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The generalized evolution of linear bias: a tool to test gravity
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We derive an exact analytical solution for the redshift evolution of linear and scale-independent
bias, by solving a second order differential equation based on linear perturbation theory. This bias
evolution model is applicable to all different types of dark energy and modified gravity models.
We propose that the combination of the current bias evolution model with data on the bias of
extragalactic mass tracers could provide an efficient way to discriminate between “geometrical”
dark energy models and dark energy models that adhere to general relativity.
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1. INTRODUCTION

It is well known that the large-scale clustering pattern
of different extragalactic mass tracers (galaxies, clusters,
etc) trace the underlying dark matter distribution in a bi-
ased manner [1] [2]. Such a biasing is assumed to be sta-
tistical in nature; with galaxies and clusters being iden-
tified as high peaks of an underlying, initially Gaussian,
random density field. The linear and scale-independent
bias factor, b, is thus defined as the ratio of the mass
tracer overdensity to that of the underlying mass over-
density, or equivalently as the ratio of the square root of
the mass tracer 2-point correlation function to that of the
underlying mass correlation function. Furthermore, the
redshift evolution of bias, b(z), is very important in order
to relate observations with models of structure formation
and has been shown to be a monotonically increasing
function of redshift.
There are two basic families of analytic bias evolution

models. The first, called the galaxy merging bias model,
utilizes the halo mass function and is based on the Press-
Schechter [3] formalism, the peak-background split [2]
and the spherical collapse model [4]. Many studies have
compared the prediction of the merging bias model with
numerical simulations and beyond an overall good agree-
ment, differences have been found in the details of the
halo bias. These differences have lead to modifications
of the original model to include the effects of ellipsoidal
collapse [5] and to either provide new fitting bias model
parameters [6], or new forms of the bias model fitting
function [7] or even a non-Markovian extension of the
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excursion set theory [8].
The second family of bias evolution models assumes a

continuous mass-tracer fluctuation field, proportional to
that of the underlying mass, and the tracers act as “test
particles”. In this context, the hydrodynamic equations
of motion and linear perturbation theory are used. This
family of models can be divided into two sub-families:
(a) The so-called galaxy conserving bias model uses
the continuity equation and the assumption that trac-
ers and underline mass share the same velocity field
[9],[10],[11],[12]. Then the bias evolution is given as the
solution of a 1st order differential equation, and Tegmark
& Peebles [11] derived: b(z) = 1+ (b0 − 1)/D(z), with b0
is the bias factor at the present time and D(z) the grow-
ing mode of density perturbations. However, this bias
model suffers from two fundamental problems: the unbi-
ased problem ie., the fact that an unbiased set of tracers
at the current epoch remains always unbiased in the past,
and the low redshift problem ie., the fact that this model
represents correctly the bias evolution only at relatively
low redshifts z∼< 0.5 [13]. Note that [14] has extended
this model to also include an evolving mass tracer popu-
lation in a ΛCDM cosmology.
(b) A model based on the basic equation for the evolution
of linear density perturbations, and on the assumption
of linear and scale-independent bias, which are used to
derive a second order differential equation for the bias,
the approximate solution of which provides the evolution
of bias (see [15] and [16]). The provided solution applies
to cosmological models, within the framework of general
relativity, with a constant in time dark energy equation
of state parameter (ie., quintessence or phantom).
In this article, we extend the original Basilakos & Plio-

nis [15] bias evolution model to provide an exact solution
valid for all dark energy and modified gravity cosmolo-
gies. This implies that the current bias evolution model
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can be used to put constraints on dark energy models
as well as to investigate possible departures from general
relativity.

