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ABSTRACT

We investigate the influence of stochastic Doppler width fluctuations on the shape of spectral lines. The photospheres
and atmospheres of stars, and the interstellar medium, possess stochastic behavior especially near nonstationary
objects such as active galactic nuclei, quasars, flare stars, and regions of star formation. In reality, we observe
the mean values of intensities from these objects. In most situations, the spectral line extinction coefficient has
a Gaussian shape with the stochastic Doppler width determined by thermal and small-scale turbulent motions of
atoms or molecules. For small-scale turbulent motions (short-correlated turbulence) the propagation of radiation is
described by the average extinction factor. This coefficient depends on the level of the Doppler width fluctuations
η. We show that these fluctuations change both the value of intensity and the shape of spectral lines. We
consider distortions of the spectral line shapes for the absorption and emission lines for various values of the
parameter η. For a number of H2O maser sources we estimate the values of this parameter, the optical depths
of the inverted media, and the mean effective Doppler velocities. Maser emission lines with non-Gaussian
shape can serve as an additional method for the investigation of the physical parameters in maser “spots.”
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1. INTRODUCTION

Many photospheres and atmospheres of stars have chaotic
(turbulent) motions of gas (see, for example, Gray 1992;
Sobolev 1969), especially in such nonstationary objects as
variable and flare stars (Gurzadyan 1980; Sterken & Jaschek
1996). The motions and temperature of interstellar matter near
active galactic nuclei, quasars, and regions of stellar formation
are also stochastic. In turbulent (more generally, stochastic)
media, the extinction coefficient αν , the intensity of radiation
Iν , the temperature T, etc., are also the stochastic values.
They are characterized by their mean values, α(0)

ν , I (0)
ν , T (0),

and by the fluctuating components, α′
ν, I

′
ν , T ′. So we have

αν = α(0)
ν + α′

ν, Iν = I (0)
ν + I ′

ν, T = T (0) + T ′ etc., where the
mean values of the fluctuating quantities are equal to zero, for
example, 〈T ′〉 = 0.

Usually, the observed radiation intensity is collected from
many volumes with different temperatures and small-scale
turbulent velocities. In reality, we observe the mean intensity
I (0) corresponding to many realizations of conditions in cosmic
sources (for more details, see Levshakov & Kegel 1997). For a
small-scale turbulent medium, the mean intensity I (0) obeys the
usual transfer equation with an average extinction factor α(0)

ν (see
Silant’ev 2005; Silant’ev et al. 2006). This coefficient depends
on both the mean temperature T (0), mean turbulent velocity
uturb = 〈u(r, t)〉, etc., and the levels of the corresponding
fluctuating values. So the value α(0)

ν differs from the usual
extinction factor taken at the mean temperature T (0), mean
turbulent velocity uturb, etc. This implies that the observed mean
intensity I (0)

ν acquires another value and spectral form than those
in the media without the stochastic fluctuations.

The distortion of spectra in a continuum was considered by
Silant’ev & Alexeeva (2008). Here, we consider the change of
spectral line shape due to existence of temperature fluctuations
and fluctuations of small-scale turbulent velocity uturb. In most
cases, one observes spectral lines with Doppler widths ΔνD . We

consider here only this case. As is known, the Doppler width is
described by the expression

ΔνD = ν0

c

√
2

3

√
u2

th + u2
turb ≡ ν0

c

√
2

3
uD,

(1)
uD =

√
u2

th + u2
turb,

where u2
th = 3kT /m and u2

turb = 〈u2(r, t)〉 are the squares of
the rms values of thermal and small-scale turbulent velocities,
respectively, uD is the effective 3D Doppler velocity, ν0 is the
central frequency of the spectral line, c is the light velocity, and
k is the Boltzmann constant. Remember that the temperature
and velocity uturb are different in different observed volumes,
i.e., they can be considered as stochastic values. As a result, the
Doppler width is also stochastic and characterized by its mean
value and the fluctuating part

ΔνD = Δν
(0)
D + Δν ′

D. (2)

The level of the Doppler width fluctuations is defined by the
expression

η =
√〈(Δν ′

D)2〉
Δν

(0)
D

. (3)

The extinction coefficient with the Doppler width has the form
(see, for example, Rybicki & Lightman 1979)

αν = α0

ΔνD

exp

[
−

(
ν − ν0

ΔνD

)2
]
. (4)

Without any restriction we omitted here the regular velocity of
the source which determines the central position of the line. The
value α0 is proportional to the quantum mechanical cross-section
σ0 at the center of the line. The more general expression for
the αν-coefficient (the Voigt formula) is discussed by Hummer
(1962). This expression represents the Doppler and the Lorentz
line shapes as limiting cases.
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2. QUALITATIVE EXPLANATION OF STOCHASTIC
EFFECTS

