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Solution to the Landau-Zener problem via Susskind-Glogower operators
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We show that, by means of a right-unitary transformation, the fully quantized Landau-Zener
Hamiltonian in the weak-coupling regime may be solved by using known solutions from the standard
Landau-Zener problem. In the strong-coupling regime, where the rotating wave approximation is
not valid, we show that the quantized Landau-Zener Hamiltonian may be diagonalized in the atomic
basis by means of a unitary transformation; hence allowing numerical solutions for the few photons
regime via truncation.

INTRODUCTION

The Landau-Zener (LZ) problem [1–3] consists of a
two-level system whose parameters are varied so that an
anti-crossing of energy levels occurs. The transition be-
tween two energy states at an avoided level crossing in
two- and multi-level systems is one of the few exactly
solvable problems of time-dependent quantum evolution
[4–7]. Dynamics in atomic, molecular and mesoscopic
systems can be described by the LZ process; see, for ex-
ample, references within [4, 5]. Recently, experimental
realizations of many-body generalizations of LZ dynam-
ics have been shown with ultracold atoms [8] and theo-
retically analyzed considering strongly correlated bosons
under fast sweeps [9]. The use of an interacting BEC
driven in a bichromatic optical lattice has also been pro-
posed as a realization of many-body nonlinear LZ dy-
namics [10, 11].

In particular, there exists an approximate solution for
a non-interacting many-body generalization of the LZ
problem, including coupling to a quantized field, suggest-
ing that many-body LZ physics can be profoundly dif-
ferent from the single two-level system interacting with
a classical field case [12]. Motivated by these results,
we analyze the LZ problem of the one two-level system
coupled to a quantized field. First, we introduce a quan-
tized LZ model and propose a realization in circuit quan-
tum electrodynamics (circuit-QED) where weak- and
strong-coupling regimes can be obtained; we also dis-
cuss plausible realizations of a formal many-body gener-
alization of the model. Next, we present a right-unitary-
transformation scheme to diagonalize the proposed quan-
tized LZ model in the field basis under weak-coupling and
show that the exact time evolution of the system is di-
rectly related to solutions of the standard LZ problem.
Finally, we show a parity-related-transformation scheme
to diagonalize the proposed quantized LZ model in the
two-level system basis under strong-coupling and show
that the resulting infinite set of differential equations is
amenable for numerical solutions for a few starting exci-
tations in the field.

MATHEMATICAL MODEL AND PHYSICAL

REALIZATION

A two-level system, that is, a qubit, driven by a quan-
tized field is described by the model Hamiltonian,

ĤDF =
~

2
ω0σ̂z + ~ωâ†â+ ~g(â+ â†)σ̂x. (1)

Where the Pauli matrices associated to the qubit are
given by the operators σ̂j , with j = z,±, and the sym-
bol â (â†) is the creation (annihilation) operator of the
quantized field. The qubit two-level transition and the
field frequencies are given by ω0 and ω, respectively, and
the qubit-field coupling by the parameter g.
In the weak-coupling regime, where the values of the

qubit-field coupling are at least an order of magnitude
less than the qubit transition frequency, g . 0.1ω0, the
rotating wave approximation (RWA) is valid and the
Jaynes-Cummings (JC) model [13], in units of ~, de-
scribes the system,

ĤJC =
ω0

2
σ̂z + ωâ†â+ λ

(

â†σ̂− + âσ̂+
)

. (2)

The excitation number N̂ = â†â + σ̂z/2 is conserved by
the JC model, [N̂ , ĤJC ] = 0. Hence in a frame defined by
the conserved excitation number rotating at the field fre-
quency, ω, by considering a time independent coupling,
λ, and a time dependent detuning between the qubit and
the field frequency given by the original Landau-Zener
(LZ) process, ∆ = ω0 −ω = −τω0, it is possible to write
a quantized LZ, or LZ-JC Hamiltonian, in units of ~ω0,

Ĥ = −τ σ̂z + g
(

â†σ̂− + âσ̂+
)

. (3)

