
An FPGA Implementation to Detect Selective Cationic
Antibacterial Peptides
Carlos Polanco González1¤, Marco Aurelio Nuño Maganda2, Miguel Arias-Estrada3*, Gabriel del Rio1*

1 Department of Biochemistry and Structural Biology, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, México D. F., México, 2 Universidad

Politécnica de Victoria, Cd. Victoria, Tamaulipas, México, 3 Computer Science Department, Instituto Nacional de Astrofı́sica, Óptica y Electrónica, Puebla, Puebla, México

Abstract

Exhaustive prediction of physicochemical properties of peptide sequences is used in different areas of biological research.
One example is the identification of selective cationic antibacterial peptides (SCAPs), which may be used in the treatment of
different diseases. Due to the discrete nature of peptide sequences, the physicochemical properties calculation is
considered a high-performance computing problem. A competitive solution for this class of problems is to embed
algorithms into dedicated hardware. In the present work we present the adaptation, design and implementation of an
algorithm for SCAPs prediction into a Field Programmable Gate Array (FPGA) platform. Four physicochemical properties
codes useful in the identification of peptide sequences with potential selective antibacterial activity were implemented into
an FPGA board. The speed-up gained in a single-copy implementation was up to 108 times compared with a single Intel
processor cycle for cycle. The inherent scalability of our design allows for replication of this code into multiple FPGA cards
and consequently improvements in speed are possible. Our results show the first embedded SCAPs prediction solution
described and constitutes the grounds to efficiently perform the exhaustive analysis of the sequence-physicochemical
properties relationship of peptides.

Citation: Polanco González C, Nuño Maganda MA, Arias-Estrada M, del Rio G (2011) An FPGA Implementation to Detect Selective Cationic Antibacterial
Peptides. PLoS ONE 6(6): e21399. doi:10.1371/journal.pone.0021399

Editor: Simon Rogers, University of Glasgow, United Kingdom

Received August 3, 2010; Accepted June 1, 2011; Published June 28, 2011

Copyright: � 2011 Polanco González et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by CONACYT project number 82308 and the Macroproyecto Tecnologias para la Universidad de la Información y la
computación/UNAM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gdelrio@ifc.unam.mx (GdR); ariasmo@inaoep.mx (MA-E)

¤ Current address: Centro de Investigaciones Quı́micas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México

Introduction

Exhaustive prediction of physicochemical properties of peptides

has different applications in biology, including mass-spectrometry

data analysis [1], identification of disordered regions in proteins

[2], trans-membrane protein analysis [3], antibacterial peptide

identification [4], among others [5]. Due to the large size of the

peptide sequence space (e.g., for peptide sequences with 25

residues long, the number of different peptide sequences is

3.361032), the exhaustive calculation of these properties demands

high-performance computing. Different technical solutions exist to

address such large number of computations, that may be divided

into three classes: a) local solutions (e.g., concurrency, design of

hardware), b) distributed solutions (e.g., cluster of computers,

cloud-computing) and c) a combination of the previous. In any

case, the most efficient technical solution to satisfy high-

performance computing problems starts with an efficient local

solution; such is the case of application-specific integrated circuits

(ASIC). However, the number and nature of physicochemical

properties may vary for different applications, making the

development of ASIC too expensive. Alternatively, here we

present a hardware solution using a Field Programmable Gate

Array (FPGA) implementation, as a cost-effective solution for this

high-performance problem. The architecture of FPGA boards can

be reconfigured at the level of a hardware description language,

providing further advantage in the calculation of physicochemical

properties of peptides.

Antibacterial peptides constitute one of the natural defences

against infectious diseases and constitute a promising new area for

the discovery of new pharmaceuticals [6]. Among these antibac-

terial peptides there are those characterized by physicochemical

properties such as being positively charged, amphiphilic and small

in size [7,8]; we refer to these peptides as cationic antibacterial

peptides or CAPs. Among CAPs, there is a special class of peptides

that display a selective action against bacteria and do not have any

toxicity against human cells [9]; these peptides are referred here to

as selective CAPs or simply SCAPs. Because of the selectivity,

SCAPs have been useful in the development of novel compounds

useful in the treatment of cancer [10] and is foreseeable that many

other diseases could be targeted through the use of SCAPs [11,12].