To demonstrate qualitatively how the Doppler width fluctua-
tions change the mean extinction coefficient as compared to its
value (4) taken at the mean Doppler width Δν

(0)
D , we average

Equation (4) for two realizations. In the first realization, we take
ΔνD = Δν

(0)
D + Δν ′

D , and in the second one, ΔνD = Δν
(0)
D −Δν ′

D .
The mean value of α(0)

ν for these two realizations for small value
Δν ′

D/Δν
(0)
D ≡ y is equal to

α(0)
ν = α(x) e−3x2y2

[(1 + y2) cosh(2yx2) − y sinh(2yx2)]. (5)

Here, we introduce the usual notations

α(x) = α0

Δν
(0)
D

exp (−x2), x = ν − ν0

Δν
(0)
D

, (6)

where x is the dimensionless frequency, and α(x) is the extinc-
tion coefficient at the mean Doppler width.

First of all, we see that at the center of the line (x = 0) the
mean extinction coefficient is greater than the usual extinction
factor

α(0)
ν

∼= α(0)(1 + y2), (7)

i.e., in the center of the line the stochastic medium is more
optically thick compared to the nonstochastic one. For small
values (2yx2 � 1), we have

α(0)
ν

∼= α(x)(1 + y2 − 5y2x2 + 2y2x4), (8)

i.e., near the center of the line the extinction coefficient α(0)
ν

diminishes and becomes less than the usual α(x)-coefficient.
Furthermore, we use the normalized extinction factors equal to
unity at x = 0. The normalized factor is equal to Equation (8)
without the term y2. This normalized factor is less than the usual
normalized factor αnorm(x) = exp (−x2) up to x ∼= 1.6, and then
it becomes greater than exp (−x2). In the wings of a spectral
line, the mean normalized coefficient α(0)

norm(x) 	 αnorm(x).
But, usually, the wings of a spectral line are observed with
large errors, and it is difficult to exclude this effect in the
pure form. Later, we calculate the α(0)

ν -coefficient exactly using
the assumption that the fluctuations Δν ′

D obey the Gaussian
distribution function. The presented qualitative picture, drawn
above, is confirmed by these exact calculations.

The goal of this paper is to give a simple analytic considera-
tion of how the fluctuations Δν ′

D change the intensity and shape
of a spectral line. It will be shown that the distortion of the shape
can be fairly large even in the central parts of a line and can be
used for the estimation of the levels of fluctuations of the tem-
perature and the local averaged small-scale turbulent velocity in
the nonuniform chaotic structure of radiation sources.

Of course, we can estimate only the sum of these fluctuations.
But often we have some additional information about their
possible values, and in these cases we can obtain very useful
restrictions on the levels of fluctuations. In all cases, the simple
procedure to describe the observed level of Doppler width
fluctuations separately by pure temperature and pure turbulent
velocity fluctuations is very useful.

3. CALCULATION OF THE MEAN EXTINCTION
COEFFICIENT

As is known (see Van Kampen 1981; Rytov et al. 1987),
the Gaussian probability function obeys the usual diffusion

equation. The evident condition ΔνD > 0 gives rise to the known
Green function of the diffusion equation which is equal to zero
at ΔνD = 0. So the average value of the extinction factor is
calculated from the following expression:

α(0)
ν = 1

N

∫ ∞

0
d(ΔνD)

[
exp

(
−

(
ΔνD − Δν

(0)
D

)2

2〈(Δν ′
D)2〉

)

− exp

(
−

(
ΔνD + Δν

(0)
D

)2

2〈(Δν ′
D)2〉

)]
α0

ΔνD

exp

[
−

(
ν − ν0

ΔνD

)2
]
,

(9)

where N is a normalizing constant equal to the integral of
the Green function over all values of ΔνD . We calculate this
constant numerically for every particular value of the level of
fluctuations η. To calculate the change of the normalized line
shape (see below), this constant is not necessary. We see that at
ΔνD = 0 the Green function is equal to zero. For small values
of the fluctuations (practically, for η < 0.2–0.3), the second
term in the Green function can be omitted, and we obtain the
usual symmetric Green function for the infinite one-dimensional
problem.

Introducing the dimensionless variable y = (
ΔνD −

Δν
(0)
D

)/
Δν

(0)
D ≡ Δν ′

D/Δν
(0)
D , Equation (9) can be presented in

the most simple form

α(0)(x, η) = 1

N

∫ ∞

−1
dy

[
exp

(
− y2

2η2

)
− exp

(
− (y + 2)2

2η2

)]

× α0

Δν
(0)
D (1 + y)

exp

[
− x2

(1 + y)2

]
. (10)

In Figure 1, we present the normalized extinction factor

α(0)
norm(x, η) ≡ α(0)(x, η)

α(0)(0, η)
(11)

for various values of parameter η. A comparison with the usual
normalized extinction factor αnorm(x) = exp(−x2) demonstrates
that our qualitative picture, presented above, is really true. The
extinction coefficients α(x) and α(0)(x, η) are the even functions
of the dimensionless frequency x, and we present the α(0)

norm(x, η)-
factor only for positive x.

