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Amethod for testing fast aspheric convex surfaces with dynamic null screens using LCDs is shown. A flat
null screen is designed and displayed on an LCD monitor with drop-shaped spots in such a way that the
image, which is formed by reflection on the test surface, becomes an exactly square array of circular spots
if the surface is perfect. Any departure from this geometry is indicative of defects on the surface. Here the
whole surface is tested at once. The position of the spots on the LCD can be changed in a dynamic way, to
perform point-shifting of the image spots. The proposed procedure improves the dynamic point-shifting
method. As has been shown previously, this process reduces the numerical error during the integration
procedure, thereby improving the sensitivity of the test. The positioning accuracy for the screen spots
is related to the LCD’s spatial resolution. Results of the evaluation of a parabolic convex surface with
f =# ¼ 0:22 are shown. © 2011 Optical Society of America
OCIS codes: 220.1250, 220.4840, 120.6650.

1. Introduction

In previous work, we developed a technique for test-
ing fast aspherical convex and concave surfaces by
using null screens [1,2]. Recent advances have been
successful in testing a partially specular fast spheri-
cal convex surface made of carbon fiber reinforced
with polymer by using a linear null screen [3]. We
have also explored the advantages of using plane-
tilted null screens to increase the sensitivity in the
test of an off-axis parabolic mirror [4,5]. More re-
cently, we tested a parabolic trough solar collector
based on null screen principles [6]. As has been
pointed out, the null screen method measures the

surface slope, and the shape of the surface can be
obtained by an integration procedure [3]. The null
screen method can be used to test fast aspherics,
such as fast conical surfaces, free-form fast optics,
and even partially specular surfaces. Recently, a
quantitative slope measuring method called the
software-configurable optical test system (SCOTS)
has been reported [7–9], which uses similar geometry
test principles as the null screen method. The
SCOTS is used to test free-form illumination optics
and solar collectors. This method is based on the geo-
metry of the fringe reflection to scan the test surface
[7]. Su et al. argue that the accuracy of SCOTS is
equivalent to interferometric methods, but the de-
tails of their method are not clearly enough stated
in the references, and so we have nomore insight into
this method.
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We have used the null screen procedure to test
very fast aspherics; the accuracy of the test depends
on many factors, such as the size, asphericity, speed
(F=#), and symmetry of the test surface, the size and
resolution of the CCD sensor, and the focal length of
the camera lens, among other factors. For all our ex-
periments, we can state that the accuracy of the null
screen methods ranges between a few to several mi-
crometers (2–20 μm); the dynamic range, however,
goes from a few micrometers to several millimeters
[1–5]. These values are useful for testing optics for
larger wavelengths, such as IR or millimetric waves
or visible optics with specs that are not so tight, like
solar concentrators or even human corneas.

For the null screen method, however, we have de-
veloped a new technique called the point-shifting
method (PSM) [10,11], in order to reduce the numer-
ical integration error and test other regions of the
surface. The PSM involves increasing the number
of evaluation points along the integration path. To
achieve this, we proposed the movement of the cy-
lindrical null screen along the optical axis of the sur-
face [10]. However, in this procedure, the image
points are closer along the radial direction, whereas
along the azimuthal direction, the image points re-
main separated. More recently, a new design of the
null screen was proposed with a particular array
of spots designed in such a way that only rotation
of the screen is needed to increase the image spot
density along both the radial and azimuthal direc-
tions [11]. However, translating or even rotating
the screen is a cumbersome task and can introduce
alignment errors.

In order to avoid these mechanical movements of
the screen, in the present paper we propose applying
the PSM using LCD monitors based on the null
screen principles. In the traditional test, the design
points of the cylindrical null screen are plotted on a
sheet of paper with the help of a laser printer or plot-
ter, and then the paper is inserted into a transparent
acrylic cylinder. Different null screens are calculated
with different spot positions and are sequentially dis-
played on a flat LCD screen to perform the shifting of
the image spots (point-shifting) [10].

