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Abstract

This thesis proposes an improved procedure to watermark Intellectual Property

Cores at Register Transfer Level using Genetic Algorithms. First, watermarking

signature and Intellectual Property Core’s behavioral description are translated into

Finite State Machines in preparation for merging. The resulting Finite State Ma-

chine contains the watermarked Intellectual Property Core maintaining its original

functionality without disruption. Next, a reduction procedure is applied to the wa-

termarked design. At this stage, dealing with hanging states is challenging, if any

of these is deleted, the watermark could be removed and possibly the original In-

tellectual Property Core functionality would not be disrupted. Both Finite State

Machine merging and reduction are NP-Complete problems. In this study an im-

proved objective function is proposed to accurately model the Finite State Machine

reduction problem while applying Genetic Algorithms as optimization techniques at

both stages. Empirical results show a significant improvement in terms of the num-

ber of final hanging states and watermark embedding strength as regards previous

reported approaches.

Results of applying the proposed technique to watermark a number of Finite

State Machines are presented and discussed.

xiii



Resumen

Esta tesis propone un procedimiento para insertar marcas de agua en IP Cores a

nivel de transferencia de registros usando Algoritmos Genéticos. Primero, la firma

y la descripción del comportamiento del IP Core son traducidos a máquinas de es-

tados finitos para después ser fusionadas. La máquina de estados finitos resultante

contendrá el IP Core firmado manteniendo la funcionalidad original sin ninguna

alteración. Después, es aplicado un procedimiento de reducción de estados al diseño

firmado. Un reto importante en esta etapa es el de lidiar con estados colgantes, que

son un subconjunto de estados pertenecientes a la máquina de estados de la firma, y

que al eliminar cualquier de estos estados, la marca de agua puede ser eliminada sin

alterarse la funcionalidad original. Ambos problemas de fusión y reducción, son NP-

completos. En este estudio se ha propuesto una función objetivo mejorada para mod-

elar adecuadamente el problema de reducción aplicando algoritmos genéticos como

técnicas de optimización en ambas etapas.

Resultados emṕıricos muestran mejoras significativas en términos del número

final de estados colgantes y en la fuerza de la firma embebida en comparación con

enfoques reportados en la literatura.
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Chapter 1

Introduction

Throughout history, watermarking has been widely used for copyright protection.

Existing techniques essentially consist in taking advantage of high information re-

dundancy and susceptibility ranges of human’s eye and ear. Inserting the watermark

out of perception boundaries, allows the human to not discern any variation of the

digital media even after been watermarked [29].

In the area of embedded systems, specially in the last pair of decades, the

use of Systems on Chip (SoC), has impacted profoundly and became widespread

alongside manufacturers. Intellectual Property (IP) Cores, reusable logic units, are

widely used in electronic design. Thus, their authenticity is at risk when licensing

to a second party or during redistribution [54].

There are two types of IP Cores, hard and soft cores. Hard cores are the

physical description of some chip and they are commonly offered in binary represen-

tation [32]. Soft cores, on the other hand, are descriptions at higher levels. They

can be distributed as netlists, representing the logical implementation at gate-level.

These kinds of core give the original developer certain security when distributing

multiple times due to the their high reverse engineering complexity. Soft cores have

an even higher description level. Register Transfer Level (RTL) permits designers to

develop their designs in a Hardware Description Language (HDL), such as VHDL

and Verilog.

1
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The technique proposed in this study inserts the watermark at synthesizable

RTL by modifying its behavioral description. The proposal extracts and merge

Finite State Machines (FSMs) from the IP Core and the watermark respectively.

To achieve this, it is proposed to merge both FSMs using a Genetic Algorithm (GA).

Media watermarking permits to lose data with little information, nevertheless, circuit

watermarking must contain all of its original data at the end the signature must be

difficult to remove, an issue which is tackled by a FSM reduction also based in GAs.

It is also proposed an improvement when designing objective functions aimed to

state reduction by reducing the space of satisfaction.

Among other advantages, IP Cores watermarking by merging and reducing

involving FSMs leads to enhance heat and power dissipation [55] and an effective

use of chip area by reducing the number of flip-flops and gates needed for imple-

mentation [5], fewer states permit handling a less significant number of don’t cares.

Furthermore, as pointed out by Christoforos, digital sequential systems operating

over several time steps, can lead to a state-transition fault usually handled by merg-

ing the original FSM into a larger one that identifies and corrects errors [14].

1.1 Motivation

IP reuse is becoming more and more common nowadays, however, sharing IP Cores

in this competitive market can lead to copyright issues. Inserting a signature into

the circuit behavior results in a secure way to share this information.

It has been previously proposed by several authors, techniques to watermark

FSMs [2,6,15,34,54], however, it has been observed previous to the FSM merging, a

set of hanging states, a group of states from the signature which are not deeply em-

bedded (Defined in Section 2.1.1). It was noted that if any of these states is deleted,

the watermark vanishes, in some cases without disrupting the original functionality,

allowing to copyright infringements.
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1.2 Goals

The main goal is to watermark IP Cores by FSMs merging using GAs, achieving

invariance of the original design by not disrupting the primary functionality. The

original functionality must be lost if someone tries to delete any part of the signature.

That is, signature and design must be tightly bound.

The particular objectives are:

• To obtain a merged FSM containing the original functionality within the wa-

termark.

• To analyze critical scenarios which could cause losing the watermark.

• To analyze the proposed objective functions oriented to FSM state-reduction

in the literature to better understand the behavior and propose a better way

to narrow the search space.

• To improve the state-reduction process.

• To conduct a comparative empirical analysis related to deterministic and ge-

netic approaches to merging and reduction processes.

• To define a selection criteria of the most appropriate combination of algorith-

mic techniques that solve specific merging and reduction problems.

1.3 Methodology

Below the methodology of the proposed approach will be explained.
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FSMs extraction

The first step is to extract the FSM which represents the IP Core behavior, then,

it is translated into a FSM the watermark. Both steps are described in Sections 3.1

and 3.2 respectively.

Embedding procedure

After obtaining both FSMs, they are merged to obtain a single FSM with the signa-

ture embedded. That is, after the embedding procedure, the IP Core FSM will be

already watermarked. Nevertheless, after this merging process, a state-reduction is

performed. In Section 3.3.1 a deterministic merging method is described. In Section

3.3.2 a GA based approach is described.

Objective function

In Section 3.4.2 a GA based state-reduction of the watermarked FSM is presented.

To obtain the objective function, a base function was proposed and the behavior

of different state-reduction functions was analyzed to, based on their behavior, to

define the coefficients of said function.

FSM reductions

There are two different types of FSM reduction. First there is a state-reduction

proceeding which is aimed to fuse all compatible states with two different approaches,

one deterministic described in Section 3.4.1, and a GA based approach, described

in Section 3.4.2. The second type of FSM reduction is oriented to transitions, this

reduction is performed by combining similar transitions by regrouping, this method

is explained in Section 3.6.
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Selecting the best result

As seen above, deterministic and stochastic approaches to perform different pro-

ceedings are used. Thus, there will be 4 different watermarked FSMs and it will be

necessary to choose the most convenient. In Section 3.5 is presented an equation to

select the best result.

1.4 Contribution to knowledge

Limiting the search space of the objective function that evaluates the possible solu-

tions from the GA focused on state-reduction of FSMs, from fitting the model of a

plane of a set of equations that describe the problem.

Empirical analysis of the use of stochastic techniques, particularly GAs aimed

to optimize FSM merging and state reduction processes.

The presence of hanging nodes is critical during watermarking process. Pre-

vious studies by other authors do not address this issue, and to the best of our

knowledge, it is the first time that hanging states are considered, how these states

would affect the watermarking process and how stochastic techniques such as GAs

deal successfully with them.

1.5 Thesis organization

Chapter 2 reviews previous work and theoretical framework related to the method

presented in this thesis. In Chapter 3 each developed algorithm is described; going

through FSMs extraction, merging, reduction and re-translation to Hardware De-

scription Language (HDL); signal validations and synthesis verification is also pre-

sented. In Chapter 4 statistical justifications and experimental results are presented.
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Finally, in Chapter 5 the conclusions drawn during this project are presented.



Chapter 2

Literature review

This chapter introduces several concepts related to the proposed watermarking

scheme based on Genetic Algorithms (GA) for Intellectual Property (IP) Core pro-

tection. It also presents an extensive literature review of closely related topics to-

gether with several authors and state of the art research in order to contextualize

this thesis work.

2.1 Basic concepts

In this section, basic terminology required to fully understand the method proposed

in this research is described.

2.1.1 Finite state machine basis

A finite state system can be modeled by one or more Finite State Machines (FSM)

that produce outputs on their transitions after receiving inputs [33].

An FSM M is a quintuple

M = (I, S,O, δ, λ)

where I is a finite set of input symbols, S is a finite set of states and O is a finite

7
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set of output symbols.

δ : S × I → S is the next state function.

λ : S × I → O is the output function.

When the FSM is in a current state si ∈ S and receives an input ai ∈ I,

it moves to the next state by si+1 = δ(si, ai) with si+1 ∈ S and gives as output

bi = λ(si, ai) with bi ∈ O.

LetM(S,E) be a FSM, where E are the transitions. Each transition e(si, si+1) ∈

E with si and si+1 ∈ S, represents state si is a fanin of state si+1 and state si+1 is

a fanout of state si.

FSMs can be represented as State Transition Graphs (STG) and Flow Tables

(FT). STGs are directed graphs whose vertices and edges correspond to states and

state transitions from the FSM respectively [9]. As the STG of an FSM is a directed

graph, graph theory concepts and algorithms are useful in FSM’s analysis. A FT is

a table with rows representing states and columns representing input symbols; an

intersection of a row with a column corresponds to a next state and an output.

An FSM is a Completely Specified Finite State Machine (CSFSM) if there is

a specified next state by the state transition function and a specified output by the

output function for any state and its input. Otherwise, when there are states with

an input that do not have a specific next state or output, the FSM is an Incompletely

Specified Finite State Machine (ISFSM) [22].

Any pair of states si and sj from S are compatible, if and only if, for every

input sequence the next state and the output of si are the same as sj.

λ(δ(si, a(n+1)), a1...an) = λ(δ(sj, a(n+1)), a1...an) (2.1)

A states set Ci = {si1, si2, ..., sin} is called a compatible class if every pair of states
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is compatible [48]. Cij is the next states set of Ci for every input ai in I. It is said

that Cij is implied by Ci for every input ai in I. Pi is the set of all compatibles

Cij implied by Ci, such that Ci and Pi are disjoint, that is, the cardinality of Cij is

greater than 1, Cij 6⊂ Ci and Ci 6⊂ Cik if Cik ∈ Pi. A compatible Ci dominates a

compatible Cj if Cj ⊂ Ci and Pi ⊂ Pj. A compatible class which is not dominated

by any other is called compatibility prime class (PC). A set of compatible states

Ci is maximal if it is not a subset of another set of compatible states. A set of

compatibles C = {C1, C2, ..., Cn} is closed if, for each element Ci ∈ C, the implied

Cij∀ai is also an element of C.

Let M = (I, S,O, δ, λ) and M ′ = (I, S ′, O, δ′, λ′) be two FSMs with same input

and output sets. If for every state s in S and for every input a in I, it holds that

δ′(φ(s), a) = φ(δ(s, a)) and λ′(φ(s), a) = λ(s, a) and φ is a bijective mapping from S

to S ′, then M and M ′ are isomorphic, that is, both FSMs have the same number of

states and are identical, except for the name of the states.

In a given FSM M formed by two merged FSMs Mi and Mw, hanging states,

as called in this thesis, are a subset of states from Mw that can be pruned from

M without disrupting Mi. For example, in Figure 2.1 are shown three examples of

an FSM M formed after merging Mi and Mw with three states each. States and

transitions from Mi are shown in black and states and transitions from Mw in red.

In Figure 2.1a are two hanging states which can be pruned by the doted line. In

Figure 2.1b is only one hanging state, and in Figure 2.1c there are no hanging states.

2.1.2 Watermarking concepts

In digital systems, a watermark is a kind of mark embedded in a digital signal within

the signal itself. Its principal goal is to insert retrievable secret data related to the

actual content of the shared media.

Watermarking may be used to verify ownership as a copyright protection by a
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(a) FSM with two hanging
states

(b) FSM with one hanging
state

(c) FSM with no hanging
states

Figure 2.1: Hanging states example

detection algorithm which extracts the watermark. In FSM watermarking, the mark,

recalled as signature, is represented in FSM form. The way to insert the secret data

is by merging both FSMs.

There are some important properties in FSM watermarking. The watermark

should have a low overhead in area and resources, it must be robust, verifiable,

difficult to remove, and overall, it must have fidelity.

