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The continuous monitoring of physical, chemical and biological parameters in shrimp culture is an impor-
tant activity for detecting potential crisis that can be harmful for the organisms. Water quality can be
assessed through toxicological tests evaluated directly from water quality parameters involved in the
ecosystem; these tests provide an indicator about the water quality. The aim of this study is to develop
a fuzzy inference system based on a reasoning process, which involves aquaculture criteria established by
official organizations and researchers for assessing water quality by analyzing the main factors that affect
a shrimp ecosystem. We propose to organize the water quality parameters in groups according to their
importance; these groups are defined as daily, weekly and by request monitoring. Additionally, we intro-
duce an analytic hierarchy process to define priorities for more critical water quality parameters and
groups. The proposed system analyzes the most important parameters in shrimp culture, detects poten-
tial negative situations and provides a new water quality index (WQI), which describes the general status
of the water quality as excellent, good, regular and poor. The Canadian water quality and other well-known
hydrological indices are used to compare the water quality parameters of the shrimp water farm. Results
show that WQI index has a better performance than other indices giving a more accurate assessment
because the proposed fuzzy inference system integrates all environmental behaviors giving as result a
complete score. This fuzzy inference system emerges as an appropriated tool for assessing site perfor-
mance, providing assistance to improve production through contingency actions in polluted ponds.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Shrimp farming is a common activity in the coastal zone of
many tropical countries around the world. The understanding of
the ecological processes occurring in water bodies and in shrimp
culture ponds can help to understand and solve some of the disease
issues faced by shrimp farmers (Ferreira, Bonetti, & Seiffert, 2011).
Water management in shrimp culture is crucial for a good growing
of organisms, and it is a precedent for a good quality and quantity
on the final product. On the contrary, adverse water quality condi-
tions increase shrimp stress generating low reproduction and
growing mortality rates, and favoring the emergence of diseases
(Casillas, Nolasco, García, Carrillo, & Páez, 2007). The main objec-
tive in water management is to control environmental parameters
that could have a negative effect over the ecosystem, avoiding po-
tential crisis in shrimp ponds. Currently, knowledge based systems
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are important tools for treatment of water quality crisis and for
disease/health management of aquaculture systems. These sys-
tems also provide different solutions to ecological problems in
shrimp ponds (Duana, Fub, & Lib, 2003; Nan, Ruimei, Jian, Zetian,
& Xiaoshuan, 2009; Xiaoshuan, Zetian, Wengui, Dong, & Jian, 2009).

Several methodologies for the assessment and monitoring of
water pollutants have been implemented by organizations such
as the US National Sanitation Foundation (NSF, 2010), the Canadian
Council Ministry of Environment (CCME, 2004), the Catalan Water
Agency (ACA, 2010) and the Mexican Ministry of Agriculture, Live-
stock, Rural Development, Fisheries and Food (SAGARPA, 2010).
These organizations have developed indices for water quality.
Additionally, in the literature some authors as Ferreira et al.
(2011), Simões, Moreira, Bisinoti, Nobre, and Santos (2008) and
Beltrame, Bonetti, and Bonetti (2004) have also proposed water
quality indices, providing good alternatives for aquaculture
assessment. However, all these and other similar indices have as
drawback that some parameters in the index equation can dramat-
ically influence the final score without a valid justification. How-
ever, the most critical deficiency of these indices is the absence
of uncertainty or subjectivity management, which is present in this
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Table 1
Water quality parameters classified by monitoring frequency.

Daily monitored Weekly monitored Monitored by request

Temperature
(Temp)

Total ammonia (NH) Alkalinity (Ak)

Dissolved oxygen
(DO)

Nitrate (NO3) Phosphorus (P)

Salinity (Sal) Nitrite (NO2) Hydrogen sulfide (H2S)
pH Non ionized ammonia

(NH3)
Non ionized hydrogen sulfide
(HS�)

Turbidity (Tb) Dioxide of carbon (CO2)
Suspended solids (Ss)
Potential redox (Px)
Silicate (Si)
Chlorophyll A (ChA)
Total inorganic nitrogen (N)
Total marine bacteria (Tmb)
Vibrio (Vb)
Fecal coliforms (Fc)
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complex environmental problem when different parameter condi-
tions induce to different water quality situations and they are not
considered in the mathematical process.

