
Pattern Recognition 43 (2010) 873 -- 886

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Fast kmost similar neighbor classifier formixed data (tree k-MSN)

Selene Hernández-Rodríguez∗, J. Fco Martínez-Trinidad, J. Ariel Carrasco-Ochoa
Computer Science Department, National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Sta. María Tonantzintla, Puebla, CP 72840, Mexico

A R T I C L E I N F O A B S T R A C T

Article history:
Received 14 July 2008
Received in revised form 9 July 2009
Accepted 6 August 2009

Keywords:
Nearest neighbor rule
Fast k nearest neighbor search
Mixed data
Non-metric comparison functions

The k nearest neighbor (k-NN) classifier has been a widely used nonparametric technique in Pattern Recog-
nition, because of its simplicity and good performance. In order to decide the class of a new prototype, the
k-NN classifier performs an exhaustive comparison between the prototype to classify and the prototypes
in the training set T. However, when T is large, the exhaustive comparison is expensive. For this reason,
many fast k-NN classifiers have been developed, some of them are based on a tree structure, which is cre-
ated during a preprocessing phase using the prototypes in T. Then, in a search phase, the tree is traversed
to find the nearest neighbor. The speed up is obtained, while the exploration of some parts of the tree is
avoided using pruning rules which are usually based on the triangle inequality. However, in soft sciences
as Medicine, Geology, Sociology, etc., the prototypes are usually described by numerical and categorical
attributes (mixed data), and sometimes the comparison function for computing the similarity between
prototypes does not satisfy metric properties. Therefore, in this work an approximate fast k most similar
neighbor classifier, for mixed data and similarity functions that do not satisfy metric properties, based on
a tree structure (Tree k-MSN) is proposed. Some experiments with synthetic and real data are presented.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The k-NN [1] rule has been a widely used nonparametric tech-
nique in Pattern Recognition, because of its simplicity and good per-
formance. In order to decide the class of a new prototype, the k-NN
classifier performs an exhaustive comparison between the prototype
to classify and the prototypes in the training set T. However, in some
applications, the exhaustive comparison between the new prototype
to classify and the elements in the training set becomes impractical.
Many fast k-NN classifiers have been designed to avoid this problem.
In some papers, different reviews of these fast k-NN classifiers are
provided, for example, in [2–4].

The objective of the fast k-NN classifiers is to reduce the num-
ber of comparisons trying to keep the original classification accuracy
obtained by k-NN. Speeding up the k-NN classifiers is required be-
cause some applications demand a rapid response on large datasets,
for example online stock analysis, air traffic control, network traf-
fic management, intrusion detection, etc. Also, fast k-NN classifiers
are useful for those problems with high dimensionality where the
comparison function could be very expensive [5,6], under this con-
text, reducing the number of comparisons could be very important.

∗ Corresponding author.
E-mail addresses: selehdez@inaoep.mx (S. Hernández-Rodríguez),

fmartine@inaoep.mx, ariel@inaoep.mx (J.A. Carrasco-Ochoa).

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.08.014

For these reasons, although nowadays the computers are very fast,
the development of fast k-NN classifiers is currently an active re-
search area [7,8]. Nevertheless, most of the fast k-NN classifiers pro-
posed in the literature have been designed for numerical prototype
descriptions compared through ametric function. Thus, most of these
methods usemetric properties to reduce the number of comparisons.

However, in many real-world applications, prototypes are de-
scribed by both numerical and categorical variables (mixed data).
In these cases, sometimes the comparison function does not satisfy
metric properties. For this reason, we cannot use most of the fast k-
NN classifiers proposed for numerical prototype descriptions. There
are two possible directions to work with non-metric similarity func-
tions, which are:

1. Working on the prototype representation level, before the use of a
classifier. In this approach, the main idea is to work with the dis-
similarity matrix, which stores the relation of similarity between
prototypes in T. Some directions to work with this prototype
representation are:

• Correcting the dissimilarity matrix to make it Euclidean [9]: A
non-Euclidean dissimilarity matrix can be corrected to become
Euclidean, if the comparison function is symmetric.

• Embeddings for dissimilarities [9–12]: The objective of an
embedding is to transform the dissimilarity matrix into a
Euclidean space, such that the discrepancy between the orig-
inal dissimilarities and the estimated distances is preserved,

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:selehdez@inaoep.mx
mailto:fmartine@inaoep.mx
mailto:ariel@inaoep.mx

874 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

in order to use favorable properties of the Euclidean space
(which is topologic, inner product, normed and metric).

• Using the dissimilarity representation: This approach uses the
dissimilarities to represent prototypes [9,13]. Thus, for a certain
prototype, the dissimilarities against prototypes in R (where R
is a small subset from T) are used as feature vector, instead of
the features of the prototype in its original representation.

2. The second direction is to work with the original prototype repre-
sentation space and developing algorithms suitable to work with
mixed data and non-metric similarity functions [45].

Our work addresses the second direction, where if a metric is not
available but a comparison function that evaluates the similarity be-
tween a pair of prototypes can be defined, given a new prototype to
classify, the objective is to find the k most similar neighbors (k-MSN)
and use them for classifying the new prototype. In this way, a k-MSN
classifier uses a training set (T) of N prototypes, where each pro-
totype is described by d attributes, which can be numerical or non
numerical. Given a new prototype Q to classify, the classifier finds
its k most similar neighbors in T (k MSN's) according to a compar-
ison function and assigns to Q a class, based on the k most similar
neighbors. However, the exhaustive search of the k-MSN, as occurs
with the k-NN, could be very expensive if T is large. Therefore, the
aim of this paper is to present an approximate fast k-MSN classifier
for mixed data based on a tree structure, which does not assume
the comparison function satisfies metric properties. Our classifier,
for avoiding the exhaustive search of the k-MSN will not use spe-
cial properties of the comparison function. It only will assume that
the comparison function reaches its maximum when a prototype is
compared against itself, in this way, our classifier can be applied on
different applications with different comparison functions.

This paper is organized as follows: Section 2 provides a brief
review of fast k-NN classifiers. In Section 3, our fast k-MSN classifier
is introduced. In Section 4, experimental results obtained using our
classifier and a comparison against other fast classifiers is reported.
Finally, in Section 5 we present our conclusions and future work.

2. Related work

Nowadays, with the current computer technology it is possible
to store large amounts of information. In order to apply the k-NN
classifier on applications where the training set is large, different ap-
proaches have been developed. Some approaches, like condensation
or edition [14], are used to reduce the size of the training set, before
applying the k-NN classifier. Another approach, which is followed
in this paper, is developing fast k-NN classifiers. In the literature,
different divisions of the fast k-NN classifiers have been proposed.
Following [4] fast k-NN classifiers can be divided as follows:

1. Tree-based: In this case, the training data space is partitioned into
“regions” and usually a tree structure is used for recording and
indexing these regions. Given a new prototype, its NN is found
using the tree. Some of these classifiers are: kd-tree [15], R-tree
[16], SS-tree [17], SR-tree [18], pyramid [19] and Voronoi cell [20].

2. Elimination-based: These kinds of fast classifiers are based on
pruning rules derived from the triangle inequality to avoid com-
parisons among prototypes. In some cases, also a tree structure is
used [4,21–23] and in some other cases, projection based meth-
ods [15,24,25], are used.

3. Approximate NN search: Another research direction is to find an
approximate NN, instead of the exact one [26–28].

4. Application-dependant: For example, in [29] an approach, applica-
ble when the triangle inequality may not hold but it is possible
to impose a geometric structure and dimensionality on the space,

is proposed. Also, in [2] an algorithm applicable on high dimen-
sional data, such as images, is presented. In [30] an algorithm
based on the transformation of correlated data is introduced.

One of the first andmost studied fast k-NN classifier was proposed
by Fukunaga and Narendra [21]. In the Fukunaga and Narendra's
(FN) classifier, a tree is created by decomposing the training set into
C subsets, using the C-Means algorithm. In this case, each subset
represents a node of the tree, which is divided again to construct
the tree. In FN classifier a fixed size tree, with three levels and C = 3,
was used. Each node p of the tree contains four features, which are:
the set of prototypes in the node p(Sp), the number of prototypes in
p(Np), the center of the node (Mp) and finally the maximum distance
(Rp) between Mp and the prototypes in Sp. Given a new prototype Q
to classify, FN fast classifier searches the NN based on a branch and
bound method to traverse the tree. Two pruning rules are used to
decide whether or not a node or a prototype of the tree is evaluated.
These rules are based on the triangle inequality. The first pruning
rule for nodes of the tree is

B + Rp <D(Q ,Mp) (1)

where B is the distance between Q and the current NN and D is
the distance function. In this case, the nodes satisfying condition
(1) cannot contain a prototype closer to Q than the current NN and
therefore, those nodes are eliminated. The second pruning rule is
applied to the prototypes that belong to a leaf node of the tree, in
order to decide whether or not to compute the distance from Q to the
prototypes of the node. The pruning rule for each prototype Oi ∈ Sp is

B + D(Oi,Mp)<D(Q ,Mp) (2)

The prototypes that satisfy condition (2) cannot be closer to Q
than the current NN and therefore, the distance to Q is not computed.
The search process finishes when all nodes in the tree have been
evaluated or eliminated by the first pruning rule. Finally, the class
of the NN is assigned to Q. An extension to k-NN is also proposed
in [21], where, in the search process, B is the distance between Q
and the current k-NN instead of the current 1-NN. In this case, the
majority class of its k nearest neighbors is assigned to Q.

In the last years, some improvements on FN classifier have been
developed in two ways, the first one is the evaluation of different
clustering algorithms in the tree construction and the second one,
is the improvement of the pruning rules for making a faster FN
classifier.

In [31] an improvement on the tree construction algorithm is
proposed, building a binary tree where the leaves represent only
one prototype. In the search phase, FN pruning rules are used. Also,
in [32,33] other clustering algorithms are evaluated to construct the
tree, but using the same FN search algorithm.