Many configurations can be used to test aspherics
with null screens displayed on LCDs. In this paper,
we show only a simple arrangement of LCDmonitors
to test a fast aspheric convex surface. In Section 2,
the proposed method and the setup are described
in detail; the design of the screen is presented in
Section 3. In Section 4, we perform an error analysis
in order to determine the accuracy of the test when
we have errors in the determination of both the
coordinates of the centroids of the reflected image
and in the coordinates of the spots of the null screen.
The test of a fast convex surface (f =# ¼ 0:22) is
described in Section 5. Finally, the results and the
conclusions are presented at the end of the paper
(Sections 6 and 7).

2. Proposed Method

The proposed setup consists of four LCDs placed in a
rectangular arrangement as shown in Fig. 1.

A layout of the testing configuration is shown in
Fig. 2, where the reverse exact ray-tracing and the
variables involved in the design of the flat null screen
displayed on the LCD monitors are shown. Here, a
ray starting at P3 in the null screen reaches the
image plane at P1, after being reflected by the mirror
at P2. If the ray starts at the LCD 1 flat screen,
x3 ¼ ρ; but at LCD 10, x3 ¼ −ρ; similarly, y3 ¼ ρ0 for
LCD 2 and y3 ¼ −ρ0 for LCD 20. Additionally, an im-
age-forming optical system must be used to project
the virtual image on a CCD sensor. Indeed, the opti-
cal system may introduce a small amount of distor-
tion, but this can be taken into account by calibrating
the system.

3. Flat Null Screen

A. Calculation of the Points on the Screen

To determine the points on the screen belonging to a
square array of spots, we performed an exact ray-
tracing calculation, similar to that developed for cal-
culating the cylindrical screens to test fast surfaces
(convex or concave), the expression being quite simi-
lar; they only differ in some signs [1]. To calculate the
coordinates of the points on screen P3 ¼ ðx3; y3; z3Þ
that yield a perfect square array on the CCD, we
worked backwards, starting at the CCD plane (see
Fig. 2). Given a point P1 ¼ ðx1; y1;−a − bÞ, where
−a − b is the distance between the vertex V of the sur-
face to the CCD plane. Here x1 and y1, are the Car-
tesian coordinates of a point on the CCD sensor. A
ray is traced back through hole P with coordinates
ð0; 0;−bÞ, where b is the distance between point V
to the hole aperture, as shown in Fig. 2.

The coordinates P2 ¼ ðx2; y2; z2Þ for the point of
incidence on the surface are obtained by solving
the simultaneous equations

x2 − x1
−x1

¼ y2 − y1
−y1

¼ z2 þ aþ b
a

: ð1Þ

Fig. 1. Proposed schematic arrangement of the LCD monitors.
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The reflected ray is calculated through the vector
reflection law

R ¼ I − 2ðI · NÞN ¼ ðRx;Ry;RzÞ; ð2Þ

where I is the unit incident vector given by

I ¼ ð−x1;−y1;aÞ; ð3Þ

and the actual normals [N ¼ ðnx;ny;nzÞ] to the sur-
face at the points P2 are calculated from

N ¼ ∇f ðx; y; zÞ
j∇f ðx; y; zÞj

����
P2

; ð4Þ

where

f ðx; y; zÞ ¼ Qz2 − 2rzþ x2 þ y2 ð5Þ

describes a conical surface. Here r is the radius of
curvature at the vertex and Q ¼ kþ 1 (k being the
conic constant) of the test surface. Then, by substitut-
ing Eqs. (3) and (4) in Eq. (2), the components of the
reflected ray are given by

Rx ¼
−x1

�
x22 þ y22 þ ðQz2 − rÞ2

�
− 2x2

�
−x1x2 − y1y2 þ aðQz2 − rÞ

�

x22 þ y22 þ ðQz2 − rÞ2 ;

Ry ¼
−y1

�
x22 þ y22 þ ðQz2 − rÞ2

�
− 2y2

�
−x1x2 − y1y2 þ aðQz2 − rÞ

�

x22 þ y22 þ ðQz2 − rÞ2 ;