FSM watermarking evaluation is defined as follows [57].

• Fidelity: This is the most important criteria. If the watermark process de-

stroys the functional correctness, it is useless to distribute the core. Digital

media watermarking is a process that affects the signal, nevertheless, in FSM

watermarking it is admissible to insert new data, but keeping the original

functionality.

• Resources overhead: Many watermark algorithms need some extra resources.

Some for the watermark itself, some because of the degradation of the opti-

mization results from the design tools.

• Verifiability: The watermark should be retrievable and also it should be em-

bedded in such a way that simplifies the verification of the authorship.
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• Difficult to remove: The watermark should be resistant against removal attack.

The effort to remove the watermark should be greater than an effort needed to

develop a new core or removal of watermark should cause corruptness of the

functionality of the core. Watermarks which are embedded into the function

of the core are more robust against removal than additive watermarks.

• Strong proof of authorship: The watermark should identify the author with

a strong proof. It should be impossible that other persons can claim the

ownership of the core.

• Robust: Meaning that even after adding new transitions or states, the sig-

nature should remain. The watermark procedure must be resistant against

tampering.

In his work, Kalker provided the following watermarking definitions [27]:

- “Robust watermarking is a mechanism to create a communication channel that

is multiplexed into original content”, and which capacity “degrades as a smooth

function of the degradation of the marked content”.

- “Security refers to the inability by unauthorized users to have access to the raw

watermarking channel”. Such an access refers to trying to “remove, detect and

estimate, write and modify the raw watermarking bits”.

There are three types of attacks against FSM watermarking [39].

• Removal attack: Removal attacks are aimed to completely or partially remove

the signature from the watermarked FSM. There are two kinds of removal

attacks. The watermarked FSM can either have states deleted, or they can be

masked in such a way that the signature is no longer retrievable. These types

of attack do not need to know the input signal needed to obtain the signature

back.
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• Embedding attack: Embedding attacks are aimed to reinsert a signature into

the watermarked design. This is possible by searching a new sequence of states

that will be considered as the new watermark, or by embedding a completely

new signature.

• Read-back Attack: Read-back is a feature that is provided for most FPGA

families. This feature allows to read a configuration out of the FPGA for

easy debugging. The idea of the attack is to read the configuration of the

FPGA through the JTAG or programming interface in order to obtain secret

information.

2.1.3 Evolutionary algorithms

Evolutionary Algorithms (EA) are described in [40] as follows.

- “EAs are non-deterministic techniques that follow the Darwinian Principle of Evo-

lution. A population is randomly or under certain conditions created and formed

by individuals. Competition for survival among individuals determines which ones

will reproduce and pass their genetic material to new individuals in following gen-

erations”.

GAs are a subclass and the most known type of EAs [19]. A GA is a search

heuristic inspired in the process of biologic evolution and natural selection and their

molecular-genetic base. GAs do not guarantee to find the optimal solution of a

certain problem as any other deterministic algorithm, if there is an algorithm to solve

said problem. However, GAs do not attempt to enumerate all possible solutions of

the problem. On the contrary, these heuristic algorithms have the ability to decide

which solutions should survive the evolution process, based on “how close” they are

from the best solution [17]. In Algorithm 1 is presented the general structure of a

GA [19].
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t← 0
initialize P(t)
evaluate P(t)
while not termination conditions do

recombine P(t) to yield C(t)
evaluate C(t)
select P(t + 1) from P(t) and C(t)
t← t + 1

end
Algorithm 1: GAs general structure.

Where P (t) is the population for generation t and C(t) is the offspring or new

individuals. Below are described the main characteristics of the canonical GA with

binary representation, 1-point crossover, and mutation by bit flip.

Initialization and representation

Initially, these algorithms randomly generate many individual solutions allowing

to scatter solutions through the entire search space. The solutions are generally

represented as chromosomes and typically defined with binary genes.

Selection

Each one of the chromosomes will be evaluated to define its aptitude with an ob-

jective function. During each generation, the entire population will be evaluated to

select the fittest solutions.

Crossover operator

Next, pairs of individuals will suffer a matting process analogous to the natural

reproduction. This recombination will generate a child solution. Recombination or

crossover is a genetic operator to promote exploration of individuals throughout the

search space. It implies significant changes at genotypic level which reflects larger
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steps for exploring new solutions.

Mutation operator

The offspring is later mutated to maintain genetic diversity or to be able to avoid

convergence to local optima [40]. Mutation is a fine genetic operation which implies

small probability based changes at the genotypic level which would reflect short steps

for solutions moving throughout the search space.

Fitness function

Once applied the genetic operators, there will be selected the best individuals to con-

form the next generation population with the objective function mentioned above.

2.2 State-of-the-art

This section provides a literature review concerning to IP Core watermarking. First,

works related to IP Core protection and the different techniques developed during

the years to signature embedding will be listed and commented. Then, different

approaches to extract FSMs directly form IP Cores description will be enumerated.

And finally, two different techniques to state-reduce FSMs, one deterministic and

one stochastic, are described.

2.2.1 IP core protection

Several authors have proposed different approaches to merge FSMs or to embed

signatures into IP Cores [2, 34], being the first one the proposal of Torunoglu and

Charbon [52]. In a low level description, some authors have inserted the signature

by controlling temperature radiation, electromagnetic radiation, power consumption
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[56] or after synthesis by flip-flops rearranging [41]. At a higher level, there have

been some other authors that insert the signature by merging internal FSMs or

directing the configuration bit-file by fusing look-up tables, [26, 31]. Nevertheless,

these methods are either slow or very difficult to implement. For example, monitoring

power consumption to read out the signature takes several minutes, and monitoring

radiation is not viable because new metal packages absorb radiation [57].

Some other authors have proposed to merge one or more FSMs found in VHDL

coding at a Register Transfer Level (RTL) with a new FSM representing the water-

mark [2, 6, 15, 16, 34, 54]. Cui proposed a hybrid watermarking technique to double

protect the design at two different abstraction levels, by inserting the watermark

during the FSM design, it makes it more difficult to erase the watermark, and by in-

serting the watermark once the design is integrated into the System on Chip (SoC)

the signature can be more easily identified [15, 16]. In Arunkumar approach, the

signature bits are inserted into the outputs of the existing and free transitions of the

STG obtaining a high tampering resistance, nevertheless, by not adding new transi-

tions the approach can not be practical when dealing with CSFSMs [6]. Abdel et al.

proposed the first public-key scheme, their approach utilizes coinciding and unused

transitions to insert time-stamped authenticated watermark bits [2]. Lewandowski

et al. proposed a greedy heuristic to solve the isomorphism problem when trying to

match the IP FSM and the signature FSM, their justification is the high complexity

when trying reverse engineering to retrieve and or delete the signature [34]. Xu pro-

posed to insert the watermark bits into unused transitions when dealing with ISFSMs

and later to convert this final FSM into a CSFSM; when dealing with CSFSMs, they

proposed to insert all watermark bits into new transitions [54], nevertheless, this can

lead to states than complain with the term of hanging states described in Section

2.1.1.

Although IP Core watermarking by FSMs merging can be translated as a sub-

graph matching problem [28], this novel method provides advantages when monitor-
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ing SoC signals in real time.

Considering the above, in this work the signature is embedded by using FSMs

merging. To make this possible, it is necessary to extract and latter to merge FSMs

directly related to the behavioral description and the watermark. In the next sub-

section works related to FSM extraction will be commented.

2.2.2 FSM extraction

As described below, there have been several proposals to extract FSMs from VHDL

coding at RTL. Some of them are focused in the coding structure, other ones in

sentences and some others create their own models in a random fashion.

Liu proposed a method for extracting FSMs in Hardware Description Language

(HDL) written at RTL by recognizing FSMs general patterns within the Process-

Module (PM) graph [37] . These general patterns are derived from a relationship

between FSM’s current and next states, not the coding order. Thereby, neither hints

nor comments are needed to recognize FSMs. Kubek proposed to define the central

structure of the Finite State Control as a signal (or more signals) [30]. States are

defined as a set of possible values of those signals. Transitions between states can

be encoded by conditional statements like if and case. Pruteanu presented a tool

capable to generate completely or incompletely FSMs, based on the list of arguments

regarding the number of internal states, and the number of inputs and outputs [46].

Jnagal created POWDER, a program that generates random FSMs [24].

Based in literature review, it has been concluded that the best approach to

extract an FSM from HDL coding, is to insert the signals into the FSM transitions.

This will benefit the final number of states due to data will be contained not in

states, but in transitions, letting to handle in a better way the number of hanging

states, which according to the experimental analysis in this thesis, are considered to

be the most vulnerable component of the watermarked FSMs.
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2.2.3 FSM reduction

FSMs model different structures functionality like circuits, networks, digital systems,

control units, microprocessors and protocols. In digital systems, the outlining is

generally represented in HDL coding and embedded into digital controllers which

are later synthesized.

The use of these systems is so common nowadays that modern synthesizers

extract FSMs from these codes to reduce them during the synthesis process, de-

creasing the use of silicon, among other advantages. The challenge in this research

is facing the lose of states representing the signature embedded in the FSM when it

is optimized by the synthesizer. Because of that, it is proposed to perform a post

state-reduction of the watermarked FSM.

In state-based minimization, several authors have proposed techniques that

require the enumeration of compatible sets trying to reach some maximal class with

the minimum cardinality. Proposals from deterministic and GA based approaches

are listed and discussed below.

Combinatorial scheme

Because the signature’s embedding is carried out by inserting new transitions, when

the IP Core represents an ISFSM; and new transitions, new states and a control

bit when it represents a CSFSM; redundant data which could be lost during the

synthesizer optimization is inserted. The watermarked FSM will have the original

functionality for any input signal, as long as the control bit had been set.

Combinatorial reduction consists in finding compatible states sets. This set of

compatibles can be recombined in different configurations. The main goal consists

in finding the prime compatibility class with minimum cardinality which covers the

original functionality, therefore, the states set that solves the original problem, the
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merged FSM in its minimal expression [48].

Since the 50’s, Paull and Unger developed the general theory for ISFSMs and

proposed a tabular technique to find compatibility classes of internal states from a

FSM [42]. Nevertheless, their approach considers a large number of cases.

Later in the 60’s, Grasselli and Lucio showed that only some compatibility

classes need to be considered as members of a solution introducing the concept of

prime classes which assures a minimal solution, and reducing this way the solution

space size [21], a concept that gained certain strength among other authors [47].

Some authors like Avedillo et al. suggested the use of a set of maximal compat-

ibles as the input set [8], nevertheless, it is not guaranteed that only using maximal

compatibles there would be found a minimum closed cover class.

Several approaches, including the ones listed above, start with the strategy of

satisfying the cover condition and then handle the closure condition (refer to Section

2.1.1 for details). Ahmad et al. proposed the idea of switching the order between the

two conditions [5], they presented an algorithm that starts with the closure condition

and then handle the cover condition.

Peña proposed an exact algorithm that is not based on the enumeration of

compatible sets, and, therefore, its performance is not dependent on the number of

prime compatibles [43].

State-minimization implies the resolution of an NP Problem [48]. In [13,18,48]

the efficiency a GA performing a stochastic search to solve the conditions mentioned

above was shown.
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Genetic scheme

Reduction of the number of states in ISFSMs implies solving a NP-Problem [5, 48].

Thus, some authors suggested GAs to solve this kind of problem [13, 48, 55]. In

Sánchez proposal it is required to find all the elements of some compatibility class,

and with it to generate a minimum closed cover class, including all the states of the

original FSM, this class is called prime compatibility (see Section 2.1.1 for details)

[48]. Sánchez proposed to use GAs due to the high complexity of finding the prime

compatibility, this step is a combinatorial problem classified as NP hard [48]. In his

approach, solutions represent compatibility classes.

Due to their evolutionary nature, GAs will search for solutions regard to the

specific inner workings of the problem; specifically when solving combinatorial prob-

lems, GAs provide a great flexibility and do not require much problem-specific knowl-

edge in order to get good solutions. Besides, these algorithms do not have much

mathematical requirements about the optimization of combinatorial problems [19].

Yinshui et al. presented a GA for FSM encoding to minimize area and power

dissipation [55]. In their work, chromosomes represent states sets as a string of

decimals. Later, Chattopadhyay et al. used binary depiction [13]. Their approach

reduces the number of nodes in the binary decision diagram representation of the

FSM by using a GA based method for area and power minimization.

In the following chapter the proposed FSM watermarking scheme will be pre-

sented. Next, the evaluations will be analyzed. And finally, in Chapter 5, the

conclusions will be discussed.