Alternative models for assessing water quality using fuzzy logic
theory have been proposed in the literature, these models intro-
duce environmental levels in the respective parameters, which
produces a more accurate water quality evaluation (Gutiérrez,
2004; Gutiérrez et al., 2006; Hernández & Villarreal, 1999; Ocam-
po, Ferré, Domingo, & Schuhmacher, 2006). However, those re-
searches are based on fresh water bodies or these works do not
perform a complete analysis of water quality parameters without
integrating all parameters and harmful situations together in a
complete quality index.

Other works analyze similar ecological problems for environ-
mental pollution by applying artificial intelligence techniques such
as artificial neural networks (Muttil & Chau, 2006; Salazar, 2007),
associative memories (Yañez, López, & De la Luz, 2008), support
vector machines (Li, Li, & Wang, 2006; Wang, Men, & Lu, 2008)
and factor analysis (Bishoi, Prakash, & Jain, 2009) among others.
All of them have the same lack of a reasoning process to handle
uncertainty and subjectivity.

Recently in Carbajal, Sánchez, and Moreno (2010) a new fuzzy
model for water quality assessment was proposed. This model
can be used for assessing the most frequently and critical water
quality parameters of shrimp culture (pH, salinity, dissolved oxy-
gen and temperature; Chien, 1992). This model also has been ap-
plied to predict potential crisis in shrimp ponds, see for example
Carbajal, Sánchez, Oropeza, and Felipe (2009), and Carbajal, Sán-
chez, and Progrebnyak (2011). In order to get a more accurate
water assessment in shrimp culture, in this paper unlike in Carba-
jal et al. (2010) we use a more complete set of parameters, we as-
sign priorities to critical parameters and we classify potentially
harmful situations by handling uncertainty and subjectivity
through a fuzzy inference system. Moreover, since monitoring a
huge set of environmental parameters is a hard task in extensive
farms the proposed fuzzy inference system allows an immediate
water quality assessment using current parameters values unlike
previous approaches, which assess water quality for time periods,
requiring a set of measurements taken along the studied time
period.

Finally, the proposed fuzzy inference system is used for analyz-
ing the ecosystem of a shrimp farm in Sonora, Mexico area, where
environmental parameters are assessed for establishing an indica-
tor for good or bad water quality.

2. Aquaculture and water quality requirements

Aquaculture is defined as the high-density production of fish,
shellfish and plant forms in a controlled environment. Water qual-
ity for aquaculturists, refers to the quality of water that enables
successful reproduction of the desired organisms. The required
water quality is determined by the specific organisms to be cul-
tured and has many components that are interwoven. Aquaculture
obeys a set of physical, chemical and biological principles. Since
these principles compose the subject of water quality, in Section 2.1
we describe common water quality parameters related to these
principles which have been used as indicators of water quality
on shrimp marine culture, as well as the respective classification
of these parameters by monitoring importance. In Section 2.2, we
present a classification of the parameters based on their impact le-
vel in an ecosystem.

2.1. Physical, chemical and biological analysis

The monitoring of environmental parameters in shrimp aqua-
culture allows the control and good management of water quality
in shrimp ponds, avoiding the occurrence of unfavorable condi-
tions that can be harmful for organisms (Boyd, 2002; Ferreira
et al., 2011).

Water quality is based on the results of toxicity tests. These
tests measure the responses of aquatic organisms to defined quan-
tities of specific pollutants (Chien, 1992; Páez, 2001). The aquatic
species have different tolerances for a specific toxic compound;
in this paper the characteristics of the Litopenaeus vanammei
shrimp are analyzed to evaluate the performance of the model.

In extensive aquaculture systems on Central America, the water
quality parameters are monitored in different frequencies. Dis-
solved oxygen, temperature, pH and salinity are monitored daily
while ammonia, nitrates, turbidity and algae counts are analyzed
weekly. Chemical analyses are not taken into consideration for
water quality management on a routine bases, they are only mon-
itored by request (Carbajal et al., 2011; Hirono, 1992). Table 1 lists
common water quality parameters used as indicators of water
quality on shrimp marine culture and their respective classification
by monitoring frequency.

In order to understand the effects of these water quality param-
eters, Tables 2 and 3 show the optimal and harmful ranges (re-
ported in the literature) for daily, weekly and by request
parameters which will be considered for the assessment of water
quality in our work.