In [33] two improvements on the FN pruning rule, based on the
information of sibling nodes, are also proposed. In this case, if the
distance between the center of a node and the nearest prototype of
the sibling node is too big, the sibling node can be pruned without
comparing its center against Q (the new prototype to classify); this
is called Sibling-Based pruning Rule (SBR). The second improvement
is a rule that combines iteratively FN pruning rule and SBR, which
is called Generalized pruning Rule (GR). According to their experi-
ments, Gómez-Ballester's (GB) classifier obtained best results using
GR rule.

In [34] an improvement on the FN pruning rule is presented (ONC
classifier), where the pruning rule is applied without comparing Q
against the center of p, instead of it, the distance between the current
nearest neighbor of Q and the node p (which is previously computed
and stored, in a preprocessing phase), is used to decide if p can be
safely pruned.

S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886 875

The improvements mentioned before, are exact methods because
they always find the same k-NN that would be found using the
exhaustive search. However, finding the k NN's (even using a fast
method) is a slow process for some tasks, therefore in some other
works [26,27], fast approximate k-NN classifiers, based on tree struc-
tures, have been proposed. An approximate classifier does not guar-
antee to find the k-NN, instead an approximation is obtained. In [27]
the first FN pruning rule is modified in order to finish the search
when the current NN is not too far from the exact NN, as follows:

(1 + e)(D(Q ,Mp) − Rp)>B (3)

where e is an error margin that allows decreasing the number of
comparisons. However, Moreno-Seco's (MS) classifier also relies on
metric properties to avoid comparisons.

All the improvements of FN classifier were designed to work with
numerical data when the prototype comparison function satisfies
metric properties, in particular the triangle inequality. However, in
[45] a fast k-NN classifier (Cluster tree) proposed to work with dis-
similarity functions was introduced. Cluster tree creates a tree struc-
ture, similar to the structure used by Fukunaga and Narendra, but
following a bottom-up approach instead of top-down. The tree con-
struction algorithm uses the similarities to build the bottom level. To
build the next levels of the tree (until the root is reached) the mean
and the standard deviation of the dissimilarities between the nodes
at the current level are used. In the classification stage of Cluster
tree, one or more paths (determined by a parameter �) are followed,
from the root to the leaf level of the tree. The k nearest neighbors
found in the reached leaves, are reported as the result.

From the related work about fast k-NN classifiers, we can notice
that most of the work is focused on numerical data applications,
where metric properties (of the prototype comparison function) are
used to reduce the number of comparisons. However, some compar-
ison functions for mixed data do not satisfy metric properties. There-
fore, in this work, a fast approximate k-MSN classifier for mixed data
based on a tree structure (Tree k-MSN), which can use any function
for comparing prototypes, is proposed.

3. Proposed classifier

The proposed algorithm, Tree k-MSN, consists of two phases. The
first one, or preprocessing phase, is the construction of a tree struc-
ture from the training set T, using strategies suitable for mixed data.
In the second phase, two search algorithms, which are independent
of metric properties of the comparison function, are proposed.

3.1. Preprocessing phase

In this phase, the training set is hierarchically decomposed to
create a tree structure. Thus, the root of the tree contains the whole
training set T. In order to create the following levels of the tree, each
node n of the tree is divided in C clusters, in such a way that each
cluster represents a descendant node of n. Each descendant node is
divided again and this process is repeated until a stop criterion is
satisfied.

Due to, in our algorithm, mixed data is allowed, instead of using
the CMeans algorithm for building the tree structure, as in FN classi-
fier, the C-Means with Similarity Functions algorithm (CMSF) [35,36],
is used. Among the clustering algorithms for mixed data analysis,
CMSF is the unique algorithm that allows creating C clusters, com-
puting as representative of each cluster one prototype belonging to
the cluster (i.e., a prototype contained in T); besides the CMSF allows
using any similarity function.

Each node p of the tree contains three features which are: Sp the
set of prototypes that belong to p; Np the number of prototypes in
p and unlike FN and MS classifiers, Repp a representative prototype

p p

p is a LEAF, marked with
the majority class

SC1 SC2

Fig. 1. Stop criterion 2(SC2).

of the node, which is the most similar on average to the rest of
prototypes in the node. The algorithm to construct the tree structure
is as follows:

1. CurrentNode = root of the tree
2. NodesToDivide = {CurrentNode}
3. p = 1
4. while |NodesToDivide| � 0
5. CurrentNode = NodesToDivide[1]
6. [PrototypesInCluster,RepresentativeOfCluster,

SizeCluster] = CMSF(CurrentNode,C)
7. for cluster i = 1 to C **C is the number of

clusters
8. nodep = new descendant node of CurrentNode
9. nodep.Sp = PrototypesInCluster (i)
10. nodep.Repp = RepresentativeOfCluster (i)
11. nodep. Np = SizeCluster(i)
12. if Stop Criterion = true then **SC1,

SC2or SC3**
13. nodep is a leaf
14. else NodesToDivide = NodesToDivide ∪ {nodep}
15. p = p+1
16. end for
17. NodesToDivide = NodesToDivide
18.end while

A node is marked as a leaf when a stop criterion is satisfied. In
this work we used a stop criterion based on the node size (SC1),
which is used in [21,23,31–33,37,38] and introduce two new stop
criteria (SC2 and SC3), which take into account not only the number
of prototypes of the node, but also the class distribution of these
prototypes. The three stop criteria are the following:

1. Stop criterion 1 (SC1): This criterion is based on the node size.
In this case, if the number of prototypes contained in a node
is less than a predefined threshold (Np �NoP), then the node is
considered as a leaf.
Following this criterion, the set of prototypes contained in a node
is divided, in order to obtain nodes with few prototypes, which
implies that the prototypes are more similar among themselves.
However, whenmost of the prototypes in a node of the tree belong
to the same class, then it probably implies that the prototypes of
the node are very similar among themselves even if the set is not
small enough to be a leaf. For this reason, we propose a second
stop criterion.

2. Stop criterion 2 (SC2): In this case, if most of the prototypes in a
node belong to the same class, then the node is considered as a
leaf and it is marked with the majority class, even if the set is not
small enough according to the first stop criterion (see Fig. 1). In
order to decide how many prototypes in the node must belong to

876 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

p p p+1

p is a LEAF, marked
with the majority class

SC1 SC3

Fig. 2. Stop criterion 3(SC3).

the same class, for generalizing the class of a node, a percentage
threshold (PercThres) is used.
In the nodes where this criterion is not satisfied, only the size of
the node is considered to create leaf nodes (SC1).
When the node is generalized by themajority class, through SC2, if
PercThres = 100%, it means that all prototypes in the node belong
to the same class (the generalized class of the node). However,
when PercThres< 100%, an error is introduced, because some pro-
totypes in the node do not belong to the majority class. Therefore,
we introduce a third criterion.

3. Stop criterion 3 (SC3): In this case, if certain percentage (PercThres)
of the prototypes in a node belongs to the same class, two nodes
are created (see Fig. 2). Using the prototypes that belong to the
majority class, a leaf node is created and it is marked with the
majority class. The rest of the prototypes are assigned to a second
node. In the second node, the size is considered to decide if the
node is a leaf (if Np �NoP) or if the node will be divided again.
In the nodes where SC3 criterion is not satisfied, only the size of
the node is considered to create leaf nodes (SC1).

3.2. Classification phase

In this phase, in order to avoid the exhaustive tree traversal,
the existing fast k-NN classifiers rely on pruning rules (based on
metric properties). As we are looking for a method applicable when
the comparison function does not satisfy metric properties, pruning
rules based on the triangular inequality cannot be used; therefore,
we propose to stop the search when a leaf of the tree is reached.
In the first search algorithm (local search), we propose to use a
depth-first search strategy and in the second search algorithm (global
search), we propose to use a best-first search strategy. The proposed
algorithms for searching the k-MSN are described below:

Local search: It begins at the root of the tree, following the path
of the most similar node and finishes when a leaf is reached. As each
node of the tree is represented by a prototype of the training set,
with known class, a list of the k-MSN is stored and updated during
the tree traversal. When the first leaf node l is reached, if l is marked
with the majority class, then only the representative prototype Repl
is considered to update the k-MSN (because most of the prototypes
in the node belong to the same class). If the node is not marked with
the majority class, then a local exhaustive search in the node is done
and the list of k-MSN is updated. After a leaf is processed, if the list
of k-MSN does not have k elements, then the tree traversal makes
backtracking to explore nodes closer to Q, in order to find k MSN's.
When the list is completed, the search stops. The algorithm of the
local search, to classify prototype Q, is as follows:

1. CurrentNode = root of the tree
2. while Current Node � Leaf
3. DescNodes = {nodep:nodep is a descendant node of

CurrentNode}

4. MostSimilarNode = argmin(Sim(Q,Repp), ∀ nodep
∈ DescNodes

5. CurrentNode = MostSimilarNode
6. kMSN_List = UpdateList_kMSN(kMSN_List, Repp)
7. end while
8. If CurrentNode.MarkedMajorityClass = true
9. kMSN_List = UpdateList_kMSN(kMSN_List,

RepCurrentNode)
10.else
11. Sim(Q,prototypeq), ∀ prototypep ∈ CurrentNode
12. kMSN_List = UpdateList_kMSN(kMSN_List,

prototypeq)
13. while |kMSN|< k
14. [CL] = Backtracking(find the closer leaf

to CurrentNode)
15. CurrentNode = CL
16. end while
17.end if-else
18.Class(Q) = majority class of k-MSN_List

Global search: It begins at the root of the tree, comparing Q
against the descendant nodes of the root, which are added to a list
(List_tree_traversal). After that, List_tree_traversal is sorted in such a
way that the most similar node to Q is in the first place. The most
similar node (first element) is eliminated from List_tree_traversal
and its descendant nodes are compared against Q, and added to
List_tree_traversal, which is sorted again. The search finishes when
the first element of List_tree_traversal is a leaf. In this search, it is
possible to reconsider nodes in levels of the tree already traversed
if the first node of List_tree_traversal belongs to a previous level in
the tree. The algorithm of the global search, to classify prototype Q,
is as follows:

1. CurrentNode = root of the tree

2. List_tree_traversal = Empty

3. while Current Node � Leaf

4. Current Node = List_tree_traversal [1]

5. List_tree_traversal = List_tree_traversal

6. DescNodes = {nodep:nodep is a descendant node
of CurrentNode}

7. List_tree_traversal = List_tree_traversal ∪
DescNodes

8. Compute the similarity between Q and
the nodes in DesNodes

9. Order List_tree_traversal in such a way that
the most similar prototype to Q is the first
element of List_tree_traversal

10. CurrentNode = List_tree_traversal [1]

11. kMSN_List = UpdateList_kMSN(kMSN_List, Repp)
12.end while

13.if CurrentNode.MarkedMajorityClass = true

14. kMSN_List = UpdateList_kMSN(kMSN_List,
RepCurrentNode)

15.else
16. Sim(Q,prototypeq), ∀ prototypeq ∈ CurrentNode
17. kMSN_List = UpdateList_kMSN(kMSN_List,

prototypeq)
18. while |kMSN|< k
19. [CL] = Backtracking(find the closer leaf to

CurrentNode)
20. CurrentNode = CL
21. end while
22.end if-else
23.Class(Q) = majority class of k-MSN_List

S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886 877

Local search
Global search

Fig. 3. Example of the search algorithms.