Chapter 3

FSM watermarking procedure

This chapter presents in an ordered manner the main stages of the proposed water-

marking scheme and in particular, the evolutionary approaches proposed for Finite

State Machine (FSM) merging and reduction stages.

In this thesis, a watermark is embedded within the circuits behavioral de-

scription, to secure ownership at a circuit level by using Combinatorial and Genetic

Algorithms (GAs) to extract, merge and optimize FSMs representing the original

behavior and the watermark.

The extraction of the original FSM is explained in Section 3.1, the translation

of the signature FSM is explained in Section 3.2. Those FSMs are merged using

two different approaches. The first approach is a combinatorial algorithm which

operates in a greedy fashion [34] (see Section 3.3.1), the second one, is a GA that

finds the most promising solutions, finding a solution in polynomial time [48] (see

Section 3.3.2).

To secure signature’s states remaining after synthesis, the merged FSM is state-

reduce. The best solution must be selected after reduction, i.e., the solution with

less hanging states remains to next stages.

The reduction also has a combinatorial approach which is explained in Section

3.4.1, and a GA based approach explained in Section 3.4.2.

20
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Figure 3.1: Watermarking Stages flow chart
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It is necessary to properly combine adequate algorithms techniques in order to

achieve the best possible solution (see Section 3.5); therefore, the next combinations

are experimentally assessed:

a) Combinatorial Merging & Combinatorial Reduction

b) Combinatorial Merging & GA Based Reduction

c) GA Based Merging & Combinatorial Reduction

d) GA Based Merging & GA Based Reduction

The above procedure’s combinations are investigated in order to determine

which one provides the best performance in terms of copyright protection and FSM

reduction.

All comparisons and experiments were made using FSMs from ACM/SIGDA

benchmarks library [11], specially LGSynth series (High-Level Synthesis Work-

shops) from Collaborative Benchmarking and Experimental Algorithmics Labora-

tory granted by the Design, Verification and Test Division of Mentor Graphics Cor-

poration. It was decided to use this benchmark due to its common use in literature.

3.1 Proposed FSM extraction

Intellectual Property (IP) Cores are regularly offered as synthesizable Hardware

Description Language (HDL) at Register Transfer Level (RTL), typically in VHDL

or Verilog, the dominant HDLs in the electronics industry. In this thesis, VHDL

encoded IP Cores are used for the watermarking process.

The pseudo-code in Algorithms 2, 3 and 4 shows the steps followed to extract

the FSM from the IP Core.

The first step consists in extracting an FSM from RTL VHDL [37]. If the FSM

is an Incompletely Specified Finite State Machine (ISFSM), it is possible to insert
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Input: Architecture
Output: Graph
List of processes← FindProcesses(Architecture)
foreach process in List of processes do

if process is triggered by a clock signal then
process = Label as SEQ P

else
process = Label as COM P

end
end
foreach a in List of processes do

Graph← InsertNode(node a)
foreach b in List of processes do

Graph← InsertNode(node b)
if there is a signal between a and b then

InsertEdge(node a, node b)
if b is called from a then

node a = Label as module
else

node b = Label as module
end

end
end

end
return Graph

Algorithm 2: Finding and labeling nodes.

extra transitions or states representing the watermark.

VHDL description will be modeled as a hierarchical modular graph, where each

module will contain processes or more modules if necessary (see Figure 3.2a).

There are two different kinds of modules and processes, sequential and combi-

natorial. Modules with sequential label contain at least one sequential process, and

modules with combinatorial labels, do not contain any sequential process.

Each process at RTL is represented in a Process-Module (PM) graph by a node

as shown in Figure 3.3a. If there is a fanout or fanin from process a to process b, then

a direct transition between their respective nodes is assigned. On the other hand, if
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Algorithm TypeOfModule(Graph)
foreach node in Graph do

if node is labeled as module then
if TypeOfModule(subgraph from node) then

node.type = SEQ M
else

node.type = COM M
end

else
if node is sequential then

return true
end
return false

end
end

Algorithm 3: Modules labeling.

Input: Graph, List of loops
Output: GIP (V,E)
foreach Loop in GetLoopPatterns(Graph) do

if Loop is in List of loops then
GIP (V,E)← Loop;

end
end
return GIP (V,E)

Algorithm 4: Loops recognition and FSM extraction.

process b is a function called from process a, then the respective node of process a

will be labeled as a module and that module contains the process b respective node.

Liu et al. observed that process signals have combinatorial loops that can be

represented in three different patterns [37]. They also found that only three of these

loops are valid to represent an FSM, see Figure 3.2b.

The next step consists on finding these patterns and to label the involved nodes

in each loop as an individual FSM traversing the PM graph in a Depth-First-Search

(DFS) fashion as shown in Figures 3.3b and 3.3c. The FSM is represented in kiss2

format, a standard FSM format [3].
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(a) Modules in HDL (b) Valid FSM loop patterns in RTL VHDL

Figure 3.2: Loop patterns

So far, one out of two FSMs that will be merged has been extracted. This FSM

represents the IP Core behavior, in the next section the translation from a file into

the second FSM that will represent the signature, and their subsequent merging will

be explained.

3.2 Proposed watermark translation

After FSM extraction from the IP Core, the next step is to construct a Watermark

Graph (WG). Algorithm 5 shows the pseudo-code used to translate a watermark

file into a FSM.

In [34], Lewandowski proposed to hash the watermark using RIPEMD-160

(Research and Development in Advanced Communications Technologies in Europe

Integrity Primitives Evaluation Message Digest in its 160 bits version). RIPEMD-

160 is a cryptographic hash function which maps any data, in this case the watermark

file, of any size, to a fixed 160 bits length binary chain [45]. It does not matter if the

original size of the watermark file is less than or greater than 160 bits. This way, to

insert any format file of any size as signature is now plausible. Besides, by hashing

with a widely used hashing function, the proposed algorithm can be compared with

others in literature, moreover, a fixed 160 bits length signature provides enough data

to demonstrate that the number of hanging states can be minimized even with high
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(a) Original PM graph (b) PM graph loop patterns

(c) Final PM graph FSMs

Figure 3.3: Loop patterns and FSM recognition
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Input: Watermark file
Output: Watermark graph Gw(V,E), Bit chain
Hex string← RIPEMD-160(Watermark file)
foreach Hex in Hex string do

Gw(V )← InsertNode(New vertex)
if Hex 6⊂ Gw(E) then

input← RandomInput()
Gw(V )← InsertNode(Temp vertex)
New edge← RenewEdge(New vertex, Temp vertex)
New edge.Input(Input)
New edge.Output(Hex)
Gw(E)← InsertEdge(New edge)
Bit chain← Concat(Bit chain, input)

else
New vertex = a⇒ Gw(Hex) : (a, b)

end
end
return Gw(V,E), Bit chain

Algorithm 5: Translating a watermark into a FSM.

quantity of information.

The obtained binary chain from RIPEMD-160 is sectioned depending on the

original FSM output length n, i.e. 160 bits will be separated in n bits packages

resulting in m =
⌈
160
n

⌉
total packages.

The number of new possible packages (transitions) to embed in the new State

Transition Graph (STG) will be directly proportional to the total number of tran-

sitions m. The worst case scenario is when all bit packages are different. If n is

greater than 5, then there will be more possible packages, than packages themselves.

For example, if the original FSM has outputs of n = 8 bits length, then there will

be m = 20 packages to insert, but 2n = 256 different packages to choose, that is,

there are more possible packages than packages needed to embed the watermark.

This scenario is shown in Table 3.1, there are only 5 possible cases where all pack-

ages could be inserted, nevertheless, 2 of them 5 have nearly zero probabilities of

happening.
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m n 2n P

160 1 2 ∼1
80 2 4 0.6623
54 3 8 0.2235
40 4 16 0.0827
32 5 32 1.8004× 10−13

27 6 64 not possible
23 7 128 not possible
20 8 256 not possible
...

...
...

...
m > 20 n > 8 2n > 256 not possible

Table 3.1: Probabilities of inserting all the packages.

(a) Original FSM (b) Signature

Figure 3.4: FSMs to be merged

Transitions only contain output strings, the input string depends on the original

FSM, unless that not all the transitions could be merged, in that case the input would

be randomly chosen. The building algorithm iterates through all packages inserting

them into the new STG, saving the bit chain which satisfies the desired output. In

Figure 3.4b an FSM with a hash chain 011100 is shown, the satisfying bit chain

would be the input 111000, i.e., starting from st0, input 111000 would return 0 at

the first transition because input 1 in st0 has as output 0 and next state st1, the

next transition would return 1 following the same principle, as well as the rest of

transitions. Table 3.2 shows the next states.

At this stage, there are already two FSMs to later be merged. After the
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Actual Input Output Next
State State
st0 1 0 st1

st1 1 1 st1

st1 1 1 st1

st1 0 1 st0

st0 0 0 st0

st0 0 0 st0

Table 3.2: Transitions to obtain satisfying chain from Figure 3.4b

merging process, the original functionality will remain; containing the watermark as

new transitions or states, assuming they are not already contained, which is highly

improbable.

3.3 FSM merging

The proposed method merges two FSMs: one corresponding to the IP Core module

and one that represents the watermark. After fusing both of them, the resulting

FSM maintains the original functionality together with the owner’s signature. Two

different approaches to merge the STGs are used, however, it will only remain the

one with lower number of hanging states as will be explained in Section 3.5.

3.3.1 Combinatorial merging

The first approach, based on Lewandowski et al. proposal [34], is a combinatorial

merging with minor variations. Finding the most similar subgraph from the original

FSM and the watermark FSM. This approach can be translated as an isomorphism

problem, a well known NP-Complete problem [5]. Thus, they proposed a greedy

algorithm designed to solve a subgraph matching problem.
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The approach finds the highest degree node in the original FSM and then

selects from the FSM watermark, the node with minimum cost to match with. This

process will iterate recursively through all adjacent nodes. Algorithm 6 shows the

pseudo-code used during this approach to merge FSMs in a combinatorial fashion.

Input: GIP (V,E), Gw(V,E), Bit chain
Output: Gm(V,E)
NIP ←MaxDegreeNode(GIP )
Nw ←MinMatchCost(Max,Gw)
Gm ← NIP

r← GIP .GetInputsLength()
q← -r
while card(UnmatchedNodes(Gw)) ≥ 1 do

foreach node in MaxDegreeNode(UnmatchedNodes(NIP )) do
New vertex←MinMatchCost(Nw)
Gm(V )← InsertNode(New vertex)
New edge← RenewEdge(New vertex, NextState(New vertex))
Input← Bit chain[(q← (q+r)):r]
New edge.Input(Input)
New edge.Output(Nw.Output())
Gm(E)← InsertEdge(New edge)

end
NIP ← NotYetMatched(MaxDegreeNode(Gm))

end
return Gm(V,E)

Algorithm 6: Combinatorial FSM merging.

For example, Figure 3.4a shows the FSM extracted from a random IP Core,

and Figure 3.4b shows the FSM obtained from the signature which is desired to

merge with. For simplicity, let rename the states from the watermark FSM adding

a W letter to the left, and for the IP Core FSM an I letter, leaving as result W st0

instead st0 for the watermark FSM, and I st0 instead of st0 for the IP Core FSM,

and so on. Following the combinatorial merging approach, the highest degree nodes

from the watermarked FSM is found, in this case there are only two states, and both

have the same number of transitions, thus, W st0 is selected to start. W st0 has to be

assigned to a corresponding I state, thus, the FSM IP Core is traversed, looking for
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the node with minimum cost to match with, i.e., the most similar, it must contain

as many as possible transitions equal to W st0.

For this particular case, it is needed to find an I state with one loop transition

with input 0 and output 0, a fan-out transition with input 1 and output 0, and

finally a fan-in transition with input 0 and output 1. Basically, something similar

to Figure 3.5a.

(a) Wst0 state (b) Ist0 pair candidate to Wst0

Figure 3.5: Don’t care minimization

Starting from I st0; it is notorious its lack of loop transitions as needed, but it

do has a fan-out transition 1/0 as W st0, if this state ended up being our I state to

pair to, then it would be necessary to insert extra transitions as shown in Figure

3.5b. Nevertheless, in Figure 3.4a can be seen that inserting loop transition 0/0

collapses with fan-out 0/0 transition in direction to I st1. For that same reason, in

this particular example, after searching from maximum to minimum degree order,

and traversing recursively through all over the span from each state, it was not

possible to found correspondence between states from both FSMs, concluding that

graph 3.4a is a Completely Specified FSM (CSFSM). To overcome this issue, it

was added an extra input bit for control as seen in Figure 3.6. Concluding that any

subgraph from Figure 3.4b is isomorphic to Figure 3.4a graph, and moreover, that

not all states from graph 3.4b can be related to any I state, brings us to insert this

extra W states into graph 3.4a as new I states, besides its own transitions as seen in

Figure 3.6.
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Figure 3.6: Combinatorial FSM merging

3.3.2 GA based merging

The second approach is a GA. It was decided to use an evolutionary algorithm to

merge both FSMs due to the isomorphism problem and its NP-Complete nature.