2.2. Environmental classification

Water quality parameters can be classified in different impact
levels, depending on the toxicity and harmful situations the
parameters produced into the ecosystem. In order to classify the
behavior of a water quality parameter, it is necessary to define lev-
els and allowed deviations for optimal or harmful concentrations.
These deviations are useful to determine the bounds of ranges
where values are considered closer to or farther from specified lev-
els. In this study, tolerance thresholds were chosen using minimal
changes in water parameters (Boyd, 2000; SEMARNAP, 1996). The
levels for classification of the water quality parameters were de-
fined taken into account the levels and limits reported in the liter-
ature (see Table 2). In Tables 4–6 we show the classification, in
different impact levels, for water quality parameters from Table 1.
The deviation column in these tables represents the tolerance for
each level.

3. Water quality index for immediate assessment (WQI)

The importance of water quality management, the correct inter-
pretation of water parameters and the appropriated techniques
for integrating these parameters are problems studied in the



Table 2
Daily and weekly measured water quality parameters and their importance to shrimp farming.

Parameters Importance on marine shrimp culture

Daily
Monitored

Temperature The demand of dissolved oxygen increases when temperature is high (Martínez, 1994). Changes in temperature rates can stress
shrimp and consequently high mortality rates can be present in the population (Navarro et al., 1992). Temperature controls solubility
of gases, chemical reactions and toxicity of the ammonia. Temperature can be considered as normal from 28 to 32 �C (Boyd, 1989;
Carbajal et al., 2011; Hirono, 1992)

Dissolved
oxygen

Fluctuation of dissolved oxygen, hypoxia and anoxia crisis are events that can be normally presented in aquaculture systems.
Dissolved oxygen is considered the most critical quality parameter, since shrimps in low dissolved oxygen concentrations are more
susceptible to disease. The minimum levels recommended by authors oscillate between 4 and 5 ppm. It is recommended that
dissolved oxygen level should be kept above 2 ppm (Boyd, 1992; Chien, 1992; Martínez, 1994)

Salinity High salinity concentrations reduce dissolve oxygen in water ponds. (Páez, 2001). The optimal concentrations of salinity are from 15
to 23 ppt (Boyd, 1992; Páez, 2001)

pH Extremely low or high pH stresses shrimp and causes soft shell and poor survival (Chien, 1992). Water bodies with 6.5 to 9.0 pH
concentrations are appropriate for aquaculture production. Reproduction decrease out of this range. Acid death appears with values
below than 4.0 and an alkaline death in values above 11 (Arredondo and Ponce, 1997; Carbajal et al., 2011; Martínez, 1994)

Weekly
Monitored

Ammonia Ammonia is the main end product of protein catabolism in crustaceans. Ammonia increases tissue oxygen consumption, damages gills
and reduces the ability of blood to transport oxygen. Ammonia exists in water in both ionized (NHþ4 ) and unionized (NH3) forms.
Unionized ammonia is the most toxic form of ammonia due to its ability to diffuse readily across cell membrane (Bower and Bidwell,
1978). The safe level for unionized ammonia, recommended by Chien (1992) and Wickins (1976), is less than 0.1 mg/l and for total
ammonia is under 1.0 mg/l

Water
nitrogen

Inorganic nitrogen in water is chiefly present as ammonia, nitrate and nitrite. In shrimp, the respiratory pigment is hemocynanin,
which can still bind oxygen in the presence of oxidizing agents as nitrite (Needham, 1961). The safe concentration of NO2 is from 0.4 to
0.8 mg/l. Nitrates are nitrogenous compounds can be toxic when their levels rise. According to Clifford (1994), the optimal level for
nitrates is from 400 to 800 lg/l. The expected total inorganic nitrogen recommended for crop is from 2.0 to 4.0 mg/l. (Chien, 1992;
Páez, 2001)

Turbidity A high concentration of suspended solids can cause high turbidity in water, preventing the penetration of light and affecting
photosynthesis. The amount of suspended solids can be determined indirectly by measuring the turbidity. The accepted range for
suspended solids is from 50 to 150 mg/l; or turbidity from 35 to 45 cm depth (Martínez, 1994)

Table 3
Water quality parameters measured by request and their importance to shrimp farming.