We see that the normalized extinction factor α(0)
norm(x, η)

for x < 1.65 is less than the usual factor exp(−x2). Near
x = 1.65, it becomes greater than exp(−x2). For x = 2.5 and
η = 0.5, the value α(0)

norm is seven times greater than the usual
normalized extinction coefficient. Remember that the spectral
lines at x = 2.5 are practically impossible to observe in the pure
form. Besides, for these x, the Doppler profile usually does not
occur. In the middle of a line, the difference between α(0)

norm(x, η)
and the value exp(−x2) is also large.

It is also interesting to compare nonnormalized extinction
coefficients α(0)(x, η) and α(x). In Table 1, we present the ratio
α(0)(x, η)/α(x) for a number of values of x and η. It is seen that
this ratio, taken at x = 0, monotonically grows with the increase
of parameter η (we calculated the results only for η � 0.5).
This means that in the center of a line the stochastic atmosphere
is more optically thick than the medium without fluctuations.
The inequality α(0)(x, η) > α(x) takes place up to x � 0.45 for
η = 0.1 and up to x � 0.25 for η = 0.5. For intermediate values
of fluctuations, this inequality takes place inside this interval.
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Figure 1. Values of the normalized mean extinction coefficient α
(0)
norm(x, η).

The bold line presents αnorm(x) = e−x2
in the absence of the Doppler width

fluctuations (η = 0). The numbers denote the values of the level of fluctuations η.

Table 1
Values of α(0)(x, η) / α(x)

η 0 0.1 0.2 0.3 0.4 0.5

x = 0 1 1.010 1.046 1.137 1.270 1.340
0.25 1 1.007 1.028 1.050 1.050 1.032
0.5 1 0.998 0.987 0.951 0.902 0.864
0.75 1 0.988 0.947 0.885 0.828 0.795
1 1 0.980 0.928 0.869 0.826 0.810
1.5 1 1.001 1.014 1.044 1.092 1.163
2 1 1.126 1.421 1.786 2.180 2.617

Then the weak opposite inequality takes place, up to x ≈ 1.6.
For x > 1.6, the inequality α(0)(x, η) > α(x) returns once more,
and it becomes stronger with the increase of frequency x. This
is a purely statistical effect.

4. PROPAGATION OF CONTINUUM RADIATION
THROUGH A STOCHASTIC SLAB WITH ZERO

EMISSIVITY

Here, we consider a simple problem when continuum radia-
tion from a star during its propagation in the interstellar medium
meets a slab L of resonant stochastic medium with optical depth
τ0 = α(0)(0, η) L in the center of the resonant absorption coef-
ficient. Considering the propagation of continuum radiation in
this medium, we can take the intensity of the incident radiation
equal to a constant value I0 inside the frequency interval of an
absorption line that arises in this case.

The intensities of light in a continuum Ic, and in a spectral line
frequency range Iν(x, η) after propagation, through the layer L
are

Ic = I0 e−τc ,
(12)

Iν(x, η) = I0 e−(τc+τ0 α
(0)
norm(x,η)).
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Figure 2. Normalized profile of the absorption line at τ0 = 1. The bold line
corresponds to the absence of the Doppler width fluctuations (η = 0). The
numbers denote the values of the level of fluctuations η.

The shape of the resulting absorption line is described by the
ratio

r(x, η) = Iν(x, η)

Ic

= e−τ0α
(0)
norm(x,η). (13)

In Figure 2, we present the function r(x, η) for the case τ0 = 1
at the levels of fluctuations η = 0, 0.1, 0.2, 0.3, 0.4, and 0.5.
We see that the fluctuations of the Doppler width give rise to the
decrease of the line width compared to the usual layer without
the fluctuations (η = 0). But in the line wings (x > 1.60) the
situation is opposite—the absorption line becomes larger with
the increase of the fluctuations. Remember that in reality, the
wings are not described by the Doppler width approximation
accepted in our paper. So our analysis is valid only in central
parts of a spectral line.

5. DISTORTION OF THE ABSORPTION LINE IN A
STOCHASTIC PHOTOSPHERE

The origin of the absorption lines in stars’ photospheres is
more complex than that in the separate layer considered above. A
detailed description of this problem is presented in the literature
(e.g., Jefferies 1968; Athay 1972; Gray 1992; Kogure & Leung
2007).