Although different experimental approaches have been de-

scribed for the identification of AP [13], only one has been

described for the identification of SCAPs [14]. Considering the

large number of possible peptide sequences, the use of computa-

tional approaches to reduce the number of peptides to be

biologically essayed is important. In this scenario, we have shown

that a narrow range of values for isoelectric point, helical

hydrophobic moment and AGADIR score characterize SCAPs

[9]. More recently, we observed that within that range of values,

only some specific combination of values render SCAP activity

that has been preserved during the evolution of these peptides (our

unpublished results). Considering the discrete nature of the values

derived from the computation of these physicochemical properties

of peptides, a thorough pharmacophore virtual screening requires

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21399

an efficient computational solution. An alternative solution would

be to sample the peptide sequence space; for that goal we have

previously described a Hidden Markov model to identify potential

SCAPs [15]. However, such approach cannot guarantee to

identify pharmachophores of a given length because not every

peptide sequence nor every combination of physicochemical

properties values is tested in this type of approach.

In the present work we aim to develop an FPGA solution for the

exhaustive prediction of SCAPs in the virtual universe of peptide

sequences. We describe an adaptation of the code to predict

SCAPs, design and the implementation of the code into an FPGA

card. The performance of our implementation is reported and

compared with a software solution.

Methods

Design and Implementation
All the implementations, but the one for the AGADIR property,

were tested in a reconfigurable platform, based on a Xilinx Virtex

II Pro FPGA; the target platform was the ADM-XPL, which is a

commercial coprocessor board (Alphadata). The selected hard-

ware platform have a configurable clock generator which allows to

establish the work frequency from 20 MHz up to 100 MHz, using

multiples of 10 MHz. Algorithms were modelled for paralleliza-

tion and optimization in the Handel-C Hardware Description

Language from Celoxica using the Design Kit Suite 5.0 – DK5

(Agility). Other tools used were: Visual C++ 6.0 (for interfacing the

target platform with the host PC) and Xilinx ISE 9.2i (for

generating the configuration file for the target FPGA).

Prediction of SCAPs is accomplished by considering three

features of peptide sequences: propensity to be unstructured

(natively unstructured), charge and amphipathicity. These three

features are predicted calculating four physicochemical properties:

a) Mean hydrophobicity (MH). This is the normalized

mean value of the hydrophobicity over all the amino acids in a

given peptide. A peptide was considered SCAP if its MH value was

within the range of 0.35 to 0.55.

b) Mean net charge (MC). This is determined by Equation

(1), which is based on a previous report [16]:

MC~½(ArgzLys){(AspzGlu)� � 1=n ð1Þ

The variables Arg, Lys, Asp and Glu represent the number of

times the amino acids Arginine (Arg), Lysine (Lys), Aspartic acid

(Asp) and Glutamic acid (Glu) appeared in the peptide sequences.

The value of n is the length of the peptide.

In the present work, a peptide sequence was considered natively

unfolded if the MC was above or equal to the value of C(MH):

C(MH)~{5:44 �MHz2:66 ð2Þ

c) Isoelectric point (pI). This is the pH value where a

particular peptide carries no net electrical charge. A peptide was

considered SCAP if it presented a pI value within the range of 10.8

to 11.8. The pI was calculated based on the following pseudo-code:

N first we count charged amino acids in a peptide sequence:

for (i = 0; i, = protein.length()21; ++i)

{

if (protein(i) = Asp) ++AspNumber;

if (protein(i) = Glu) ++GluNumber;

if (protein(i) = Cys) ++CysNumber;

if (protein(i) = Tyr) ++TyrNumber;

if (protein(i) = His) ++HisNumber;

if (protein(i) = Lys) ++LysNumber;

if (protein(i) = Arg) ++ArgNumber;

}

N Then, calculate the charge contribution from each amino acid

based on the corresponding ionization constant (pKa):