During the tree traversal, another list (List_k-MSN) containing the
k current MSN is stored and updated. After a leaf is processed (in a
similar way than in the local search), if List_k-MSN does not contain
k elements (MSN), then the first element in List_tree_traversal is
considered to follow a new route. The process stopswhen List_k-MSN
contains k elements (MSN). However, using both search strategies
(global and local), in practical problems where the training set is
large, it is quite difficult that List_k-MSN does not have k elements
(MSN) when the first leaf is processed.

After finding k-MSN, the majority class is assigned to the new
sample Q.

In Fig. 3 the difference between both search algorithms is shown.
As we can see, global search allows evaluating nodes in already tra-
versed levels.

4. Experimental results

In this section, we report the evaluation of the fast approximate
k-MSN classifier proposed in this work (Tree k-MSN). In order to
compare the proposed classifier, the following tree based classifiers
were considered: FN classifier [21], GB classifier using GR pruning
rule [33], ONC classifier [34], MS classifier [27] and Cluster tree [45].

To compare FN, GB, ONC and MS classifiers with our proposed
classifier (Tree k-MSN), we adapted these classifiers. The adaptation
consisted in the use of the same tree structure proposed in Section
3.1 and the same function, suitable to work with mixed data, in-
stead of a distance function. In this way, only the search algorithms
are compared. Besides, since GB tree traversal search algorithm was
proposed for a binary tree, in our tree GR pruning rule is applied to
all of the C-1 sibling nodes. When a leaf node is reached, as it could
contain more than one prototype, a local exhaustive comparison is
performed to find the k-MSN.

Cluster tree was implemented and tested using the same com-
parison functions (D, HVDM and HOEM) to work with mixed data
(during the preprocessing and classification stages), and the follow-
ing parameters: � = 2 and � = 2, as suggested by the authors.

There are other classifiers based in tree structures (for example:
[4,23]). However, it is not possible to adapt these classifiers to work
with mixed data and similarity functions, because some techniques,
such as PCA, which are only applicable to numeric data, are involved.

Thus, in the experimentation, the next k-MSN classifiers were
compared:

1. The exhaustive k-MSN classifier (using a dissimilarity function).
2. Adapted FN classifier.
3. Adapted GB classifier.

4. Adapted ONC classifier.
5. Adapted MS classifier.
6. Cluster tree.
7. Tree k-MSN, using local search.
8. Tree k-MSN, using global search.

In this work, the comparison functions, used for the experiments,
were Heterogeneous Value Difference Metric, HVDM [39], D1 [35] and
Heterogeneous Overlap-Euclidean Metric, HOEM [40] functions. These
three functions were selected because they allow comparing mixed
data. In particular, D and HVDM comparison functions are not met-
ric functions because they do not satisfy the triangle inequality
property. Tough HOEM function satisfies all metric properties, us-
ing this function the lower average classification accuracy was ob-
tained in the experiments. For the functions F, HVDM and HOEM
the most similar neighbor is the one that minimizes the comparison
function.

In order to compare the different classifiers, the accuracy (Acc)
and the percentage of comparisons between prototypes (Comp), were
considered. The accuracy was computed as follows:

Acc = No Correct prototypes ∗ 100
No Test Prototypes

(4)

where NoCorrectPrototypes is the number of correctly classified pro-
totypes in the test set and NoTestPrototypes is the size of the test set.
The percentage of comparisons between prototypes was computed
as follows:

Comp = No Comp Fast Classifier ∗ 100
No Training prototypes

(5)

where NoCompFastClassifier is the number of comparisons done by
the fast k-NN classifier, and NoTrainingPrototypes is the size of the
training set. According to (5), for the exhaustive classifier, the 100%
of the comparisons is done.

In the experiments, 17 datasets from the UCI repository [41] and
4 synthetic databases were considered. In Table 1, the description of
the used datasets is shown.

In all the experiments ten-fold-cross-validation was used. Ac-
cording to this technique, the dataset is divided in ten partitions;
nine of them are used for training and the last partition is used as
testing set. This process is repeated ten times, in such a way that
each partition is used once as testing set.

Before comparing the different classifiers, some experiments
to determine the value of the following parameters, were carried
out:

1. The parameter e used in MS classifier.
2. The parameter C of the CMSF algorithm in the tree construction.
3. The stop criteria in the tree construction.

The datasets used to make the experiments of Sections 4.1–4.3,
were: Hepatitis, Flag, Echocardiogram, Hayes, Soybean large, Bridges,
Glass, Iris and Wine. To evaluate the similarity between prototypes
the HVDM function was used.

After setting the values of the required parameters, the classifiers
are compared over synthetic and real datasets, using different values
of k (for k-MSN) and three different comparison functions for mixed
data; D, HVDM and HOEM.

1 The name of this function (D) is not an acronym. D function is based on
similar attributes.

878 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

Table 1
Datasets used in this section.

Dataset No. of prototypes No. of numerical features No. of non numerical features Classes % Missing data

Hepatitis 155 6 13 2 5.38
Credit 690 6 9 2 5
Zoo 101 1 16 7 0
Flag 194 3 25 8 0
Echocardiogram 132 9 2 2 7.6
All-hyper 2800 6 22 4 0
Ann-thyroid 7200 6 15 3 0
Thyroid0387 9172 7 22 8 0
KDD 30 000 32 4 2 0
Tic tac 958 0 9 2 0
Hayes 132 0 4 3 0
Soybean-large 307 0 35 19 6.4
Bridges 108 0 11 7 10.3
Mushroom 8124 0 22 2 1.38
Glass 214 9 0 7 0
Iris 150 4 0 3 0
Wine 178 13 0 3 0
Phoneme 5401 5 0 2 0
Synthetic database 10 000 2 0 3 0
Synthetic database 20 000 2 0 3 0
Synthetic database 30 000 2 0 3 0
Synthetic database 40 000 2 0 3 0

0

20

40

60

80

100

A
cc

Values for e

Exhaustive k-NN classifier
Adapted MS classifier

20

40

60

80

100
C
om
p

Values for e

Exhaustive k-NN classifier
Adapted MS classifier

0 1 5 10 15 20 25 0 1 5 10 15 20 25

Fig. 4. Accuracy (Acc) and percentage of comparisons (Comp) obtained, using MS classifier with different values of e.

4.1. The parameter e used in MS classifier

Before using adapted MS classifier, some tests with different val-
ues of the error margin e (e = 0, 1, 5, 10, 15 and 20) were done. The
average classification accuracy (Acc) according to different values of
e and the percentage number of comparisons (Comp) between pro-
totypes are depicted in Fig. 4. In all of these experiments, while the
error margin e grows, the number of comparisons between proto-
types (Comp) decreases. In the next experiments, e = 20 was used,
because using this value the performance (Acc and Comp) of MS
classifier is stabilized.

4.2. The parameter C of the CMSF algorithm used during the tree
construction

In order to evaluate the performance of the compared classifiers
taking into account the size of the tree, some experiments for se-
lecting the value of C, were performed. The parameter C of the CMSF
algorithm corresponds to the number of children of the nodes in the
tree. In Figs. 5 and 6, the classification accuracy and the percentage
of comparisons between prototypes for each value of C are respec-
tively depicted. According to these experiments, the accuracy does
not vary too much with the different values of C. However, the num-
ber of comparisons between prototypes increases for the adapted
FN classifier when C grows. In the next experiments C = 3 was used,

because there is not a big variation of the accuracy and the number of
prototypes comparisons is reduced for adapted FN andMS classifiers.

4.3. Stop criteria during the tree construction

Another important parameter in the tree construction algorithm
is the stop criterion. Using the different stop criteria, described in Sec-
tion 3.1, the performance of the classifiers was evaluated. In Figs. 7
and 8, the obtained classification accuracy and the percentage of
comparisons among prototypes, done by the different classifiers, are
shown.

Using the stop criterion based on the node size (SC1), the best
accuracy, for all the classifiers, was obtained with NoP = 20, in addi-
tion with this value the percentage of comparisons was reduced for
all the classifiers.

Using the stop criterion 2 (SC2), the accuracy grows when the
percentage threshold (PercThres) of prototypes belonging to the same
class, is increased and the percentage of comparisons does not vary
so much (see Figs. 7 and 8).

Using the stop criterion 3 (SC3), the accuracy was better than
using SC2. However, a few more comparisons were done using SC3
than using SC2.