To calculate the absorption line profile, we should know the
distribution of the radiative source function Sν , the extinction
coefficients of the continuum radiation αc, and the spectral line
radiation αν inside the photosphere of a star. In models of
photospheres, one uses some mean optical depth τm (dτm =
αm dz). Usually, the mean extinction coefficient αm is the
Rosseland mean value. The model is known if all physical
quantities (e.g., temperature, chemical abundance, the source
function Sν , the extinction factors) are known as functions
of τm.
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The optical depths τν(τm) and τc(τm) are equal to

τν(τm) =
∫ τm

0
dτ ′

m

αν(τ ′
m) + τc(τ ′

m)

αm

,

(14)

τc(τm) =
∫ τm

0
dτ ′

m

αc(τ ′
m)

αm

.

The intensities of the outgoing spectral line and continuum
radiation are calculated as follows:

Iν(ϑ) =
∫ ∞

0

dτm

cos ϑ
Sν(τm)e−τν (τm)/ cos ϑ , (15)

Ic(ϑ) =
∫ ∞

0

dτm

cos ϑ
Sν(τm)e−τc(τm)/ cos ϑ . (16)

Here, ϑ is the angle between the normal to the photosphere
and the line of sight n directed to an observer. For all stars
(besides the Sun), we observe the radiation fluxes Fν and Fc.
So the observed profile of a spectral line is characterized by the
expression

rν = Fν

Fc

=
∫ ∞

0 dτm Sν(τm)E2(τν)∫ ∞
0 dτm Sν(τm)E2(τc)

, (17)

where the function E2(τν) is determined by the expression

E2(τν) =
∫ ∞

1

dx

x2
e−x τν . (18)

In the early years of absorption line theory, there were some
simple approaches for obtaining the formulae for the spec-
tral profile function rν = Fν/Fc. Most of these approaches
considered that the source function Sν(τm) coincides with the
Planck function Bν(T (τm)) which, near the star surface, can
be represented as linearly depending on the optical depth τm

(Bν(τm) ≈ B0(1 + βντm)). Likewise, one assumes that the ratios
αν/αm and αc/αm do not depend on τm. These assumptions give
rise to the simple formula (Sobolev 1969)

rν = 1 + 2
3βναm/(αν + αc)

1 + 2
3βναm/αc

,

(19)
βν = 3

8

hν

kT0

1

1 − e
− hν

kT0

.

Here, T0 is the temperature at τm = 0.
Note that in Rayleigh–Jeans limit (hν/kT0 � 1), the value

βν = 3/8 is independent of T0 and ν. This means that the
large-scale value βν (the mean temperature gradient) is less
sensitive to small-scale fluctuations than the extinction factor
αν , which has a local sense. For this reason, one may assume
that the mean large-scale radiative source function Sν is also
practically insensitive to these fluctuations in the photosphere.
It seems that the stochasticity of such large-scale functions Sν is
not correlated with the small-scale fluctuations of the Doppler
widths, and it can be averaged independently of the latter.

For weak lines (αν � αc) the LTE assumption (without
additional suppositions) gives rise to the simple formula (Gray
1992)

(1 − rν) ∝ αν/αc. (20)

For stochastic photospheres we can use α(0)(x, η) instead of αν .
Besides, we have to use the independently averaged large-scale
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Figure 3. Distortion of an absorption spectral line in a stochastic stellar
photosphere (Teff = 104 K, log g = 4, λ0 = 4475 Å). The bold curve presents the
spectral line Fnorm 1(Δλ, 0) = Fν (Δλ)/Fν (0) in a nonstochastic photosphere.
Dotted lines present values Fnorm 1(Δλ, η) = Fν (Δλ, η)/Fν (0, η) and other
lines present Fnorm 2(Δλ, η) = Fν (Δλ, η)/Fν (0, 0). Numbers denote the degree
of temperature fluctuations η.

values Sν and βν in Equations (17) and (19). Below we use
the assumption that these averaged values differ only slightly
from those in nonfluctuating photospheres (remember that βν in
the Rayleigh–Jeans limit is independent of temperature). Strictly
speaking, we have to construct the photosphere models using the
radiative transfer equation with the averaged extinction factor
α(0)

ν instead of the usual αν-factor.
The inequality α(0)(x, η) > α(x), mentioned in Section 3,

means that absorption lines in stochastic photospheres near
the center of a line are “deeper” than in usual photospheres.
Statistical increase of αν denotes that the absorption line arises at
a smaller distance from the surface compared with nonstochastic
photospheres, and the line becomes “deeper.” Of course, this
also follows from approximate Equations (19) and (20), which
have a purely qualitative sense. Below we confirm this statement
from calculations using a real model of the photosphere, which
does not assume linear dependence of the source function on
the optical depth τm and takes into account that αν/αm and
αc/αm depend also on τm. Of course, we use the usual model of
nonfluctuating photospheres.