Parameters Importance on marine shrimp culture

Monitored by request
present

Alkalinity Related to important factors in shrimp culture as buffer effect on daily variation of pH in the pond, setting the soluble iron
precipitated, and in ecdysis (molting) and growth (Boyd, 2002; Ferreira et al., 2011)

Phosphorus Nutritive element, mainly appearing as orthophosphate, essential to aquatic life. For Esteves (1998), phosphorus acts
particularly in metabolic processes of living beings, such as energy storage and structure of the cell membrane (Ferreira et al.,
2011)

Hydrogen
sulfide

In water, hydrogen sulfide exists in unionized (H2S) and ionized forms (HS� and S2). Only de unionized form is considered
toxic to aquatic organisms. Unionized H2S concentration is dependent on pH, temperature and salinity, and it is mainly
affected by pH (Chien, 1992)

Dioxide of
carbon

When dissolved oxygen concentrations are low, carbon dioxide obstacles oxygen penetration. According to Boyd (2001),
normal range of carbon dioxide is from 1 to 10 mg/l

Potential redox It is an indicator of substance oxidation or reduction levels. Low values are indicators of strong reduction of sediment, which
is associated with toxic metabolites formation, hypoxic or anoxic conditions and low pH values. In a pond, optimal ranges of
potential redox are from 500 to 700 mV for water and from 400 to 500 mV for sediment (Clifford, 1994)

Silicate Into water, it is a composite of high importance because diatoms to carapace composition use it. Optimal levels for silicate
are established from 0.1 to 0.3 mg/l. (Esteves, 1998; Ferreira et al., 2011)

Chlorophyll A Phytoplankton biomass represents the primary consumer feed, and indirectly determines the feed availability of the next
trophic system levels. The ideal concentrations for shrimp ponds are from 50 to 70 lg/l (Clifford, 1994)

Total marine
bacteria

Microorganisms, particularly bacteria, play a vital role in pond ecosystems. Both beneficial (nutrients recycling, organic
matter degrading etc.) and harmful role (as parasites) are caused by bacteria in the pond ecosystem. Optimal range for total
bacteria counts should be below 10,000 UFC/ml (Anand, Das, Chandrasekar, Arun, & Balamurugan, 2010; Ferreira et al., 2011)

Vibrio Vibriosis is a bacterial disease responsible for mortality of cultured shrimp worldwide (Chen, Liu, & Lee, 2000; Lightner and
Lewis, 1975). Vibrio related infections frequently occur in hatcheries, but epizootics are also commonly in pond reared
shrimp species. Optimal ranges are defined below 1000 UFC/ml

Fecal Coliforms Fecal Coliforms in water come from feces of warm-blooded animals and they are an indicator of water pollution. The optimal
range of fecal coliforms is below 1000 MPN/ml and for crop it should not exceed 1400 MPN/ml (Boyd, 2000)
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aquaculture field. This research deals with one of the most impor-
tant objective of the aquaculture management: it proposes a new
way to join dissimilar parameters for getting an accurate assess-
ment of water quality, increasing the effectiveness of the proposed
system over traditional methodologies. In this sense, we hypothe-
size that different effects and levels of parameter concentrations
degenerate in different water quality, thus, an appropriated join
of these parameters could determinate a better assessment of
water quality. This assessment could be done using a fuzzy infer-
ence system, which involves different situations generated by
water quality parameters.
3.1. Water quality assessment

A water quality index (WQI) expresses the overall water quality
in a given place and time based on different physical, chemical and
biological parameters (Ferreira et al., 2011). In our research, we
propose to classify water quality in four levels; these levels were
defined jointly with the experts in aquaculture taking into account
the pollution effects of water parameters.

1. Excellent: Suitable for good crop.
2. Good: Suitable, but possible stress effects in shrimp organisms.



Table 4
Classification levels for daily monitored parameters.

Water quality parameters Deviation Levels

Hypoxia acid Low Normal High Alkaline

Temperature (�C) 1.0 0–20 20–30 <30
Dissolved Oxygen (mg/l) 0.5 0–2 2–5 <5
Salinity (ppt) 1.0 0–15 15–23 <23
pH 0.5 0–4 4–6.5 6.5–9.5 9.5–11 11–14

Table 5
Classification levels for weekly monitored parameters.

