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Abstract—This paper presents a robust digitally programmable
CMOS analogue processor designed for sensor output condi-
tioning in embedded applications. In addition, system adaptability
allows for correction of the deviations in circuit operation due to
ageing, mismatch or environmental effects, lending a smart nature
to the devices. In order to tune the free parameters of the system,
two training strategies based on perturbative algorithms are
compared. The processor performance is validated by adjusting
the response of an angular position sensor and the insensitivity to
parameter mismatch is demonstrated through high-level simula-
tions based on Monte Carlo electrical simulation data.

Index Terms—Adaptive signal processing, intelligent sensors,
mixed analog-digital integrated circuits.

I. INTRODUCTION

T ODAY’S sensor market is advanced towards the so
called smart sensors, that is, integrated sensor systems

that contain on a single chip the sensing, interfacing, signal
processing and intelligence (self-testing, self-identification,
and self-adaptation) functions [1]. For the realization of these
smart sensor systems, CMOS is the most suitable technology
due to the capability of cointegration of sensors and sensor
electronics, both analogue and digital. Therefore, at present,
research challenges are focused on the implementation of low
cost high performance CMOS smart sensors. Furthermore, if
these smart sensors target the ever-increasing wireless sensor
network (WSN) market, low-voltage low-power electronic
circuits are required to maximize the lifetime of the battery
operated systems.

To standardize the sensor output response, the transfer func-
tion from the sensor input to the electrical output should be
the same for all sensors of the same type. However, due to
process variations, properties vary from device to device and
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so do transfer characteristics. Therefore, calibration is manda-
tory to achieve a precise relation between the electrical output
and the physical signal being measured. Accurate sensors are
usually more expensive than uncalibrated sensors because the
calibration process is individually carried out for each device,
pushing up production costs. Alternatively, automation of cali-
bration is possible provided that the smart sensor contains a dig-
itally programmable calibration function. This not only reduces
costs and minimizes calibration time at factory, but also allows
the customer to perform recalibration if necessary [2].

There are several methods for calibrating linearity errors in
the sensor transfer characteristic, such as piecewise-linear in-
terpolation, lookup table-based linearization and electronic im-
plementation of the inverse function of the sensor curve [3]–[6].
Another option is the use of Artificial Neural Networks (ANNs),
which, for linearization purposes, are made up of only a small
number of programmable neurons or processing units. As a re-
sult, ANNs constitute a flexible solution at a low cost in terms
of area, power consumption and computational complexity, thus
being a valuable choice for adaptive sensor processing in em-
bedded applications.

This paper presents a CMOS digitally programmable
analogue processor which consists of basic current-mode pro-
cessing units arranged in a multilayer perceptron configuration,
a well known type of ANN suitable for small application-spe-
cific circuits because of the reduced set of arithmetical oper-
ations that it can perform [7], [8]. The proposed conditioning
circuit provides a robust method to linearize an output sensor
response while it can also compensate for deviations in the
sensor transfer function due to ageing and cross-sensitivity
to temperature [9]. In its design, as the proposed calibration
technique is based on analogue signal processing, sensitivity
to process parameter mismatches becomes a major issue [10].
Furthermore, performance of classical learning algorithms
used in ANNs is degraded by nonidealities in the operation of
the arithmetic blocks [11]. Therefore, a careful design of the
ASIC and specific layout techniques to reduce transistor mis-
match are essential. The feasibility of the proposed approach
is demonstrated through an example: the output of a giant
magneto-resistive (GMR) sensor is linearized through the pro-
posed conditioning circuitry and its robustness to mismatches
is confirmed through high-level system operation simulations
based on electrical simulation data.

This paper is structured as follows. Section II presents the
design of the basic building blocks which make up the adap-
tive conditioning circuit, as well as the complete perceptron pro-
cessing architecture. Two different system training strategies for
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Fig. 1. Basic current mode processing unit.

the calculation of calibration parameters are presented and com-
pared in Section III. Then, in Section IV, the proposed condi-
tioning circuit is validated by linearizing the output response
of a GMR sensor and the circuit robustness to mismatches is
demonstrated by using high-level models for Monte Carlo sim-
ulations. Finally, conclusions are drawn in Section V.