QN1 = 21/(1+10(3.65-pH)); //C-terminal charge

QN2 = 2AspNumber/(1+10(3.9-pH)); //D charge

QN3 = 2GluNumber/(1+10(4.07-pH)); //E charge

QN4 = 2CysNumber/(1+10(8.18-pH)); //C charge

QN5 = 2TyrNumber/(1+10(10.46-pH)); //Y charge

QP1 = HisNumber/(1+10(pH-6.04)); //H charge

QP2 = 1/(1+10(pH-8.2)); //NH2charge

QP3 = LysNumber/(1+10(pH-10.54)); //K charge

QP4 = ArgNumber/(1+10(pH-12.48)); //R charge

NQ = QN1+QN2+QN3+QN4+QN5+QP1+QP2+QP3+QP4;

N isoelectric point is found when NQ is equal to zero. We start from

pH = 0, if the result is bigger than 0, we increase pH for example

of 0.01 (Assumed precision). We are doing this until NQ, = 0.

d) Helical hydrophobic moment (mH). This is the sum of the

hydrophobicities of the side chains of a helix of n amino acids. The

length of the vector representing the hydrophobicity values is the signed

numerical hydrophobicity associated with the type of side chain, and its

direction is determined by the orientation of the side chain along the

helix axis. A large value of mH means that the helix is perpendicular to

its axis (i.e., amphiphilic). A peptide was considered SCAP if at least

presented an mH value within the range of 0.4 to 0.6. The helical

hydrophobic moment was calculated as described previously [9] based

on formula described by Eisenberg and collaborators for the

hydrophobic moment plot, as described in the following pseudo-code:

N First we set the hydrophobicity for each possible amino acid.

OMH(1) = 20.40; OMH(2) = 21.12; OMH(3) = 0.17; OMH(4)

= 21.31; OMH(5) = 21.22; OMH(6) = 1.92; OMH(7) = 20.67;

OMH(8) = 20.64; OMH(9) = 1.25; OMH(10) = 20.67; OMH(11)

= 1.22; OMH(12) = 1.02; OMH(13) = 20.92; OMH(14) = 20.49;

OMH(15) = 20.91; OMH(16) = 20.59; OMH(17) = 20.55; OMH(18)

= 20.28; OMH(19) = 0.91; OMH(20) = 0.50; OMH(21) = = 0.00;

OMH(22) = 1.67; OMH(23) = 21.07; OMH(24) = 0.00;

N Calculate the necessary Angle per residue increments,

(FORTRAN calculates trig functions in radians so we convert

degrees to rads).

Angle = StartAngle

NumAngle = 0

for ((Angle, = StopAngle) and (NumAngle, = MAXINC))

{

NumAngle = NumAngle+1;

RadAngle(NumAngle) = Angle/360*2*3.14159265;

Angle = Angle+IncAngle;

SinSum(NumAngle) = 0;

CosSum(NumAngle) = 0;

CorSSum(NumAngle) = 0;

CorCSum(NumAngle) = 0;

}

N Calculate the hydrophobic moment and save the maximum

value and corresponding angle.

FPGA for Selective Antibacterial Peptides

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21399

N Calculate the first window.

Hydsum = 0;

for (Pos = Begin,Begin+Window22) {HPhob = OMH (pro-

tein(Pos));}

HydSum = HydSum+HPhob;

for (AngPos = 1,NumAngle)

{

Angle = RadAngle(AngPos) * (Pos);

SinSum(AngPos) = SinSum(AngPos)+Sin(Angle) * HPhob;

CosSum(AngPos) = CosSum(AngPos)+Cos(Angle) * HPhob;

CorSSum(AngPos) = CorSSum(AngPos)+Sin(Angle);

CorCSum(AngPos) = CorCSum(AngPos)+Cos(Angle);

}

}

N Calculate the moment on each window by adding the new

position to the sine and cosine sums, and subtracting the old.

for (Pos = Begin+Window21, Fin+Window21)

{

MaxValue(Pos2Window+1) = 0;

MaxAngle(Pos2Window+1) = 0;

HPhob = OMH(protein(Pos));

HydSum = HydSum+HPhob;

HAve = HydSum/Window;

N Add the new value at the right end of the window.

for (AngPos = 1, NumAngle)

{

Angle = RadAngle(AngPos) * (Pos);

SinSum(AngPos) = SinSum(AngPos)+Sin(Angle) * HPhob;

CosSum(AngPos) = CosSum(AngPos)+Cos(Angle) * HPhob;

CorSSum(AngPos) = CorSSum(AngPos)+Sin(Angle);

CorCSum(AngPos) = CorCSum(AngPos)+Cos(Angle);

N Calculate the moment, and save the max.