Water quality parameters Deviation Levels

Low Normal High

Total ammonia (mg/l) 0.10 0–0.1 0.1–1.0 <1.0
Nitrites (lg/l) 100 0–400 400–800 <800
Nitrates (mg/l) 0.10 0–0.5 <0.5
Non ionized ammonia (mg/l) 0.01 0–0.1 <0.1
Turbidity (cm) 1.00 4–35 35–45 <45
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3. Regular: Unsuitable for good crop; grater stress levels for
shrimp.

4. Poor: Unsuitable for crop; potential crisis in pond and possible
high mortality rates.

3.2. Fuzzy inference systems

Fuzzy inference is the process of formulating a mapping from a
given input to an output using fuzzy logic. This mapping can help
us to make decisions, or to discern patterns. The process of fuzzy
inference involves three important concepts: membership
functions, logical operations, and If-Then rules (Gutiérrez, 2004;
Ocampo et al., 2006; Zadeh, 1965).

This section describes the proposed fuzzy inference process
using water quality parameters as inputs to produce one water
quality level (water quality index). The basic structure of the fuzzy
inference system (FIS) is shown in Fig. 1.

3.2.1. Fuzzy inputs
Water quality parameters are defined by limits, which must not

be exceeded. However, when a concentration is close to a bound-
ary, the water quality condition could not be clearly established.
In this sense, the uncertainty treatment determines the level of a
concentration close to a limit and it is implemented in the inputs
of the FIS as membership functions.

A membership function (l) transforms a real value (measure-
ment) into a [0,1] value. The most common membership functions
are triangular, rectangular and trapezoidal or Gaussian (Ocampo
Table 6
Classification levels for monitored by request parameters.

Water quality parameters Deviation

Alkalinity (mg/l) 10
Phosphorus (mg/l) 0.01
Hydrogen sulfide (mg/l) 0.01
Non ionized hydrogen sulfide (mg/l) 0.001
Carbón dioxide (mg/l) 2
Suspension solids (mg/l) 5
Potential redox (mV) 10
Silicate (mg/l) 0.2
Chlorophyll A (lg/l) 5
Total inorganic nitrogen (mg/l) 0.2
Total marine bacteria (UFC/ ml) 1000
Vibrio (UFC/ ml) 100
Fecal coliforms (MPN/ml) 100
et al., 2006; Shen, Shun, & Pie, 2007). There is not a specific crite-
rion to build custom membership functions; they can be imple-
mented in different ways. However, for the purpose of the
present study, linear fuzzy sets make easier the defuzzification
process and provide good performance. Trapezoidal membership
functions define the input transformation of the FIS (Carbajal
et al., 2011; Ocampo et al., 2006), and they can be represented as
in expression 1

lðx; a; b; c; dÞ ¼ min
x� a
b� a

;1;
d� x
d� c

� �
ð1Þ

where x is a water quality variable; a, b, c and d are membership
parameters. Fig. 2 shows the membership functions for WQI and
daily measured parameters used in our study. Membership func-
tions for weekly and by request monitoring were developed in a
similar way using their respective levels and deviations, having
similar shapes as those showed also in Fig. 2.

3.2.2. Fuzzy operators
After the inputs are fuzzified, the membership degree of each

part of the rule antecedent is computed. If the antecedent of a rule
has more than one input, a fuzzy operator is applied to obtain the
result of the rule. In this case, three fuzzy operators (see expres-
sions (2) to (4)) were used: union (OR), intersection (AND) and
negation (NOT) operators (Zadeh, 1978).

UnionðORÞ lA[BðxÞ ¼maxflAðxÞ;lBðxÞg ð2Þ

IntersectionðANDÞ lA\BðxÞ ¼ minflAðxÞ;lBðxÞg ð3Þ

NegationðNOTÞ lAðxÞ ¼ 1� lAðxÞ ð4Þ
3.2.3. Inference rules (reasoning process)
Subjectivity may refer to the specific discerning interpretations

of any aspect of experiences. The proposed index uses subjectivity
in order to determine different problems in the ecosystem gener-
ated by different parameter concentrations. This process is imple-
mented using fuzzy rules, whose are included within the FIS.
Levels

Low Medium High

0–100 100–140 <140
0–0.1 0.1–0.3 <0.3
0–0.05 0.05–0.1 <0.1
0–0.002 0.002–0.005 <0.005
0–10 10–20 <20
0–50 50–150 <150
0–400 400–500 <500
0–2.0 2.0–4.0 <4.0
0–50 50–75 <75
0–2 2–4 <4
0–5000 5000–10,000 <10,000
0–500 500–1000 <1000
0–500 500–1000 <1000



Fig. 1. Architecture of the fuzzy inference system using parameters and rules of shrimp aquaculture.