There are many published models of photospheres (see, for
example, Mihalas 1965; Strom & Avrett 1965; Kurucz et al.
1974). We chose model 1 from Strom & Avrett (1965) because
they directly present the functions Sν , αν/αm, and αc/(αc + αν)
for a number of wavelengths as functions of τm. Model 1 in
this paper corresponds to a photosphere with Teff = 104 K and
log g = 4. This LTE model takes into account the opacities of H,
H−, H+

2, He i, He ii, electron scattering, and Rayleigh scattering.
It does not take into account the blanketing effects.

We chose the wavelength λ = 4475 Å as the wavelength of
the line center. It was more exact to calculate the value Fν , not
Fc. For this reason we present in Figure 3 the normalized values
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Fν(Δλ)/Fν(0) for a nonstochastic photosphere (the bold curve)
and the analogous values Fν(Δλ, η)/Fν(0, η) for a stochastic
photosphere with the level of fluctuations η = 0.3 and 0.4
(the dotted curves). It is seen that in the stochastic photosphere
the spectral line is narrower than in the usual photosphere.
To demonstrate that the stochastic photosphere gives rise to
“deeper” lines, we also present the values Fν(Δλ, η)/Fν(0) for
η = 0.2, 0.3, and 0.4. It is seen that in the center of the line the
stochastic effects diminish the intensity. For η = 0.3 and 0.4,
the intensities consist of 86% and 74% of the intensity in the
nonstochastic case.

Our calculations were made for a pure thermal Doppler veloc-
ity. In this case, the absorption line is very narrow ΔλD ≈ 1 Å.
Examples of such narrow absorption lines are presented by
Athay (1961).

It should be noted that for the past few decades 2D and 3D
nonstationary pure numerical models of stellar atmospheres
have been developing (see, e.g., Fraytag & Salaris 1999;
Asplund et al. 2000, 2004; Nordlund & Stein 2001; Fraytag
et al. 2002; Steffen & Holweger 2002). It seems that in these
nonstationary calculations the effects of fluctuations of the
Doppler width are included ab initio, as a result of numerical
solution of the full system of hydrodynamical and radiative
transfer equations. Of course, to obtain the observed mean
spectra, the numerical solutions need to be averaged over a
large enough time for the calculations (corresponding to many
statistical realizations). These hydrodynamical nonstationary
theories are very complex and, till now, their general application
has been limited (see Ludwig & Kucinskas 2005). The most
important achievements of these calculations are the corrections
of the chemical element distribution inside the atmospheres.

6. PROPAGATION OF A SPECTRAL LINE THROUGH
THE STOCHASTIC LAYER

Small distortions in the extinction factor can result in fairly
large distortions in observing spectral lines if the incident
resonant intensity propagates through an optically thick layer L
of matter with fluctuations of temperature and mean small-scale
turbulent velocity. The layer can consist of some “sublayers”
with different temperature and turbulent velocities, i.e., it
can be very inhomogeneous. These distortion effects can be
observed most readily in the propagation of maser emission.
Maser observations show (see the following section) that most
frequently a maser emission line has a Gaussian shape with
Doppler width ΔνS . In this case, we obtain the following
expression for the observed mean intensity:

I (0)(x, η) = I0e
−a2x2

e−τ0α
(0)(x,η). (21)

Here, x is the dimensionless frequency (see Equation (6)) which
uses the mean Doppler width Δν

(0)
D corresponding to the layer,

parameter a = Δν
(0)
D /ΔνS , and τ0 = α0/Δν

(0)
D L is the optical

thickness of the layer corresponding to the center of the line for
the medium without the fluctuations (η = 0) (see Equations (6)
and (10)). To use this dimensionless parameter we pick out the
factor α0/Δν

(0)
D ≡ α(0) from Equation (10)

α(0)(x, η) = α0

Δν
(0)
D

α(0)(x, η), (22)

where the dimensionless value α(0)(x, η) describes the extinction
coefficient α(0)(x, η) in terms of the usual extinction factor α(0),
taken in the center of a line. It does not coincide with αnorm(x, η).

The sense of parameter a is simple. Thus, the case a = 0.5
corresponds to the wide incident spectral line, and a = 2
corresponds to the narrow incident line as compared to the
Doppler width of resonant atoms in the layer. The term
I0 exp(−a2x2) is the incident maser intensity from the source.

In Figure 4, we present normalized intensities I (0)(x, η)/I (0)
max

for various values of the parameters τ0 and a. First of all, we see
that the stochastic fluctuations of the Doppler width make the
lines slightly narrower than in the nonstochastic medium. But
the main distortion occurs near the center of a line, namely,
the stochastic fluctuations make the central minimum more
profound compared to the nonstochastic medium. It seems
this difference can be used for estimation of the parameters
η and τ0.