II. CMOS CONDITIONING CIRCUIT

Distributed monitoring systems are more and more used in
industrial process control, health care, environmental analysis
and many other application domains. However, battery-operated
portable embedded systems demand low power consumption
and high processing speed. This is not easy to achieve with the
voltage-mode approach in analogue signal processing due to the
progressive reduction of bias voltages in submicron technolo-
gies. Furthermore, analogue processors based on ANNs consist
of a number of unit cells and minimizing the area consumption
of the basic processing unit leads to a considerable area reduc-
tion of the whole system. To design small, fast and power saving
processors compatible with low bias voltage, the analogue cur-
rent mode approach appears to be the best choice [12].

Another issue to consider in the design of the basic ANN ana-
logue processing unit is the necessity of accuracy in order to
ensure robust operation of the processor. Accuracy, in turn, is
limited by mismatches between transistors. Unfortunately, the
design and layout techniques to improve transistor matching di-
rectly impact on the area, power consumption, and operational
speed of the system [13]. Thus, a careful design is mandatory to
achieve good performance.

Programmable coefficients must be stored in on-chip memo-
ries to confer adaptability to the system and allow for automatic
calibration of the smart sensor. Analogue memories are not reli-
able enough, as low accuracy stems from mismatch and offsets.
In contrast, digital register-based memories exhibit immunity
to noise and to interference. Furthermore, their quiescent power
consumption is negligible, which is a very convenient feature in
our target application. Processing the signals in the analogue do-
main while storing and applying the programmable coefficients
in the digital form thereby, takes advantage of both the analogue
and the digital approaches.

Taking all these issues into account, a complete ANN-based
CMOS conditioning circuit based on the analogue-digital cur-
rent-mode processing unit shown in Fig. 1 has been designed
using a standard 0.35 –3.3 V CMOS process. Its basic
components are: a set of linear analogue-digital full multipliers
(ADM), which multiply their corresponding input current by a
set of digital weighting values; and an activation function (AF)
circuit, that generates the processor unit output by performing

Fig. 2. Mixed A/D full multiplier.

Fig. 3. Sign circuit. Class AB noninverting current follower (CF).

a nonlinear operation with the weighted sum of the input cur-
rents. The description and implementation of these main blocks
and of the multilayer perceptron configuration constituting the
complete conditioning circuit are described in the following.

A. Multiplier

Processor adaptability is achieved by using a mixed-mode
programmable multiplier. The use of this cell to implement
adaptive processors was presented in [14] and [15], where
promising results were obtained in practical applications. The
required resolution depends on the minimum accuracy needed
to solve the problem. Usually, data classification tasks require
lower resolution than continuous function estimation tasks [16].
In our case, an 8-bit weight representation provides satisfactory
accuracy, as will be shown next.

The proposed 8-bit ADM is depicted in Fig. 2. It is composed
of an input 1-to-2 analogue demultiplexer (DMUX), a current
follower (CF ) and a 7-bit digitally programmable current ladder
( ). The 8-bit digital weight controls the direction and amount
of current flowing through each of the outputs. The sign bit
( ) selects the output current direction, forcing the current to
flow through the current follower (Fig. 3) when is high. The
current ladder is an NMOS programmable structure based on
the classical R-2R current ladder [17], as shown in Fig. 4. The
input current is divided into two currents and

, where the division factor is controlled by
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Fig. 4. Current ladder (�).

Fig. 5. Activation function circuit.

the digital word and its value is given
by

(1)

In this work, is the signal to be processed, whereas
is driven to ground. Provided that all transistors which work in
the ON state (triode region) have the same gate voltage , the
linear MOS current division principle [18] is applicable to this
structure and, therefore, the quotients and
are inherently linear. Then, the ideal output current of the whole
ADM is given by

(2)

To ensure good device matching, current divider transistor
sizes were selected .

B. Activation Function

A processor with nonlinear features can be applied in a wider
variety of problems than a linear processor. Thus, the AF circuit
in the proposed processing architecture consists of a class AB
current amplifier (Fig. 5) implementing a sigmoid circuit with a
bias current (for ). Note that the current
(right side of the schematic) limits the maximum absolute value

Fig. 6. ANN conditioning circuit: 1-4-1 perceptron-based architecture.

of the output current to a predetermined value, fixed to 50 ,
providing the nonlinear operation.

C. Processing Architecture

Fig. 6 shows the complete conditioning circuit based on the
former presented basic building blocks. It consists of five per-
ceptrons in two layers, in a 1-4-1 configuration. ADM circuits
provide programmability through digital weights ,
offering the required accuracy to achieve good system perfor-
mance. The input signal is replicated and driven to the inputs of
the four processors in the first processing layer. Here, each of the
mixed analogue-digital multipliers weights the input current by
a digital value . This weighted current, added to an additional
term which corresponds to the weighted limiting 50 current,
is carried out to the input of the activation function circuit. The
output processor combines the different currents from the four
processors in the last layer, plus an additional bias value, giving
the conditioning circuit output. The operation of the system
can be adjusted by setting the appropriate weight values in the
registers.