Rz ¼
a

�
x22 þ y22 þ ðQz2 − rÞ2

�
− 2ðQz2 − rÞ

�
−x1x2 − y1y2 þ aðQz2 − rÞ

�

x22 þ y22 þ ðQz2 − rÞ2 : ð6Þ

Finally, the ray hits the flat screen at P3
with x3 ¼ ρ for LCD 1 and x3 ¼ −ρ for LCD 10:

x3 ¼ �ρ; y3 ¼ Ry

Rx
ðx3 − x2Þ þ y2;

z3 ¼ Rz

Rx
ðx3 − x2Þ þ z2; ð7Þ

similarly, at y3 ¼ ρ0 for LCD 2 and y3 ¼ −ρ0 for LCD 20,

y3 ¼ �ρ0; x3 ¼ Rx

Ry
ðy3 − y2Þ þ x2;

z3 ¼ Rz

Ry
ðy3 − y2Þ þ z2: ð8Þ

Equations (7) and (8) indicate where a point, P3,
must be placed on the LCD screen to see its image
at point P1.

B. Surface Shape Evaluation

The shape of the test surface can be obtained from
measurements of the positions of the incident points
on the CCD plane using the formula [12]

z − z0 ¼ −

Z
p

p0

�
nx

nz
dxþ ny

nz
dy

�
; ð9Þ

where nx, ny, and nz are the Cartesian components of
the normal vector N to the test surface [Eq. (4)], and
zo is the sagitta for one point on the surface, which is
not relevant, because it only yields piston error for
the whole surface. This expression is exact; evaluat-
ing the normals and performing the numerical inte-
gration, however, are approximate, so they introduce
some errors that must be reduced.

To evaluate the normals, N, to the test surface, we
perform a three-dimensional ray trace procedure,
which consists of finding the directions of the rays
that join the actual positions, P1, of the centroids
and the corresponding coordinates, P3, of the objects
of the corresponding null screen. According to the
reflection law, the normal Na to the test surface
can be evaluated as

Fig. 2. Layout of the test configuration.
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Na ¼
R − I
jR − Ij ; ð10Þ

where I and R are the directions of the incident and
reflected rays on the surface, respectively (see Fig. 2).
In Fig. 2, the direction of the reflected ray R is known
because after the reflection on the test surface it
passes through the center of the lens stop at P and
arrives at the CCD image plane at P1, so that we
have two points along this ray, which are enough
to know its direction. In contrast, for the incident
ray I, we know only the point P3 at the null screen,
so we need to have an approximate second point to
obtain the direction of the incident ray; this is done
by intersecting the reflected ray with a reference sur-
face. Thus, the errors involved during the determina-
tion of the normals are minimal if the reference
surface differs only slightly from the test surface [3].

Once the approximated normals to the test surface
are calculated from the measurements of the cen-
troids of the images of the null screen [Eq. (10)], the
next step is the numerical evaluation of Eq. (9). A
simple method used for the discrete evaluation of
the integral is the trapezoidal rule for nonequally
spaced data [13],

zN ¼ −
XN−1

i¼1

��
nxi

nzi

þ nxiþ1

nziþ1

� ðxiþ1 − xiÞ
2

þ
�
nyi

nzi

þ nyiþ1

nziþ1

� ðyiþ1 − yiÞ
2

�
þ zo; ð11Þ

where N is the number of points along some integra-
tion path.

C. Dynamic Point-Shifting Method

The present paper proposes an exact square arrange-
ment of spots formed on the image plane by reflection
on the test surface, if this is perfect. Each spot is
designed in such a way that it has a circular shape

of equal size at the CCD (0:04mm radius); the dot
shape on the screen becomes an asymmetrical oval,
which we call a drop-shaped spot [14]. An initial
image observed on the image plane consists of spots
separated at a distance l, for a uniform sampling of
the surface; after capturing the corresponding image,
a new screen is designed by shifting the centers of
the image points on the CCD a distance l=2 along the
X direction (see the empty circle symbols in Fig. 3),
and a second image is recorded. A third image is
obtained when the screen is designed by shifting
the points a distance of l=2 from the initial position,
but now along the Y direction. Finally, a fourth image
is obtained by shifting the points a distance of
l=ð2Þ1=2 along a line 45° from the X axis, as shown
in Fig. 3. Each image is processed separately to
obtain the X and Y coordinates of the centroids of
the spots, as is done for the static procedure [11], and
all the coordinates are merged in only one ordered
list to evaluate the surface with all the centroids
as if all the points were included in only one screen.
This gives a total of 4N evaluation points on the
surface (N is the total number of spots in only one
image); the expected average separation of the points
is reduced to l=2.