When the percentage threshold (PercThres) is 100, using SC2 and
SC3 the obtained accuracy and the comparisons percentage are the

S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886 879

40

60

80

100

C
=2

C
=3

C
=4

C
=5

C
 =

 N
o.

 o
f

cl
as

se
s

C
 =

 4
 *

 N
o.

 o
f

cl
as

se
s

C
 =

 5
 *

 N
o.

 o
f

cl
as

se
s

C
 =

 6
 *

 N
o.

 o
f

cl
as

se
s

C
 =

 1
0%

 N
o.

of

 p
ro

to
ty

pe
s

C
 =

 2
0%

 N
o.

of

 p
ro

to
ty

pe
s

C
 =

 3
0%

 N
o.

of

 p
ro

to
ty

pe
s

A
cc

Exhaustive k-NN classifier
Adapted FN classifier
Adapted MS classifier
Tree k-MSN (using local search)
Tree k-MSN (using global search)

Fig. 5. Accuracy for different values of C when C ∈ [2, 5], when C is related to the number of classes in each database and when C is related to the number of prototypes
in each database.

0

60

120

180

C
=2

C
=3

C
=4

C
=5

C
 =

 N
o.

 o
f

cl
as

se
s

C
 =

 4
 *

 N
o.

 o
f

cl
as

se
s

C
 =

 5
 *

 N
o.

 o
f

cl
as

se
s

C
 =

 6
 *

 N
o.

 o
f

cl
as

se
s

C
 =

 1
0%

 N
o.

of

 p
ro

to
ty

pe
s

C
 =

 2
0%

 N
o.

of

 p
ro

to
ty

pe
s

C
 =

 3
0%

 N
o.

of

 p
ro

to
ty

pe
s

C
om
p

Exhaustive k-NN classifier
Adapted FN classifier
Adapted MS classifier
Tree k-MSN (using local search)
Tree k-MSN (using global search)

Fig. 6. Percentage of comparisons between prototypes for different values of C when C ∈ [2, 5], when C is related to the number of classes in each database and when C is
related to the number of prototypes in each database.

50
60
70
80
90

100

N
oP

 =
 1

N
oP

 =
 5

N
oP

 =
 1

0

N
oP

 =
 1

5

N
oP

 =
 2

0

P
er

cT
hr

es
 =

 5
0

P
er

cT
hr

es
 =

 7
0

P
er

cT
hr

es
 =

 8
0

P
er

cT
hr

es
 =

 1
00

P
er

cT
hr

es
 =

 5
0

P
er

cT
hr

es
 =

 7
0

P
er

cT
hr

es
 =

 8
0

P
er

cT
hr

es
 =

 1
00

A
cc

Exhaustive k-NN classifier
Adapted FN classifier
Adapted MS classifier
Tree k-MSN (using local search)
Tree k-MSN (using global search)

SC1 SC2 SC3

Fig. 7. Accuracy obtained using different stop criteria.

0

30

60

90

120

N
oP

 =
 1

N
oP

 =
 5

N
oP

 =
 1

0

N
oP

 =
 1

5

N
oP

 =
 2

0

P
er

cT
hr

es
 =

 5
0

P
er

cT
hr

es
 =

 7
0

P
er

cT
hr

es
 =

 8
0

P
er

cT
hr

es
 =

 1
00

P
er

cT
hr

es
 =

 5
0

P
er

cT
hr

es
 =

 7
0

P
er

cT
hr

es
 =

 8
0

P
er

cT
hr

es
 =

 1
00

C
om
p

Exhaustive k-NN classifier
Adapted FN classifier
Adapted MS classifier
Tree k-MSN (using local search)
Tree k-MSN (using global search)

SC1 SC2 SC3

Fig. 8. Percentage of comparisons among prototypes obtained using different stop criteria.

880 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

Table 2
Condensed/edited method (GCNN) against the fast k-MSN classifier proposed in this work (Tree k-MSN).

No. of prototypes Exhaustive k-NN GCNN Tree k-MSN

Acc Comp Acc Comp Using local search Using global search

Acc Comp Acc Comp

Flag 53.21 100 43.78 44.41 52.21 13.20 52.71 17.07
Tic tac 90.60 100 58.33 5.05 85.92 3.06 84.87 3.19
Soybean 90.54 100 72.53 46.18 85.26 9.72 84.28 13.10
Credit 80.90 100 77.10 5.70 79.40 4.41 77.13 4.24
Zoo 97.00 100 95.55 26.17 96.00 19.68 96.00 16.65
Echo 82.69 100 93.39 22.67 79.62 16.50 80.33 17.65
Bridge 63.36 100 68.20 88.20 60.36 15.80 57.45 17.65
Glasses 68.18 100 69.61 61.62 67.73 12.91 67.25 16.54
Iris 94.67 100 96.00 38.00 92.67 15.66 92.67 17.65
Wine 95.46 100 94.44 78.89 91.57 13.80 92.12 17.00

Average 81.66 100 76.89 41.69 79.07 12.47 78.48 14.07

Table 3
Classifiers evaluation using synthetic databases.

No. of
prototypes

Exhaustive k-NN
classifier

Adapted k-NN classifiers Proposed classifier: Tree k-MSN

Acc Comp FN GB ONC MS Using local search Using global search

Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

10000 95.60 100 95.60 0.96 95.60 0.97 95.60 0.96 95.64 0.92 95.58 0.27 95.58 0.45
20000 95.60 100 95.60 0.96 95.60 0.91 95.60 0.90 95.64 0.92 95.53 0.37 95.58 0.55
30000 99.63 100 99.63 0.47 99.63 0.36 99.63 0.34 97.06 0.46 99.64 0.198 97.12 0.30
40000 100 100 100 0.21 100 0.16 100 0.17 100 0.21 99.92 0.09 99.87 0.14

Average 97.7 100 97.7 0.65 97.71 0.6 97.71 0.59 97.09 0.63 97.66 0.23 97.04 0.36

same, because in both cases, a leaf is marked with the majority class
only when all of the prototypes in the node belong to the same
class.

Therefore, in the next experiments, SC3 with PercThres = 100
(which is the same as using SC2, with PercThres = 100) and NoP = 20
(if the leaf is not marked by the majority class, then there are 20
prototypes, at most, in this leaf), were used.

The values of the parameters used in the following experiments
are:

• The error margin e = 20 (MS classifier).
• The parameter of the CMSF algorithm C100 = 3 (Tree construc-

tion).
• The stop criterion SC3, with NoP = 20 and PercThres = 100% (Tree

construction).

4.4. Experiments with condensed/edited methods

Since the family of condensed/edited methods are used to reduce
the computational burden (by means of pruning the training set)
this approach was considered to make comparisons against the fast
k-MSN classifier proposed in this work. To make these experiments
one of the most recent methods was selected: Generalized Condensed
Nearest Neighbor Rule GCNN [14]. In Table 2 the results of these
experiments are reported.

From Table 2, it is possible to observe that the classifier proposed
(Tree k-MSN, using local and global search) did a smaller number of
comparison between prototypes than GCNN. In this case, Tree k-MSN
did the 12.47% of comparisons on average (with a higher classifi-

cation accuracy) while GCNN required the 41.69% of comparisons.
Besides, these experiments were carried out using some small
datasets, since the computational cost of condensed/edited methods
is high for medium and large datasets. For these reasons, con-
densed/edited methods are not included in the next experiments.

4.5. Experiments with tree-based fast k-NN classifiers using synthetic
databases

In order to make some experiments with large synthetic datasets,
datasets with 10000, 20000, 30000 and 40000 random samples
(with two features) were created from a Gaussian distribution, with
three different mean vectors and variances (three classes). In the
first class, the mean vector was M = (4, 5) and the variance for both
attributes was 8, in the second class, the mean vector was M = (10,
15) and the variance for both attributes was 6, and finally, in the
third class, the mean vector was M = (15, 10) and the variance for
both attributes was 8.

In Table 3, the accuracy obtained (Acc) and the percentage of
comparisons between prototypes (Comp) are shown. The number of
comparisons performed by exhaustive search is considered as the
100% of comparisons. From these experiments, we can notice that the
proposed classifier (using local and global search) is competitive in
accuracy against the adapted FN, GB, ONC and GB classifiers (all the
different classifiers achieve similar classification accuracy). However,
the proposed classifier (Tree k-MSN, using local and global search)
reduced the percentage of comparisons, for example, with 10000
prototypes instead of 96 comparisons (done by FN classifier), only
27 were done (using local search).

S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886 881

Table 4
Comparison of the different classifiers using HVDM function, with k = 1, 3 and 5 MSN.

Datasets Exhaustive k-NN
classifier

Adapted fast k-NN classifier Cluster tree [45] Proposed classifier: Tree k-MSN

Acc Comp FN GB ONC MS Acc Comp Using local search Using global search

Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

k = 1
Hepatitis 81.75 100 81.13 118.99 81.13 87.50 81.13 71.89 81.08 95.86 77.88 42.01 83.71 9.54* 83.71 15.65
Credit 80.90 100 80.90 56.32 80.10 52.78 80.35 51.65 80.10 54.95 71.10 16.70 79.40 4.41* 77.13 4.24
Zoo 97.00 100 97.00 24.68 97.00 23.46 97.00 22.16 97.00 21.86 95.00 41.63 96.00 19.68* 96.00 16.65
Flag 53.21 100 53.71 56.97 53.71 53.10 53.18 46.52 54.26 43.43 48.47 44.09 52.21 13.20* 52.71 17.07
Echocard. 82.69 100 82.69 121.01 82.69 84.01 82.69 72.82 84.18 93.43 83.24 41.75 79.62 16.50* 80.33 17.65
All-hyper 97.90 100 97.90 40.92 97.21 38.65 97.90 37.54 97.38 38.65 90.00 46.67 97.50 4.41* 96.80 4.24
Ann-thyroid 95.00 100 95.00 21.59 94.90 20.65 95.00 20.12 95.00 21.03 90.25 6.09 92.00 1.22* 91.25 1.36
Thyroid0387 87.8* 100 86.47* 18.95 86.74* 14.54 86.31* 13.95 86.26* 17.70 80.04 12.40 79.60 0.52* 84.70 0.59
KDD 99.93 100 99.93 13.92 99.86 12.95 99.63 12.08 99.61 13.08 99.42 12.45 99.56 0.61* 99.63 0.61
Tic tac toe 90.60 100 90.60 9.91 90.41 8.10 88.63 7.56 89.78 9.63 85.30 11.91 85.92 3.06* 84.87 3.19
Hayes 84.29 100 84.29 28.31 84.29 21.14 84.29 16.59 83.57 27.45 67.31 27.45 83.52 18.19* 81.26 19.65
Soyb. large 90.54 100 91.18 26.56 91.18 19.90 91.18 16.85 89.88 25.02 83.33 20.22 85.26 9.72* 84.28 13.10
Bridges 63.36 100 64.27 93.65 64.27 53.34 65.18 50.65 63.27 54.25 40.27 36.82 60.36 15.80* 57.45 17.65
Mushrooms 100 100 100.00 18.16 99.95 16.85 100.00 15.54 100.00 16.11 91.90 48.09 98.74 3.06* 98.10 3.19
Glass 68.18 100 68.18 35.96 68.18 27.04 68.18 20.16 67.71 34.36 60.30 34.64 67.73 12.91* 67.25 16.54
Iris 94.67 100 94.67 21.12 94.67 19.87 94.67 18.21 95.33 19.37 86.67 37.41 92.67 15.66* 92.67 17.65
Wine 95.46 100 95.46 43.78 95.46 32.66 95.46 27.88 94.35 34.31 93.24 45.85 91.57 13.80* 92.12 17.00
Phoneme 90.27 100 90.27 4.89 90.27 4.10 90.27 3.43 90.27 4.79 90.10 15.63 87.82 1.42* 87.18 1.84