Where a scaled time τ = v2t and according coupling
g = λ/v2 has been used. This particular choice of pa-
rameters means that the driving field is detuned to the
blue of the qubit transition, ω = (1+ τ)ω0 = (1+ v2t)ω0;
the positive constant v2 is just the steepness of the linear
frequency ramp. Choosing red detuning instead of blue
is equivalent to replace τ → −τ in Eq.(3). The cross-
ing of the spectra is given at τ → 0 where resonance is
reached as ω0 = ωf . Notice that the quantized field fre-
quency may be kept constant while adequately detuning
the qubit transition.
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A superconducting qubit coupled to a strip line res-
onator [14–16] may be described by the quantized LZ
Hamiltonian in Eq.(3) when the transition frequency of
the charge (flux) qubit is varied linearly in time by a
driving charge (magnetic flux) leading to ω0 = (1− τ)ω.
Furthermore, a circuit-QED implementation may allow
the strong coupling needed to go beyond the RWA [17].
For simplicity, our analysis of the strong coupling case
will use the Hamiltonian, in units of ~ω,

Ĥc = τ̃ σ̂z + â†â+ g(â+ â†)σ̂x, (4)

where the transition frequency of the qubit is tuned by an
external charge (magnetic field) to vary linearly in time
as τ̃ = u2t; again, the positive constant u2 is just the
steepness of the driving ramp. In this model, the blue
(red) detunning between the field and the qubit is pro-
vided by τ < 1 (τ > 1), and resonant driving is obtained
at τ = 1.

A BEC in an asymmetric double well trap [18], where
the depth of one of the wells is made to vary linearly
in time, may be described by a nonlinear version of the
standard two-level Landau-Zener process. In the mean-
field approximation, classical dynamics of nonlinear LZ
tunneling in Bose-Einstein condensates (BEC) has been
studied and separated tunneling defined by the fixed
points of the system found [19]. A two-modes BEC
driven by a quantized microwave field delivers a quantum
version of the condensate in an asymmetric double-well
model [20, 21]; the modes may be defined by two hy-
perfine structures of the ground state of a given atomic
species, the time dependent detuning is given by the de-
tuning between the qubit transition frequency and the
driving field, and the nonlinearity may be tuned down
by Feschbach resonances and neglected. Such consider-
ations deliver what we will call a Landau-Zener-Dicke
(LZD) Hamiltonian,

ĤLZD = −τ Ŝz + gN−1/2
q

(

â†Ŝ− + âŜ+

)

. (5)

Where the angular momentum basis related to angular
momentum operators Ŝj , with j = z,±, describes the en-
semble containing Nq qubits. Also, the model in Eq.(5)
may describe the effective motion of a laser driven con-
densate, under the two-mode approximation, coupled to
an optical cavity [22–24], when the detuning between
the laser pump and cavity frequencies with respect to
the difference between the energies of the two-lowest-
momentum modes is set to vary linearly in time. While
an approximate solution for the LZ problem is known for
the LZD model [12], an exact solution for its time evolu-
tion is feasible but, at least for the time being, we restrict
our analysis to the models of the one qubit within and
without the rotating wave approximation described by
Eq(3) and Eq(4), respectively.

DIAGONALIZATION IN THE FIELD BASIS

In order to provide a time evolution operator for the
quantum Landau-Zener Hamiltonian within the rotating
wave approximation, Eq.(3), we diagonalize it in the field
basis by using the Susskind-Glogower [25] operators,

V̂ =
(

â†â+ 1
)−1/2

â, (6)

which are right-unitary, that is, V̂ V̂ † = 1 and V̂ †V̂ =
1 − |0〉〈0|. Their action on a Fock state of the number
basis is given by V̂ |n〉 = |n− 1〉 and V̂ †|n〉 = |n+ 1〉.
Via the Susskind-Glogower operators, the LZ-JC

Hamiltonian in Eq.(3) may be re-written as,

Ĥ = τĤ0 + T̂ †ĤLZ T̂ , (7)

where the auxiliary, Ĥ0, and LZ-like, ĤLZ , Hamiltonians
are

Ĥ0 = (I− σ̂z) |0〉〈0|/2 (8)