The point-shifting procedure was restricted to in-
clude only three additional points for each point on
the original screen; this is not, however, a limit. More
spots can be introduced with separations l=m
(m ¼ 2; 3; 4;…) on the CCD plane. The number of
images to be recorded is m2, and the number of
evaluation points along the surface is m2N.

Figure 4 shows how the LCD null screen looks in
the experimental setup. Note how the spots on the
LCD screen have an almost elliptical shape, but they
are oriented along different directions depending on
the position. In the same way, we can observe the
testing surface in front of the flat null screen.

The benefits of this point-shifting procedure were
explained in [10,11]. Essentially, it is shown that the
truncation error for the trapezoid integrationmethod
is reduced to ε=m, where ε, is the truncation error for
a single image withN evaluation points. As has been
explained, the main advantage of using the LCD
monitors for displaying the null screen lies in the fact

Fig. 3. Schematic representation of the PSM (image plane).
Fig. 4. LCD monitor displaying the flat null screen and
test surface.
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that instead of moving the screen, as in previous
papers, here nothing actually moves; the spots are
only repositioned after each image is acquired. This
avoids possible misalignment errors occurring dur-
ing the physical movement of the screen as described
in previous papers.

4. Error Analysis

In this section, we analyze the error obtained in the
evaluation of the sagitta with the proposed method.
In order to simulate more realistic errors, we ran-
domly displace at the same time both the coordinates
of the centroids of the bright spots on the CCD and
the coordinates of the spots on the null screen [3]. We
performed a numerical simulation considering an
ideal surface with the same design parameters as the
surface under test (see Table 1). For the simulation,
we introduced random displacements in both the co-
ordinates of the centroids on the CCD P1, and in the
coordinates of the sources (null screen objects) P3.
The random displacement functions were developed
to simulate Gaussian noise [15]; they are given by

δx ¼ η
2
ð−2 ln r1Þ1=2 cosð2πr2Þ;

δy ¼ η
2
ð−2 ln r1Þ1=2 sinð2πr2Þ;

δz ¼ η
2
ð−2 ln r3Þ1=2 cosð2πr2Þ; ð12Þ

where r1, r2, and r3 are uniformly distributed random
variables that return values between 0 and 1, η is a
parameter that enables control of the size of the
displacement functions. For example, for η ¼ 1 pix-
els, 68.4% of the values of Eq. (12) are between −0:5
and 0.5 pixels.

Then, once the displacement coordinates of the
centroids are obtained, the next step is to evaluate
the approximated normals Na using Eq. (10). Thus,
with the actual N [Eq. (4)] and the approximate Na
normals, the differences in the sagitta can be ob-
tained in an approximate way from

Δz ≈ −

Z ��
nxa

nza
−
nx

nz

�
dxþ

�
nya

nza
−
ny

nz

�
dy

�
; ð13Þ

where we have assumed that dxa ≈ dx (and dya ≈ dy).
In Fig. 5, we show the plots of the rms differences

in the sagittaΔz for different values of the parameter

η against the radial coordinate of the surface. The
simulation was performed considering images with
20 spots and statistics over 72 simulated images.
In Fig. 5, the squares represent the differences in
the sagitta for ηcen ¼ 0:5pixels and ηobj ¼ 0:10mm,
and the circles represent the differences in the sagit-
ta for ηcen ¼ 0:10pixels and ηobj ¼ 0:5mm. Here, the
parameters ηcen and ηobj represent displacements in
the coordinates of the centroids and of the objects,
respectively. For the case of the squares, in the plot
we observe that in order to have differences in sagitta
smaller than 2:5 μm, the error in the measurement of
the centroid coordinates must be less than 0:5pixels,
and the error in the positions of the sources of the
null screen must be less than 0:1mm. Also, if the er-
rors in the measurements of the coordinates are less
than 0:1pixels for the positions of centroids and less
than 0:05mm for the positions of the objects of the
null screen, then the error in the evaluation of the
sagitta will be smaller than 1:3 μm (see the graph
with circles in Fig. 5).