Moment = Sqrt((SinSum(AngPos)2CorSSum(AngPos)*HAve)2+
(CosSum(AngPos)2CorCSum(AngPos)*HAve)2);

Moment = Moment/Window;

If (Moment.MaxValue(Pos2Window+1))

{

MaxValue(Pos2Window+1) = Moment;

MaxAngle(Pos2Window+1) = StartAngle+(AngPos21)*In-

cAngle;

}

}

N Substract the oldest value from the left end of the window.

HPhob = OMH(protein(Pos2Window+1));

HydSum = HydSum2Hphob;

for (AngPos = 1, NumAngle)

{

Angle = RadAngle(AngPos) * (Pos2Window+1);

SinSum(AngPos) = SinSum(AngPos)2Sin(Angle) * HPhob;

CosSum(AngPos) = CosSum(AngPos)2Cos(Angle) * HPhob;

CorSSum(AngPos) = CorSSum(AngPos)2Sin(Angle);

CorCSum(AngPos) = CorCSum(AngPos)2Cos(Angle);

}

}

Thus, the propensity of a peptide to be unstructured is predicted

by MH and MC, the charge is accounted by the IP and the

amphipathicity by the mH.

The proposed algorithms were first analyzed from its original

implementation in FORTRAN77 and tested on a cluster of four

computers with each a Pentium IV at 2.4 GHz running on Linux.

To evaluate the number of unstructured peptides predicted by

the AGADIR score and the charge and mean hydrophobicity

criteria (C(MH), see equation 2), 1.66105 peptide sequences (204)

of 9 amino acids in length were evaluated corresponding to

sequences derived from the following pattern: RAAAYXXXX,

where letter X stands for any of the 20 amino acid, Y, R and A

stand for Tyrosine, Arginine and Alanine, respectively. The same

sequences were used to evaluate the time efficiencies obtained in

our FPGA board.

The following steps were performed for the physical implemen-

tation of the Handel-C code into the FPGA:

1. The Handel-C code is translated to VDHL code using the

DK5 Handel-C Compiler.

2. The generated VHDL code is embedded as a component into

a VHDL project, which contains an I/O interface.

3. Then, the Synthesis, Map and Place and Route processes from

the Xilinx Tools (Xilinx ISE 9.2i) are executed. Finally, the

configuration file for the target FPGA device is generated and

downloaded to the FPGA board for testing.

To determine the execution time per peptide sequence, we

recorded the total time reported in the hardware and software

implementations and divided by the number of peptide sequences

analyzed; this is reported as the average time for each

implementation. Not every sequence in the 1.66105 peptide

sequences analyzed had features of known SCAPs, and conse-

quently not every algorithm computed every peptide sequence.

Thus, four parallel counters were implemented to account for the

execution time of each hardware module. The values stored in

these counters represent the total number of cycles required for

each hardware process. To obtain the total execution time in

hardware of each process, the value of each counter is multiplied

by the reciprocal of the clock frequency, in this case 50 MHz

because this frequency is lower than the maximum clock frequency

possible for the design.

Results

Software Adaptation
In this work, we predict SCAPs by computing the charge

(Isoelectric Point, pI), amphipathicity (Helical Hydrophobic

Moment, mH) and the propensity of a peptide sequence to be

natively unfolded by combining two physicochemical properties.

This last property was originally estimated using the AGADIR

score [9]; however, we noted that for short peptides the AGADIR

code does not discriminate efficiently. Specifically, we observed

than in 1.66105 sequences of 9 amino acids in length generated

with an infinite period random algorithm built on a unit square

and evaluated with AGADIR, only 620 of these sequences

(0.0388%) did not have an AGADIR score within the range of

known SCAPs (AGADIR,10).

Thus, here we report the use of a simpler algorithm that has

been previously described to predict natively unfolded proteins

[16]; for that we calculated the Mean Charge (MC) and the Mean

Hydrophobicity (MH). Figure 1 and Table S1 show the values

obtained for these physicochemical properties in antibacterial

peptides reported to be structured and non-structured. Note that

FPGA for Selective Antibacterial Peptides

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21399

these two sets of peptides are separated roughly with the line

(linear equation 2) plotted in the figure.