Average 86.31 100 86.31 41.98 86.22 32.81 86.17 29.20 86.06 34.74 79.66 30.10 84.07 9.10 83.75 10.44

k = 3
Hepatitis 80.58 100 80.50 118.99 80.50 87.50 81.13 71.89 81.75 95.86 77.83 42.01 79.83 9.54* 79.17 15.65
Credit 80.03 100 80.03 56.32 80.03 52.78 80.03 51.65 80.1 54.95 75.40 16.70 76.96 4.41* 77.98 4.24
Zoo 94.00 100 89.00 24.68 89.00 23.46 89.00 22.16 89.00 21.86 95.00 41.63 91.00 19.68* 90.00 16.65
Flag 54.13 100 52.13 56.97 52.63 53.10 53.68 46.52 52.13 43.43 47.92 44.09 51.11 13.20* 52.66 17.07
Echocard. 84.95 100 87.20 121.01 87.20 84.01 87.97 72.82 85.71 93.43 81.76 41.75 87.91 16.50* 87.86 17.65
All-hyper 97.9 100 97.3 40.92 97.3 38.65 97.9 37.54 97.70 38.65 92.50 46.67 97.3 4.41* 97.3 4.24
Ann-thyroid 95 100 94.5 21.59 93.61 20.65 94.85 20.12 93.54 21.03 91.28 6.09 92.9 1.22* 92.84 1.36
Thyroid0387 87.8 100 86.62 18.95 86.84 14.54 87.8 13.95 86.75 17.70 80.00 12.40 86.91 0.52* 84.7 0.59
KDD 99.93 100 99.33 13.92 99.55 12.95 99.93 12.08 99.55 13.08 99.31 12.45 99 0.61* 99.38 0.61
Tic tac toe 90.6 100 90.6 9.91 90.6 8.10 90.6 7.56 89.75 9.63 81.10 11.91 87.52 3.06* 87.12 3.19
Hayes 82.75* 100 82.58* 28.31 82.58* 21.14 81.81* 16.59 81.87* 27.45 61.92 27.45 76.65 18.19* 74.40 19.65
Soyb. large 88.23* 100 85.28 26.56 85.28 19.90 84.63 16.85 84.62 25.02 80.38 20.22 80.68 9.72* 79.71 13.10
Bridges 62.45 100 66.27 93.65 66.27 53.34 64.45 50.65 65.36 54.25 36.64 36.82 59.55 15.80* 58.64 17.65
Mushrooms 100 100 100 18.16 100 16.85 100 15.54 100 16.11 91.90 48.09 100 3.06* 100 3.19
Glass 71.06 100 71.06 35.96 71.06 27.04 71.06 20.16 66.82 34.36 56.10 34.64 65.84 12.91* 66.80 16.54
Iris 93.33 100 93.33 21.12 93.33 19.87 93.33 18.21 92.67 19.37 86.67 37.41 90.00 15.66* 90.00 17.65
Wine 94.35 100 94.35 43.78 94.35 32.66 94.35 27.88 95.52 34.31 93.79 45.85 91.60 13.80* 92.71 17.00
Phoneme 89.6 100 89.6 4.89 89.6 4.10 89.6 3.43 89.6 4.79 88.12 15.63 85.89 1.42* 85.4 1.84

Average 85.93 100 85.54 41.98 85.54 32.81 85.67 29.20 85.14 34.74 78.76 30.10 83.37 9.10 83.15 10.44

k = 5
Hepatitis 82.58 100 83.71 118.99 83.71 87.50 83.04 71.89 82.38 95.86 79.08 42.01 79.17 9.54* 79.83 15.65
Credit 80.03 100 80.03 56.32 80.03 52.78 80.03 51.65 80.03 54.95 78.30 16.70 76.96 4.41* 77.98 4.24
Zoo 93.00 100 89.00 24.68 89.00 23.46 89.00 22.16 89.00 21.86 93.00 41.63 89.00 19.68* 88.00 16.65
Flag 59.32 100 56.21 56.97 56.21 53.10 55.74 46.52 56.76 43.43 48.92 44.09 50.53 13.20* 51.58 17.07
Echocard. 85.00 100 87.14 121.01 87.14 84.01 87.14 72.82 87.20 93.43 81.76 41.75 86.43 16.50* 86.37 17.65
All-hyper 80.03 100 80.03 40.92 80.03 38.65 80.03 37.54 79.64 38.65 92.50 46.67 76.96 4.41* 77.98 4.24
Ann-thyroid 97.9 100 97.3 21.59 97.3 20.65 97.9 20.12 97.9 21.03 91.19 6.09 97.3 1.22* 97.3 4.17
Thyroid0387 95 100 94.5 18.95 93.61 14.54 95 13.95 95 17.70 79.40 12.40 92.9 0.52* 92.84 0.59
KDD 87.8 100 86.62 13.92 86.84 12.95 86.94 12.08 85.641 13.08 84.45 12.45 86.91 0.61* 84.7 0.61
Tic tac toe 99.93 100 99.33 9.91 99.55 8.10 99.93 7.56 99.93 9.63 81.10 11.91 99 3.06* 99.38 3.19
Hayes 83.52* 100 74.34 28.31 74.34 21.14 72.86 16.59 73.63 27.45 65.71 27.45 73.63 18.19* 72.86 19.65
Soyb. large 85.95 100 83.33 26.56 83.33 19.90 83.33 16.85 82.02 25.02 80.04 20.22 79.73 9.72* 78.76 13.10
Bridges 62.55 100 64.55 93.65 64.55 53.34 64.55 50.65 62.64 54.25 36.64 36.82 60.55 15.80* 58.64 17.65
Mushrooms 80.03 100 80.03 18.16 80.03 16.85 80.03 15.54 100 16.11 91.90 48.09 76.96 3.06* 77.98 3.19
Glass 64.03 100 64.03 35.96 64.03 27.04 64.03 20.16 63.92 34.36 53.79 34.64 64.94 12.91* 65.89 16.54
Iris 94.00 100 94.00 21.12 94.00 19.87 94.00 18.21 92.00 19.37 85.33 37.41 88.00 15.66* 88.00 17.65
Wine 96.63* 100 96.63* 43.78 96.63* 32.66 96.63* 27.88 94.41 34.31 92.68 45.85 89.87 13.80* 90.98 17.00
Phoneme 89.18 100 89.18 4.89 89.18 4.10 89.18 3.43 89.18 4.79 87.45 15.63 85.00 1.42* 84.42 1.84

Average 84.25 100 83.33 41.98 83.31 32.81 83.30 29.20 83.96 34.74 77.96 30.10 80.77 9.10 80.75 10.59

882 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

k=1 k=1

k=3 k=3

k=5 k=5

H
ep

at
iti

s
C

re
di

t
Zo

o
Fl

ag
E

ch
oc

ar
d.

A
ll-

hy
pe

r
A

nn
-th

yr
oi

d
Th

yr
oi

d0
38

7
K

D
D

Ti
c

ta
c

to
e

H
ay

es
S

oy
b.

 la
rg

e
B

rid
ge

s
M

us
hr

oo
m

s
G

la
ss Iri
s

W
in

e
P

ho
ne

m
e

A
ve

ra
ge

A
cc

Exhaustive k-NN
Adapted FN classifier
Adapted GB classifier
Adapted ONC classifier
Adapted MS classifier
Cluster tree
Proposed classifier: Tree k-MSN, using local search
Proposed classifier: Tree k-MSN, using global search

H
ep

at
iti

s
C

re
di

t
Zo

o
Fl

ag
E

ch
oc

ar
d.

A
ll-

hy
pe

r
A

nn
-th

yr
oi

d
Th

yr
oi

d0
38

7
K

D
D

Ti
c

ta
c

to
e

H
ay

es
S

oy
b.

 la
rg

e
B

rid
ge

s
M

us
hr

oo
m

s
G

la
ss Iri
s

W
in

e
P

ho
ne

m
e

A
ve

ra
ge

C
om
p

H
ep

at
iti

s
C

re
di

t
Zo

o
Fl

ag
E

ch
oc

ar
d.

A
ll-

hy
pe

r
A

nn
-th

yr
oi

d
Th

yr
oi

d0
38

7
K

D
D

Ti
c

ta
c

to
e

H
ay

es
S

oy
b.

 l
ar

ge
B

rid
ge

s
M

us
hr

oo
m

s
G

la
ss Iri
s

W
in

e
P

ho
ne

m
e

A
ve

ra
ge

A
cc

H
ep

at
iti

s
C

re
di

t
Zo

o
Fl

ag
E

ch
oc

ar
d.