III. PERCEPTRON OPERATION AND TRAINING ALGORITHMS

As just seen, perceptrons are processing units that operate
weighting and accumulating input signals, providing a nonlinear
output. The perceptron weights are the free parameters used to
adjust the system transfer function to match the target response.
In order to select the proper weight values, a training algorithm
is needed. In this work, the operation of the conditioning cir-
cuit is tuned using algorithms based on parameter perturbation:
although weight tuning techniques based on error backpropaga-
tion algorithms work properly in the presence of some circuit
nonidealities [11], [19], perturbative algorithms present higher
robustness to circuit mismatches and offsets at a lower com-
plexity cost.
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These algorithms change the value of a set of weights
in the network with small random weight

perturbations

(3)

evaluating the root mean square error (RMSE) achieved in the
system transfer function when the perturbation is added

(4)

where are the target network outputs for each input pattern ,
and is the conditioning transfer function using the per-
turbed weights. If the resulting value is smaller than the
previous error , modified weights are kept; otherwise,
weights remain unchanged. This process is repeated until the
system reaches the desired performance.

In this work, two different perturbation strategies have been
tested: parallel and single-parameter perturbation. For each
case, we present a study of the range of perturbation values
versus the minimum RMSE achieved for a conditioning circuit
applied to extend the linear span of a sensor, limiting the
training process to 400 successive iterations as a practical
tradeoff between calculation time and accuracy. Results are
obtained by averaging ten complete training process samples
for each one of the possible perturbation ranges and training
strategies.

A. Parallel Perturbation

In this learning approach, the full digital weight set of the
conditioning circuit is modified in parallel and the RMSE of the
output is calculated for the new weight configuration. Fig. 7(a)
shows the normalized RMSE (RMSE of the processed output
compared to the RMSE of the raw sensor) as a function of the
maximum number of parameter bits that can be modified. It can
be seen that the RMSE increases exponentially with the number
of bits that can be modified, thus reducing the weight training
performance.

B. Single-Parameter Perturbation

In this perturbation strategy, the output RMSE is calculated
after modifying only one randomly selected weight. Fig. 7(b)
shows the normalized RMSE as a function of the maximum
number of bits that can be perturbed. In this case, the achieved
RMSE remains almost constant for perturbations up to 6 bits.

By comparing Fig. 7(a) and (b), both training techniques pro-
vide similar results for variations up to 4 bits. Therefore, due
to its lower complexity, single-parameter algorithm is a better
choice for hardware implementation, since only a perturbation
from 1 to 6 bits must be calculated per iteration, as opposed to
the set of 1-to-3 bit perturbations required for the parallel per-
turbation algorithm, in a conditioning circuit with parameters.

In addition, by using a single-parameter perturbation algo-
rithm the system can double the linear range of the sensor in
less than the selected limit of 400 iterations, assuming a max-
imum error of 1 in the angle estimation. Fig. 8 shows the evolu-
tion of the RMSE for two single-parameter perturbation training
cases [perturbing two bits, see Fig. 7(b)]. Weight is updated only

Fig. 7. (a) Parallel and (b) single-parameter training algorithms: RMSE versus
number of bits perturbed.

when the new RMSE decreases. In the single-parameter pertur-
bation algorithm, the convergence time is limited by the weight
updating time (weight selection, perturbation, error estimation
and comparison to previous error) and not by the mixed-mode
perceptron operation.

IV. RESULTS

The ANN-based conditioning circuit of Fig. 6 has been de-
signed in a standard 0.35 –3.3 V CMOS process. Fig. 9
shows the 8-bit full multiplier output for several digital words,
i.e., for different current scaling ratios, as a function of the input
current. The simulated and ideal AF response, as well as their
difference ( ), are shown in Fig. 10. Note that, as ex-
pected, the output is limited to , and so will the currents
to be driven to the next layer of processors.
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Fig. 8. Evolution of RMSE for two different single perturbation training cases.

Fig. 9. Mixed multiplier output for several digital operands.

Fig. 10. Simulated (solid line), ideal (dashed) activation functions and the dif-
ference between them (� � � ) (dotted).