2. THE EVOLUTION OF THE LINEAR

GROWTH FACTOR

In this section, we discuss the basic equation which
governs the behavior of the matter perturbations on sub-
horizon scales and within the framework of any dark en-
ergy (hereafter DE) model, including those of modified
gravity (“geometrical dark energy”). For these cases, a
full analytical description can be introduced by consider-
ing an extended Poisson equation together with the Euler
and continuity equations. Consequently, the evolution
equation of the matter fluctuations, for models where
the DE fluid has a vanishing anisotropic stress and the
matter fluid is not coupled to other matter species (see
[17],[18],[19],[20],[21],[22],[23]), is given by:

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0 (2.1)

where ρm is the matter density and Geff(t) = GNY (t),
with GN denoting Newton’s gravitational constant.
For those cosmological models which adhere to general

relativity, [Y (t) = 1, Geff = GN ], the above equation
reduces to the usual time evolution equation for the mass
density contrast [24], while in the case of modified gravity
models (see [17],[21], [22],[23]), we have Geff 6= GN (or
Y (t) 6= 1). In this context, δm(t) ∝ D(t), where D(t) is
the linear growing mode (usually scaled to unity at the
present time). Changing variables from t to a, equation
(2.1) becomes:

d2δm
da2

+A(a)
dδm
da

−B(a)δm = 0 (2.2)

where

A(a) =
dlnE

da
+

3

a
and B(a) =

3Ωm

2a5E2(a)
Y (a) (2.3)

with Ωm being the density parameter at the present time
and E(a) = H(a)/H0 is the normalized Hubble function.
Useful expressions of the growth factor have been given

by [24] for the ΛCDM cosmology. Several works have
also derived the growth factor for w(z) =const DE mod-
els (see [25],[26],[27]), and for the braneworld cosmology
[17]. Also Linder & Cahn [21] derived similar expres-
sions for “geometrical” dark energy models in which the
Ricci scalar varies with time, as well as for models with
a time-varying equation of state, while for the scalar ten-
sor and f(R) models the growth factors are provided by
Gannouji et al. [23] and Tsujikawa et al. [22].

3. THE GENERAL EVOLUTION OF BIAS

In Basilakos & Plionis [15], we assumed that for the
evolution of the linear bias, the effects of non-linear grav-
ity and hydrodynamics (merging, feedback mechanisms

etc) can be ignored (see [10],[11]). Then, using linear
perturbation theory in the context of general relativity
[Y (t) = 1, Geff = GN ] we obtained a second order dif-
ferential equation which describes the evolution of the
linear bias factor, b, between the background matter and
the mass-tracer fluctuation field:

ÿδm + 2( ˙δm +Hδm)ẏ + 4πGeffρmδmy = 0 , (3.1)

where y = b − 1. Below, we will prove that the above
expression is valid for any cosmological model1 including
those of modified gravity, with Geff = GNY (t). Since
we also make the same assumption, as in our original
formulation, that the tracers and the underlying mass
distribution share the same velocity field and thus the
same gravity field, the above equation is valid also for
cosmological models with a modified theory of gravity.
Using the latter we have

δ̇m +∇u ≃ 0 and δ̇tr +∇u ≃ 0 , (3.2)

from which we obtain

δ̇m − δ̇tr = 0 . (3.3)

Now since we assume linear biasing, we have δtr = bδm,
and using y = b−1, we get that d(yδm)/dt = 0. Differen-

tiating the latter twice, we then get: ÿδm+2ẏδ̇m+yδ̈m =
0. Solving for yδ̈m, using the fact that yδ̇m = −ẏδm and
eq.(2.1) we finally obtain eq.(3.1).
Transforming equation (3.1) from t to a, we simply

derive the evolution equation of the function y(a) [where
y(a) = b(a)− 1] which has some similarity with the form
of eq.(2.2) as expected. Indeed this is

d2y

da2
+

[

A(a) +
2f(a)

a

]

dy

da
+ B(a)y = 0 , (3.4)

where f(a) is the growth rate of clustering, a
parametrization of the linear matter perturbations, given
by:

f(a) =
dlnδm
dlna

=
dlnD

dlna
= Ωγ

m(a) , (3.5)

where Ωm(a) = Ωma
−3/E2(a) and γ is the growth index,

originally introduced by Wang & Steinhardt [26]. Inte-
grating eq.(3.5) we obtain the growth factor for any type
of dark energy:

D(a) = ae
∫

a

0
(dx/x)[Ωγ

m
(x)−1] . (3.6)