ĤLZ = −τ σ̂z + g
(

â†â+ 1
)1/2

σx. (9)

and the right-unitary transformation T̂ is defined by [26–
28]

T̂ =
[

I− σ̂z + (I− σ̂z) V̂
]

/2. (10)

Notice that no approximation has been made in re-
writing Eq.(3) as Eq.(7). If a semi-classical quantization
of the field were followed, like that proposed in Ref.[29]
for time independent JC and Dicke models and only valid
for coherent staes of the field, an approximate model lack-
ing the Ĥ0 term would be obtained.
As the auxiliary Hamiltonian Ĥ0 commutes with

the transformed LZ-like Hamiltonian, T̂ †ĤLZ T̂ , at

any given time,
[

τ1Ĥ0, T̂
†ĤLZ(τ2)T̂

]

= 0, and

using the fact that
[

T̂ †ĤLZ(τ1)T̂ , T̂
†ĤLZ(τ2)T̂

]

=

T̂ †
[

ĤLZ(τ1), ĤLZ(τ2)
]

T̂ , it is possible to write the time

evolution operator of the system described by Eq.(3) as

Û(τ) = Û0(τ)T̂
†ÛLZ(τ)T̂ ; (11)

where it is trivial to find Û0(τ) = e−iτ
∫
Ĥ0dt = e−iτ2H0/2

due to the fact that
[

τ1Ĥ0, τ2Ĥ0

]

= 0.

Notice that the right-unitary transformation T̂ acting
on the dressed state basis yields,

T̂ (cn,0|n+ 1, 0〉 ± cn,1|n, 1〉) = |n〉 (cn,0|0〉 ± cn,1|1〉) ,

(12)

where the shorthand notation |n, x〉 ≡ |n〉|x〉 ≡ |n〉field⊗
|x〉atom with n = 0, 1, 2, . . . and x = 0, 1, has been
used. The time evolution operator for the LZ-like pro-
cess, ÛLZ(τ), in the dressed state basis is given by the
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following set of coupled differential equations,

i ∂τ cn,1(τ) + τcn,1(τ) − g (n+ 1)1/2 cn,0(τ) = 0,

i ∂τ cn,0(τ) − τcn,0(τ) − g (n+ 1)
1/2

cn,1(τ) = 0,

(13)

where the shorthand notation ∂τ · denotes the partial
derivative with respect to the scaled time τ . Notice that
this differential system is equivalent to that given by the
standard two-level Landau-Zener process [4], with the
difference that the coupling between the two levels, g,

is enhanced by a factor (n+ 1)
1/2

due to the quantized
field.
The system of coupled differential equations separates

into,

[

∂2τ + τ2 + g2 (n+ 1)− i
]

cn,1(τ) = 0,
[

∂2τ + τ2 + g2 (n+ 1) + i
]

cn,0(τ) = 0, (14)

which might be reduced to well-known differential equa-
tions accepting Whittaker functions, parabolic cylinder
functions, and confluent hypergeometric functions of the
first kind as solutions [30–33]. The latter will be preferred
for the sake of simplicity at t = 0; that is, even solutions
evaluate to a non-zero constant while odd evaluate to
zero. The properties of the hypergeometric function of
the first kind, 1F1(·, ·, ·), yield the time evolution for the
amplitudes, up to a normalization and initial conditions
factor,

c1,e(τ) = e−iτ2/2
1F1

(

1

2
+
ig2n
4
,
1

2
, iτ2

)

,

c1,o(τ) = −ign τ e
−iτ2/2

1F1

(

1 +
ig2n
4
,
3

2
, iτ2

)

,

c0,e(τ) = e−iτ2/2
1F1

(

ig2n
4
,
1

2
, iτ2

)

,

c0,o(τ) = −ign τ e
−iτ2/2

1F1

(

1

2
+
ig2n
4
,
3

2
, iτ2

)

,

(15)

where the functions imply time and photon number de-
pendence, cx,p(τ) ≡ cx,p(g, n, τ) with x = 0, 1 and
p = e, o, the auxiliary characteristic values are defined
as gn = g(n+1)1/2. The time evolution operator ÛLZ is
defined by the matrix elements,