Fig. 2. Membership functions for WQI and daily measured parameters; temperature, salinity, dissolved oxygen, pH. These functions were built using the water quality
parameters levels and deviations proposed in Tables 2–4.
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When one critical water parameter takes a value (either low or
high) out of the allowed limits, a mass-kill will ensue irrespective
of the excellent conditions of other parameters. These conditions
for the critical concentration range of dissolved oxygen (DO), salin-
ity, pH, hydrogen sulfide, harmful nitrogenous compounds (union-
ized ammonia, nitrate, and nitrite) and pathogenic microbes must
be taken into account in the rules of the FIS when assessing the
environmental condition of a shrimp pond. In this way, the fuzzy
inference system will be able to detect potential crisis only if the
rules are built correctly.

In water quality assessment, experts frequently use expressions
as the following: if the temperature is normal, the salinity level is



Table 7
Examples of rules used by the FIS, where E is Excellent, G is Good, R is Regular and P is Poor.

Daily parameters Temp Sal DO PH WQI

Normal Normal Normal Normal E
Low Normal Normal Normal G
Low Normal Normal Low R
Normal Normal Hypoxia Low P

Weekly parameters NH NO3 NO2 NH3 Tb WQI

Normal Normal Normal Normal Normal E
Normal High Normal Normal High R
High Normal Normal Normal Normal P

By request Ak WQI CO2 WQI Vb WQI

Low E Medium R High P
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normal, the pH concentration in a pond is normal, and the level of
dissolved oxygen is normal, then the expected water quality is
excellent. In fuzzy language, it could be enunciated as follows:

Rule 1: If Temp is normal AND Salt is normal AND pH is normal
AND DO is normal then WQI is Excellent.

where Temp, Salt, pH and DO are the outputs of the corresponding
membership functions. Rule 1 in our example is known as a fuzzy
inference rule and it would be helpful for the construction of the
FIS (Ocampo et al., 2006; Shen et al., 2007). The robustness of the
system depends on the number and quality of the rules. More rules
can be implemented in the same way; as example we enunciate
three more rules showing the main water conditions:

Rule 2: If Temp is normal AND Salt is normal AND pH is normal
AND DO is low then WQI is Good.
Rule 3: If Temp is normal AND Salt is high AND pH is normal
AND DO is low then WQI is Regular.
Rule 4: If Temp is normal AND Salt is high AND pH is normal
AND DO is hypoxia then WQI is Poor.

A set of 276 rules were built, 135 for the combination of daily
parameters, 108 for the combination of weekly parameters, 33
for parameters by request and 3 for each partial score into groups.
In the parameters by request, their combination generates a very
Fig. 3. Fuzzy inference diagram for the water quality scoring problem with four paramet
The membership values (l) of the four parameters are used to truncate the WQI mem
combined creating a final membership function (lout), which is used to determine the W
huge set of rules. In order to make easy the rule building, they were
developed using only one antecedent determined by their classifi-
cation levels (see Table 6) as follows: if indicator x is ‘‘Low’’ then
WQI is Excellent, if indicator x is ‘‘Medium’’ then WQI is Regular
and if indicator x is ‘‘High’’ then WQI is Poor.

An output fuzzy rule can be computed, using the fuzzy operator
AND, according the expression 5.

lR ¼min li
Temp;l

j
Salt;l

k
pH;l

l
DO

n o
ð5Þ

where i, j, k and l are the different levels of concentration (high, nor-
mal, low, alkaline, acid, and hypoxia respectively) for each parame-
ter. All rules could be stored as a database, which contains the
possible combinations and their respective classification as can be
showed in Table 7.

3.2.4. Aggregation
WQI membership functions are used in a different way from the

input functions. They are matched with fuzzy outputs (lR),
depending of the consequent of the evaluated rule. Since decisions
are based on testing all the rules in the system, these functions
must be combined to produce a single fuzzy output. The input of
the aggregation process is a list of truncated output functions re-
turned by each rule. The output of the aggregation process is a fuz-
zy membership function, which has to be deffuzified. The
aggregation procedure used in the FIS is the maximum method
ers and two rules. Rules 1 and 2 were used to exemplify the defuzzification process.
bership function assessed in the respective rule. All truncated functions (lWQI) are

QI.
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(Chow, 1997; Ocampo et al., 2006; Shen et al., 2007), which is the
fuzzy union of all truncated outputs (Fig. 3).