On the other hand, from the plots of Fig. 5, we ob-
serve that the differences in the sagitta are smaller
in the center than in the rim of the test surface; this
is due to the fact that the test surface is very fast.

5. Testing a Fast Convex Surface

As proof of the principle, we performed the quantita-
tive test of a fast convex surface. In this case, the test
surface is mounted on a stage that allows transversal
x and y movements for easy centering, and on a lab
jack to put it at the correct height position. According
to [16], the test surface is a parabolic convex surface
with a curvature radius of 44:93mm, and a diameter
of 100mm (f =# ¼ 0:22). The rest of the parameters
used for designing the null screen are shown in
Table 1. The images were captured with a CCD cam-
era (Sony model XC-ST70) with an active area of
8:8mm × 6:6mm (640 × 480pixels), and a 16mm

Table 1. Setup Parameters Used for the Design
of the LCD Null Screen

Element Symbol Size

Radius of curvature r 44:93mm
Diameter D 100mm
Conic constant k −1
CCD–pinhole distance a 50mm
Stop aperture–surface vertex distance b 729:75mm
CCD length d 6:6mm
Optical axis–LCD1 distance ρ 492:5mm
Optical axis–LCD2 distance ρ0 150mm

Fig. 5. Rms differences in the sagitta obtained in a simulation
when a random displacement is added to the coordinates of the
centroids of the spots at the CCD and to the positions of the spots
of the null screen.
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focal length Cosmicar TV lens attached. The lens
diaphragm was used as an aperture stop. The CCD
camera was located in such a position that the entire
surface could be observed, so that the whole surface
could be evaluated at once.

The alignment of the surface was performedmanu-
ally by using a reference circle on the image of
the surface with an ideal square array of spots. The
circular image of the boundary of the mirror must be
centered at the CCD and must touch the upper and
lower boundaries of the square array of points. If this
condition is not fulfilled, then the screen is misa-
ligned or the testing surface is different from the
design surface; see Fig. 6.

For the PSM, we propose four flat null screens dis-
played on the LCDs. According to Fig. 1, the distance
between LCD 1 and LCD 10 is proposed to be 2ρ
(985mm), and between LCD 2 and LCD 20 it is 2ρ0
(300mm), both at the edge of the surface; thus, the
monitors cover a greater testing area of the surface.
Each of the LCD monitors is 4000 in size, with a

resolution of 1366 × 768pixels; the dimensions of the
height (HLCD) and the width (WLCD) of the active
LCDs are 885:16mm and 497:66mm, respectively;
see Fig. 1.

To perform the dynamic point shifting, a sequence
of four flat null screens is displayed on each LCD
monitor. In Fig. 7, the sequence of all flat null screens
for LCD 1 and LCD 10 is shown. Figure 7(a) shows the
initial null screen displayed on LCD 1 and LCD 10;
Figs. 7(b)–7(d) are the next three null screens of
the sequence for the complete point shift. The image
of the null screen, at the initial position of the sur-
face, after reflection on the mirror is shown in Fig. 8.
In Fig. 8(a), we show the image on the test area for
LCD 1 where we observe the square array of circular
spots on the left-hand side of the image, whereas on
the right-hand side of the image we can observe the
image of the null screen reflected on the back (sec-
ond) surface of the lens. In the same way, Fig. 8(b)
shows the reflected image of the flat null screen dis-
played on LCD 10, where we observe the same back-
reflection image. For LCD 2 and LCD 20, the sequence
of null screens for the dynamic point shifting is
shown in Fig. 9. Figure 9(a) is the initial null screen
displayed on the LCDmonitor; Figs. 9(b)–9(d) are the
next three flat screens of the sequence. Note that a
smaller test area is covered for these LCD monitors;
Fig. 10 shows the screen images for the initial flat
screens. In order to obtain good contrast on the

Fig. 6. Alignment of the test surface.