U
(i,j)
LZ = ui,j/γ, n→ n̂ (16)

with

u1,1 = c0,e(τ0)c1,e(τ)− c0,o(τ0)c1,o(τ),

u1,2 = c1,e(τ0)c1,o(τ) − c1,o(τ0)c1,e(τ),

u2,1 = c0,e(τ0)c0,o(τ) − c0,o(τ0)c0,e(τ),

u2,2 = c1,e(τ0)c0,e(τ)− c1,o(τ0)c0,o(τ),

(17)

Figure 1. (Color online) Exact evolution of the population
difference 〈σz〉, Eq.(19), for interactions starting at time (a)
τ0 → −∞ and (b) τ0 = −10 under weak coupling g = 0.1ω0

and initial state |ψ0〉 = |n, g > with n = 1 (solid black),
n = 11 (dashed blue), n = 31 (dotted red) and n = 101
(dot-dashed green).

where ui,j ≡ ui,j(t, t0, gn̂) and the normalization factor
is given by

γ = [c0,e(τ0)c1,e(τ0)− c0,o(τ0)c1,o(τ0)] , (18)

with the number operator defined by n̂ = â†â. The time
evolution operator ÛLZ is exact, no approximation has
been done.
As mentioned before, the presence of the quantized

field enhances the qubit-field interaction simulating a
standard two-level LZ process with effective coupling gn̂;
this can be observed graphically from the time evolution
of the population difference,

〈σz(τ)〉 = 〈ψ(τ0)|Û
†(τ)σzÛ(τ)ψ(τ0)〉,

= 〈ψ(τ0)|T̂
†Û †

LZ(τ)σzÛLZ(τ)T̂ |ψ(τ0)〉

(19)

For the sake of historical comparison, Fig.1(a) shows
the time evolution of the population difference, 〈σz(τ)〉,
in the context of the original LZ process where the in-
teraction starts at τi → −∞. Initial states given by
|ψ(τi → −∞)〉 = |n, g〉 with n ∈ {|1〉, |11〉, |31〉, |101〉} are
considered. The results are exact numerics from Eq.(19)
by using Eq.(16). Figure 1(b) shows the finite time effect
described by the exact time evolution. Initial conditions
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Figure 2. (Color online) Asymptotic probability to find the
qubit in the excited state, Pe(τ → ∞), for the symmet-
ric crossing defined by a starting (ending) time τ0 → −∞
(τ → ∞) and the asymmetric crossing defined by τ0 → −10
(τ → ∞) under weak coupling g = 0.1ω0 and initial state
|ψ0〉 = |n, g >. Plots are calculated both with the analytical
asymptotic expansion given by Eq.(20) and from numerics
of the exact evolution, Eq.(19) by substituting the hypergeo-
metric function by its asymptotic expansion up to third order,
with initial times τ0 → −106 and τ0 → −10 and final time
τ → 106 (Plots overlap).

are the same described above, but for an initial time of
interaction τ0 = −10. As expected [4], the population
difference oscillates as soon as the finite time interaction
starts.

Figure 2 shows the asymptotic behavior for the ex-
cited state probability, Pe, for the symmetric crossing
with starting (ending) times τ0 → −∞ (τ → ∞) and the
asymmetric crossing given by τ0 → −10 (τ → ∞). The
qubit is initially taken in the ground state and the field
at an arbitrary Fock state. The probabilities are calcu-
lated from the asymptotic expansion of Eq.(19), via the
parity and asymptotic properties of the hypergeometric
function [31], and both yield the expression

Pe(τ → ∞) = (1 + 〈σz(τ → ∞)〉)/2,

≈ 1− e−πg2
n , (20)

which is equivalent to the tunneling probability predicted
in the standard LZ process. The tunneling probability is
enhanced by the number of photons in the quantized fied
as gn = g(n+ 1)1/2.