The whole processing architecture, including digital memo-
ries, takes up an active area of 0.25 . The maximum op-
eration power consumption is 10.8 mW and the leakage power

Fig. 11. GMR output behavior into a magnetic field.

consumption in quiescent state, lower than 104 nW, is only due
to the memory registers. To verify its performance and robust-
ness to circuit mismatches, the proposed CMOS conditioning
architecture is employed to compensate the nonlinearity in the
response of a giant magneto-resistive sensor (GMR) [20] meant
for angular position measurements [21], [22]. Fig. 11 shows
the output of the GMR as a function of its orientation into a
magnetic field. It presents a sinusoidal dependence with the an-
gular position, which is only linear in the center of the 0–180
and 180–360 degree ranges. Consequently, by compensating the
nonidealities of the sensor behavior it is possible to extend its
linear range, thus improving a subsequent analogue-to-digital
conversion.

A. Compensation Circuit

Output linearization is simulated using the proposed unit el-
ements arranged in the architecture shown in Fig. 6.

Patterns consist of 175 GMR output measurements collected
in the 180 –355 range. Data are divided in two datasets: 10%
of the patterns are used during the verification stage and the rest
of them are used in the tuning or calibration process. The goal
is to extend the span where the error is smaller than 1 . Using
the standard circuit electric models (without mismatch effects),
and a single-parameter perturbation algorithm, the sensor com-
pensated span is 125% higher than the raw output, as shown in
Fig. 12.

B. Effects of Mismatch

To study the effects of mismatch on the adaptive conditioning
circuit, process (batch-to-batch) and mismatch (per instance)
Monte Carlo (MC) statistical variations for netlist parameters
at nominal temperature (27 C) were carried out according to
the manufacturer’s specifications [23]. However, as these sim-
ulations are quite time-consuming and computationally inten-
sive, they were performed individually for each building block.
Therefore, based on MC electrical simulation data, both the
ADM and AF circuits were numerically modeled in Matlab at
a system level. High-level simulations were then carried out to
study mismatch effects on the whole processing architecture in
a more efficient way.
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Fig. 12. GMR behavior (dashed line) compared to ideal linear output (dots)
and compensated output (continuous).

Fig. 13. Mean error for the mismatching-dependent multipliers.

From Monte Carlo simulation results, the 8-bit ADM opera-
tion can be modeled by

(5)

where is the programmable weight, is the input current
and the coefficients , , , and represent the mismatch ef-
fects, which will differ from one multiplier to another. Fig. 13
shows the mean error in the output current of 13 multiplier ADM
cells (see Fig. 6) due to mismatches, considering 10 different
mismatch-dependent case samples. Therefore, each multiplier
in the processing architecture, as can be seen in Fig. 13, is af-
fected by mismatches in a different way. Though the mean error
is very high for some samples, this does not affect the cor-
rect processing of the sensor output, as will be shown in the
following.

As for the AF sigmoid circuit, a polynomial approximation
fails to fit the nonlinear function properly due to its complexity.
For this reason, the high-level circuit operation is modeled by
means of a lookup table. Fig. 14 shows the mean error in the

Fig. 14. Mean error for the mismatching-dependent activation functions.

TABLE I
LINEAR GMR SENSOR RANGES

output current of four AF circuits (see Fig. 6) caused by mis-
matches, also considering ten different mismatch-dependent
case samples. Again, as shown in the figure, each AF circuit
in the processing architecture is affected by mismatches in a
different way.

Finally, these data were used to perform high-level simu-
lations of the whole adaptive conditioning circuit affected by
mismatching considering the previously studied practical case
of linearizing the output response of a giant magneto-resistive
sensor. Table I shows the ranges where the error remains
lower than 1 for the raw sensor output and the linearized
span achieved for ten different mismatch case simulations
for the complete processing circuit. Results show that the
sensor compensated span is at least 100% higher than the raw
output, even taking into account mismatch effects. Therefore,
adaptive circuits based on mixed-mode perceptron processors
work properly in sensor preprocessing electronics because of
their adaptability and thus their ability to counteract mismatch
effects. In summary, the proposed processor is very appropriate
for implementing almost-analogue interfaces in integrated sen-
sors due to its compactness, robustness and low bias voltage.

V. CONCLUSION

This paper presents two CMOS current-mode circuit el-
ements designed for adaptive sensor processing in small
embedded applications: a mixed analogue-digital multiplier
and a sigmoid circuit. By properly combining several of these
electronic blocks, it is possible to calibrate the output response
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of real sensors. The processing elements can be programmed
by changing the digital parameters included in the mixed-mode
multipliers. In this way, automation of the calibration process
is possible. A proper parameter selection is achieved by using
perturbative algorithms. Our study shows that a single-weight
perturbation training scheme achieves better results than par-
allel perturbation training, at a lower electronic complexity.