A
ll-

hy
pe

r
A

nn
-th

yr
oi

d
Th

yr
oi

d0
38

7
K

D
D

Ti
c

ta
c

to
e

H
ay

es
S

oy
b.

 l
ar

ge
B

rid
ge

s
M

us
hr

oo
m

s
G

la
ss Iri
s

W
in

e
P

ho
ne

m
e

A
ve

ra
ge

C
om
p

0

20

40

60

80

100

0

20

40

60

80

100

0
20
40
60
80

100
120

H
ep

at
iti

s
C

re
di

t
Zo

o
Fl

ag
E

ch
oc

ar
d.

A
ll-

hy
pe

r
A

nn
-th

yr
oi

d
Th

yr
oi

d0
38

7
K

D
D

Ti
c

ta
c

to
e

H
ay

es
S

oy
b.

 l
ar

ge
B

rid
ge

s
M

us
hr

oo
m

s
G

la
ss Iri
s

W
in

e
P

ho
ne

m
e

A
ve

ra
ge

A
cc

0
20
40
60
80

100
120
140

0
20
40
60
80

100
120
140

0
20
40
60
80

100
120
140

H
ep

at
iti

s
C

re
di

t
Zo

o
Fl

ag
E

ch
oc

ar
d.

A
ll-

hy
pe

r
A

nn
-th

yr
oi

d
Th

yr
oi

d0
38

7
K

D
D

Ti
c

ta
c

to
e

H
ay

es
S

oy
b.

 l
ar

ge
B

rid
ge

s
M

us
hr

oo
m

s
G

la
ss Iri
s

W
in

e
P

ho
ne

m
e

A
ve

ra
ge

C
om
p

Fig. 9. Evaluation of the different classifiers using HVDM function, with k = 1, 3 and 5 MSN.

4.6. Experiments with tree-based fast k-NN classifiers using real
datasets

In order to make experiments with real datasets, the classifiers
were evaluated using 18 datasets form the UCI repository. In Table 4,
the obtained accuracy (Acc) and the percentage of comparisons be-
tween prototypes (Comp), using different number of k NN's (MSN's),
are shown.

The original FN, GB and ONC classifiers are exact approaches be-
cause they use the triangle inequality property of the distance func-
tion. However, as the HVDM function does not necessarily satisfies

this property, adapted classifiers (using the HVDM function) become
inexact. Using the adapted FN classifier, the average accuracy does
not decrease on average, with k = 1. However, the average number
of comparisons between prototypes (see Table 4, in the obtained re-
sults with k = 1) is only reduced from 100% to 41.98%. The advan-
tage of our proposal is that the average percentage of comparisons
is reduced (9.10% with local search and 10.44% with global search)
more than using Cluster tree (30.95%), MS (34.74%), ONC (29.20%)
and GB (32.81%) classifiers and moreover the classification accuracy
obtained by Tree k-MSN (84.07% using local search) is higher than
the obtained by Cluster tree (79.66%). It is important to notice that,

S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886 883

Table 5
General averages using HVDM, HOEM and D functions, with k = 1, 3 and 5 MSN.

No. of k MSN Exhaustive k-MSN classifier Adapted k-NN classifiers Cluster tree Proposed classifier: Tree k-MSN

Acc Comp FN GB ONC MS Acc Comp Using local search Using global search

Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

HVDM
k = 1 86.31 100 86.31 41.98 86.22 32.81 86.17 29.20 86.06 34.74 79.66 30.10 84.07 9.10 83.75 10.44
k = 3 85.93 100 85.54 41.98 85.54 32.81 85.67 29.20 85.14 34.74 78.76 30.10 83.37 9.10 83.15 10.44
k = 5 84.25 100 83.33 41.98 83.31 32.81 83.30 29.20 83.96 34.74 77.96 30.10 80.77 9.10 80.75 10.59

HOEM
k = 1 83.98 100 83.98 43.65 83.98 31.65 83.98 30.85 82.54 33.85 76.65 28.75 80.92 9.06 80.59 10.75
k = 3 83.01 100 83.01 43.65 83.01 31.65 83.01 30.85 82.27 33.85 76.52 28.75 80.05 9.06 78.99 10.75
k = 5 82.89 100 82.89 43.65 82.89 31.65 82.89 30.85 81.27 33.85 75.95 28.75 79.46 9.06 78.46 10.75

D
k = 1 85.97 100 85.39 45.37 85.36 34.09 85.37 30.25 84.38 34.57 78.64 27.86 81.99 8.67 79.94 11.37
k = 3 84.42 100 84.36 45.37 84.36 34.09 84.36 30.25 83.72 34.57 79.52 27.86 81.53 8.67 79.72 11.37
k = 5 84.02 100 83.87 45.37 83.81 34.09 83.82 30.25 83.68 34.57 78.62 27.86 80.96 8.78 79.68 11.39

Exhaustive k-NN classifier

0

20

40

60

80

100

C
om
p

Acc

Exhaustive k-NN (HVDM)
Exhaustive k-NN (HOEM)
Exhaustive k-NN (D)
Adapted FN classifier (HVDM)
Adapted FN classifier (HOEM)
Adapted FN classifier (D)
Adapted GB classifier (HVDM)
Adapted GB classifier (HOEM)
Adapted GB classifier (D)
Adapted ONC classifier (HVDM)
Adapted ONC classifier (HOEM)
Adapted ONC classifier (D)
Adapted MS classifier (HVDM)
Adapted MS classifier (HOEM)
Adapted MS classifier (D)
Cluster tree (HVDM)
Cluster tree (HOEM)
Cluster tree (D)
Tree k-MSN, using local search (HVDM)
Tree k-MSN, using local search (HOEM)
Tree k-MSN, using local search (D)
Tree k-MSN, using global search (HVDM)
Tree k-MSN, using global search (HOEM)
Tree k-MSN, using global search (D)

0 20 40 60 80 100

Fig. 10. Accuracy against the comparisons percentage using the different classifiers and the three different comparison functions, with k = 1.

although FN, ONC and GB obtained a slightly higher classification
accuracy than Tree k-MSN, these classifiers needed to be adapted
(using our tree structure) in order to allow them to work on mixed
data, since the original algorithms cannot be applied under these
circumstances.

Besides, in Tables 4 the symbol ``*'' next to the classification ac-
curacy (Acc) and the number of prototype comparisons (Comp) indi-
cates that there is a statistically significant difference with respect to
the proposed classifier (Tree k-MSN, using local search), according to
the k-fold cross-validated paired t test [42], with 9 degrees of freedom
and a confidence of 95%. To make the 10-fold cross-validated paired
t test, the classification accuracy and the percentage of prototype
comparisons, obtained by each trial of the 10-fold-cross-validation,
are considered. From these experiments, we can observe that the
difference in classification accuracy between the proposed classifier
and FN, ONC, GB, MS and Cluster tree, is not statistically significant
for most of the datasets, while the prototype comparison reduction
reached by Tree k-MSN (using local search) is statistically significant
for all datasets.

The fast k-NN classifiers are proposed for problems where the set
T is large; such is the case of the datasets: All-hyper, Ann-thyroid
and Mushrooms. For these databases, our proposed classifier (Tree

k-MSN, using local and global search) obtained a big reduction on the
average number of comparisons between prototypes (for the differ-
ent values of k). When large datasets were considered, the average
classification accuracy was higher (see Table 4, which includes large
datasets, and Fig. 5, where only small datasets were considered).

In Fig. 9, the accuracy obtained by the different fast classifiers
listed before over each database (for k = 1, 3, 5 in k-MSN) and a
general average (last point) are shown; here we can see that the
performance of the five classifiers is very similar. The number of
comparisons between prototypes per database is also depicted. From
this figure, it is possible to see that the number of comparisons using
adapted FN classifier sometimes is even higher than the exhaustive
search. With adapted MS, ONC and GB classifiers, the comparisons
are always less than using adapted FN classifier, but the proposed
classifier (Tree k-MSN, using local and global search) always did fewer
comparisons than adapted FN, ONC, MS and GB classifiers, for the
different values of k.

The experiments with different values of k (k-MSN) were repeated
using D and HOEM functions. As we can see from Table 5, the re-
sults of the different classifiers were similar for the three prototype
comparisons functions. Using HOEM function, FN and GB classifiers
are exact approaches, it happens because HOEM function is a metric.

884 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

Table 6
Average runtimes for each step of 10 fold cross validation for different size datasets, using our adapted fast k-MSN classifiers, with k = 1.

No. of prototypes Adapted k-NN classifiers

FN GB ONC MS

Acc Comp Runtime Acc Comp Runtime Acc Comp Runtime Acc Comp Runtime

2000 93.70 9.93 9.071 93.60 5.87 18.25 93.60 3.54 8.16 93.55 9.52 8.86
3000 94.20 7.78 17.43 94.13 4.30 34.20 94.23 2.47 13.88 93.80 7.48 17.28
4000 95.03 6.59 27.22 95.05 3.52 54.63 95.07 1.99 14.95 94.82 6.35 25.67
7200 94.97 5.76 83.04 94.90 5.36 98.45 95.00 1.99 42.52 94.88 4.63 80.53

Average 94.48 7.52 34.19 94.42 4.76 51.38 94.48 3.00 19.88 94.26 7.00 33.09

Table 7
Average runtimes for each step of 10 fold cross validation for different size datasets, using the exhaustive, cluster tree and the proposed fast k-MSN classifiers, with k = 1.

No. of prototypes Exhaustive k-NN classifier Cluster tree Proposed classifier: Tree k-MSN

Acc Comp Runtime Acc Comp Runtime Using local search Using global search

Acc Comp Runtime Acc Comp Runtime

2000 93.70 100 1279 91.20 12.15 11.62 93.60 1.66 0.485 93.40 2.41 1.03
3000 94.90 100 3714 90.56 10.64 18.45 94.00 1.16 0.812 94.03 1.71 1.60
4000 95.03 100 7958 90.16 9.15 22.85 95.00 0.89 1.139 94.85 1.34 2.35
7200 95.00 100 52 606 90.25 6.09 32.62 94.26 0.01 7.63 94.02 0.82 8.95

Average 94.66 100 16 389 90.54 10.64 21.38 94.22 0.93 2.52 94.08 1.57 3.48

However, in our experiments for all classifiers the lower accuracy
was obtained using HOEM function.