The number of possible combinations increases rapidly while adding states to the

solution. For example, if it is chosen the FSM “scf ” from LGSynth89 benchmark

with its 121 states, the number of possible combinations to merge the signature

would be:

nPr =
n!

(n− r)!
(3.1)

with n equal to the number of states of the IP Core and r equal to the number of

states of the signature. If the signature has 2 states, then the number of combinations

would be 14520, with three states almost 2 millions, with four states more than 200

millions, and with ten states it would be a number of 21 digits.

To solve this issue, the GA will only consider the best adapted possible solutions

by qualifying their fitness, without ignoring enormous quantities of solutions. The

pseudo-code of the GA based approach is shown in Algorithm 7 and 8.

In GAs, a random population is initialized following the representation ex-

plained below. The selection criterion considers the fittest individuals to mate and

evolve to create the next generation.
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Input: GIP (V,E), Gw(V,E), Bit chain
Output: Gm(V,E)
a← GIP .CountStates()
b← Gw.CountStates()
r← GIP .GetInputsLength()
q← -r
Chrom[ ]←Merging(GIP , Gw(V,E))
for i:0 to a-1 do

Pos hot← FindHot(Chrom[i×b+1:i×b+b])
if Pos hot 6= -1 then

New vertex←MatchNodes(GIP [i], Gw[Pos hot])
Gm(V )← InsertNode(New vertex)
New edge← RenewEdge(New vertex, NextState(New vertex))
Input← Bit chain[(q← (q+r)):r]
New edge.Input(Input)
New edge.Output(Nw.Output())
Gm(E)← InsertEdge(New edge)

end
end
if UnmatchedNodes(Gw).Count()¿1 then

foreach node in UnmatchedNodes(Gw) do
New vertex← node
Gm(V )← InsertNode(New vertex)
New edge← RenewEdge(New vertex, NextState(New vertex))
Input← Bit chain[(q← (q+r)):r]
New edge.Input(Input)
New edge.Output(Nw.Output())
Gm(E)← InsertEdge(New edge)

end
end
return Gm(V,E)

Algorithm 7: GA based FSM merging.
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Algorithm Merging(GIP , Gw(V,E))
bits← GIP .GetInputsLength()
pop← population size
samples← number of experimental samples
gens← number of generations
for p:1 to samples do

new pop[ , ]← GenBin(bits, pop)
for i:1 to gens do

for j:1 to pop do
x temp← pga(new pop[i, j]).x
f temp[ ]← pga(new pop[i, j]).f

end
add fit←

∑
f temp[ ]

min f← f temp[ ].Min()
end

end
return x temp[min f]

Procedure PGA(pop)
new gen← Crossover(pop)
new gen←Mutate(pop)
fit←

∑
Hanging States⇒ new gen

return fit, new gen
Algorithm 8: Genetics from GA based FSM merging.

Representation

Binary representation has been used to represent the number of states, therefore the

chromosome length is n ·m bits, where n is the number of states in the signature’s

FSM, and m is the number of states in the RTL’s FSM.

An example is given in Figure 3.7, a chromosome’s genotype is 010|001|100|000,

with length 3 ∗ 4 = 12. Every chromosome is formed by 4 packages with 3 genes

each, in this particular case:

t = {t1, t2, t3, t4} = {(
1

0
2

1
3

0)︸ ︷︷ ︸
t1

, (
1

0
2

0
3

1)︸ ︷︷ ︸
t2

, (
1

1
2

0
3

0)︸ ︷︷ ︸
t3

, (
1

0
2

0
3

0)︸ ︷︷ ︸
t4

}
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(a) IP-Core FSM (b) Signature’s FSM

Figure 3.7: Merging example

where:

(010) = Represents node 2 of Signature’s FSM matches node t1.

(001) = Represents node 3 of Signature’s FSM matches node t2.

(100) = Represents node 1 of Signature’s FSM matches node t3.

(000) = Indicates node t4 has no match.

This representation is called one-hot encoding [23], but also gray code or binary

code can be used to minimize chromosome length and the size of the structure used

to save the data flow. But the algorithm is explained using one-hot representation

for simplicity.

Crossover operator

After selection, recombination between individuals is carried out using single point

crossover. A random position within 1 in n chances to be chosen, being n the number

of genes, within the chromosome length is selected and genetic data is exchanged.

For example, Figure 3.8 shows a crossover where 010 001 100 000 suffers a crossover

at position 2 with 000 001 000 100 which returns 000 001 100 000, representing node

t1 without matching, node t2 matched with node 3, node t3 matched with node 1,

node t4 without matching and node 2 as hanging state; and chromosome 010 001

000 100, which represents node t1 matched with node 2, node t2 matched with node

3, node t3 without matching, node t4 matched with node 1 and no hanging states.
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Figure 3.8: Crossover example at position 6.

Mutation operator

In this stage, the chromosomes will suffer a mutation in one single gene. This

mutation acts with a probability 1
n

being n the number of genes, and inverts the

information in the defined position. For example, if the chromosome 010 001 100

000 suffers a mutation in the gene 2, the new chromosome will be 000 001 100 000

as seen in Figure 3.9. Note that it has to be checked if the mutation does not entails

to an invalid chromosome, it can be done simply by checking that a chromosome

package has only one-hot, i.e., packages like 011 are taken as wrong; besides, in the

whole chromosome should be only as much as n one-hot genes.

Figure 3.9: Mutation example at position 2.

Fitness function

The fitness function is directly proportional to the quality of a match, that is, it is

intended to find some chromosome which has the minimum cost value depending on

the hanging states. To do so, the function can be seen as a sum, with n equal to the
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number of hanging states
n∑
i=1

i. In other words, it is intended to reduce the number

of hanging states.

It can be seen that the hanging state st7 from the combinatorial merging (see

Figure 3.6) because of the GA has disappeared in Figure 3.10.

Figure 3.10: Genetic FSM Merging

At this point, there is already the watermarked IP Core, furthermore, it could

be possible to translate its FSM to VHDL code. Nevertheless, as explained in Section

2.1.2, one main characteristic of watermarking is it’s strength against attacks. In

FSM watermarking, this so called attacks are carried out by removing hanging states

which originally belonged to the watermark. Another issue of great importance are

synthesis tools used in synthesis process because suboptimal STG representations are

commonly generated to enhance effective use of chip area, as pointed out in [5, 43].

Thus, to ensure the watermark strength, these hanging states should be reduced

to the minimum, or even better, completely removed when possible. To do so,

the watermarked FSM is state-reduced. This process also involves two different

approaches which are described below.

3.4 Watermarked FSM reduction

FSM state-reduction consists on finding the FSM that performs the original function-

ality with the minimum number of states. This minimal FSM, with the watermark

already in it, is obtained by two different approaches, that is, there will be found
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Figure 3.11: FSM to be minimized

two different results and the best of them will be chosen. The first approach is a

combinatorial reduction, while the second one is a genetic reduction.

3.4.1 Combinatorial reduction

As explained in Section 2.1.1, any pair of states (si, sj) ∈ S is compatible if and

only if their output and next state are exactly the same. The set composed entirely

of compatible states is called compatible class Ci = {si1, si2, ..., sin} and the set of

next states of this compatible class is called the implied Cij. A set of compatibles

C = {C1, C2, ..., Cn} is closed if for each element Ci ∈ C, the implied Cij is also

an element of C. The pseudo-code of the combinatorial FSM reduction is shown in

Algorithm 9.

Grasselli proposed a method to minimize the number of internal states and

since its publication in 1965 it is the most widely used method to reduce the number

of states in FSMs [21]. The method is described below. For a practical example,

Table 3.3 shows the next-state flow table and Table 3.4 shows the output table of

Figure 3.11 FSM to be minimized. Due to space, there is only shown part of Figure
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Input: Gm(V,E)
Output: Gr(V,E)
N t[ , ]← Construct Next-State flow table from Gm

O t[ , ]← Construct output flow table from Gm

Q← Gm.GetInputLength()
Q← 2Q

for j:2 to Gm.GetNumberOfStates() do
for k:1 to Gm.GetNumberOfStates()-1 do

if DctCompatibles(O t[j,1:Outputs],O t[k,1:Q]) then
Compatibles[j, k]← Label(∼)

end
else if DctIncompatibles(O t[j,1:Os],O t[k,1:Q]) then

Compatibles[j, k]← Label(×)
end
else

Compatibles[j, k]← NeededPairs(N t[j,1:Q],N t[k,1:Q])
end

end
end
for j:2 to Gm.GetNumberOfStates() do

for k:1 to Gm.GetNumberOfStates()-1 do
if Compatibles[j,k] has no labels then

foreach pair in Compatibles[j,k] do
if Compatible(pair) then

Compatibles[j,k]← Label(∼)
else

Compatibles[j,k]← Label(×)
end

end
end

end
end
Gr ← ReduceStates(Compatibles[ , ])
return Gr(V,E)

Algorithm 9: Combinatorial FSM reduction.
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a1 a2 a3 a4 a5 a6 a7
a a - d e b a -
b b d a - a a -
c b d a - - - g
d - e - b b - a
e b e a - b e a
f b c - h f g -
g - c - e - g f
h a e d b b e a

Table 3.3: Next-State flow table

3.11 focusing in states, living out the rest of transitions. Note that Figure 3.11 does

not have any relation with the global example used so far, and its only purpose is to

show the complexity handled during minimization, being the FSM shown in Figure

3.11 one of the smallest treated during experimentation.

First, it is needed to place the symbol (∼) in the corresponding cells in Table 3.5

where both states have a directly recognizable compatibility in the flow tables. For

example, the pair of states (b, c) have the same next states as seen in Table 3.3 and

same output as seen in Table 3.4. The same for directly recognizable incompatibility,

for example, the states (a, c) are clearly incompatible, thus, the symbol (×) is placed

in its corresponding cell in Table 3.5.

a1 a2 a3 a4 a5 a6 a7
a 0 - 0 1 0 - -
b 0 1 - - - 1 -
c 0 1 1 - - - 0
d - - - - 0 - -
e - - - - - - 1
f 0 - 1 1 1 0 -
g - 1 - 1 - 0 0
h 1 0 1 0 - - 1

Table 3.4: Output flow table

When compatibility or incompatibility are not directly recognizable then nec-

essary conditions for compatibility are written. For example, states (a, b) are com-
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patible only if states (d, a) are compatible also, thus, this new pair is written in the

cell shared by b and a.

When the compatibilities table is finished, it is necessary to iterate for a second

time to update it. For example, pair (e, f) needs pairs (c, e), (b, f) and (e, g) to be

compatibles, but neither of them are, in this case the pair (e, f) must be updated to

(×) as seen in Table 3.6.

b ad

c × ∼

d be
de
ab

de
ag

e
ab
ad

de
ab
ae

× ∼

f × × cd ×
ce
bf
eg

g ∼ × cd
fg

de
be
af

× eh

h × × × ∼
ab
ad × ×

a b c d e f g

Table 3.5: Compatibilities from Flow Tables 3.3 and 3.4 after 1 iteration

State pairs in Table 3.6 which do not have a (×) symbol are considered as

compatibles. Finally, the table is scanned from bottom right to upper left corner to

obtain the compatibility classes step by step as shown in Table 3.7.

The minimal covering class must be selected from the entire enumeration, that
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b ad

c × ∼

d be
de
ab

de
ag

e
ab
ad

de
ab
ae

× ∼

f × × cd × ×

g ∼ ×
cd
fg × × eh

h × × × ∼
ab
ad × ×

a b c d e f g

Table 3.6: Compatibilities from Flow Tables 3.3 and 3.4 after a second iteration

Step 1: {f, g}
Step 2: {f, g},{e, h}
Step 3: {f, g},{d, e, h}
Step 4: {c, f, g},{d, e, h},{c, d}
Step 5: {c, f, g},{d, e, h},{b, d, e},{b, c, d}
Step 6: {c, f, g},{d, e, h},{a, b, d, e},{b, c, d},{a, g}

Table 3.7: Compatibility classes from table 3.6 after second iteration.

is, from all compatibility classes and their possible combinations, the maximal set

must be selected which covers all original states in the minimal representation, or

the subset with minimal cardinality. Comparing the reduced FSM from Figure 3.12

with the just merged FSM from Figure 3.10 can be seen a decrease in the number of

states, furthermore, it has been even possible to get a lower number of states than



CHAPTER 3. FSM WATERMARKING PROCEDURE 43

the original FSM as shown in Figure 3.4a. Must be clarified that this state-reduction

is allowing to embed even deeper the watermark into the original FSM as observed

in experimentation.