Fig. 7. Sequence of flat null screens displayed on LCD 1 and LCD
10 to increase the number of evaluation points.

Fig. 8. First screen image of the sequence for: (a) LCD 1 and
(b) LCD 10.

Fig. 9. Sequence of flat null screens displayed on LCD 2
and LCD 20.

3106 APPLIED OPTICS / Vol. 50, No. 19 / 1 July 2011



images, each image is experimentally captured by
switching the LCDmonitors on and off, one at a time.

Four images were captured for each LCD null
screen, making a total of 16 images. The centroid po-
sitions of the spots were obtained for each image with
the help of ImageJ freeware [17]. All the centroids
were corrected for lens distortion (E ¼ −5:4301×
10−9 mm−2), and since E < 0, the lens presents barrel
distortion. An important fact to keep in mind is that
the contrast and brightness of the image depend on
the angle of vision of the LCD monitor. In this con-
figuration, the images formed by LCD 2 and LCD
20 are brighter than those formed by LCD 1 and
LCD 10; this is probably due to the distance between
the LCD monitors and the test surface. In Fig. 11, a
plot of the ðX;YÞ coordinates of the centroids ob-
tained with all the images is shown.

6. Experimental Results

Having collected the information on all the centroids,
the approximated normals to the surface are
evaluated according to the procedure proposed in
Section 3.B. Then the shape of the surface is obtained

using Eq. (9) with the trapezoidal rule as the integra-
tion procedure [Eq. (11)]. In Fig. 11, we show the se-
lected integration paths for all the evaluation points
used for the PSM and the initial starting integration
point for each trajectory, Po; the arrowheads repre-
sent the final integration point for each trajectory.
The integration paths were selected always starting
at an initial point Po. The selected paths in this con-
figuration are simpler because the consecutive points
in the path are equally spaced, along the x and y di-
rections. Some integration paths are very large and
introduce large numerical errors in the trapezoidal
method used. A total of 132 paths were used for the
numerical integration for all the images assembled
together with the PSM. In Fig. 12, the evaluated
surface is shown.

Fig. 10. First screen image of the sequence for: (a) LCD 2, and
(b) LCD 20.

Fig. 11. Coordinates of the positions of all the centroid spots; in-
tegration paths for all the points are shown.

Fig. 12. Evaluated surface.
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In order to analyze the details of the evaluation, we
fit the experimental data to an aspheric surface given
by

z ¼ s2

2r
þ Axþ ByþD1s4 þD2s6 þD3s8 þD4s10 þ z0;

ð14Þ
where s2 ¼ ðx − xoÞ2 þ ðy − yoÞ2; ðxo; yo; zoÞ are the co-
ordinates of the vertex; ðxo; yoÞ is a decentering term
and zo is a defocus; A and B are the terms of tilt in x
and y, respectively; and D1, D2, D3, and D4 are the
aspheric coefficients. The misalignment can be com-
puted by fitting the experimental data to Eq. (14).

The fit to Eq. (14) was performed by using the
Levenberg–Marquart method [15] for nonlinear
least-squares fitting that is suitable for this task. The
results of the fit are shown in Tables 2 and 3. Here we
notice that the radius of curvature differs by
approximately 2:43mm or about 5.4% from other
measurements (r ¼ 44:93mm) [11], but it differs by
only 0:246mm from the value obtained with the fixed
null screen method.

The differences in the sagitta between the mea-
sured surface and the best fitting aspheric obtained
by the least squares are shown in Fig. 13. In this

case, the P-V difference in sagitta between the eval-
uated points and the best fit is δzpv ¼ 0:072mm, and
the rms difference in sagitta value is δzrms ¼ 20:8 μm.

Table 3 shows that the aspheric coefficients are
very small and they are comparable to those reported
in [11] with a radial null screen configuration. Here
we observe that all the deformation coefficients have
the same sign and order of magnitude; this result
shows the repeatability of the measurements with
two different null screen methods.