In Basilakos & Plionis [15], we have provided an ap-
proximate solution of eq.(3.1), using f(z) ∼ 1 (which is

1 The current theoretical approach does not treat the possibility of
having interactions in the dark sector. Also discussions beyond
the linear biasing regime can be found in [28] (and references
therein).
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valid at relatively large redshifts), but only in the frame-
work of general relativity, ie., Y (t) = 1, which contains a
quintessence (or phantom) dark energy. Here our aim
is to provide a full analytical solution for all possible
dark energy cosmologies that have appeared in the lit-
erature, such as a cosmological constant Λ (vacuum),
time-varying w(t) cosmologies, quintessence, k−essence,
quartessence, vector fields, phantom, modifications of
gravity, Chaplygin gas etc.
Inserting now y(a) = g(a)/D(a) into eq.(3.4) and using

simultaneously equation 2.2 and the second equality of
equation 3.5, we obtain:

d2g

da2
+A(a)

dg

da
= 0 . (3.7)

That is, the general solution of the latter equation is

g(a) = C1 + C2

∫

da

a3E(a)
(3.8)

where C1 and C2 are the integration constants. Utilizing
now a = (1 + z)−1, b = y + 1 = (g/D) + 1, b0 = b(0)
and eq.(3.8), we finally obtain the functional form which
provides the evolution of linear bias for all possible types
of DE models, including those of modified gravity, as:

b(z) = 1 +
b0 − 1

D(z)
+ C2

J(z)

D(z)
(3.9)

where

J(z) =

∫ z

0

(1 + x)dx

E(x)
. (3.10)

Since different halo masses result in different values of
b0, one should expect that the constants of integration
C1 = b0−1 and C2 should be functions of the mass of dark
matter halos (see [16]), assuming that the extragalactic
mass tracers are hosted by a dark matter halo of a given
mass. Note that an extension of our model for the case
of an evolving mass tracer population (ie., including the
effects of halo merging) is provided in appendix A.
Finally, comparing our solution of eq.(3.10) with that

of the usual galaxy-conserving bias evolution model,
b(z) = 1 + (b0 − 1)/D(z), it becomes evident that the
latter misses one of the two components of the full solu-
tion. Furthermore, our full solution does not suffer from
the unbiased and the low redshift problems, but more im-
portantly, the dependence of our bias evolution model on
the different cosmologies enters through the different be-
havior of D(a), which is affected by γ (see equation 3.6),
and of E(a) = H(a)/H0.
It is interesting to mention that measuring the growth

index could provide an efficient way to discriminate be-
tween modified gravity models and DE models which ad-
here to general relativity. Indeed it was theoretically
shown that for DE models inside general relativity the
growth index γ is well fitted by γGR ≈ 6/11 (see [21],[30]).
Notice, that in the case of the braneworld model of

FIG. 1: The bias z-evolution for different flat cosmological
models (upper panel) and their fractional difference with re-
spect to the ΛCDM model (lower panel). The models shown
are: CPL (solid line) with w(a) = w0 + w1(1 − a) and
γ = 0.55, concordance ΛCDM (dashed line) and DGP (dot-
dashed) with w(a) = −[1+Ωm(a)]−1 and γ = 0.68. Note that
we use Ωm = 0.27, (w0, w1) = (−0.93,−0.38) [29], b0 = 1.1
and C2 = 0.45. Finally, we also plot (dotted line) the bias
evolution for C2 = 0 which corresponds to that of [11].