Figure 3.12: Combinatorial FSM Reduction

Even though there has been obtained a reduced watermarked FSM, there is

a chance that the results can be improved by another reduction. This new step is

a GA, which is explained below. In Section 3.5 it will be explained how to choose

which result to keep to be translated to VHDL coding.

3.4.2 GA based reduction

The pseudo-code of GA based FSM reduction is shown in Algorithm 10.

Input: Gm

Output: Gr(V,E)
Com classes← FindCompatibles(Gm)
Chrom[ ]← Reduction(Gm, Com classes)
for i:1 to Com classes do

if Chrom[i] = 1 then
CombineNodesFrom(Com classes[i])
UpdateGraph(Gr)

end
end
return Gr(V,E)

Algorithm 10: GA based FSM reduction.

As mentioned in the literature review in Section 2.2.3, in 1959 Paull proposed

a tabular technique to find compatibility classes of an FSM [42], and searching
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Algorithm Reduction(GIP , Com classes)
bits← GIP .GetInputsLength()
pop← Com classes.Count()
samples← number of experimental samples
gens← number of generations
α← Number of maximal compatibles for which the closed condition is
observed
C ← pop – Chromosome length
S ← Number of total states
for p:1 to samples do

new pop[ , ]← GenBin(bits, pop)
for i:1 to gens do

for j:1 to pop do
x temp← PGA(new pop[i, j]).x
f temp[ ]← PGA(new pop[i, j]).f

end
add fit←

∑
f temp[ ]

min f← f temp[ ].Min()
end

end
return x temp[min f]

Procedure PGA(pop)
new gen← Crossover(pop)
new gen←Mutate(pop)
β ← Number of maximal compatibles in new gen
γ ← Number of states which are covered by new gen

fit← 5

76

(
−1.66β

C
+
γ

S
+ 2

)
fit← fit× α
return fit, new pop

Algorithm 11: Genetics from GA based FSM reduction.

these classes is still used in state reduction due to its simplicity, exactitude and low

computational cost. Later in 1965, Grasselli proposed the idea of minimizing the

internal states of an FSM finding the set of prime classes with minimum cardinality

[21]. Nowadays, efforts are focused on finding this minimal set.

One form to select the subset of compatibility classes from all possible combina-

tions is by using GAs. Its goal is to prove some combinations and by discrimination
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Figure 3.13: Crossover example at position 3

to select the best ones and use some characteristics to create new generations of

possible solutions. Like Sánchez, the method proposed uses the same chromosome

representation and operators [48], nevertheless, in this research a new fitness function

that has shown a better performance is proposed.

Chromosomes

Any possible chromosome is represented as a binary string and its length is always

going to be the number of compatibility classes. For example, the chromosome

a1 a2 a3 a4 a5

0 0 1 1 0

represents the compatibility classes from Table 3.7 in step 6 ({a, b, d, e} and {b, c, d}),

note that classes {c, f, g}, {d, e, h}, and {a, g} would not be taken into account.

Crossover operator

Mating will occur in a randomly chosen gene with a probability of 1 in n, being n

the number of genes. For example, Figure 3.13 represents two chromosomes crossed

at position 3.
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Mutation operator

This operator alters a selected gene with a probability of 1 in n. In Figure 3.14 is

shown a chromose mutated at position 2.

Figure 3.14: Mutation example at position 2.

Resulting in compatibility classes {d, e, h}, {a, b, d, e} and {a, g} as maximal

class.

Fitness function

To select the fittest solutions, a cost function is used which assigns a real value

to each possible solution for selection after reproduction and survival for the next

generation.

Sánchez proposed Equation 3.2, as the fitness function to minimize the number

of final states in an FSM [48]. This function was used as a baseline to design an

improved function to perform the state-reduction for the watermarked FSM.

F = C · S · α
β

+ C − β + C · γ (3.2)

where:

C = Chromosome length.

S = Number of total states.

α = Number of maximal compatibles for which the closed condition is observed.

β = Number of maximal compatibles in the solution.

γ = Number of states which are covered by the solution.
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Equation 3.2 can be rewritten as:

F = C ·
[(

S · α
β

)
−
(
β

C

)
+ γ + 1

]

But it was noted that S is interacting with terms related to compatibility

classes, rather than γ which is linked to states. Since the end of the 50’s and

beginning of the 60’s, with the works of Paull and Grasselli [21,42], it was established

that the terms to reduce the number of internal states of an FSM must remain

even though their configuration changes, that is, the order of the terms and their

respective coefficients can change, but not the terms themselves. Based on that

premise, Equation 3.3 is the base function proposed where now γ is dependent of S

and α is now independent. β/C and γ/S represent the percentage of classes and the

percentage of states covered in the solution respectively.

F = α− β

C
+
γ

S
(3.3)

To find the coefficients of Equation 3.3, different functions with the same vari-

ables were proven, and the results were mapped to a cloud points. Due to α, C

and S are constants, there are only two variables, β and γ, thus the results are in

R3, which means, the representation can be plotted as Figure 3.15. Some of the

equations used to find the cloud points are shown below out of a total of 20 different

configurations (refer to Appendix B to see the full list of equations).

F1 = C · S · α
β
− β + C · γ F4 = α · β · γ +

C

S

F2 =
α

β
− β

C
+
γ

S
+ S F5 =

α

β
+
β

S
− γ

C

F3 =
α

β
− β

S
· C +

γ

S
− C F6 = α · S + β · γ

C
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Figure 3.15: Cloud points from different configurations.

The cloud is very close to a sloped plane. A surface that can be approximated

only with three points randomly chosen.

The three points are P = (6, 8, 0), Q = (2, 14, 0.8333) and R = (12, 18, 0). The

vectors ~PQ and ~PR can be calculated by the subtraction Q− P and P −R, which

are also on the plane.

~PQ = Q− P = (−4, 6, 0.8333)

~PR = R− P = (6, 10, 0)

With the cross product of these two vectors the orthogonal vector to the plane is

obtained.

~n = ~PQ× ~PR =

∣∣∣∣∣∣∣∣∣
~i ~j ~k

−4 6 0.8333

6 10 0

∣∣∣∣∣∣∣∣∣
~i ~j

−4 6

6 10

= −8.333~i+ 4.9998~j − 76~k
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Then, the plane equation is:

z = Ax+By + C ′ =

(
1

76

)
(−8.333x+ 4.9998y + 9.9996) (3.4)

Let x = β/C and y = γ/S, and since the plane is an approximation of the set

of results of different fitness functions, the coefficients can be replaced as follows:

F = α +
5

76

(
−1.66β

C
+
γ

S
+ 2

)
(3.5)

The plane equation has a Mean Square Error (MSE) of 0.0115 and a Peak Signal-

to-Noise Ratio (PSNR) of 38.7851 dB with respect to the cloud points, values that

were calculated as follows:

MSE =

n∑
i=1

(∣∣∣Ŷi − Yi∣∣∣2)
n(n− 1)

PSNR = 20 · log10

max
(∣∣∣Ŷ ∣∣∣)

√
MSE


where |Ŷi−Yi|2 is the square difference between n cloud points Ŷ and the interpolated

sloped plane Y .

To reduce the MSE, the plane can be approximated by least squares fitting.

Let again x = β
C

and y = γ
S

and:


∑
x2i

∑
xiyi

∑
xi∑

xiyi
∑
y2i

∑
yi∑

xi
∑
yi

∑
1



A

B

C ′′

 =


∑
xizi∑
yizi∑
zi


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which is equal to:
10711.44165 21071.35575 1816.07197

21071.35575 47053.38285 4001.177778

1816.07197 4001.177778 568



A

B

C ′′

 =


451.8089598

1254.968944

145.6158735


Then, A = −0.0898, B = 0.0516 and C ′′ = 0.1804, letting to:

F ′ = α− 0.0898
β

C
+ 0.0516

γ

S
+ 0.1804 (3.6)

which is now closer to each point in the cloud points with a MSE of 0.0113 and a

PSNR of 38.9049 dB, which with the first approximation give differences of around

2× 10−4 and 0.1198 respectively.

However, the terms of any of both plane equations can be used to replace the

terms of the fitness function. This is possible because the aim of this approach is

to adjust the results space, allowing to reduce the noise, thus, optimal solutions are

more likely to be found, instead of being scattered through all the searching space.

Figure 3.16: Plane interpolation from the cloud points.

When the algorithm reaches the stop condition (minimum cost value returned

or number of generations), the chromosome with minimal cost value found will in-

dicate the compatibility classes to take into account and thus the remaining states
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Figure 3.17: Genetic FSM Reduction

of the FSM.

So far, in the example of this chapter, that is, the merging process from Figure

3.4a and Figure 3.4b, there is already inserted the signature into the IP Core and also

it has been reduced to decrease the riskiness of losing the watermark after synthesis

by two different approaches. The final result after the GA approach is shown in

Figure 3.17.

Now it is time to select which combination of approaches has to be kept to

endure that the best result is chosen.

3.5 Selecting the best watermarked design

After reducing both FSMs with the different techniques, it is required to compare

the results checking quantity of total final states and the number of hanging states to

decide which FSM to keep as final result. Equation 3.7 will return a value between 0

and 1 if there are not hanging states, a value between 1 and 2 if there is one hanging

state, a value between 2 and 3 if there are two hanging states, and so on. If there is

a draw, that is, if for example, there are two different FSMs both with three hanging

states but the first one with 5 final states and the second one with 4 final states,

then equation 3.7 will return a value depending on the number of these final states,

giving a lower result to the second FSM. In this case, it will return 3.765672465 for

the FSM with 4 final states and 3 hanging states, and 3.804491726 for the FSM with
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5 final states and 3 hanging states. Equation 3.7 compiles with superior horizontal

asymptotes as shown in Figure 3.18a. These asymptotes prevent results from higher

number of hanging states to interfere with results from smaller quantities of hanging

states. This was achieved by the horizontal asymptotic behavior of the negative

exponential −exp(1/x), and the first term y which allows to increment the final

value as new states are added to the final FSM. Adding a 2 at the end just adjusts

the values between y and y + 1, as shown in Figure 3.18a.

φ(x, y) = y − exp

(
1

x

)
+ 2 (3.7)

where x : 1 < x < ∞ is the number of final states and y : 0 < y < x is the number

of hanging states. In Figure 3.18a are plotted all possible solutions from φ(2, 0)

through φ(7, 6). It is easy to notice that every solution of φ(x, y) has as horizontal

asymptote x+ 1, this behavior is the result of −exp(1/x).

It is needed that results with 0 hanging states to remain between φ(x, y) = 0

and φ(x, y) = 1, this same principle goes to the rest of possible solutions. As seen in

Figures 3.18a and 3.18b, the behavior of Equation 3.7 satisfies this principle. Thus,

Equation 3.7 satisfies φ(xi, y) < φ(xi+1, y) and y < φ(x, y) < y + 1. Table 3.8

shows the results of (x, y) = (2, 0) to (x, y) = (4, 3), plotted in Figure 3.18a until

(x, y) = (7, 6).

In the example used so far after merging and reducing the FSMs presented in

Figure 3.4 from Section 3.2, the better FSM obtained is shown in Figure 3.12, the

combination of techniques to reach this result was a genetic merging with a combi-

natorial reduction. The resultant FSM has less states than the original FSM shown

in the Figure 3.4a, moreover, there is any hanging state related to the watermark,

which means that the watermark has a better chance to remain after synthesis.
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(a) Behavior of φ(x, y)

(b) Horizontal Asymptotes of Hanging States

Figure 3.18: Asymptotes behavior

3.6 Transitions regrouping

Before converting the final FSM to VHDL coding, a regrouping is performed to

minimize the number of transitions known as don’t care minimization [36].

The main goal of don’t care minimization is to reduce occupied area and possi-

bly improve performance. The way to solve this is an exhaustive searching method.
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x y φ(x, y)

2 0 0.351278729

2 1 1.508175302

3 0 0.604387575

3 1 1.650141192

3 2 2.686458043

4 0 0.715974583

4 1 1.734719145

4 2 2.751151131

4 3 3.765672465

Table 3.8: φ(x, y) behavior

For example, if the next-state of st0 is st1 regardless the input from 0000 to 0101,

and besides, the output is the same for every case, then the transition shown in

Table 3.9a can be reduced as shown in Table 3.9b.

