4.20: The projection Iv1 , v1, v2, v3, v4, v5 , v5 over λ.
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(a) Homotopy path proyected over v6-λ (b) Homotopy path proyected over v7-λ

(c) Homotopy path proyected over v8-λ (d) Homotopy path proyected over v9-λ.

(e) Homotopy path proyected over v10-λ. (f) Homotopy path proyected over v11-λ.

Figure 4.21: The projection v6, v7, v8, v9, v10, v11 over λ.
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4.3. Summary

(a) Homotopy path proyected over v12-λ (b) Homotopy path proyected over v13-λ

(c) Homotopy path proyected over v14-λ (d) Homotopy path proyected over v15-λ.

(e) Homotopy path proyected over v16-λ. (f) Homotopy path proyected over v17-λ.

Figure 4.22: The projection v12, v13, v14, v15, v16, v17 over λ.
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Chapter 5

Conclusions

Spherical algorithm ha been improved and the results support usability applied at study

cases with different number of variables. To implement computationally the hypersphere

algorithm reversion problem usually occurs during step corrector and causes the curve take

a direction opposite to the trajectory. For detecting the problem of reversion the strategy

presented is based on the calculation of the normal vector to the curve where the difference

between the solution of the left and right is found successfully avoiding numerical problems.

Then of the detection of the reversion problem It should implement a strategy to prevent

reversion; which it has increased the value of the radius size for the predictor step, order

to ensure going forward for tracing the curve. The case studies demonstrate that while

the reversion problem is present; using the application of the methodology the problem

is detected and avoided successfully. Avoiding the reversion problem the solutions of the

equations system can be found on the curve when tracing the homotopy curve where the

step size it is fixed to the beginning of the path. If step size is fixed then the traced of the

homotopy curve always is traveled using the same radius of the sphere; notwithstanding

nonlinearities of the curve are not presented in a constant way such that is possible to

assign different radio sizes for each of the spheres depending on the folds that occur in the

curve.

To previously know like the curve will behave then calculate the radius of curvature

is proposed using numerical differentiation where the radius of curvature calculation does

not increase the computation time. In summary to reduce the number of iterations and

the computational time the proposed strategy is based on using a different size the spheres

radio depending on the folds of the curve using the radius of curvature to propose the size

radio. By applying the methodology of variable radius in each case studies presented the

results were satisfactory reducing the number of iterations and the computational time.

The case studies used to test the methodologies proposed for this work, they consist of
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polynomial equations and exponential type as well as number of variables is different. All

study cases reached successful results when compared the number of iterations as well as

computation time which are improved. Although the results show that all solutions have

not been found, specifically for the latest results; unfortunately parameters as initial point

and homotopic formulation were not optimized for each case study.
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