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A new approach to obtain the wavelet transform with easily constructed
analogue circuits is presented. It is shown that the impulse response of
a bandpass biquad filter satisfies the conditions to be considered a
mother wavelet. Using this, an integrated circuit performing the
wavelet transform at 16 scales along eight octaves has been designed.
The design has CMOS transistors working in the subthreshold region
with a total power consumption of 650 nW. On-chip measurements
are reported.

Introduction: Traditionally, the wavelet transform (WT) is implemented
numerically or algorithmically. Recently, there have been significant
advances in the analogue implementations of this transform and its prac-
tical applications [1, 2]. The analogue realisation is attractive for low
power signal processing in areas such as portable and bio-implantable
devices. Currently, the common analogue approach is to obtain each
scale of the WT by means of convolution in a bandpass continuous
filter, the impulse response of which has the wavelet shape.
References [1, 2] have applied this principle with favourable results.
These works show efforts to obtain good approximations of the
known classical wavelets: the Morlet wavelet [1], and the first derivative
of a Gaussian [2]. However, to obtain a good approximation, the filters
have to be of high order, since the shape of classical wavelets is not the
natural impulse response of the simpler analogue filters. In this Letter,
we show that the impulse response of a bandpass biquad filter is a
mother wavelet.

Wavelet transform review: Beginning with a function c(t), referred to as
the mother or prototype wavelet, we obtain

crm (t) = (1/rm)c(t/rm) (1)

which is a family of functions scaled by a factor of r m, for an arbitrary
number r . 1, where m is an integer. Now, we define the direct WT by

Wrm f (b) =
∫1

−1

f (t)crm (t − b)dt (2)

where f (t) is the input signal, and Wrm f (b) is the WT component at the
mth scale. This kind of WT (discrete in scale and continuous with
respect to time translation) is called semidiscrete WT, or dyadic WT
for the particular case when r ¼ 2 [3]. Note that Wrm f (b) is the convolu-
tion between f (t) and crm (−t). This convolution can be achieved using a
continuous filter with an impulse response equal to crm (−t).

To obtain the mother wavelet, we use the filter

H(v) = (vo/q)jv
( jv)2 + (vo/q)jv+ v2

o

(3)

with q =
��
2

√
, vo ¼ 2pfo, fo ¼ 13.45 kHz. The impulse response of this

filter, hereafter referred to as h(t), is shown in Fig. 1a. As is stated in (1),
the mother wavelet c(t) ¼ h(2t) has to be scaled to obtain
crm (t) = hrm (−t) = (1/rm)h(−t/rm). In the frequency domain, it
implies that Hrm (v) = H(rmv) = C∗(rmv), where C∗(v) is the
Fourier transform of c(t), and the asterisk (∗) stands for complex conju-
gation. Note that if vo and vm are the central frequencies of H(v) and
Hrm (v), respectively, then

vm = vo/rm (4)

In the following Sections, we prove that c(t) ¼ h(2t) satisfies the admi-
sibility and the stability conditions of the semidiscrete WT, as is required
to be considered a prototype wavelet.

Admissibility proof: For the admissibility condition, it is required that
[3]

Cc = 2

∫1

0

|H(v)|2/v dv , 1 (5)

Splitting this integral we have

Cc = 2

∫vo

0

|H(v)|2/v dv+ 2

∫1

vo

|H(v)|2/v dv (6)
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where H(v) is given by (3). In the Bode plot of Fig. 1b, it can be seen
that the integrand |H(v)|2/v is bounded, and the first integral must be
bounded. Hence, the convergence of Cc depends on the convergence
of the second (improper) integral. In the same Bode plot, it can be
seen that the curve of the integrand is always bellow the function
1011/v3. Therefore, the original improper integral converges because�1

vo
1011/v3 dv converges.
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Fig. 1 Proposed wavelet and auxiliary figures

a Prototype wavelet
b Bode plot of functions |H(v)|2/v3 and |H(v)|
c Several functions |H(r mv)|, and summation

∑
m¼230
30 |H(r mm)|2

Stability proof: For the stability condition of the semidiscrete WT [3],
constants A and B are required such that, for 0 , v , 1,

0 , A ≤
∑1

m=−1

|H(rmv)|2 ≤ B , 1 (7)

For this research, we selected r =
��
2

√
, meaning that the WT system will

have two scales per octave. (The number of scales per octave of fre-
quency in the system is given by (log2r)21.) Fig. 1c shows several

spectra |H(r mv)|, and summation
∑30

m=−30
|H(rmv)|2. This summation

shows its periodical behaviour when it is plotted on a logarithmic
v-axis. We have numerically found that this ripple has a minimum
value of A ¼ 2.628. Note that using 230 , m , 30 is a sufficient
approximation to find a lower bound A required by (7) since it is a sum-
mation of non-negative terms. On the other hand, in the Bode plot of
Fig. 1b, it can be seen that |H(v)| is always below the curves of Lv
and M/v, where L ¼ 3 × 1025 and M ¼ 2 × 105. Considering that
Lv and M/v are increasing and decreasing monotonic functions,
respectively, we have that

|H(v)| ≤ Lvx for v [ [r−1v,v] (8)
|H(v)| ≤ M/vx for v [ [v, rv] (9)