Dvali, Gabadadze & Porrati [31] (hereafter DGP) we
have γ ≈ 11/16 (see also [21]). Indeed, it has been pro-
posed (see [32]) that an efficient avenue to constrain the γ
parameter is by determining observationally the redshift-
dependent linear growth of perturbations. Alternatively
other methods have been proposed in the literature, such
as redshift space distortions in the galaxy power spec-
trum and the growth rate of massive galaxy clusters (see
for example [33] and references therein). It is interesting
to mention here that the above methods also assume a
linear and scale-independent bias.
An alternative approach is to use the current general-

ized bias evolution, cosmology and γ dependent, relation
and high quality observational bias data to test gravity.
Of course, the observational bias data are derived for a
particular cosmological model, but it is an easy task to
scale them to each tested model in a consistent manner.
Note, that such data are already available in the litera-
ture for the case of optical QSOs [34]. If the derived value
of γ shows scale or time dependence or it is inconsistent
with γGR ≈ 6/11, then this will be a hint that the nature
of dark energy reflects in the physics of gravity. Such an
analysis is in progress and will be published elsewhere.
In order to visualize the redshift and γ dependence of

our bias model, we compare in Fig. 1, a few flat cosmo-
logical models in which we impose Ωm = 0.27, b0 = 1.1
and C2 = 0.45. In particular we consider the following
cases:
(a) the CPL parametrization [35] with γ = 0.55 (solid
line),
(b) the concordance ΛCDM (γ = 0.55, dashed line), and
(c) the DGP with γ = 0.68 (dot-dashed line).
The dotted line shows the bias evolution of Tegmark

& Peebles [11] model, which is also described by our bias
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model in the limit of C2 = 0. In the lower panel of Fig.1
we show the fractional difference of the model bias with
respect to that of the ΛCDM.

4. CONCLUSIONS

In this work we provide a general bias evolution model,
based on linear perturbation theory, which is valid for all
possible non-interacting dark energy models, including
those of modified gravity. Thus the current generaliza-
tion of the bias evolution model can be viewed as a neces-
sary step and an ideal tool to test the validity of general
relativity on cosmological scales.
It is however important to spell out clearly which are

the basic assumptions of our model, which are common
also to many bias models in the literature: (a) the mass
tracers and the underline the mass share the same veloc-
ity/gravity field, (b) the biasing is linear on the scales of
interest (which does not preclude being scale dependent
on small non-linear scales), and (c) that each dark matter
halo is populated by one extragalactic mass tracer, which
is an assumption that enters, at the present development
of our model, only in the comparison of our model with
observational bias data and not in the derivation of its
functional form.

Acknowledgments. We thank Joe Silk for useful
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Appendix A: BIAS EVOLUTION FOR AN

EVOLVING MASS-TRACER POPULATION

Here we obtain the general linear bias evolution model
assuming that the mass-tracer population evolves with
time according to a (1 + z)ν law. We now drop the as-
sumption used in section 3, that the mass-tracer num-
ber density is conserved in time, by allowing a contribu-
tion from the corresponding interactions among the mass
tracers. We obtain again the corresponding equation
(3.1), starting from the continuity equation and intro-
ducing an additional time-dependent term, Ψ(t), which
we associate with the effects of interactions and merging
of the mass tracers. We also make the same assumption,
as in our original formulation, that the tracers and the
underlying mass distribution share the same velocity field
(or gravity field). Then:

δ̇m +∇u ≃ 0 and δ̇tr +∇u+Ψ(t) ≃ 0 , (A.1)

from which we obtain:

δ̇m − δ̇tr = Ψ . (A.2)

Although we do not have a fundamental theory to model
the time-dependent Ψ(t) function, it appears to depend

on the tracer number density and its logarithmic deriva-
tive as well as on the tracer overdensity: Ψ(t) ∝ Ψ(n̄, (1+
δtr)d ln n̄/dt) (see eq.10 of [14] and appendix of Basilakos
et al. [16]).
Now, in the context of linear biasing, we have δtr = bδm

and utilizing b = y + 1, we find that d(yδm)/dt = −Ψ.