To evaluate the robustness of the proposed architecture to
mismatch, the basic building blocks were modeled on the basis
of Monte Carlo simulations. These models were used to study
the effects of mismatching on the whole processing system
through high-level simulations in Matlab.

The simulation results were applied to linearize the response
of a GMR sensor and the insensitivity to parameter mismatch
was demonstrated. Circuit programmability allows for compen-
sation of deviations in system performance or temperature drifts
[9], with a significant increase in the sensor linearity for a max-
imum error of 1 in the angular position estimation. Results
show the utility of the proposed solution in sensor applications
where an accurate and temperature-independent behavior is re-
quired, as in automotive applications [22].

Due to the small size (0.25 active area), reduced max-
imum operation power consumption (10.8 mW), negligible qui-
escent power consumption (less than 105 nW) and digital tun-
ability, the proposed adaptive circuit is very appropriate for au-
tomatic calibration of integrated sensors, lending a “smart” na-
ture to the devices.

REFERENCES

[1] G. Meijer, Smart Sensor Systems. London, U.K.: Wiley, 2008.
[2] G. van der Horn and J. L. Huijsing, Integrated Smart Sensors, Design

and Calibration. Norwell, MA: Kluwer, 1998.
[3] C. S. Subramanian, J. P. Pinelli, C. D. Lapilli, and L. Buist, “A wire-

less multipoint pressure sensing system: Design and operation,” IEEE
Sensors J., vol. 5, pp. 1066–1074, Oct. 2005.

[4] C. K. Kolle et al., “Ultra low-power monolithically integrated capaci-
tive pressure sensor for tire pressure monitoring,” in Proc. IEEE Sen-
sors, 2004, pp. 244–247.

[5] G. van der Horn and J. H. Huijsing, “Integrated smart sensor calibra-
tion,” Analog Integrated Circuits and Signal Processing, vol. 14, pp.
207–222, 1997.

[6] M. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy tempera-
ture sensor with second-order curvature correction and digital bus in-
terface,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2001, pp.
368–371.

[7] S. Haykin, Neural Networks, a Comprehensive Foundation. Engle-
wood Cliffs, NJ: Prentice-Hall, 1999.

[8] D. King, W. Lyons, C. Flanagan, and E. Lewis, “An optical-fiber sensor
for use in water systems utilizing digital signal processing techniques
and artificial neural network pattern recognition,” IEEE Sensors J., vol.
4, pp. 21–27, Jan. 2004.

[9] N. Medrano, G. Zatorre, and S. Celma, “A tunable analog conditioning
circuit applied to magnetoresistive sensors,” IEEE Trans. Ind. Elec-
tron., vol. 55, no. 2, pp. 966–969, 2008.

[10] P. G. Drennan and C. C. McAndrew, “Understanding MOSFET mis-
match for analog design,” IEEE J. Solid-State Circuits, vol. 38, pp.
450–456, 2003.

[11] B. K. Dolenko and H. C. Card, “Tolerance to analog hardware of
on-chip learning in backpropagation networks,” IEEE Trans. Neural
Networks, vol. 6, pp. 1045–1052, 1995.

[12] C. Toumazou, F. J. Lidgey, and D. G. Haigh, “Analogue IC Design:
The Current-Mode Approach,” IEE Circuits and Systems Series, vol.
2, 1990.

[13] P. Kinget, “Device mismatch and tradeoffs in the design of analog cir-
cuits,” IEEE J. Solid-State Circuits, vol. 40, pp. 1212–1224, 2005.

[14] G. Zatorre, N. Medrano, and S. Celma, “Analysis and simulation of a
mixed-mode neuron architecture for sensor conditioning,” IEEE Trans.
Neural Networks, vol. 17, pp. 1332–1335, 2006.

[15] G. Zatorre, N. Medrano, M. T. Sanz, P. A. Martínez, S. Celma, and J.
Bolea, “Robust adaptive electronics for sensor conditioning,” in Proc.
2007 IEEE Sens. Conf., Atlanta, GA, Oct. 2007, pp. 1295–1298.

[16] G. Dündar and K. Rose, “The effects of quantization on multi-
layer neural networks,” IEEE Trans. Neural Networks, vol. 6, pp.
1446–1451, Nov. 1995.