It is interesting to compare our Figure 4 with the analogous
Figure 8 of Silant’ev et al. (2006) devoted to the distortions due
to the existence of finite-correlated turbulence in the layer. The
main difference between these figures is that the finite-correlated
turbulence decreases the minimum in the center of a line, in
contrast to our case of stochastic Doppler width. Besides, the
narrowness of the disturbed lines is greater than in the present
case. Remember that the effects of finite-correlated turbulence
occur if the mean turbulent velocity uturb is greater than the
thermal velocity uth. If there are many turbulent cells inside the
layer, then the effects of finite-correlated turbulence disappear
in all cases. Remember that our effect occurs for small-scale
turbulence. To some extent these two types of stochastic effects
are complementary to each other.

7. MASER EMISSION FROM AN INVERTED
STOCHASTIC MEDIUM

A maser emission line arises in an inverted medium where
the optical depth of the propagating flux can be considered
as a negative value (see Rybicki & Lightman 1979). We use
the normalized expression Inorm(x, η) = I (x, η)/I (0, η) to
investigate the shape of the maser emission line

Inorm(x, η) = exp
[
τ0

(
α(0)

norm(x, η) − 1
)]

. (23)

Here, τ0 > 0 is the magnitude of optical length in the center
of the line (x = 0), and the definition of α(0)

norm(x, η) is given
in Equation (11). Usually, in cosmic maser sources we have
τ0 	 1. For a medium without fluctuations the dimensionless
coefficient α(0)

norm(x) is equal to exp(−x2), and Equation (23)
acquires the usual form

Inorm(x) = exp
[
τ0

(
e−x2 − 1

)]
. (24)

This expression at small dimensionless frequencies acquires the
Gaussian form

Inorm(x) � exp (−τ0 x2). (25)

It is interesting that for τ0 	 1 the exact Equation (24) can
also be satisfactorily approximated by the Gaussian curve (25)
(see, for example, Strelnitskij 1982) for x inside all the profiles.
Indeed, the value A1 = Inorm(x1) occurs at

x2
1 = ln

(
1 +

ln(A1)

τ0

)
→ | ln(A1)|

τ0
. (26)

For the Gaussian curve (25), we have

x2
1 = | ln(A1)|

τ0
. (27)
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Figure 4. Normalized shape I (x, τ )/Imax of the maser line with a Gaussian initial profile after passage through the layer with the level of fluctuations of stochastic
Doppler width η = 0.3. The bold lines correspond to the usual layer without fluctuations. The cases (an), (bn), and (cn), with n = 1, 2, 3 . . ., represent cases
a = Δν

(0)
D /ΔS = 0.5, 1, and 2, respectively; Δν

(0)
D and ΔνS are the Doppler widths in the layer and a maser source. The optical depth of the layer τ at the line center

takes the values 1, 2, and 3.

Equations (26) and (27) coincide with each other for large τ0,
when the inequality | ln(A1)|/τ0 � 1 holds. So in the mid-
dle of a profile (A1 = 0.5) the x1 values are equal to 0.2680
and 0.2632 at τ0 = 10 according to Equations (24) and (25),
correspondingly. From Equations (26) and (27), one follows
that the line width for τ0 	 1 is proportional to 1/

√
τ0 (see

Strelnitskij 1982). Remember that we consider only nonsatu-
rated masers. Of course, saturated masers are observed very
frequently.

For these reasons, maser lines are approximated by the
Gaussian curve (25). In many observed maser spectra, the
Gaussian approximation is very satisfactory. In Figure 5, we
present some examples of H2O maser spectra which practically
coincide with the Gaussian curves.

The important problems for maser emission sources are how
to estimate the parameters τ0 and ΔνD . The extremely large
maser intensities only denote that τ0 	 1. Maser spectra (see

Figure 5) usually refer to radial velocity u connecting with
the frequency by the relation ν = uν0/c. It means that the
dimensionless frequency x is connected with the radial velocity
u by the relation x = Cu with C = √

3/
√

2uD . So the
transformation from observed spectra to spectra as functions
of dimensionless frequency x is related to knowledge of the

effective Doppler velocity uD =
√

u2
th + u2

turb that determines
the Doppler width ΔνD (see Equation (1)).

Formally, we can calculate the values of τ0 and uD from the
exact Equation (24) using the observable spectra as a function of
u = x/C. Taking the values A1 = Inorm(u1) and A2 = Inorm(u2)
from the observed spectrum at u—points u1 and u2 = √

2u1—
we easily obtain

τ0 = ln(A1)

Z − 1
, uD =

√
3√
2

u1√| ln(Z)| , (28)
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Figure 5. Typical flare of H2O maser emission in NGC2071. At all the stages
of the evolution, the radial velocity and the line width change slightly, and the
line profile is approximated by the Gaussian curve very satisfactorily (the dotted
lines).

where the auxiliary value Z is equal to

Z = ln(A2)

ln(A1)
− 1. (29)

Unfortunately, for most maser spectra this procedure is practi-
cally useless because the spectra have Gaussian form, i.e., they
depend on the one parameter τ0C

2, not on two separate parame-
ters τ0 and C. We can obtain from Equation (24) the only relation
τ0C

2 = ln(A1)/u2
1. Equation (28) can be used for masers with

τ0 � 5. The formula for τ0 in Equation (28) has logarithmic
dependence on values Inorm(x), i.e., it is not strongly sensitive
to variations of Inorm(x). Practically, this means that even for
τ0 < 5 we can estimate the τ0 value with fairly large errors.
The relative insensitivity of the line shape to the value τ0 also
denotes that masers with very different intensities can have prac-
tically the same line shapes. The same conclusion is true also
for determination of the values τ0 C2 and uD.