(a) (b)

Figure 3.19: FSM before and after Don’t Care Minimization

Table 3.10 shows minimization steps. All inputs related to minimizable tran-

sitions are sorted in ascending order. In the first step the first transition inputs

are grouped where the first bit are the same. In the second step are grouped

only the inputs where their second bit is the same, and so on. This regrouping

will continue until each group contains only 2 or 1 input, when this happen, the bits

at the position from the specific step will be necessarily different letting to create a

new transition with a don’t care bit.
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Actual State Next State Input Output
st0 st1 0000 1

st0 st1 0001 1

st0 st1 0010 1

st0 st1 0011 1

st0 st1 0100 1

st0 st1 0101 1

(a) Transitions before Don’t Care Minimization

Actual State Next State Input Output
st0 st1 00– 1

st0 st1 010- 1

(b) Transitions after Don’t Care Minimization

Table 3.9: Transitions regrouping

When an insertion of a don’t care bit is reached, then all results can be re-

grouped similar to the first iteration, reducing the transition even more. Finally,

if there are no more possible reductions then the algorithm stops and returns the

transition reduced as the column Result from the example Table 3.10.

First Iteration Second Iteration
First Second Third First Second Result
Step Step Step Step Step
0000 0000 0000 000- 000- 00–
0001 0001 0001
0010 0010 0010 001- 001-
0011 0011 0011

0100 0100 0100 010- 010- 010-
0101 0101 0101

Table 3.10: Don’t care minimization steps
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Figure 3.20: Don’t care minimization of Figure 3.12

3.7 Validation

3.7.1 Original functionality

Most VHDL synthesizers extract FSMs found within the code to optimize and syn-

thesize them side by side [37]. As a matter of fact, some synthesizers let to configure

this process, for example, Leonardo Spectrum allows to set the FSM Extraction as

disabled [1].

There are three ways to synthesize an FSM:

1. To omit any special synthesis directives and let the logic synthesizer operate

on the state machine as though it were random logic. This will prevent any

reassignment of states or state machine optimization. It is the easiest method

and independent of any particular synthesis tool, but it is the most inefficient

approach in terms of area and performance.

2. To use directives to guide the logic synthesis tool to improve or modify state

assignment. This approach is dependent on the software used.

3. To use a special state-machine compiler, separated from the logic synthesizer,

to optimize the state machine. It can then merge the resulting state machine
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(a) (b)

Figure 3.21: FSMs to validate

with the rest of the logic. This method leads to the best results but it is harder

to use and ties the code to a particular set of software tools, not just the logic

synthesizer.

An FSM compiler extracts the state machine. Some companies use FSM com-

pilers that are separate from logic synthesizers because algorithms for FSM opti-

mization are different from those for optimizing combinatorial logic.

To validate that the watermarked FSM has the original functionality, it is

necessary to compare both FSMs [22]. Thus, a new method was proposed to perform

this comparison.

First, a transition table is constructed for each FSM as shown in Tables 3.11a

and 3.11b. Then, a table of compatibilities is constructed as Table 3.12a. Each

column represents states from one FSM and rows are states from the other. In

the example, rows represent states of Figure 3.21a and columns states of Figure

3.11b. Starting from upper-left corner to the bottom and then to the right, all pairs
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Next State Output
0 1 0 1

a c b 0 0
b d - 1 -
c d b 1 1
d - a - 0

(a) Flow table of Figure 3.21a

Next State Output
0 1 0 1

x z y 0 0
y y x 1 0
z y y 1 1

(b) Flow table of Figure 3.21b

Table 3.11: Flow tables

are noted of compatible states needed to make compatible the pair of states at the

crossing point of that specific row and column. For example, pair (a,x) represented in

cell (1,1) can be compatible because their outputs are the same, but they need pairs

(c,z) and (b,y) to be compatible as well, thus, those pairs are listed in that specific

cell. If there is a directly visible incompatibility, it is marked as ×, observe pair

(a,y), in Table 3.11a the possible outputs of state a are different from the possible

outputs of state y in Table 3.11b, thus, cell (1,2) of Table 3.12a is marked with ×.

a cz × ×
by

b × dy dy

c × × dy
by

d ay ax ×

x y z
(a) First Iteration

a X × ×

b × X X

c × × X

d × X ×

x y z
(b) Second Iteration

Table 3.12: Compatibilities of Flow Tables 3.11a and 3.11b

Next, the compatibilities table is updated following the same fashion, from

upper-left to bottom-right as showed in Table 3.12b. If the pairs listed in the current

cell are also compatibles, then this pair is also compatible, or incompatible otherwise.

For example, cell (4,1) from Table 3.12a (or pair (d,x)) has to be marked as not

compatible (×) because the pair (a,y) is also not compatible. In contrast, pair (b,y)
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is marked as compatible (X) because (d,y) is also compatible.

Finally, if there is, at least, one compatible cell per column, then, the original

functionality remains. That is, if every state represented by the columns have one

or more compatible states, then the entire FSM is embedded into the final FSM.

Although so far the merging process has been described as the signature FSM being

merged into the original FSM, it can also be seen as the opposite, the original FSM

being merged into the signature FSM.

3.7.2 Signature

To validate if the signature remains it is only necessary to feed the final FSM with

the bit chain obtained by the method explained in Chapter 3.2. If the output is the

same as the signature after been hashed, then the signature is still embedded and

the authorship can be proved.

(a) FSMs merged (b) Signature

Figure 3.22: FSMs merging

For example, Figure 3.22b represents a watermark’s FSM, and it is merged with

the FSM on Figure 3.22a, also the bit chain obtained after hashing the signature is

”011011”, if state 1 from 3.22b is paired with state t3 from 3.22a the only one and

necessary bit chain that satisfy the signature as output is ”000111011”. To prove it,

the FSM is feeded with ”000111011”; in the first impulse, ”000” will return ”01”,

then ”111” will return ”10”, and finally ”011” will return ”11”, which concatenated

from the signature after hashing.



Chapter 4

Experimental results analysis

4.1 Experimental setup

All comparisons and experiments were made using Finite State Machines (FSMs)

from ACM/SIGDA benchmarks library [11], specially LGSynth series (High-Level

Synthesis Workshops) from Collaborative Benchmarking and Experimental Algorith-

mics Laboratory granted by the Design, Verification and Test Division of Mentor

Graphics Corporation.

The experimentation were carried out with double precision. The machine used

in every experiment has a machine epsilon in double precision of 2−53 with a mini-

mum positive value in double precision of 4.94065645841247E-324. The processor is

an Intel Core 2 Duo with a clock velocity of 1.5 GHz. The Operating System (OS)

is Windows 7 of 32 bits with 3.00 GB of RAM memory available. The codification

was written in C# 5.0 in .NET 4.5 using Visual Studio 2012.

The Genetic Algorithms (GAs) configuration used during experimentation is

described below.

60
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4.1.1 Random seeds

New population of chromosomes are specified by 50 percent of probability by each

gene. It was used the pseudo-random method of C# to obtain values between 0.0

and 0.99999999999999978 seeded from the system clock. If this pseudo-random value

is greater than 0.5 then the gene is equal to 1, otherwise it is set to 0. Mutation and

mating positions are set by the same pseudo-random method.

4.1.2 GA specifics for merging

Binary representation has been used to represent the number of states, therefore the

chromosome length is n ·m bits, where:

n = number of states in the FSM signature,

m = number of states in the RTL’s FSM.

An initial population is defined by P individuals or solutions.

P = r!−
r−1∑
i=1

i! with r = max(m,n) (4.1)

Crossover operation works by exchanging genetic material between solutions,

for example, an individual 010001100000 recombining at 2nd crossover position with

individual 000001000100 results in offspring 010001000100 (node 2 matches node t1,

node 3 matches node t2, node t4 has no match, etc) and 000001100000 (node t1 has

no match, node 3 matches node t2, node 1 matches node t3, etc).

During mutation, it is necessary to check if a mutated offspring does not result

in an invalid chromosome. This can be done by verifying that a chromosome package

has only one-hot, for example, packages like 011 are considered invalid; moreover,

a chromosome could represent a maximum of n one-hot genes. For example, if the

chromosome 010001100000 is mutated at gene 2, the new chromosome would be
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000001100000.

4.1.3 GA specifics for reduction

Any possible solution is expressed in binary form representing a combination of

compatibility classes and its length is the total of those classes. There are 2C indi-

viduals in the initial population with C being the number of compatibility classes.

For mating, individuals exchange genetic material according to crossover probability

at a random position. For example, chromosomes 00110 and 10101 recombined at

position 3 would generate offspring 00101 and 10110. After, children are mutated by

flipping genes according to mutation’s probability, for example, chromosome 00101

mutated at position 2 would create chromosome 01101 resulting in compatibility

classes C2, C3 and C5 as maximal classes. The function on Equation 4.2 was used

as objective function.

F = α +
5

76

(
−1.66β

C
+
γ

S
+ 2

)
(4.2)

4.2 Reported results

The proposed method aims to insert information in FSM transitions, yet, reported

results also show the number of states, transitions and bits that have been reduced.

As mentioned above, all results shown here were taken from the LGSynth

benchmark library and compared with the best results found in literature. The

proposals that were chosen to be compare with, are focused in FSM reduction, aimed

to emphasize the final number of states, particularly of hanging states; and FSM

watermarking to compare the number of final transitions, final states and number

of bits embedded.
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Original FSM
Watermarked FSM

Cui’s Method Proposed Method
FSM St Tr FT1 OH FT2 FS OH UT

s27 6 192 194 101.04% 100 4 52.08% 51.55%

s386 13 3328 3333 100.15% 1686 30 50.66% 50.59%

bbara 10 253 258 101.98% 176 7 69.57% 68.22%

opus 10 640 649 101.41% 346 32 54.06% 53.31%

tbk 32 4096 4102 100.15% 2085 26 50.90% 50.83%

Table 4.1: Comparative table of number of final transitions from Cui’s method inserting 128
bits [15], and the proposed method inserting 160 bits of FMS’s.

In Table 4.1 comparative results of the proposed method with Cui’s proposal

are shown [16]. Column St is the number of original states; Tr is the number

of original transitions; FT1 is the number of final transitions of Cui’s proposal;

FT2 and FS are the number of final transitions and states, respectively, of the

proposed method; UT is the upturn (or improvement) of final transitions of the

method proposed and Cui’s proposal; and OH is the overhead (or the percentage

of exceeding states) between final states of each method and the number of original

states.

In Table 4.2 comparative results of the proposed method with Abdel’s proposal

are shown [2]. Column St is the number of original states; Tr is the number of orig-

inal transitions; FS1 is the number of final states of Talaat’s proposal; FS2 are the

number of final states of the proposed method; UT is the upturn (or improvement)

of final transitions of the method proposed and Talaat’s proposal; and OH is the

overhead (or the percentage of exceeding states) between final states of each method

and the number of original states.

In Table 4.1, the proposed method has a less significant number of transitions

than Cui’s method. Besides, Table 4.2 shows there are less final states than Talaat’s

method in 6 out of 8 different experiments.
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Original FSM
Watermarked FSM

Talaat’s method Proposed Method
FSM St Tr FS1 OH FS2 OH UT

mc 4 30 6 150.00% 20 500.00% 333.33%

lion 4 13 5 125.00% 4 100.00% 80.00%

dk27 7 8 9 128.57% 7 100.00% 77.78%

ex4 14 448 14 100.00% 30 214.29% 214.29%

s27 6 192 7 116.67% 4 66.67% 57.14%

s298 218 S/I 219 100.46% 190 87.15% 86.75%

tbk 32 4096 33 103.13% 26 81.25% 78.79%

bbara 10 253 12 120.00% 7 70.00% 58.33%

Table 4.2: Number of final states from Adbel’s method inserting 40 bits [2], and the proposed
method inserting 160 bits.

These reductions are important because fewer number of transitions and states

in FSMs enhance heat and power dissipation and an effective use of chip area by re-

ducing the number of flip-flops and gates needed for implementation, permitting han-

dling a less significant number of don’t cares and a lower number of state-transitions

faults.

Table 4.3 shows size comparisons of FSMs before and after been watermarked.

Column 2 shows the original number of states, column 3 shows the number of final

states after watermarking, column 4 shows the overhead, and the last column shows

the number of hanging states. So far, no other method has reported the number

of these hanging states, for this reason, there are no other results for comparison.

However, it can be concluded the efficiency of the proposed approach considering

the values of the last two columns. There are only 3 out of 19 FSMs with hang-

ing states and some overhead in the number of final states. That is, only 16% of

these experiments have ended with some kind of size increment and hanging states.