On the other hand, in a previous work [18], by
using laser deflectometry, only one profile of the
same surface was evaluated. The radius of curvature
and the aspheric coefficients obtained are compar-
able to those obtained with the PSM (see Tables 2
and 3) showing the repeatability of the measure-
ments with different evaluation methods.

This new null screen method allows measurement
of the shape of the surface in a dynamic way. Here,
departures from the perfect shape have been clearly
observed. At a finer detail, the large shape variations
observed in Fig. 13 are very unlikely to be real defor-
mations of the surface. Instead, they seem to be a
result of the accumulation of errors during the nu-
merical integration procedure.

Fig. 13. Difference in the sagitta between the measured surface and the best-fitting aspheric.

Table 3. Parameters Resulting from Least Squares Fitting of Sagitta Data: Deformation Coefficients

Deformation Coefficients D1 D2 D3 D4

Point-shifting LCD −7:59 × 10−7 1:29 × 10−9 −6:89 × 10−13 1:41 × 10−16

Point-shifting radial null screen −7:37 × 10−7 1:34 × 10−9 −7:72 × 10−13 1:48 × 10−16

Laser deflectometry −8:22 × 10−7 1:33 × 10−9 −7:63 × 10−13 1:40 × 10−16

Table 2. Parameters Resulting from Least Squares Fitting of Sagitta Data: Methods

Method r (mm) A B xo (mm) yo (mm) zo (mm)

Point-shifting LCD 42.505 0.309 0.351 −2:010 −0:002 0.001
Point-shifting radial null screen 42.259 1.995 2.297 −0:147 0.033 0.052
Laser deflectometry 43.975 - - - - -
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7. Conclusions

We have proposed a new method for applying the
PSM for testing fast convex surfaces with the null
screen technique by using a configuration of four
LCD monitors. In these LCDs, the flat null screens
were displayed in a dynamic way, enabling us to in-
crease the number of evaluation points and reducing
the numerical error. This new procedure avoids me-
chanical movements of the test surface and/or the
null screen.

The introduction of random displacements in the
coordinates of the centroids on the CCD and in the
coordinates of the sources (null screen objects) al-
lowed us to perform an error analysis of the method.
We found that in order to have differences in the sa-
gitta smaller than 2:5 μm, the error in the measure-
ment of the centroid coordinates must be lower than
0.5 pixels, and the error in the positioning of the
sources of the null screen must be lower than
0:1mm. An improved algorithm for obtaining a bet-
ter subpixel resolution in the evaluation of the cen-
troids of the image spots will also help to improve the
accuracy of the method.

In the quantitative evaluation of the shape of the
surface with the PSM, the obtained radius of curva-
ture is less than 5.4% less than that reported in [16].
The result of the least squares fit shows that the
tested surface is very close to other measurements
[11,18], except for the borders, where the differences
are larger because of the integration paths being
longer. The fact that the results with the PSM are
comparable to those obtained in previous work shows
the repeatability of the test for the parabolic surface
with different methods.

The result of the least squares fit shows that the
tested surface has variations of approximately 20 μm
rms value measure with respect to the best-fitting
conic. This test, as it was implemented in the present
paper, is very useful for testing very fast convex sur-
faces in a dynamic way and can be easily implemen-
ted, whereas the traditional test cannot be. This
variant of the null screen test method is a new alter-
native technique for determining the quality of fast
aspheric surfaces with medium accuracy. The main
advantage of the test is that it is a noncontact test
and does not require specially designed optics.

The authors of this paper are indebted to Neil
Bruce (Centro de Ciencias Aplicadas y Desarrollo
Tecnológico, Universidad Nacional Autónoma de
México, Mexico) and María Fernanda Puentes-
Rodriguez (Universidad Tecnológica de la Mixteca,
Mexico) for revising the manuscript. This research
was supported by the Consejo Nacional de Ciencia
y Tecnología (CONACyT), Mexico, registered as pro-
ject U51114-F, and by the Dirección General de
Asuntos del Personal Académico, Universidad Nacio-
nal Autónoma de México (DGAPA-UNAM) under
project Programa de Apoyo a Proyectos de Investiga-
ción e Inovación Tecnológica (PAPIIT) ES-114507.