Differentiating twice the latter we then get: ÿδm+2ẏδ̇m+
yδ̈m = −Ψ̇. Solving for yδ̈m, using the fact that yδ̇m =
−ẏδm − Ψ and equation (2.1) we arrive at the following
expression:

ÿδm+2(δ̇m+Hδm)ẏ+4πGeffρmδmy = −2HΨ−Ψ̇ (A.3)

which is the corresponding equation (3.1) for the case of
interactions among the tracers.
Transforming again equation (2.1) from t to a, we get

d2y

da2
+

[

A(a) +
2f(a)

a

]

dy

da
+B(a)y = F (a) (A.4)

where

F (a) = −
2Ψ(a) + a(dΨ/da)

a2D(a)H(a)
. (A.5)

Now, following the same notations (y = g/D) as in sec-
tion 3 the above differential equation becomes:

d2g

da2
+A(a)

dg

da
= F (a) . (A.6)

Integrating eq.(A.6) it is straightforward to estimate the
general solution of the bias factor. This is

g(a) = C1+C2

∫

da

a3E(a)
+

∫

da

a3E(a)

∫ α

F (ã)ã3E(ã)dã .

(A.7)
Using the same conditions with those provided in section
3, the bias evolution in the redshift space takes the form

b(z) = 1 +
b0 − 1

D(z)
+ C2

J(z)

D(z)
+

yp(z)

D(z)
(A.8)

where

yp(z) =

∫ z

0

(1 + x)

E(x)
dx

∫ x

0

F (u)E(u)

(1 + u)5
du . (A.9)

Obviously, if the interaction among the tracers is negli-
gible (Ψ ≃ 0) then eq.(A.8) boils down to eq.(3.10) as it
should.
Now, knowledge of the exact functional form of the

interaction term Ψ(z) would provide the precise redshift
evolution of the bias. As we have analytically proved
in the appendix of Basilakos et al. [16], a reasonable
approach regarding the evolutionary Ψ(z) term is that:
Ψ(z) = AH0(1+z)ν , where ν ∼ 3. Note that the Hubble
constant has been maintained for mathematical conve-
nience. Inserting the latter equation, a = (1 + z)−1 and
dΨ/da = −(1+z)2dΨ/dz into the second term of eq.(A.4)
we derive that

F (z) = A(ν − 2)
(1 + z)ν+2

D(z)E(z)
, (A.10)
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where A is a positive parameter (to be determined from
observational data see Basilakos et al. in preparation).
Obviously, for ν > 2 the derived bias evolution becomes
stronger than in the case of no interactions, especially at
high redshifts, which means that due to the merging pro-
cesses the halos (of some particular mass) correspond to
higher peaks of the underlying density field with respect
to equal mass halos in the non-interacting case. On the

other hand, the ν < 2 case corresponds to the destruction
of halos of a particular mass, which results into a lower-
rate of bias evolution with respect to the non-interacting
case. Now, for the limiting case with ν = 2 we obtain
yp = 0, implying no contribution of the interacting term
to the bias evolution solution, as in the case with Ψ = 0,
which can be interpreted as the case where the destruc-
tion and creation processes are counter-balanced.

[1] N. Kaiser, Astrophys. J., 284, L9, (1984)
[2] J. M. Bardeen, J. R. Bond, N. Kaiser, and, A. S. Szalay,

Astrophys. J., 304, 15 (1986)
[3] W. H. Press and P. Schechter, Astrophys. J. 187, 425

(1974).
[4] S. Cole and N. Kaiser, Mon. Not. Roy. Astron. Soc, 237,

1127, (1989); H. J. Mo and S. D. M. White, Mon. Not.
Roy. Astron. Soc, 282, 347, (1996); S. Matarrese, P.
Coles, F. Lucchin and L. Moscardini, Mon. Not. Roy.
Astron. Soc, 286, 115, (1997); L. Moscardini, P. Coles,
F. Lucchin and S. Matarrese, Mon. Not. Roy. Astron.
Soc, 299, 95, (1998); R. K. Sheth and G. Tormen, Mon.
Not. Roy. Astron. Soc, 308, 119, (1999); P. Valageas,
Astron. Astrophys. 508, 93 (2009); P. Valageas, Astron.
Astrophys. 525, 98 (2011);

[5] R. K. Sheth and G. Tormen, Mon. Not. Roy. Astron. Soc,
323, 1, (2001)

[6] Y. P. Jing, Astrophys. J., 503, L9, (1998); J. Tinker, D.
H. Weinberg, Z. Zheng and I. Zehavi, Astrophys. J., 631,
41, (2005)