However, 84% of watermarked FSMs are obtained with strengthen security in case

of attempt of copyright violation.
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Original Final FSM after inserting 160 bits

FSM Original Final Overhead Hanging
States States States

bbara bbtas 128 51 -60% 0

S298 218 190 -13% 0

donfile 24 14 -42% 0

modulo12 12 5 -58% 0

tbk 32 26 -19% 0

ex1 18 15 -17% 0

dk16 27 24 -11% 0

lion9 9 6 -33% 0

sse 13 10 -23% 0

mark1 12 10 -17% 0

s27 6 4 -33% 0

bbtas 6 6 0% 0

dk27 7 7 0% 0

lion 4 4 0% 0

train11 11 11 0% 0

Keyb 19 19 0% 1

dk512 15 16 7% 2

beecount 4 6 50% 2

ex7 4 6 50% 2

Table 4.3: Number of final hanging states.

4.3 Statistical analysis

Even though data provided clear support, GAs have a stochastic and non-deterministic

nature. A statistical significance test has been applied to establish if the fitness func-

tion associated to the GA is, at least, as good as the options proposed in literature.

In statistics, a result is statistically significant when it is not probable to happen

randomly. Student’s t-test is the most widely applied test to determine if two sets of
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data are significantly different from each other [49], nevertheless, it needs the data

to follow a normal distribution.

There are tests to avoid normal distribution, or nonparametric statistical tests

like Wilcoxon signed-rank test [53].

4.3.1 Wilcoxon signed-rank test

It has been proven by non-parametric statistical hypothesis Wilcoxon signed-rank

test that experimental results shown in Tables 4.4 and 4.5 has statistically signifi-

cant difference when comparing base function in Equation 4.3 with final function in

Equation 4.4. Finally, final function in Equation in 4.4 was compared with Equation

3.2 proposed by Sánchez in [48].

F = α− β

C
+
γ

S
(4.3)

F = α +
5

76

(
−1.66β

C
+
γ

S
+ 2

)
(4.4)

Table 4.4 shows experiments with FSMs after been watermarked, O column is the

number of original states, Fb is the number of states obtained after reduction with

base function in Equation 4.3, Ff is the number of states obtained after reduction

with final function in Equation 4.4, D is Fb-Ff difference and Index and Ranks

columns are inherited from Wilcoxon signed ranked test.

Ranks designated to indexes 1 to 5 are the same because the mean value is

equal to Equation 4.5.

(
1

k

) k∑
l=1

l =
k + 1

2
, if k = 5→ 5 + 1

2
= 3 (4.5)
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FSM Index O Fb Ff D Ranks
s27 1 6 4 5 -1 -3

s386 2 13 30 31 -1 -3

tbk 3 32 26 25 1 3

Opt FSM 4 7 6 5 1 3

shiftreg 5 8 8 7 1 3

dk27 6 7 9 7 2 7

ex4 7 14 30 28 2 7

bbara 8 10 9 7 2 7

manual2 9 8 16 13 3 9.5

donfile 10 24 15 12 3 9.5

modulo12 11 12 12 5 7 11

Table 4.4: Sampling Population with watermark

The same principle is used to rank 6 through 8 and 9 through 10. T = 6 since

T = min (T+, |T−|) and T+ = 60, |T−| = 6. And nr = 11, also:

σT =

√
nr (nr + 1) (2nr + 1)

24
µT =

nr (nr + 1)

4

σT = 11.24722188 µT = 33

Thus:

z =
T − µT − 0.5

σT
≈ −2.445

Finally, if z value is replaced in Equation 4.6, the following p-value is obtained:

f(z) =
1√
2π

e
−
(

z2

2

)
≈ 0.0201 (4.6)
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Figure 4.1: z value location in Normal Distribution and its p-value.

Thus, p-value is equal to f(z) ≈ 0.0201 indicating null hypothesis H0 proba-

bility, that is, the probability that there is no significant difference between samples.

If p-value is equal to a probability of 2.01%, then the pcritical is equal to 0.025.

Table 4.5 shows experiments with FSMs before been watermarked, O column is

the number of original states, S is the number of states reported by Sánchez in [48]

with Equation 3.2, Fb is the number of states obtained after reduction with base

function in Equation 4.3, Ff is the number of states obtained after reduction with

final function in Equation 4.4, D1 is the difference S-Ff , D2 is the difference Fb-Ff

and Index and Ranks columns are taken from Wilcoxon signed ranked test.

Applying Wilcoxon test to D1 difference, a probability of the mean difference

between the final function in Equation 4.4 and Equation 3.2 proposed by Sánchez

in [48] of 0.0483 is obtained, that is, when results are different, there is a 96% of

probability to found better results when using the equation proposed in this thesis.

In both ranking tests performed with D difference from Table 4.4 and D1

difference from Table 4.5, a p-value equal to 0.0201 is obtained, which represents a

probability of the mean difference between the fitness function in Equation 4.4 and

the base function in Equation 4.3 to be zero, with a probability of 2.01%, in other

words, it means that the final function has 98% of probabilities to be better than
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FSM Index O S Fb Ff D1 D2 Ranks
beecount 1 7 4 4 6 -2 -2 -1.5

ex5 2 9 4 6 8 -4 -2 -1.5

lion9 3 9 4 5 6 -2 -1 -3

ex7 N/A 10 4 6 6 -2 0 N/A

train11 N/A 11 4 6 6 -2 0 N/A

opus 4 10 9 9 8 1 1 4

bbara 5 10 7 7 5 2 2 6

ex3 6 10 4 10 8 -4 2 6

mark1 7 15 12 12 10 2 2 6

bbsse 8 16 13 13 10 3 3 9

ex1 9 20 18 18 15 3 3 9

sse 10 16 13 13 10 3 3 9

ex2 11 19 6 30 18 -12 12 11

Table 4.5: Sampling Population without watermark

the base function. That is, when Equation 4.4 has a different result to Equation

4.3, it has a 98% likelihood to be better, which is coherent due to both functions

mostly have the same statistical difference after any number of tests because it is

being compared to the same functions.

It has been experimentally and statistically demonstrated that the new Fit-

ness Function proposed (Equation 4.4) obtains better results, either when com-

paring no-watermarked FSMs, or even when comparing watermarked FSMs with

no-watermarked FSMs.
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Conclusions

Watermarking IP Cores by merging and state-reduction involving Finite State Ma-

chines using Genetic Algorithms leads to enhance heat and power dissipation and an

effective use of chip area, besides, it also permits handling a smaller number of don’t

cares, all of that with a more secure embedded signature which can be extracted

from any kind of file of any size. When found, even one FSM from HDL coding, is

guaranteed to watermark the IP Core and to recover the signature without original

functionality nor watermark disruption.

5.1 Remarks

This thesis presented a new approach to watermark IP Cores at a behavioral level

by merging and reducing Finite State Machines using Genetic and deterministic

algorithms. The proposed approach is based on previous proposals, achieving a

stronger signature, mainly due to the proposed post state-reduction method and its

new fitness function (see Equation 3.5 from Section 3.4.2).

This equation has been concluded after studying the behavior of several con-

figurations of fitness functions with the same variables and interpolating its charac-

teristic equation (see Section 3.4.2, equation 3.4). By doing this, it was possible to

reduce the space of satisfaction instead of scatter the solutions through all the search
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space. This conclusion aims to improve Finite State Machine merging by Genetic

Algorithms as future work.

The proposed method consists in extracting and translating HDL code and

some signature file into FSMs. Both FSMs are later merged and state-reduced by

Discrete Combinatorial and Standard Genetic Algorithms. It was presented Equa-

tion 3.7 from Section 3.5, aimed to select which combination of algorithms has

returned the best solution.

It also has been implemented a greedy post transitions-reduction based in a

don’t care approach and a VHDL translation from watermarked FSMs, as seen in

Section 3.6.

5.2 Future work

It has been deduced that hanging states are the true responsible of weak watermark-

ing and that reducing them to the minimum leads to a more secure signature. It also

has been experimentally proven that reducing watermarked Finite State Machines

does not imply to lose the original functionality neither its embedded signature.

It was also proven that Sánchez proposal is an efficient way to find possible com-

binations of prime classes to solve the post states-reduction [48]. It is considered

that their work deserves future research, being a new point of reference the fitness

function proposed in this thesis.

5.3 Contributions

In this thesis it has been shown that it is possible to obtain watermarked FSMs

with fewer states than an FSM without been watermarked. For example, difference

column D in Table 4.4, shows that the reduction method proposed achieved similar
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or better results, even tough the FSMs used have more information. Even more, in

almost every case, the final FSMs ends with fewer states than before watermarking.

To make this possible, a better fitness function has been proposed, showing better

performance to state-reduce FSMs.

A proposal to find the coefficients related to objective functions aimed to state

reduction as starting point by surface’s fitting has been also presented. Optimal

solutions are more likely to be found, instead of being scattered through all the

searching space.

Moreover, in addition to reporting differences tables, the number of hanging

states was also reported, a term defined in this thesis; and which to the best of the

knowledge, has never been done. This is important, due to starting from this work,

now it is possible to compare future with previous works concerning to FSM merging

and watermarking mainly aimed to watermark robustness.
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Appendix A

Wilcoxon signed-rank test

Frank Wilcoxon [53] defined the signed rank test as follows:

Let n be the sample size, or number of pairs, and 2n the number of related

pairs. To i = 1, ..., n, let x1,i and x2,i the measurements of each sample.

• H0 (null hypothesis): The mean difference between pairs is zero.

• H1 (alternative hypothesis): The mean difference between pairs is not zero.

1. To i = 1, ..., n, calculate |x2,i − x1,i| and sgn(x2,i − x1,i), where sgn is the sign

function.

2. Exclude the pairs with difference |x2,i − x1,i| = 0. And let nr the size of the

reduced sample.

3. Order the remaining nr pairs in ascending order |x2,i − x1,i|.

4. Order the pairs by rank, starting with 1. The pairs receive as rank the average

of all the ranks they span. Let Ri be the rank.
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5. Calculate the statistical test W , as the sum of the ranks with sign.

W =

∣∣∣∣∣
nr∑
i=1

[sgn(x2,i − x1,i) ·Ri]

∣∣∣∣∣
6. Bigger the nr value, the sampling distribution of W converges to a normal

distribution, thus, to nr ≥ 10, z value can be calculates as:

σT =

√
nr (nr + 1) (2nr + 1)

24

µT =
nr (nr + 1)

4

z =
T − µT − 0.5

σT

Besides, it is possible to calculate the statistical test T as the minor of the sing

rank sum, instead of statistical W .

T = min (T+, |T−|)

Where T+ is the sum of the ranks corresponding to positive differences, and

|T−| is the sum of the ranks corresponding to absolute negative differences. To

values nr very small, can be enumerated every possible combinations of sampling

distribution T . Suppose, for example, nr = 3 objects, whose absolute differences

(with sign) produce the ranks 1, 2 and 3 as seen in table A.1.

Figure A.1a shows the sampling distribution of this situation, and Figures A.1b

and A.1c show the corresponding distributions to nr = 4 and nr = 5 respectively.

It is easy to notice that greater the nr value, the sampling distribution T is
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Ranks
W

1 2 3
+ + + +6

- + + +4

+ - + +2

+ + - 0

- - + 0

- + - -2

+ - - -4

- - - -6

Table A.1: Possible differences from 3 ranks

(a) Distribution nr = 3

(b) Distribution nr = 4

(c) Distribution nr = 5

Figure A.1: Distributions of nr

converging to a normal distribution and satisfies the central limit theorem. Also, it
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is known that the normal distribution equation is:

f(z) =
1√
2π

e
−
(

z2

2

)
(A.1)

Finally, if the z value previously obtained is replaced in equation A.1, the p-

value can be calculated to know the probability to be true of the null hypothesis

H0. If p-value is greater than pcritical critical value, then H0 is accepted, otherwise

is rejected. Commonly in medicine, pcritical is 0.01, in computer science is accepted

0.05.
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List of equations

The 20 equations used to obtain the cloud points are listed below with their respec-

tive characteristic graphs, α, C and S were fixed to the same value for each different

graph. Due to that Genetic Algorithms (GA) are stochastic, each one of the equa-

tions was tested 5 times for each Finite State Machine (FSM). All the FSMs were

taken from LGSynth benchmarks.

In Figure B.1 the sum of all the equations listed below is presented. As seen

in Figure B.1, every equation has a similar behavior, except for F11 and F14 that

have values F (β, γ) up to 400. It was intended that the proposed equations span

their values throughout all the search space. However, when these equations are

bounded to values found during state-reduction for α, β, γ, C and S, they tend

to behave similarly. This similar behavior was the key to find the cloud points

presented in Figure 3.15 from Section 3.4.2. That is, even though their characteristic

graphs are not exactly like the mentioned cloud due to this graphs span the entire

surface by taking every possible F (β, γ) value, when they are evaluated with values

found during state-reduction, they create said cloud because now they are being

only evaluated in such values.