References

1. R. Díaz-Uribe and M. Campos-García, “Null-screen testing of
fast convex aspheric surfaces,” Appl. Opt. 39, 2670–2677
(2000).

2. M. Campos-García, R. Bolado-Gómez, and R. Díaz-Uribe,
“Testing fast aspheric concave surfaces with a cylindrical null
screen,” Appl. Opt. 47, 849–859 (2008).

3. M. Campos-García, R. Díaz-Uribe, and F. S. Granados-
Agustin, “Testing fast aspheric surfaces with a linear array
of sources,” Appl. Opt. 43, 6255–6264 (2004).

4. M. Avendano-Alejo and R. Dıaz-Uribe, “Testing a fast off-axis
parabolic mirror using tilted null screens,” Appl. Opt. 45,
2607–2614 (2006).

5. M. Avendaño-Alejo, V. I. Moreno-Oliva, M. Campos-García,
and R. Díaz-Uribe, “Quantitative evaluation of an off-axis
parabolic mirror by using a tilted null screen,” Appl. Opt.
48, 1008–1015 (2009).

6. V. I. Moreno-Oliva, M. Campos-Garcia, F. Granados-Agustin,
M. J. Arjona-Pérez, R. Díaz-Uribe, and M. Avendaño-Alejo,
“Optical testing of a parabolic trough solar collector by
a null screen with stitching,” Proc. SPIE 7390, 739012
(2009).

7. P. Su, R. E. Parks, L. Wang, R. P. Angel, and J. H. Burge,
“Software configurable optical test system: a compu-
terized reverse Hartmann test,” Appl. Opt. 49, 4404–4412
(2010).

8. P. Su, R. E. Parks, L. Wang, R. P. Angel, and J. H. Burge,
“SCOTS: A quantitative slope measuring method for
optical shop use,” in Optical Fabrication and Testing, OSA
Technical Digest (CD) (Optical Society of America, 2010),
paper OTuB3.

9. L. Wang, P. Su, R. E. Parks, J. M. Sasian, and J. H. Burge,
“Low-cost, flexible, high dynamic range test for free-form illu-
mination optics,” in International Optical Design Conference,
OSA Technical Digest (CD) (Optical Society of America, 2010),
paper ITuE3.

10. V. I. Moreno-Oliva, M. Campos-García, R. Bolado-Gómez, and
R. Díaz-Uribe, “Point-shifting in the optical testing of fast as-
pheric concave surfaces by a cylindrical screen,” Appl. Opt. 47,
644–651 (2008).

11. V. I. Moreno-Oliva, M. Campos-García, and R. Díaz-Uribe,
“Improving the quantitative testing of fast aspherics
with two-dimensional point-shifting by only rotating a
cylindrical null screen,” J. Opt. A 10, 104029–104035
(2008).

12. R. Díaz-Uribe, “Medium-precision null-screen testing of off-
axis parabolic mirrors for segmented primary telescope optics:
the large millimeter telescope,” Appl. Opt. 39, 2790–2804
(2000).

13. W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling, Numerical Recipes in C: The Art of Scientific
Computing (Cambridge University, 1990).

14. L. Carmona-Paredes and R. Díaz-Uribe, “Geometric analysis
of the null screens used for testing convex optical surfaces,”
Rev. Mex. Fís. 53, 421–430 (2007).

15. P. R. Bevington and D. K. Robinson,Data Reduction and Error
Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill,
1992), pp. 161–166.

16. R. Díaz-Uribe and A. Cornejo-Rodríguez, “Conic constant and
paraxial radius of curvature measurement for conic surfaces,”
Appl. Opt. 25, 3731–3734 (1986).

17. W. Rasban, National Institutes of Health, USA. Image J V.
1.312u, Image Processing and Analysis in Java http://
rsb.info.nih.gov/ij/.

18. M. F. González-Cardel and R. Díaz-Uribe, “Profile and defor-
mation coefficients measurement of fast optical surfaces,”Opt.
Express 14, 9917–9930 (2006).

1 July 2011 / Vol. 50, No. 19 / APPLIED OPTICS 3109

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