8. APPLICATION TO THE OBSERVED NON-GAUSSIAN
MASER SPECTRA

Most suitable for the investigation of the distortion effects in
the spectral lines are the radio lines at λ = 1.35 cm from H2O
maser sources. According to Varshalovich et al. (2006), the
extinction coefficient of H2O maser radiation has a Gaussian
shape at different temperatures—from 200 K up to 900 K—
that determines the Doppler width of the spectral line (with the
inclusion of small-scale turbulence). The fluctuations of tem-
perature and small-scale turbulent velocities in a maser “spot”
tend to the distortion of the Gaussian shape of a line. As a
rule, the spectrum of such a source consists of a large number
of separate emission features. Every feature is radiating from
a separate maser “spot” with dimension ≈ 0.1–0.2 AU. Even
current interferometers with maximal baselines cannot resolve
these spot structures. Here we attempt, using our theory and the
observational data, to obtain some estimations concerning
the “spot’s” parameters, τ0, η, uD , possible variations of the
temperature T, and the mean small-scale turbulent velocity
uturb.

To find a suitable line shape, we analyzed a large number
of H2O maser spectra. These spectra were obtained from long-
term monitoring of sources of maser emission in star-formation
regions. The monitoring was carried out with the RT-22 radio
telescope of the Pushchino Radio Astronomy Observatory
(Russia) (see, for example, Berulis & Lekht 1996; Lekht 2000).
We took separate emission features, as a rule, during strong
flares. In these cases, most of the components are single, and
their blending with other lines can be essential only in the wings.
We took lines whose blending, if it existed at all, was not higher
than the level 0.1–0.15. We chose symmetric lines. This is an
additional argument that the line is single. The proof of the line
shape was made by the Gaussian fit.

In Figure 5, we present the evolution of an H2O maser flare in
the source NGC2071, that took place in 1991–1992 at a radial
velocity of about 9.9 km s−1. The dates of observations are
given on the left. The fluxes, radial velocities, and line widths
are given on the right. The dotted lines show the Gaussian fits.
This figure demonstrates that the radial velocity, line width
and shape (Gaussian) do not change in spite of large flux
variations. It seems the maser is near the saturated regime.
This character of the maser emission confirms that the observed
feature is single, and that our criteria for the single line choice are
correct.

It turns out that symmetric lines with non-Gaussian shape are
not frequent. In this paper, we present only those spectra where
the non-Gaussian shape is fairly large. We normalized fluxes
and the centers of the lines were displaced to zero velocity.
For additional safety, we averaged the left and right wings
(due to their symmetry) relative to the center of the lines. The
resulting spectra for the sources G43.8-0.1, W44C, and W75S
are presented in Figures 6–8. The dotted lines show the Gaussian
fits. On the left the names, the dates of observations, the radial
velocities, and the line widths at the level 0.5 are given.

Now, we remark on the reliability of the observed non-
Gaussian line shapes. The observed curves correspond to high
level fluxes of maser emission. The possible declinations of
points from a smooth curve are determined by the level of
noise temperature of the receptor and antenna. In all cases, the
relative declinations of line points do not exceed the values
0.3%–1%, whereas the differences between observed line
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Figure 6. Observed H2O maser line in G43.8-0.1 with non-Gaussian shape. The
dotted lines present the approximation by the Gaussian curve.
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Figure 7. Same as in Figure 6 for the source W44C.

shapes and Gaussian fits amount to 5%–8%. Without doubt,
the non-Gaussian shape lines were really observed.

Calculation of Inorm(x, η) (see Equation (23)) for various
values of τ0 and η, and comparison with the normalized spectra
from Figure 6(a)–(c) allow us to estimate the parameters τ0, η,
C, and uD. We found that this estimation is fairly sensitive to the
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Figure 8. Same as in Figure 6 for the source W75S.
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Figure 9. Result of approximations of spectra in W75S and G43.8-0.1. The
bold curves present the observed spectra, and the dotted lines present their
approximation by Equation (23). The parameters used are given in Table 2.

choice of the parameter η. Practically, we can distinguish the
cases η ± 0.02. The dependence of Equation (23) on τ0 is not
so strong compared to the case of Equation (24). The reason is
pointed out below. Because the deviation of the line shape from
the Gaussian form is usually low, our explanation is also valid
for the case of lines with non-Gaussian shape. Nevertheless, the
non-Gaussian case gives an additional chance to estimate the
values τ0 and uD separately, especially for large deviations from
the Gaussian shape.