Now, we develop the summation in (8) to find the required upper
bound B:

∑1
m=−1

|H(rmv)|2 ≤
∑0

m=−1

(Lrmvl) +
∑1

m=0
(M/rmvl)2

= (L2v2
l + M2/v2

l )r2/(r2 − 1) = B

(10)

where vl is any desired frequency in the range (0,1). Taking vl ¼ vo

(3), we obtain B ¼ 442.55, for the given r.

Circuit implementation: For circuit implementation we restrict the
scales to the values m ¼ 0,1, . . . ,15, resulting in a system with a total
of 16 filters working through eight octaves in the audiofrequency
range. The circuit in Fig. 2a has been used for the implementation of
the system. It is composed of 16 identical Gm-C biquadratic filters
and a voltage adder. The operational transconductance amplifier
(OTA) used is shown in Fig. 2b, and has a range of +29.2 mA of lin-
earity within 1% of distortion [4]. The wavelet components are rep-
resented by the signals vk (for k ¼ 0, 1, . . . ,15), with the transfer
function
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Fig. 2 Circuit and manufactured chip

a Biquad filter and resistor ladder
b Operational transconductance amplifier (OTA)
c Microphotograph of system in manufactured chip

Vk (s)
Vin(s)

= (vk/q)s
s2 + (vk/q)s + v2

k

(11)

where q =
�������
Cb/Ca

√
=

��
2

√
, and vk = G/

������
CaCb

√
(with G ¼ Ga ¼ Gb).

This function has the same structure required by (3).
The OTAs are biased in the subthreshold region. In this case, the

nominal transconductance is given by G ¼ Ibr/3Vt, where r ≃ 0.7 is
the electrostatic coupling between gate and channel, and Vt is the
thermal voltage [4]. Additionally, the bias current is given by
Ib / exp (r(2.5 − Vb)/Vt) [5]. Therefore, G (and vk) has exponential
dependence with respect to nearly linear changes in Vb. The circuit
also includes a ladder of 15 resistors of nearly equal value (R1 to R15)
biased by the external voltages 1.66 and 1.87 V. The resulting nearly
equispaced bias voltages (Vb0 to Vb15) produce exponentially spaced
values for vk, as required by (4).

Experimental results: A chip with the designed system (Fig. 2c) has
been fabricated in a 0.5 mm CMOS technology. The system covers an
area of about 0.50 mm2, with power consumption of 650 nW. The
noise level was measured at 0.6 mV of standard deviation at any
output of the system. To reduce the noise level, and achieve a better
understanding of the transform capabilities of the system, the probe
signal shown in Fig. 3a has been periodically applied in the circuit.
Each output has been averaged over 128 periodical samples using a
digital oscilloscope. The probe signal is composed of three sinusoidal
pulses of 2 kHz, 1 kHz, and 500 Hz, where the envelope function is a
half sinusoidal wave of 50, 25, and 12.5 kHz, respectively.

5
0

0

3

7

11

sc
al

e 
(in

de
x 

m
)

15

time, ms

0 20 40 60 80 100

1

4

16

64

sc
al

e 
(r

el
at

iv
e 

si
ze

)

256

time, ms

0 20 40 60 80 100

0am
pl

itu
de

,
m

V

20 40
time, ms

60

a

b c

80 100
–5

Fig. 3 Experimental results

a Probe signal
b Analogue WT measured at 16 outputs (v0 to v16) of chip
c Continuous WT numerically obtained for comparison
ELECTR
The absolute values of the AC components of the on-chip measured
signals (v0 to v15) have been plotted as an image in Fig. 3b. For compari-
son, Fig. 3c shows the numerical continuous WT of the same probe
signal with respect to the Morlet wavelet. Note that the chip actually per-
forms the WT of the probe signal reflecting the higher frequencies at
lower scales and the low frequencies at higher scales. As can be seen,
the continuous (numerical) WT has better time-frequency resolution
(the shadow area of the transform is more concentrated). This is
because the minimum possible time-frequency resolution is obtained
using the Morlet wavelet. We expect that using biquad filters with
greater selectivity the resolution in frequency (scale) will increase, but
at the expense of a minimal loss in the resolution in time.

Conclusion: We have shown that the impulse response of the bandpass
biquad filter is a mother wavelet. As a consequence, we have an alterna-
tive to construct analogue WT systems with very few components. The
proposed system has been fabricated in CMOS technology with power
consumption of 650 nW. The shown approach can be applied to band-
pass filters with different selectivity or of higher order.
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