78
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F1(β, γ) = C · S · α
β
− β + C · γ F2(β, γ) =

α
β
− β
C +

γ
S + S

F3(β, γ) =
α
β
− β
S · C +

γ
S − C

F4(β, γ) = C · S · α
β
+ C − β + C · γ

F5(β, γ) = α+ β · C + γ · S F6(β, γ) =
α
β
+ S
γ + C

F7(β, γ) =
γ
β
· α+ C

S + γ F8(β, γ) = α · β · γS − C + γ
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F9(β, γ) = C · β + S · γ + α
C·S F10(β, γ) = α+ β + γ + C · S

F11(β, γ) = α · β · γ + C
S F12(β, γ) =

α
β
+
β
S −

γ
C

F13(β, γ) = α · S + β · γC F14(β, γ) = α · β · γ + C · S + γ

F15(β, γ) = α+
β
C ·

γ
S + β F16(β, γ) =

C
β

+ α− γ · S
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F17(β, γ) =
α
S − β ·

C
γ + S F18(β, γ) =

1
β
(α · C + γ · S)

F19(β, γ) =
α·C·S
β·γ + γ F20(β, γ) = β · C + γ · S + α− γ

Figure B.1: Sum of all equations.
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VHDL encoding

Even though, translating FSMs to VHDL is not part of the reported method, it

has been implemented to return a finished product and is explained below. In some

cases, the format to describe FSMs is .dot that is formed as follows:

digraph digraph_name{

st0 -> st0 [label = "10\0"]

st0 -> st4 [label = "01\0"]

st0 -> st5 [label = "00\0"]

st0 -> st6 [label = "11\0"]

st1 -> st1 [label = "01\0"]

.

.

.

st6 -> st6 [label = "11\1"]

}

Where the transitions are described with format actual state -> next state

[label = ”input\output”]. Nevertheless, the most used format is .kiss2 which is

formed as follows:

.model model_name

82
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.i 2

.o 1

.s 6

.p 17

.r st0

.start_kiss

10 st0 st0 0

01 st0 st4 0

00 st0 st5 0

11 st0 st6 0

01 st1 st1 0

.

.

.

11 st6 st6 1

.end_kiss

Where .i is the input length, .o is the output length, .s is the number of states,

.p is the number of transitions, .r is the initial state .star kiss is the start of the

listed transitions and .end kiss is the end of the listed transitions.

In addition, the transitions are described with format ”x sti stj y” where x

is the transition’s input, sti is the actual state, stj is the next state and y is the

transition’s output.

Thanks to .kiss2 headers; VHDL inputs, outputs and signals can be directly

declared as the code shown below representing the FSM from Figure 3.17 in Section

3.4.2.

ENTITY entity_name IS PORT{
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INPUT1 : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

OUTPUT1: OUT STD_LOGIC };

END entity_name;

ARCHITECTURE Behavior OF entity_name

IS TYPE State_type

state(st0, st1, st2, st3, st4, st5, st6);

BEGIN

PROCESS(INPUT) BEGIN

case state is

when st0 => if (INPUT1 = ’10’) then *

{OUTPUT1 = ’0’; state <= st0} *

elseif (INPUT1 = ’01’) then

{OUTPUT1 = ’0’; state <= st4}

elseif (INPUT1 = ’00’) then

{OUTPUT1 = ’0’; state <= st5}

elseif (INPUT1 = ’11’) then

{OUTPUT1 = ’0’; state <= st6}

when st1 => if (INPUT1 = ’01’) then

{OUTPUT1 = ’0’; state <= st1}

.

.

.

when st6 => if (INPUT1 = ’11’) then

{OUTPUT1 = ’1’; state <= st6}

END PROCESS;

END Behavior;
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After declaring ENTITY; the PROCESSES from the ARCHITECTURE

are filled with cases which, at the same time, has whens to represent transitions. For

example, the lines marked with a (*) symbol, indicate that when the actual state is

st0 with an input ’01’, the output will be ’0’ and the next state will return to st0

as shown in Figure C.1.

Figure C.1: Next State example

Thus, it is only necessary to iterate through all states from the FSM to obtain

its transitions and translate them into VHDL.
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[20] Sezer Gören and F Joel Ferguson. On state reduction of incompletely specified

finite state machines. Computers & Electrical Engineering, 33(1):58–69, 2007.

[21] Antonio Grasselli and Fabrizio Luccio. A method for minimizing the number of

internal states in incompletely specified sequential networks. Electronic Com-

puters, IEEE Transactions on, (3):350–359, 1965.

[22] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.

Springer, 2006.

[23] David Harris and Sarah Harris. Digital Design and Computer Architecture,

Second Edition. Morgan Kaufmann, 2012.



BIBLIOGRAPHY 89

[24] Rohit Jnagal. Powder: A low power fsm partitioner. n.d., 2008.

http://www.ee.iitb.ac.in/˜microel/download/powder.html. Accessed: 2013-11-

14.

[25] David S Johnson and M Garey. Computers and intractability: A guide to the

theory of np-completeness. Freeman&Co, San Francisco, 1979.

[26] AB. Kahng, J. Lach, W.H. Mangione-Smith, S. Mantik, IL. Markov, M. Potkon-

jak, P. Tucker, Huijuan Wang, and G. Wolfe. Constraint-based watermarking

techniques for design ip protection. Computer-Aided Design of Integrated Cir-

cuits and Systems, IEEE Transactions on, 20(10):1236–1252, Oct 2001.

[27] T Kalker. Considerations on watermarking security. IEEE International Work-

shop on Multimedia Signal Processing, pages 201–206, 2001.

[28] S. Kanjilal, S.T. Chakradhar, and V.D. Agrawal. Test function embedding

algorithms with application to interconnected finite state machines. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

14(9):1115–1127, Sep 1995.

[29] Stefan Katzenbeisser and Fabien A. Petitcolas, editors. Information Hiding

Techniques for Steganography and Digital Watermarking. Artech House, Inc.,

Norwood, MA, USA, 1st edition, 2000.

[30] Ján Kubek. Localisation of the finite state control in the ip cores. In Proceedings

of the 12th Conference STUDENT EEICT 2006 Volume, pages 456–461. Brno

University of Technology, 2006.

[31] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Fpga fingerprinting tech-

niques for protecting intellectual property. In Custom Integrated Circuits Con-

ference, 1998. Proceedings of the IEEE 1998, pages 299–302, May 1998.

[32] A. Laughton and D.F. Warne. Electrical Engineer’s Reference Book. Elsevier

Science, 2002.



BIBLIOGRAPHY 90

[33] D. Lee and Mihalis Yannakakis. Principles and methods of testing finite state

machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, Aug 1996.

[34] Matthew Lewandowski, Richard Meana, Matthew Morrison, and Srinivas

Katkoori. A novel method for watermarking sequential circuits. In Hardware-

Oriented Security and Trust (HOST), 2012 IEEE International Symposium on,

pages 21–24. IEEE, 2012.

[35] Wei Liang, Xingming Sun, Zhiqiang Ruan, and Jing Long. The design and

fpga implementation of fsm-based intellectual property watermark algorithm at

behavioral level. Information Technology Journal, 10(4), 2011.

[36] Bill Lin, Herve J Touati, and A Richard Newton. Don’t care minimization of

multi-level sequential logic networks. In Computer-Aided Design, 1990. ICCAD-

90. Digest of Technical Papers., 1990 IEEE International Conference on, pages

414–417. IEEE, 1990.

[37] Chien-Nan Liu and Jing-Yang Jou. A fsm extractor for hdl description at rtl

level. In Asia Pacific Conference on Hardware Description Languages, pages

33–38. Citeseer, 1998.

[38] Chien-Nan Jimmy Liu and Jing-Yang Jou. An automatic controller extractor

for hdl descriptions at the rtl. IEEE Design & Test of Computers, 17(3):72–77,

2000.

[39] G. Athisha M. Meenakumari. A Survey on Protection of FPGA Based IP De-

signs. Institute for Research and Development India, 2013.

[40] Alicia Morales-Reyes. Fault Tolerant and Dynamic Evolutionary Optimization

Engines. PhD thesis, College of Science and Engineering, The University of

Edinburgh, 2010.

[41] D. Mukherjee, M. Pedram, and M. Breuer. Merging multiple fsm controllers

for dft/bist hardware. In Computer-Aided Design, 1993. ICCAD-93. Digest of



BIBLIOGRAPHY 91

Technical Papers., 1993 IEEE/ACM International Conference on, pages 720–

725, Nov 1993.

[42] Marvin C Paull and Stephen H Unger. Minimizing the number of states in

incompletely specified sequential switching functions. Electronic Computers,

IRE Transactions on, (3):356–367, 1959.

[43] Jorge M Peña and Arlindo L Oliveira. A new algorithm for exact reduction of

incompletely specified finite state machines. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 18(11):1619–1632, 1999.

[44] Andrey Popov and Krasimira Filipova. Genetic algorithms-synthesis of finite

state machines. In Electronics Technology: Meeting the Challenges of Electron-

ics Technology Progress, 2004. 27th International Spring Seminar on, volume 3,

pages 388–392. IEEE, 2004.

[45] Bart Preneel, Hans Dobbertin, and Antoon Bosselaers. The cryptographic hash

function ripemd-160.

[46] Codrin Pruteanu and C Haba. Genfsm: A finite state machine generation tool.

Proc. 9th Int. Conf. Dev. Applicat. Syst, pages 165–168, 2008.

[47] June-Kyung Rho, Gary D Hachtel, Fabio Somenzi, and Reily M Jacoby. Exact

and heuristic algorithms for the minimization of incompletely specified state

machines. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 13(2):167–177, 1994.

[48] JM Sánchez, AO Garnica, and J Lanchares. A genetic algorithm for reducing the

number of states in incompletely specified finite state machines. Microelectronics

journal, 26(5):463–470, 1995.

[49] Shlomo S Sawilowsky. Misconceptions leading to choosing the t test over the

wilcoxon mann-whitney test for shift in location parameter. 2005.



BIBLIOGRAPHY 92

[50] VV Solov’ev. Minimization of mealy finite state machines via internal state

merging. Journal of Communications Technology and Electronics, 56(2):207–

213, 2011.

[51] VV Solov’ev. Complex minimization method for finite state machines imple-

mented on programmable logic devices. Journal of Computer and Systems Sci-

ences International, 53(2):186–194, 2014.

[52] I Torunoglu and E. Charbon. Watermarking-based copyright protection of se-

quential functions. Solid-State Circuits, IEEE Journal of, 35(3):434–440, March

2000.

[53] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bul-

letin, pages 80–83, 1945.

[54] Wenchao Xu and Yuesheng Zhu. A digital copyright protection scheme for soft-

ip core based on fsms. In Consumer Electronics, Communications and Networks

(CECNet), 2011 International Conference on, pages 3823–3826. IEEE, 2011.

[55] Xia Yinshui, AEA Almaini, and Wu Xunwei. Power optimization of finite state

machine based on genetic algorithm. J. Electron, 20(3), 2003.

[56] Daniel Ziener, Stefan Aßmus, and Jürgen Teich. Identifying fpga ip-cores based

on lookup table content analysis. In Field Programmable Logic and Applications,

2006. FPL’06. International Conference on, pages 1–6. IEEE, 2006.

[57] Daniel Ziener and Jürgen Teich. New Directions for IP Core Watermarking and

Identification. In Peter M. Athanas, Jürgen Becker, Jürgen Teich, and Ingrid

Verbauwhede, editors, Dynamically Reconfigurable Architectures, number 10281

in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik, Germany.


	Acronyms
	Acknowledgements
	Abstract
	Resumen
	Introduction
	Motivation
	Goals
	Methodology
	Contribution to knowledge
	Thesis organization

	Literature review
	Basic concepts
	Finite state machine basis
	Watermarking concepts
	Evolutionary algorithms

	State-of-the-art
	IP core protection
	FSM extraction
	FSM reduction


	FSM watermarking procedure
	Proposed FSM extraction
	Proposed watermark translation
	FSM merging
	Combinatorial merging
	GA based merging

	Watermarked FSM reduction
	Combinatorial reduction
	GA based reduction

	Selecting the best watermarked design
	Transitions regrouping
	Validation
	Original functionality
	Signature


	Experimental results analysis
	Experimental setup
	Random seeds
	GA specifics for merging
	GA specifics for reduction

	Reported results
	Statistical analysis
	Wilcoxon signed-rank test


	Conclusions
	Remarks
	Future work
	Contributions

	Appendices
	Wilcoxon signed-rank test
	List of equations
	VHDL encoding