3.2.5. Deffuzzification
The centroid function (CF) is the most prevalent and physically

appealing of all available methods for a defuzzification process
(Ocampo et al., 2006; Ross, 2004). The centroid method returns
the center of area under the curve formed by the output fuzzy
function according to expression 6:

CF ¼
R

xloutðxÞdxR
loutðxÞdx

ð6Þ

Since the centroid function computes the center of area, the final
score for the CF restricts the output result from the center of poor
(0.078) to the center of excellent (0.87); this behavior can be ob-
served in Fig. 4. Different water quality conditions fall inside this
range: regular is 0.3 and good is 0.6. Therefore, the result must be
normalized using expression 7; such that it takes values in [0,1].

WQI ¼ CF �minðCFÞ
maxðCFÞ �minðCFÞ ð7Þ

where WQI (water quality index using fuzzy inference systems) is a
new normalized water quality index.

3.3. Numerical example

If we want to evaluate the WQI in a shrimp pond using rules 1
and 2, having the parameters temp, salinity, pH and dissolved oxygen
and their values 25.0, 20.0, 6.3, and 8.0 respectively. Using the
membership functions proposed in Fig. 2. For ‘‘R1’’ and ‘‘R2’’ we
can compute:

R1 : lR1ðxÞ ¼min ln
tempðxÞ;ln

saltðxÞ;ln
pHðxÞ;ln

DOðxÞ
n o

¼minf1;1;0:3;1g ¼ 0:3

R2 : lR2ðxÞ ¼min ln
tempðxÞ;ln

saltðxÞ;ll
pHðxÞ;ln

DOðxÞ
n o

¼minf1;1;0:7;1g ¼ 0:7

where n is normal, l is low and lout is the membership value calcu-
lated by R1 and R2. Calculating the aggregation functions, we
obtain:

lout1ðxÞ ¼min lR1ðxÞ;lexcellentðxÞ
� �

¼minf0:3;lexcellentðxÞg ¼ 0:3

lout2ðxÞ ¼min lR2ðxÞ;lgoodðxÞ
n o

¼min 0:7;lgoodðxÞ
n o

¼ 0:7
Fig. 4. Aggregated function of WQI index. In this example CF uses the aggregated
function for computing the center of area having a restricted range from the center
of good (cg) to the center of excellent (ce).
The l values are used to truncate WQI functions (excellent and good
showed in Fig. 4). By replacing the truncated functions in Eq. (7), the
water quality index for R1 and R2 would be:

CF¼
R 0:47

0:4 ð10x�4Þxdxþ
R 0:73

0:47 ð0:7Þxdxþ
R 0:77

0:73 ð�10xþ8Þxdxþ
R 1

0:77ð0:3ÞxdxR 0:47
0:4 ð10x�4Þdxþ

R 0:73
0:47 ð0:7Þdxþ

R 0:77
0:73 ð�10xþ8Þdxþ

R 1
0:77ð0:3Þdx

¼0:663

Fig. 4 shows the centroid function process. In this case, the interpre-
tation of the water quality computed by CF is good with a tendency
to excellent. This behavior is due to pH (6.3) present a value classi-
fied as low (see Fig. 2). However, this pH value is close to be classi-
fied as normal.
4. Analytic hierarchy process (AHP)

In aquaculture analysis, different water quality parameters gen-
erate different problems in the ecosystem. However, some param-
eters have higher impact or they are more susceptible to change
than others. Derived of this behavior, environmental parameters
must be prioritized in order to have an analysis more sensible.
An analytic hierarchy process (AHP) is an effective tool that pro-
vides a priority order with different importance levels to parame-
ters. In AHP, the decision task is made simpler by constructing a
hierarchy and developing a mathematical model that generates
the priority values for different criteria and subcriteria involved
in the decision-making process (Chakraborty & Dey, 2006). The cri-
teria or importance used in this paper was the proposed by Saaty
(2004), which is shown in Table 8.