FPGA architecture
We divided the prediction of each peptide in 4 basic blocks,

where each block performs each one of the 4 physicochemical

properties calculations (see Design and Implementation section). A

functional architecture of this design is described in Figure 2. This

architecture is based on the computation demand of each module

observed in the software and hardware version (see Table 1,

column labelled ‘‘Execution Time (Software)’’), minimizing the use

of the most demanding one (mH.pI.MC.MH).

The hardware architecture modules include:

A) Hydrophobicity Hardware Module (HHM), implements the

MH algorithm in four storage modules (Amino acids

Memory (AM), hydrophobicity Memory (HM), Peptide

Charge Register (PCR) and Hydrophobicity Register (HR))

and one Length Adjusting Module (LAM).

B) Mean Net Charge Hardware Module (MNCHM), imple-

ments the MC algorithm using a set of registers required to

accelerate this calculation (Net Charge Register, NCR); the

final values were registered in the FNCR memory of this

module.

C) Isoelectric Point Charge Hardware Module (IPCHM),

implements the pI algorithm; for this, several multilevel

memory access in parallel are used to accelerate the

computation (temporal registers R0, R1, … RM) that is

stored ultimately at the Isoelectric Point Charge Register

(IPCR).

D) Helical Hydrophobic Moment Hardware Module

(HHMHM) implements the mH algorithm. This module

actually computes the MC and MH values that are used by

the MNCHM; it stores also the Sine (SM) and Cosine (CM)

values that accelerate the mH calculation; however, this

acceleration is counterbalanced by the large number of

cycles required to execute this module. The values in the

HM, SM and CM are stored in three temporal registers

(TR0, TR1 and TR2). The final result is stored in the Mean

Value Register (MVR).

E) Global Control Unit (GCU) defines the execution order of

each of the hardware modules; this is currently achieved by

activating one module at a time changing the control signal

of the Multiplexer1 (MUX1) in each hardware module.

Every peptide sequence was represented by a fixed-point

number and generated by the FPGA board, thus eliminating the

overhead due to the CPU-FPGA data communication. We

validated our peptide representation in the FPGA comparing the

results obtained using the FPGA with the software version (see

Design and Implementation section) and observed 100% match in

all the tested sequences: from the 1.66105 peptide sequences

analyzed, the same 4,984 peptide sequences were predicted as

SCAPs by our FPGA board and the software version.

In total, our FPGA implementation uses up to 99% of logic and

RAM memory and 5% of input/output resources of the FPGA

itself simulated at a maximum frequency of 55.16 MHz/cycles

(see Table 2). Since it is not practically possible to set the clock

speed at that frequency, we will use the immediate possible lower

value, 50 MHz, for our analysis.

All the physicochemical values use floating-point operations, but

for our FPGA implementation these were estimated as fixed-point

integer numbers. The floating-point arithmetic circuits require

more space than integer representation in the FPGA. Hence,

integer representation is preferred to maximize the area used in

the FPGA device and allow for parallelism. In this way, each one

of the 20 amino acids was represented by an integer from 0 to 19;

each integer is coded in 5 bits using a binary representation: e.g.,

the decimal number 19 is represented by 5 bits in a binary code,

10011. Thus, for the peptides of 9 amino acids in length used in

this study, we used up to 45-bits for each peptide. To generate all

the peptide sequences tested in the FPGA card, we used a simple

counter.

Each module was optimized in order to return one result per

clock cycle. With a 50 MHz clock frequency, the execution times

achieved are reported in Table 1. The optimized version of this

program on the FPGA card takes on average 5.15 ms to evaluate

each peptide sequence; the same program on a Linux box at

2.4 GHz takes on average 23.6 ms, thus the FPGA implementation

is 4.5 times faster on average. Note that the sum of the execution

time of each algorithm does not add up to the reported average

execution time, because in our implementation not every code is

executed per sequence (see Figure 2 and Methods). As noted in

Table 2, the best improvement in performance was achieved in the

pI calculation module, which execution time was 195 times faster

in the FPGA device and included a parallel routine.