The exact time evolution operator found in this section
describes any given set of parameters involving initial
system state, weak coupling, initial and final time. Fig-
ure 3 shows the time evolution of the population differ-
ence, 〈σz(τ)〉, in a purely asymmetric case starting from
the crossing. The qubit is initialized in the excited state
|e〉 and the field in the Fock states n ∈ {0, 10, 30, 100}];
short and long interaction times are shown in subfigures
Fig.3(a) and Fig.3(b), respectively. In the asymptotic
infinite time, the probability of finding the qubit in the

Figure 3. (Color online) Exact evolution of the population
difference 〈σz〉, Eq.(19), for interactions starting at time τ0 =
0 under weak coupling g = 0.1ω0 and initial state |ψ0〉 =
|n, e > with n = 0 (solid black), n = 10 (dashed blue), n = 30
(dotted red) and n = 100 (dot-dashed green) for (a) short and
(b) long interaction times

excited state is

Pe(τi = 0, τf → ∞) ≈
(

1± e−πg2
n
/2
)

/2, (21)

depending if the qubit starts in the excited (plus sign)
or the ground state (minus sing). This probability is is
plotted in Fig.4 for the qubit starting in both the excited
and the ground state.

DIAGONALIZATION IN THE ATOMIC BASIS

For moderate and strong coupling, g > 0.1ω0, the ro-
tating wave approximation is not valid and the complete

Hamiltonian in Eq.(4) has to be considered. Via the uni-
tary transformation,

R̂ = e−iπ(σ̂x−1)â†â/2, (22)

the complete Hamiltonian in Eq.(4) becomes diagonal in
the qubit basis,

ĤR = R̂†ĤCR̂

= τ σ̂z cos(πâ
†â) + â†â+ g(â+ â†); (23)

The use of the unitary transformation in Eq.(22) is equiv-
alent to consider a parity chain basis and the corre-
sponding creation/annihilation operators as proposed in
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Figure 4. (Color online) Asymptotic probability to find the
qubit in the excited state, Pe(τ → ∞), for the interaction de-
fined in Fig.3 starting from initial states given by |ψ0〉 = |n, e〉
(solid line) and |ψ0〉 = |n, g〉 (dashed line). Plots are calcu-
lated both with the analytical asymptotic expansion given by
Eq.(21) and from numerics of the exact evolution, Eq.(19) by
substituting the hypergeometric function by its asymptotic
expansion up to third order, with τ → 106 (Plots overlap).

Ref.[34] for the time independent qubit-field interaction
in the strong-coupling regime. It is straightforward to
see the relation between these two approaches from

R̂†âR̂ = âeiπ(σ̂x−1)/2

= âσ̂x, (24)

R̂†â†R̂ = â†e−iπ(σ̂x−1)/2

= â†σ̂x, (25)

R̂†σ̂zR̂ = σ̂z cos(πâ
†â) + iσ̂y sin(πâ

†â)

= σ̂z cos(πâ
†â)

= (−1)â
†âσ̂z , (26)

as the parity operator, Π = (−1)â
†âσz, in the basis de-

fined by the unitary Eq.(22) is given by

R̂†ΠR̂ = (−1)â
†âR̂†σzR̂,

= σz . (27)

That is, the complete Hamiltonian Eq.(23) conserves par-
ity, [R̂†ΠR̂, R̂†ĤCR̂] = [σ̂z , ĤR] = 0.
By moving into the rotating frame defined by the free

field, UF (τ) = e−ia†aτ , the dynamics are given by the
Hamiltonian, HRF = HR0 +HRI , with

HR0 = τ σ̂z cos(πâ
†â)

HRI = g(âeiτ + â†e−iτ ). (28)

The first of these terms,HR0, is diagonal in both the
qubit and Fock basis and commutes with itself at dif-
ferent scaled times, [HR0(τ1), HR0(τ2)] = 0; that is, it is
possible to use a unitary transformation,

U0(t) = e−iτ2σ̂z cos(πâ†â)/2, (29)

such that the system is described by,

HRFU = g(âeiτ + â†e−iτ )e−iτ2σ̂z cos(πâ†â). (30)