[7] U. Seljak and M. Warren, M., Mon. Not. Roy. Astron.
Soc, 355, 129, (2004); J. Tinker, et al., Astrophys. J.,
878, 72, (2010); A. Pillepich, C. Porciani and O. Han,
Mon. Not. Roy. Astron. Soc, 402, 191, (2010)

[8] Chung-Pei Ma, M. Maggiore, A. Riotto and J. Zhang,
Mon. Not. Roy. Astron. Soc, 411, 2644, (2011)

[9] M. Nusser and M. Davis, Astrophys. J., 421, L1, (1994)
[10] J. N. Fry, Astrophys. J., 461, 65, (1996); P. Catelan, F.

Lucchin, S. Matarrese and C. Porciani, C., Mon. Not.
Roy. Astron. Soc, 297, 692, (1998)

[11] M. Tegmark and P. J. E. Peebles, Astrophys. J., 500,
L79, (1998)

[12] L. Hui and K. P. Parfrey, Phys.Rev.D, 77, 043527,
(2008); B. M. Schaefer, M. Douspis and N. Aghanim,
Mon. Not. Roy. Astron. Soc, 397, 925, (2009)

[13] J. S. Bagla, Mon. Not. Roy. Astron. Soc, 299, 417, (1998)
[14] P. Simon, 2005, Astron. Astrophys. 430, 827 (2005)
[15] S. Basilakos and M. Plionis, Astrophys. J., 550, 522,

(2001); S. Basilakos and M. Plionis, Astrophys. J., 593,
L61, (2003)

[16] S. Basilakos, M. Plionis and C. Ragone-Figueroa, Astro-
phys. J., 678, 627, (2008)

[17] A. Lue, R. Scossimarro, and G. D. Starkman, Phys. Rev.
D., 69, 124015, (2004)

[18] E. V. Linder, Phys. Rev. D., 72, 043529, (2005)
[19] F. H. Stabenau and B. Jain, Phys. Rev. D, 74, 084007

(2006)
[20] P. J. Uzan, Gen. Rel. Grav., 39, 307, (2007)
[21] E. V. Linder, Phys. Rev. Lett., 70, 023511, (2004); E. V.

Linder, and R. N. Cahn, Astrop. Phys., 28, 481 (2007)
[22] S. Tsujikawa, K. Uddin and R. Tavakol, Phys. Rev. D.,

77, 043007, (2008)
[23] R. Gannouji, B. Moraes and D. Polarski, JCAP, 62, 034

(2009).
[24] P. J. E. Peebles, “Principles of Physical Cosmology”,

Princeton University Press, Princeton New Jersey (1993).
[25] V. Silveira and I. Waga, Phys. Rev D., 50, 4890, (1994)
[26] L. Wang, and J.P. Steinhardt, Astrophys. J., 508, 483

(1998).
[27] S. Basilakos, Astrophys. J., 590, 636, (2003)
[28] P. McDonald and A. Roy, JCAP, 08, 20, (2009); D. S.

Reed, D. S., et al., Mon. Not. Roy. Astron. Soc, 394, 624,
(2009)

[29] E. Komatsu, et al., Astrophys. J. Suplem., 192, 18 (2011)
[30] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D., 77,

023504, (2008)
[31] G. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B.,

485, 208, (2000)
[32] A. Vikhlinin et al. 2009, arXiv:0903.5320
[33] L. Guzzo, et al., Nature, 451, 541, (2008); E. Linder, As-

tropart. Phys., 29, 336, (2008); D. Rapetti, S. W. Allen,
A. Mantz, and H. Ebeling, Mon. Not. Roy. Astron. Soc.,
406, 179, (2010)

[34] S. M. Croom, et al, Mon. Not. Roy. Astron. Soc, 356,
415, (2005); Y. Shen, et al., Astrophys. J., 697, 1656
(2009); N. P. Ross, et al., Astrophys. J., 697, 1634 (2009)

[35] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10,
213 (2001); E. V. Linder, Phys. Rev. Lett. 90, 091301,
(2003)

http://arxiv.org/abs/0903.5320