Discussion

There are different software solutions to compute physicochem-

ical properties of peptides. Despite the high-performance com-

puting nature of these calculations, there have been no

developments to solve these in an efficient way. The FPGA’s

features are adequate to address the computation of physico-

chemical properties of peptides, because these allow testing diverse

embedded codes at low cost and relatively short developing times.

Additionally, having a custom FPGA implementation of these

algorithms is important based on:

i) Our interest to exhaustively explore the sequence space of

peptides to identify potential SCAPs,

ii) While FPGA performance may compete with clusters of

computers, the cost of running and maintaining FPGA platforms

is importantly lower than those of computer clusters and

Figure 1. Predicting unstructured antibacterial peptides. Two
physicochemical properties (Mean Charge, MC, Mean Hydrophobicity,
MH) known to differentiate structured from non-structured proteins
were applied to antibacterial peptides. The figure shows the paired
values of a set of structured antibacterial peptides (empty squares) and
unstructured antibacterial peptides (filled circles). See supplementary
Table 1 for further information about the peptide sequences used for
this study.
doi:10.1371/journal.pone.0021399.g001

FPGA for Selective Antibacterial Peptides

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21399

iii) There are many physicochemical properties used in the

prediction of antibacterial peptides [17] and other bioinfor-

matics applications (e.g., predictions of proteins natively

unfolded) that could benefit from the description of this work.

Here we report an optimization and implementation into an

FPGA device of four instantiations of algorithms useful to compute

physicochemical properties of peptides. FPGA boards are a

convenient platform to build custom computing processors and

achieve high performance at a fraction of the cost of other high-

performance computing solutions. FPGAs are attracting the

attention of scientists in the bioinformatics area, and different

approaches to design and program them are available (e.g., Mentor

[18], Mitrionics [19]). The key acceleration component of FPGAs

is the parallelization of the algorithm. Problems like the one

exposed in this work, can be massively parallelized, gaining orders

of magnitude in performance (e.g., the pI algorithm, see Table 1).

The limitation is the actual physical space in the FPGA device.

Note that 3 (net charge, mean hydrophobicity and isoelectric point)

out of 4 physicochemical properties computed are insensitive to the

amino acid order in the peptide sequence, but the helical hydrophobic

Figure 2. FPGA functional architecture. The 4 hardware modules required to predict SCAPs (Mean Charge, MNCHM, Mean Hydrophobicity, HHM,
Isoelectric Point, IPCHM, Hydrophobic Moment, HHMHM) were integrated into an FPGA board as depicted: If MNCHM and HHM were consistent with values
of known SCAP (see Eqn. 2 in Methods), then IPCHM was calculated; if IPCHM was within the values of known SCAP the HHMHM was finally calculated.
doi:10.1371/journal.pone.0021399.g002

Table 1. Performance statistics.

Algorithm Execution Time (Hardware) Execution Time (Software)

MC 0.107 ms 14.39 ms

MH 0.157 ms 14.39 ms

pI 0.157 ms 30.76 ms

mH 14.5 ms 249.2 ms

Average 5.15 ms 23.61 ms

The average and individual execution time per peptide sequence and algorithm
implemented in the FPGA card and the original version in software (Fortran77)
running on a Linux box is reported (see Methods). The reported time for the
software version was derived using a cluster of 4 Pentium IV 2.4 GHz. The time
reported for the software version corresponds to the actual user time as
measured by the time command in the Linux box. The time reported for the
Hardware version corresponds to the one reported by the Xilinx tools (see
Methods).
doi:10.1371/journal.pone.0021399.t001

FPGA for Selective Antibacterial Peptides

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21399

moment is not. If all the properties would have this feature, only a

fraction of all possible peptide sequences would be analyzed and there

would be no need for an FPGA implementation. However, as noted in

Table 1, the helical hydrophobic moment takes up 80% of the

computing time, so the FPGA implementation is required.