[17] C. M. Hammerschmied and Q. Huang, “Design and implementation
of an untrimmed MOSFET-only 10-Bit A/D converter with ������
THD,” IEEE J. Solid-State Circuits, vol. 33, pp. 1148–1151, 1998.

[18] K. Bult and G. J. G. M. Geelen, “An inherently linear and compact
MOST-only current division technique,” IEEE J. Solid-State Circuits,
vol. 27, pp. 1730–1735, 1992.

[19] M. Valle, “Analog VLSI implementation of artificial neural networks
with supervised on-chip learning,” Analog Integr. Circuits Signal
Process., vol. 33, pp. 263–287, 2002.

[20] S. Soloman, Sensors Handbook. New York: McGraw-Hill, 1999.
[21] S. Yamada, S. Chomsuwan, and M. Iwahara, “Application of giant

magnetoresistive sensor for nondestructive evaluation,” in Proc. 2006
IEEE Sens. Conf., 2006, pp. 927–930.

[22] W. Granig, C. Kolle, D. Hammerschmidt, B. Schaffer, R. Borgschulze,
C. Reidl, and J. Zimmer, “Integrated giant magnetic resistance based
angle sensor,” in Proc. 2006 IEEE Sens. Conf., 2006, pp. 542–545.

[23] C35B4 Design-Kit, Austria Microsystems (AMS).

Guillermo Zatorre received the B.Sc. degree in
physics from the University of Zaragoza, Zaragoza,
Spain, in 2001. Currently, he is working towards
the Ph.D. degree at the Electronic Engineering
and Communications Department, University of
Zaragoza, while working at INCIDE S.A.

His research interests include auto-tuning tech-
niques for integrated continuous time filters, basic
blocks for neural network integration, and neural
networks application for smart sensors.

Nicolás Medrano (M’96) received the B.Sc. degree
and Ph.D. degree in physics from the University of
Zaragoza, Zaragoza, Spain, in 1989 and 1998, respec-
tively.

Currently, he is an Associate Professor of Elec-
tronics at the Faculty of Physics, University of
Zaragoza, and a member of the Group of Electronic
Design (GDE-I3A), Aragon Institute of Engineering
Research, University of Zaragoza. His research
interests include implementation of neural networks
for signal processing, integrated sensor interfaces,

wireless sensor networks, and intelligent instrumentation.

María Teresa Sanz received the Ph.D. degree
in electronic engineering from the University of
Zaragoza, Zaragoza, Spain, in 2004.

She was a member of the Electronic Design Group,
Department of Electronic Engineering and Commu-
nications, University of Zaragoza, until 2008 and is
currently a Full Researcher at the Electronics Depart-
ment, National Institute for Astrophysics, Optics and
Electronics (INAOE), Mexico. Her research interests
include analog and mixed IC design, integrated op-
tical receivers and integrated sensor interfaces.



838 IEEE SENSORS JOURNAL, VOL. 10, NO. 4, APRIL 2010

Belén Calvo (M’07) received the B.Sc. degree in
physics and the Ph.D. degree in electronic engi-
neering from the University of Zaragoza, Zaragoza,
Spain, in 1999 and 2004, respectively.

She is a member of the Group of Electronic
Design, Aragon Institute of Engineering Research
(GDE-I3A), University of Zaragoza. Her research
interests include analog and mixed-mode CMOS IC
design, on-chip programmable circuits, integrated
optical receivers, low-voltage low-power monolithic
sensor interfaces, and wireless sensors networks.

Pedro A. Martínez (M’87) was born in Zaragoza,
Spain. He received the B.Sc. and Ph.D. degrees in
physics from the University of Zaragoza, Zaragoza,
Spain, in 1971 and 1974, respectively.

Since 1971, he has been with the Department
of Electronic Engineering and Communications,
University of Zaragoza, where he is Professor.
His research interest lies in the area of solid-state
circuits, including analog IC design, nonlinear
networks, modeling of analog integrated circuits,
and current-mode signal processing.

Santiago Celma (M’98) was born in Zaragoza,
Spain. He received the B.Sc., M.S., and Ph.D.
degrees in physics from the University of
Zaragoza, Zaragoza, Spain, in 1987, 1989, and
1993, respectively.

Currently, he is a Full Professor of the Group of
Electronic Design (GDE-I3A), Aragon Institute of
Engineering Research, University of Zaragoza. He
has coauthored more than 60 technical papers and
180 international conference contributions. His re-
search interests include circuit theory, mixed-signal

integrated circuits, high-frequency communication circuits, and wireless sensor
networks.