In Fig. 10 a scatter graphic of the accuracy against the comparisons
percentage using the different fast k-MSN classifiers, with k = 1 and
the three prototype comparisons functions (HVDM, D and HOEM) is
shown. From Fig. 10, we can note that all the classifiers obtained
similar accuracy but the classifiers proposed in this work (using local
and global search) did the smallest number of comparisons.

4.7. Runtime experiments

Since the objective of the approximate fast k-NN classifiers is to
reduce the number of comparisons, between pairs of prototypes, try-
ing to keep the classification accuracy obtained by the exhaustive
k-NN, for most of the fast k-NN classifiers, the authors report and
compare the number of comparisons. However, in order to show the
performance of the proposed methods, in Tables 6 and 7, a com-
parison among the different classifiers, regarding runtimes, is pre-
sented. In these tables the average classification runtime (Runtime
column) needed for each k-NN classifier (using k = 1 and HVDM
function), in each step of the ten fold cross validation, is shown.
For this experiment, the mixed dataset Ann-thyroid, taking 2000
(each fold has 1800 prototypes for training and 200 for testing),
3000 (each fold has 2700 prototypes for training and 300 for test-
ing), 4000 (each fold has 3600 prototypes for training and 400 for
testing), and 7200 (each fold has 6480 prototypes for training and
720 for testing) prototypes, was used. All the experiments were
done using a PC computer with a 3.0GHz Pentium 4 processor and
1GB RAM.

From Tables 6 and 7, we can observe that comparing our method
against the exhaustive search, the number of comparisons and the
classification runtime, were significantly reduced. For example for
classifying 720 prototypes using a training set with 6480 proto-
types, which is a medium size dataset, our classifier required 7.63 s,
while the exhaustive search required 52606 s (14.61h). More over,
if we wanted to classify 720000 prototypes instead of 720, using
the same training set, our classifier would require approximately

7630 s (2.1h), and the exhaustive search would require approxi-
mately 52606000 s (608.75 days = 1 year and 8months). From these
results, we can observe that the exhaustive search becomes inappli-
cable for some applications that require classifying a large amount of
prototypes.

4.8. Comparison against other fast k-NN classifiers

In this section, the performance of the proposed classifier (Tree k-
MSN) is compared against tree-based and Approximating–Eliminating
classifiers.

The Approximating–Eliminating classifiers compared in this work
were: AESA [43], LAESA, using |BP| = 20% and 50% of the objects in
the dataset [5], TLAESA [37] and Modified TLAESA [44].

HVDM function was used. For this experiment, 10 datasets from
the UCI repository were used. The largest datasets from the pre-
vious experiment were not included because the Approximating–
Eliminating algorithms cannot be applied due to their high memory
requirements.

From Table 8, we can observe that when the comparison func-
tion does not satisfy the triangle inequality, AESA, LAESA, TLAESA
and modified TLAESA algorithms become inexact (i.e., the obtained
results are not the same as using the exhaustive search). However,
the percentage of comparisons is, on average, reduced from 100%,
done by the exhaustive search, to 24.71%, 28.41%, 27.38%, 53.04% and
30.88%, respectively.

Comparing the biggest reduction among the Approximating–
Eliminating classifiers (achieved by AESA, with 24.71%) and the
tree-based classifiers (achieved by ONC classifier, with 36.37%), we
can observed that better results are obtained using AESA classifier.
However, a drawback of AESA classifier is the spatial cost to store a
matrix of distances among all pair of prototypes in the training set.

From these experiments, we can also observe that the classifier
proposed in this work (Tree k-MSN) achieves the biggest reduction on
the percentage of prototypes comparisons (14.5% using local search,
and 16.53% using global search).

S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886 885

Table 8
Comparison of tree-based fast k-NN classifiers (a), Approximating-Eliminating fast k-NN classifiers (b), the exhaustive k-MSN classifier, cluster-tree and tree k-MSN (c), with
k = 1, using HVDM comparison function.

(a)
Datasets Exhaustive k-NN

classifier
Adapted k-NN classifiers

Acc Comp FN GB ONC MS

Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81.75 100 81.13 118.99 81.13 87.50 81.13 71.89 81.08 95.86
Zoo 97.00 100 97.00 24.68 97.00 23.46 97.00 22.16 97.00 21.86
Flag 53.21 100 53.71 56.97 53.71 53.10 53.18 46.52 54.26 43.43
Echoc.. 82.69 100 82.69 121.01 82.69 84.01 82.69 72.82 84.18 93.43
Hayes 84.29 100 84.29 28.31 84.29 21.14 84.29 16.59 83.57 27.45
Soyb. 90.54 100 91.18 26.56 91.18 19.90 91.18 16.85 89.88 25.02
Bridges 63.36 100 64.27 93.65 64.27 53.34 65.18 50.65 63.27 54.25
Glass 68.18 100 68.18 35.96 68.18 27.04 68.18 20.16 67.71 34.36
Iris 94.67 100 94.67 21.12 94.67 19.87 94.67 18.21 95.33 19.37
Wine 95.46 100 95.46 43.78 95.46 32.66 95.46 27.88 94.35 34.31

Avg. 81.12 100 81.26 57.10 81.26 42.20 81.30 36.37 81.06 44.93

(b)
Datasets AESA LAESA |PB| = 20% of the

prototypes in T
LAESA |PB| = 50% of the
prototypes in T

TLAESA |PB| = 20% of
the prototypes in T

Modified TLAESA |PB| = 20%
of the prototypes in T

Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81.68 51.03 80.61 60.73 80.68 59.68 81.64 84.64 81.03 68.26
Zoo 97.00 21.34 96.00 25.23 96.00 23.43 95.75 55.77 95.78 27.34
Flag 53.60 27.23 52.82 27.57 52.01 25.34 52.01 49.25 50.19 42.94
Echoc. 82.54 64.34 82.08 67.39 82.23 62.68 82.25 75.84 82.12 38.30
Hayes 83.71 21.23 80.71 21.84 80.73 19.23 80.73 49.44 80.48 25.49
Soyb. 89.87 2.07 89.87 5.12 89.87 4.23 89.87 38.44 87.23 18.35
Bridges 63.21 24.23 60.37 26.23 59.37 27.68 59.37 48.45 59.49 38.92
Glass 68.18 13.20 68.18 24.53 68.18 26.34 68.18 49.54 68.18 22.39
Iris 94.67 8.23 94.67 10.68 94.67 9.89 94.67 42.54 94.67 13.29
Wine 95.46 14.23 95.46 14.75 95.46 15.34 95.46 36.45 95.46 13.52

Avg. 80.99 24.71 80.08 28.41 79.92 27.38 79.99 53.04 79.46 30.88

(c)
Datasets Cluster tree Proposed classifier: Tree k-MSN

Using local search Using global search

Acc Comp Acc Comp Acc Comp

Hepatitis 77.88 42.01 83.71 9.54 83.71 15.65
Zoo 95.00 41.63 96.00 19.68 96 16.65
Flag 48.47 44.09 52.21 13.20 52.71 17.07
Echoc.. 83.24 41.75 79.62 16.50 80.33 17.65
Hayes 67.31 27.45 83.52 18.19 81.26 19.65
Soyb. 83.33 20.22 85.26 9.72 84.28 13.10
Bridges 40.27 36.82 60.36 15.80 57.45 17.65
Glass 60.30 34.64 67.73 12.91 67.25 16.54
Iris 86.67 37.41 92.67 15.66 92.67 17.65
Wine 93.24 45.85 91.57 13.80 92.12 17

Avg. 73.57 37.18 79.27 14.50 78.8 16.53

5. Conclusions

In this work, an approximated fast k-MSN classifier for mixed
data, which allows using any prototype comparison function, was
proposed. In order to compare our classifier, FN, MS, ONC and GB
classifiers were adapted, using our proposed tree structure, to allow
them working on mixed data and to use any prototype comparison
function, because of under these circumstances the original algo-
rithms cannot be applied.

Based on our experimental results, in comparison with the ex-
haustive classifier, and the FN, MS, ONC and GB adapted classi-
fiers, the proposed classifier (using k-MSN local and global search

algorithms), obtained a big reduction on the number of comparisons
between prototypes, which is of particular importance in applica-
tions where a fast response is required. As we showed in the runtime
experiment, when a large amount of mixed data prototypes needs to
be classified, the exhaustive search become impractical, and there-
fore a fast k-NN classifier is required. In this situation, our proposal
is the best choice.

Additionally, a comparison against Cluster tree [45], which does
not assume metric properties of the comparison function, was done.
From these experiments we can also notice that Cluster tree ob-
tains lower classification accuracy than the proposed classifier (Tree
k-MSN) and requires more prototype comparisons.

886 S. Hernández-Rodríguez et al. / Pattern Recognition 43 (2010) 873 -- 886

Finally, we can notice that for large mixed datasets and non-
metric prototype comparison functions, if a better accuracy is re-
quired, the best choice is our adapted ONC classifier, but if reducing
the runtime is more important, the best option is our proposed Tree
k-MSN classifier using local search.

As future work, we plan to look for pruning rules, not based on
metric properties, which would allow us to reduce even more the
number of prototype comparisons.

References

[1] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, Transactions on
Information Theory 13 (1967) 21–27.

[2] S.A. Nene, S.K. Nayar, A simple algorithm for nearest neighbour search in high
dimensions, IEEE Transactions in Pattern Analysis and Machine Intelligence 19
(9) (1997) 989–1003.

[3] V. Ramasubramanian, K. Paliwal, Fast nearest-neighbor search based on
approximation–elimination search, Pattern Recognition 33 (2000) 1497–1510.

[4] C. Yong-Sheng, H. Yi-Ping, F. Chiou-Shann, Fast and versatile algorithm for
nearest neighbor search based on lower bound tree, Pattern Recognition Letters
40 (2) (2007) 360–375.