In our study, we show that our code has the same precision than

the software version of it. Yet, the size of the four codes used up to

99% of the logic and RAM memory, preventing further replication

in the tested FPGA card. However, the reported number of gates

per algorithm in Table 2 (0.8 million gates) may allow estimating the

gain of speed by replicating these codes in a denser FPGA card. For

instance, in a Virtex-6 FPGA device with 8 millions gates, a

potential performance improvement would be obtained by

replicating each module 10 times. Thus, in such FPGA board the

code will execute 45 times faster only due to parallelism, compared

with software running at the PC computer. Furthermore, using a

Virtex-6 device, our FPGA implementation could gain in clock

speed since Virtex-6 devices have logic elements that support up to

500 MHz, compared to 100 MHz of the testing platform.

Therefore, with a conservative clock speed increase of 200 MHz

for the implementation, an overall possible acceleration with Virtex-

6 could be in the order of 100–120 times compared to the PC

software version. Extending the architecture for larger FPGA

devices or hives of FPGA boards operating in parallel, may require

some extensions to the architecture to manage several execution

threads, but it could further accelerate processing time.

Besides the overall acceleration of our FPGA implementation,

individually each of the 4 physicochemical properties calculations

were accelerated from 17 to 195 times (see Table 1) being the

implementation of the pI code the one with the largest acceleration

due to its parallelized implementation. It is important to note that

a gain in time performance is expected when the embedded code

is parallelized, yet it is not possible to anticipate the magnitude of

the acceleration since it depends on the nature of each algorithm.

Another important aspect in the development of FPGA codes is

the time involved in coding low-level routines in FPGA boards. To

accelerate this, we used the Handel-C language, which is based on

the ANSI-C standard but with explicit parallelization constructs.

Since coding in Handel-C has to be done keeping in mind the

physical restrictions of the FPGA device, the designer has to

consider the number of bits of every variable, types of arithmetic

representation and operations. During the compilation and

hardware synthesis, the code in Handel-C is transformed into a

VHDL language representation. Thus, a second inspection of the

code is always needed according to the FPGA platform model used.

Finally, it is important to note that there are many other

physicochemical properties that may be relevant to embed on

dedicated hardware. As more of these routines became available,

these may be treated as modules on FPGA boards (e.g., as the

hardware blocks described here) for different simulation purposes.

For instance, FPGA boards capable to compute physicochemical

properties may be used to analyze natively unfolded peptide

sequences and SCAPs in an exhaustive fashion, among others.

Our results may pave the way towards that goal.

Conclusions
In summary, we report an implementation of an FPGA card

with 4 embedded codes useful in the exhaustive prediction of

physicochemical properties of peptides, particularly in the

prediction of selective cationic antibacterial peptides.

Availability and Future Directions
We have made available the code at sourceforge within the

project named APAP-FPGA in the following address: http://

apap-fpga.sourceforge.net/

The actual code is made available under the GNU GPL v3

license at:

http://apap-fpga.svn.sourceforge.net/viewvc/apap-fpga/

Any changes and improvements on this code will be reflected on

this web site.

Supporting Information

Table S1 Structured and unstructured antibacterial
peptides. Antibacterial peptide sequences used to test the method

to discriminate structured from non-structured peptides. ID refers

to the number identification reported in the Antimicrobial Peptide

Database (Wang, Z. and Wang, G. (2004) APD: the Antimicrobial

Peptide Database. Nucleic Acids Research 32, D590–D592); NS

indicated that the peptide sequence is Not Specified in the APD and

were obtained elsewhere (del Rio G, Castro-Obregon S, Rao R,

Ellerby HM, Bredesen DE. 2001. APAP, a sequence-pattern

recognition approach identifies substance P as a potential apoptotic

peptide. FEBS Lett. 494:213–219); Sequence reports the corre-

sponding peptide sequence using the single-letter amino acid code.

The antibacterial peptides reported to be non-structured in water

solution are in indicated with a gray background and the structured

ones are in white cells in the table.

(DOC)

Acknowledgments

The authors wish to thank the technical support received from Maria

Teresa Lara and the IT department at the Instituto de Fisiologı́a Celular/

UNAM. We appreciate the insight to the code for calculating unstructured

proteins by Prof. V.N. Uversky.

Table 2. Hardware utilization statistics.