This time dependent Hamiltonian produces two infinite
sets of coupled first order differential equations for the
field, one for each qubit state x ∈ {0, 1},

i ∂τcx,0(τ) = ge−iτe∓iτ2

cx,1(τ), (31)

for n = 0 and

i ∂τcx,n(τ) = gn1/2eiτe±iτ2(−1)n−1

cx,n−1(τ)

+g(n+ 1)1/2e−iτe±iτ2(−1)n+1

cx,n+1(τ)

(32)

for n ≥ 1; for the sake of simplicity, dimension has
been set to units ~ω. The notation |φ〉 = R̂|ψ〉 =
∑

x,n cx,n(τ)|x, n〉 has been used. For Fock states with
photon number m, the differential set defined by Eq.(32)
may be truncated at an arbitrary large ñ≫ m,

i ∂τcx,ñ(τ) = n1/2eiτe±iτ2(−1)ñ−1

cx,ñ−1(τ). (33)

This is particularly helpful for initial states with small
number of photons, in these cases numerical solutions
may be given. Figure 5 shows numerics for the popula-
tion difference,

〈σz(τ)〉 = 〈ψ(τ)|σz cos
(

πâ†â
)

|ψ(τ)〉. (34)

An initial state |ψ0(τ = 1)〉 = |0, e〉 is taken and the set
of coupled differential equations is truncated at length
one hundred, that is, m = 100. Qubit-field couplings in
the range g ∈ {0.1, 1, 3, 10}ω are considered. The initial
time τ = 1 is chosen to emulate the case pictured in
Fig.3; both systems start from resonance, ω0 = ω. The
black solid line in Fig.3 and Fig.5 represents identical
initial conditions, |ψ0〉 = |0, e〉 and coupling g = 0.1ω
and deliver similar dynamics. The rest of the couplings
treated in Fig.5 show dynamics similar to those under
the RWA, Eq.(7), for small normalized times, τ ≪ 1
and, then, the coherent oscillations break due the action
of the counter-rotating terms, as expected.

CONCLUSION

We have presented a right-unitary approach to solve
the qubit-quantized-field interaction under the rotating
wave approximation with frequency detuning varying
linearly in time, Eq.(3). The model may be realized
in circuit-QED [14]. We have diagonalized the model
Hamiltonian, Eq.(3), in the quantized field basis and
shown that the procedure to obtain the non-trivial in-
gredient of the evolution, ÛLZ(t) in Eq.(11), is already
known from the interaction of a classical field with a
qubit [4]. The presented solution is exact. Its analytical
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Figure 5. (Color online) Numerical time evolution of the pop-
ulation difference 〈σz〉, Eq.(34), for interactions starting at
time τ0 = 1 under couplings g = 0.1ω (solid black), g = 1ω
(dashed blue), g = 3ω (dotted red) and g = 10ω (dot-dashed
green) and initial state |ψ0〉 = |0, e >. For the sake of compar-
ison, the solid black line in this figure corresponds to initial
conditions and parameters identical to the solid black line in
Fig.3.

closed form allows its use in modular scenarios to engi-
neer particular states or Hamiltonians; compare, for ex-
ample, with Ref.[4], where different symmetric and asym-
metric crossings in the standard Landau-Zener model
are proposed and may be used for state engineering, or
Ref.[35], where modular cavity-QED is proposed to engi-
neer exotic lattice systems. In the asymptotic symmetric
case equivalent to the standard LZ problem, the quan-
tized version for initial separable states presents a similar
asymptotic behavior for the probability of the LZ tran-
sition, Pe(τ → ∞) ≈ 1 − e−πg2

n in Eq.(20), with the
distinction of an enhanced coupling proportional to the
square root of the number of photons in the initial state,
gn̂ = g(n̂+ 1)1/2.
The strong coupling dynamics of the system, where

the rotating wave approximation is not valid, has been
studied via an unitary transformation that diagonalizes
the Hamiltonian Eq.(4) in the qubit basis. This operator
approach is comparable to defining a parity chain basis
for the system [34]. The system dynamics is given by
an infinite set of coupled differential equations amenable
to numerical solutions, via truncation, for small initial
number of excitations in the quantized field.
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