In Figure 9, we present the results of the approximation
by Equation (23) of the observed non-Gaussian spectra in the
sources W75S and G43.8-0.1. In these cases, the deviations
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Table 2
Values of Basic Parameters of Various H2O Maser Features Having

Non-Gaussian Line Shape

Source Date τ0 η uD, km s−1 C

W75S 1994 Nov 11 26 0.25 4.6 0.27
W44C 2006 Mar 28 31 0.26 2.8 0.43
G43.8-0.1 1981 Dec 23 33 0.25 0.54 2.3

1997 Jul 1 32 0.15 0.68 1.8
1997 31 0.25 2.4 0.50

from the Gaussian shape are fairly large (see Figures 6 and 8).
In Table 2, we present the results of approximations by Equation
(23) for a number of non-Gaussian spectra. We practically
exactly approximated the spectra in three different points of a
spectrum. This diminishes considerably the possible variants for
the choice τ0. It seems the possible deviation of this parameter is
Δτ0 = ±2. The same relative error has the determination of the
constant C, and connected with it is the mean effective Doppler
velocity u

(0)
D = √

1.5/C.
We see that the level of the Doppler width fluctuations η (see

Equation (3)) in all these sources is fairly large η � 0.15–0.25.
It means that in these sources there are large fluctuations of
the temperature T and the mean turbulent velocities uturb. The
obtained values of mean effective Doppler velocity are also
rather large (see Table 2), and demonstrate that the turbulent
velocities give the main contribution to u

(0)
D . So if we take the

maximum mean temperature in the sources equal to 625 K
(uth � 0.92 km s−1) (see, for example, Varshalovich et al.
2006), then the required turbulent velocity is uturb 	 uth.

9. SUMMARY

Stochastic variations of temperature T and mean turbulent
velocity uturb determine the corresponding stochastic variations
of the Doppler width ΔνD of a spectral line. We observe the
mean intensities I (0)

ν from the stochastic atmospheres of stars
and interstellar media. These intensities are described by the
mean values of the extinction coefficient α(0)

ν that differs fairly
strongly from the usual extinction factor α(x) = α(0) exp (−x2)
(here x = (ν − ν0)/ΔνD is dimensionless frequency).

We have calculated the mean extinction coefficient assuming
a Gaussian probability distribution of the Doppler width fluctu-
ations. The value α(0)

ν in the center of the line (x = 0) is always
greater than the usual coefficient α(0). This means that near the
center of a spectral line a stochastic medium is less transparent
than a nonstochastic one. At some distance x from the center of a
line, the value of α(0)

ν is lower than α(x), and for x > 1.60–1.65,
in the wing of a line, the value α(0)

ν 	 α(x). Such a complex
form of the mean extinction factor gives rise to distortions of
the observed spectral line shape.

First, the absorption lines in stochastic media are narrower
than in nonstochastic ones in the central parts of a line (x < 1.6),
and are wider in the wings. The propagation of a spectral line
through the stochastic layer of a gas shows more profound
minima in the center of the line compared to the nonstochastic
medium. The absorption line acquires a non-Gaussian shape.

Stochastic media with an inverted distribution of atoms and
molecules give rise also to the non-Gaussian shape of the
outgoing maser radiation. This feature allows us, in principle,
to estimate the optical length at the center of the line τ0 and

the effective mean Doppler velocity u
(0)
D , connected with the

mean thermal and turbulent velocities. Remember that from the
Gaussian shape one can estimate only the ratio τ0

/(
u

(0)
D

)2
.

We have observed H2O maser lines with non-Gaussian
shape in a number of sources (e.g., W75S, G43.8-0.1).
The approximation of some of them (having the most profound
non-Gaussian shape) with the theoretical shape allows us to esti-
mate the values τ0, u

(0)
D , and the level of the Doppler fluctuations

η � 0.15–0.25. The calculated value of the effective Doppler
velocity demonstrates that in these sources the small-scale tur-
bulent velocities are larger than the thermal ones. It means that
the stochastic fluctuations of ΔνD are mainly due to fluctuations
in the mean turbulent velocities. This seems quite reasonable
for these variable sources in regions of stellar formation.

Maser emission lines with non-Gaussian shape are not fre-
quent during the observations, but they can serve as an addi-
tional method for the investigation of the physical parameters
in maser “spots.” Of course, the distortions of the absorption
lines can also be useful for estimating the physical parameters
in atmospheres.

The authors are grateful to an anonymous referee for numer-
ous remarks which helped considerably improve the manuscript.
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