MC MH pI mH Complete System

Flip Flops 444 (2%) 704 (3%) 1,037 (4%) 1,518 (6%) 3,703 (13%)

Look-up Tables 1,224 (4%) 1,935 (7%) 2,857 (10%) 4,183 (15%) 10,202 (37%)

Slices 711 (5%) 1,125 (8%) 1,685 (12%) 2,428 (18%) 5,923 (43%)

Gates 105,640 167,263 246,492 360,935 880,329

Block RAMs - - 2 (1%) 11 (8%) 13 (10%)

MULT18618s - - 1 (1%) 10 (7%) 11 (8%)

Max Clock Frequency 75.34 Mhz 75.30 Mhz 73.04 Mhz 67.51 MHz 55.16 Mhz

The table reports the resources used by the 4 codes (MC, MH, pI, mH) used to predict SCAPs when implemented on a Xilinx Virtex II PRO family FPGA board.
doi:10.1371/journal.pone.0021399.t002

FPGA for Selective Antibacterial Peptides

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21399

Author Contributions

Conceived and designed the experiments: GdR MAE. Performed the

experiments: CPG MANM. Analyzed the data: GdR MAE CPG MANM.

Contributed reagents/materials/analysis tools: GdR MAE. Wrote the

paper: GdR MAE CPG MANM.

References

1. Bogdán IA, Rivers J, Beynon RJ, Coca D (2008) High-performance hardware

implementation of a parallel database search engine for real-time peptide mass

fingerprinting. Bioinformatics 24: 1498–502.
2. Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK (2007)

Prediction of intrinsic disorder and its use in functional proteomics. Methods
Mol Biol 408: 69–92.

3. Lehnert U, Xia Y, Royce TE, Goh CS, Liu Y, et al. (2004) Computational
analysis of membrane proteins: genomic occurrence, structure prediction and

helix interactions. Q Rev Biophys 37: 121–146.

4. Fjell CD, Jenssen H, Hilpert K, Cheung WA, Panté N, et al. (2009)
Identification of novel antibacterial peptides by chemoinformatics and machine

learning. J Med Chem 52: 2006–2015.
5. Du QS, Huang RB, Chou KC (2008) Recent advances in QSAR and their

applications in predicting the activities of chemical molecules, peptides and

proteins for drug design. Curr Protein Pept Sci 9: 248–60.
6. Vaara M (2009) New approaches in peptide antibiotics. Curr Opin Pharmacol 9:

571–576.
7. Scott MG, Hancock RE (2000) Cationic antimicrobial peptides and their multi-

functional role in the immune system. Crit Rev Immunol 20: 407–31.
8. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:

389–95.

9. del Rio G, Castro-Obregon S, Rao R, Ellerby HM, Bredesen DE (2001) APAP,
a sequence-pattern recognition approach identifies substance P as a potential

apoptotic peptide. FEBS Lett 494: 213–9.

10. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, et al. (1999) Anti-

cancer activity of targeted pro-apoptotic peptides. Nat Med 5: 1032–8.

11. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of

obesity by targeted ablation of adipose tissue. Nat Med 10: 625–32.

12. Ellerby HM, Bredesen DE, Fujimura S, John V (2008) J Med Chem 51:

5887–5892.

13. Hilpert K, Fjell CD, Cherkasov A (2008) Short linear cationic antimicrobial

peptides: screening, optimizing, and prediction. Methods Mol Biol 494: 127–59.

14. Raventós D, Taboureau O, Mygind PH, Nielsen JD, Sonksen CP, et al. (2005)

Improving on nature’s defenses: optimization & high throughput screening of

antimicrobial peptides. Comb Chem High Throughput Screen 8: 219–33.

15. Polanco C, Samaniego JL (2009) Detection of selective cationic amphipatic

antibacterial peptides by Hidden Markov models. Acta Biochim Pol 56: 167–76.

16. Romero P, Obradovic Z, Kissinger C, Villafranca JE, Dunker AK (1997)

Identifying disordered regions in proteins from amino acid sequence. Neural

Networks 1: 90–95.

17. Juretić D, Vukičević D, Ilić N, Antcheva N, Tossi A (2009) Computational

Design of Highly Selective Antimicrobial Peptides. J Chem Inf Model 49:

2873–2882.

18. Mentor website. Available: http://www.mentor.com/products/fpga/handel-c/.

Accessed June 7, 2001.

19. Mitrionics website. Available: http://www.mitrionics.com. Accessed June 7,

2011.

FPGA for Selective Antibacterial Peptides

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21399