[5] L. Micó, J. Oncina, E. Vidal, A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear
preprocessing-time and memory requirements, Pattern Recognition Letters 15
(1994) 9–17.

[6] M. Denny, M.J. Franklin, Operators for expensive functions in continuous
queries, in: Proceedings of the 22nd International Conference on Data
Engineering, ICDE'06, vol. 03 (issue 07) 2006, p. 147.

[7] M. Adler, B. Heeringa, Search Space Reductions for Nearest-Neighbor Queries,
in: Lecture Notes in Computer Science, 2008, pp. 554–567.

[8] R. Panigrahi, An Improved Algorithm Finding Nearest Neighbor Using Kd-trees,
in: Lecture Notes in Computer Science, vol. 4957, 2008, pp. 387–398.

[9] E. Pekalska, R. Duin, The Dissimilarity Representation for Pattern Recognition,
in: Foundations and Applications, World Scientific, Singapore, December 2005.

[10] H. Chang, D. Yeung, W. Cheung, Relaxational metric adaptation and its
application to semi-supervised clustering and content-based image retrieval,
Pattern Recognition 39 (2006) 1905–1917.

[11] D. Kushnir, M. Galun, A. Brandt, Fast multiscale clustering and manifold
identification, Pattern Recognition 39 (2006) 1876–1891.

[12] J. Laub, V. Roth, J. Buhmann, K. Muller, On the information and representation
of non-Euclidean pairwise data, Pattern Recognition 39 (2006) 1815–1826.

[13] M. Lozano, J. Martínez Sotoca, J. Sánchez, F. Pla, E. Pekalska, R. Duin,
Experimental study on prototype optimisation algorithms for prototype-based
classification in vector spaces, Pattern Recognition 39 (2006) 1827–1838.

[14] C. Chien-Hsing, K. Bo-Han, C. Fu, The generalized condensed nearest neighbor
rule as a data reduction method, in: Proceedings of the 18th International
Conference on Pattern Recognition, vol. 02, 2006, pp. 556–559.

[15] J.H. Friedman, F. Baskett, L. Shustek, An algorithm for finding nearest neighbors,
IEEE Transactions on Computers (1975) 1000–1006.

[16] A. Guttman, R-trees: a dynamic index structure for spatial searching, in:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, Boston, MA, pp. 47–57.

[17] D.A. White, R. Jain, Similarity indexing with the SS-tree, in: Proceedings of
the International Conference on Data Engineering, New Orleans, LA, 1996,
pp. 516–523.

[18] N. Katayama, S. Satoh, The SR-tree: an index structure for high dimensional
nearest neighbor queries, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, USA, 1997, pp. 369–380.

[19] S. Berchtold, C. Böhm, H. Kriegel, The pyramid-technique: towards breaking
the curse of dimensionality, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Seattle, WA, 1988, pp. 142–153.

[20] S. Berchtold, D.A. Keim, H. Kriegel, T. Seidl, Indexing the solution space: a
new technique for nearest neighbor search in high dimensional space, IEEE
Transactions on Knowledge Data Engineering 12 (1) (2000) 45–57.

[21] K. Fukunaga, P. Narendra, A branch and bound algorithm for computing
k-nearest neighbors, IEEE Transactions on Computers 24 (1975) 743–750.

[22] S. Brin, Near neighbor search in large metric spaces, in: Proceedings of the
International Conference on very Large Data Bases, Zurich, Switzerland, 1995,
pp. 574–584.

[23] J. McNames, A fast nearest neighbor algorithm based on a principal axis search
tree, IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (9)
(2001) 964–976.

[24] M.R. Soleymani, S.D. Morgera, An efficient nearest neighbor search method,
IEEE Transactions on Communications COM 35 (6) (1987) 677–679.

[25] A. Djouadi, E. Bouktache, A fast algorithm for the nearest-neighbor classifier,
IEEE Transactions in Pattern Analysis and Machine Intelligence 19 (3) (1997)
277–282.

[26] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algorithm
for approximate nearest neighbor searching in high dimensions, Journal of the
ACM 45 (6) (1998) 891–923.

[27] F. Moreno-Seco, L. Mico, J. Oncina, Approximate nearest neighbor search with
the Fukunaga and Narendra algorithm and its application to chromosome
classification, CIARP, in: Lecture Notes in Computer Science, vol. 2905, 2003,
pp. 322–328.

[28] K. Figueroa, E. Chávez, G. Navarro, R. Paredes, On the last cost for proximity
searching in metric spaces, in: WEA 2006, Lecture Notes in Computer Science,
vol. 4007, 2006, pp. 279–290.

[29] A. Faragó, T. Linder, G. Lugosi, Fast nearest-neighbor search in dissimilarity
spaces, IEEE Transactions in Pattern Analysis and Machine Intelligence 15 (9)
(1993) 957–962.

[30] C. Hsieh, Y. Liu, Fast search algorithms for vector quantization of images
using multiple triangle inequalities and wavelet transform, IEEE Transactions
on Image Processing 9 (3) (2000) 321–328.

[31] I. Kalantari, G. McDonald, A data structure and an algorithm for the nearest
point problem, IEEE Transactions on Software Engineering 9 (1983) 631–634.

[32] S. Omachi, H. Aso, A fast algorithm for a k-nn classifier based on branch and
bound method and computational quantity estimation, Systems and Computers
in Japan 31 (6) (2000) 1–9.

[33] E. Gómez-Ballester, L. Mico, J. Oncina, Some approaches to improve tree-
based nearest neighbor search algorithms, Pattern Recognition Letters 39 (2006)
171–179.

[34] J. Oncina, F. Thollard, E. Gómez-Ballester, L., Micó, F. Moreno-Seco, A tabular
pruning rule in tree-based fast nearest neighbor search algorithms, IbPRIA, in:
Lecture Notes in Computer Science, vol. 4478, 2007, pp. 306–313.

[35] J.R. García-Serrano, J.F. Martínez-Trinidad, Extension to C-means algorithm for
the use of similarity functions, in: Lectures Notes in Artificial Intelligence, vol.
1704, 1999, pp. 354–359.

[36] J.F. Martínez-Trinidad, J.R. García-Serrano, I.O. Ayaquica-Martínez, C-means
algorithm with similarity functions, Computación y Sistemas 5 (4) (2002)
241–246.

[37] L. Mico, J. Oncina, R. Carrasco, A fast branch and bound nearest neighbor
classifier in metric spaces, Pattern Recognition Letters 17 (1996) 731–739.

[38] W. D'haes, D. Dyck, X. Rodel, PCA-based branch and bound search algorithms
for computing K nearest neighbors, Pattern Recognition Letters 24 (2002)
1437–1451.

[39] D. Wilson, T. Martínez, Reduction techniques for instance based learning
algorithms, Machine Learning 38 (2000) 257–286.

[40] D. Wilson, T. Martínez, Improve heterogeneous distance functions, Journal of
Artificial Intelligence Research 6 (1997) 1–34.

[41] C. Blake, C. Merz, UCI repository of machine learning databases, 1998. 〈http://
www.uci.edu/mlearn/databases/〉, Department of Information and Computer
Science, University of California, Irvine, CA.

[42] T. Dietterich, Statistical tests for comparing supervised classification learning
algorithms, Neural Computation 10 (7) (1998) 1895–1923.

[43] E. Vidal, An algorithm for finding nearest neighbours in (approximately)
constant average time complexity, Pattern Recognition Letters 4 (1986)
145–157.

[44] K. Tokoro, K. Yamaguchi, S. Masuda, Improvements of TLAESA nearest neighbor
search and extension to approximation search, in: ACSC'06: Proceedings of the
29th Australian Computer Science Conference, 2006, pp. 77–83.

[45] B. Zhang, S. Srihari, Fast k nearest neighbour classification using cluster-based
tree, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (4)
(2004) 525–528.

About the Author—JOSÉ FRANCISCO MARTÍNEZ TRINIDAD Titular Professor of Computer Science and Pattern Recognition Category B at National Institute of Astrophysics,
Optics and Electronics, Mexico, since 2002. Previous appointments include Professor of Computer Science and Pattern Recognition at Computer Science Research Center
of the National Polytechnic Institute, Mexico from 1996 to 2001. Professor of Computer Science at Technological Institute of Toluca, Mexico from 1995 to 1996. Professor
of Computer Science at Autonomous University of Puebla, Puebla, Mexico during 1994. His research interests are logical combinatorial pattern recognition, mixed data
analysis, clustering, conceptual clustering, feature selection, prototype selection, fast most similar neighbor classifiers, text analysis, text categorization, sequential patterns,
and pattern recognition methods for data mining.

About the Author—JESÚS ARIEL CARRASCO OCHOA Titular Professor of Computer Science and Pattern Recognition at National Institute of Astrophysics, Optics and Electronics,
Mexico. His research interests are logical combinatorial pattern recognition, mixed data analysis, clustering, conceptual clustering, feature selection, prototype selection, fast
most similar neighbor classifiers, text analysis, text categorization, sequential patterns, and pattern recognition methods for data mining.

About the Author—SELENE HERNÁNDEZ-RODRÍGUEZ Student of Ph.D. at the National Institute of Astrophysics, Optics and Electronics, Mexico. She is currently working on
the development of new classifiers for mixed data as part of my Ph.D. research.

http://www.uci.edu/mlearn/databases/
http://www.uci.edu/mlearn/databases/

	Fast k most similar neighbor classifier for mixed data (tree k-MSN)
	Introduction
	Related work
	Proposed classifier
	Preprocessing phase
	Classification phase

	Experimental results
	The parameter =e used in MS classifier
	The parameter =C of the =CMSF algorithm used during the tree construction
	Stop criteria during the tree construction
	Experiments with condensed/edited methods
	Experiments with tree-based fast =k-=NN classifiers using synthetic databases
	Experiments with tree-based fast =k-=NN classifiers using real datasets
	Runtime experiments
	Comparison against other fast =k-=NN classifiers

	Conclusions
	References