The application procedure of AHP can be divided in three steps.
In the first step, the representation of the problem in a hierarchical
structure, where the levels of the hierarchy represent the goal, cri-
teria, sub-criteria, and alternatives of the given problem, must be
proposed. Tables 9–12 show the scale values for the three pro-
posed groups of parameters. The values used in our study were ad-
justed to the characteristics of north-pacific Mexican coastal
waters and to tropical shrimp cultivation exigencies according to
the SAGARPA and Mexican experts in coastal waters (Ávila et al.,
2011).

The second step consists in making pairwise comparisons. The
comparison values assigned to parameters are generally used to
develop a consistent matrix. A consistent matrix is a positive reci-
procal n � n matrix whose elements satisfy the relation
aij . . .ajk = aik, for i, j, k = 1, . . . ,n. These pairwise comparisons can
also be represented in the following matrix form:
Table 8
Scale values, Saaty (2004).

Scale value Interpretation

1 Equal importance
2 Weak or slight
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong or demonstrated importance
8 Very, very strong
9 Extreme importance

Table 9
Scale values for parameters monitored daily.

Parameters DO Temp Sal pH

Hierarchy 9 8 7 9



Table 10
Scale values for parameters monitored weekly.

Parameters NH NO3 NO2 NH3 Tb

Hierarchy 6 6 5 9 7

Table 12
Scale values for groups.

Parameters Daily Weekly By request

Hierarchy 9 6 4

Table 13
Pairwise comparison matrix for parameters monitored daily.

Criteria DO Temp Sal pH Priority value

DO 1 9/8 9/7 1 0.28012
Temp 8/9 1 8/7 8/9 0.23958
Sal 7/9 7/8 1 7/9 0.21023
pH 1 9/8 9/7 1 0.27005

Table 14
Pairwise comparison matrix for parameters monitored weekly.

Criteria NH NO3 NO2 NH3 Tb Priority value

NH 1 1 6/5 6/9 6/7 0.18194
NO3 1 1 6/5 6/9 6/7 0.18194
NO2 5/6 5/6 1 5/9 5/7 0.15118
NH3 9/6 9/6 9/5 1 9/7 0.27264
Tb 7/6 7/6 7/5 7/9 1 0.21227
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where wi is the weight scale for the ith criteria. The pairwise com-
parison matrix for the different water quality parameter groups are
shown in Tables 13–16.

The third step consists in assigning priorities or preference val-
ues to the water quality parameters according to the next rules.

(a) First the square of A is calculated as follows:

B ¼ A � A ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

an1 an2 . . . ann

2
66664

3
77775 �

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

an1 an2 . . . ann

2
66664

3
77775 ð9Þ

(b) The sum of the rows is computed according to the following
equation:

Ci ¼
Pn
j¼1

Bij ð10Þ

(c) Finally the Ci vector is normalized as follows:

Pi ¼
CiPn
i¼1Ci

; i ¼ 1; . . . ;n ð11Þ

The result is known as the first eigenvector (Saaty, 2004). This pro-
cess must be iterated until the eigenvector solution does not change
from the previous iteration. Finally the consistency ratio (CR) for the
pairwise comparison matrix can be calculated according to the fol-
lowing expression:

CR ¼ kmax � n
ðn� 1ÞRI

ð12Þ

where kmax is the maximum eigenvalue of the pairwise matrix, n is
the matrix size and RI is the random consistency index that can be
determined according to Table 17.

If the consistency radio is smaller than 10%, the pairwise matrix
is acceptable (Saaty, 1994). Tables 13–15 show the priority weights
for water quality indicators. The hierarchical tree for water quality
assessment is shown in Fig. 5.

5. Experimental results

5.1. Water sampling

For our experiments we use a database of marine water quality
parameters provided by the Center of Biological Research (CIB,
2008), located in the city of Hermosillo, Sonora, México. Four water
quality parameters were chosen and analyzed: temperature,
salinity, pH, and dissolved oxygen (daily monitored parameters).
Table 11
Scale values for parameters monitored by request.

Parameters Ak CO2 Ss P H2S HS�

Hierarchy 9 6 6 3 3 3
These parameters were selected considering their correlation to
hydrodynamic dominant characteristics of water masses; the
spatial similarity of their distribution patterns in relation to
other more difficult to collect parameters; and their importance
to disestablish an ecosystem, generating crisis in high or low
concentrations.

Water samples were collected in the ‘‘Gez Acuícola’’ marine
shrimp farm, located in Huatabampo, Sonora, Mexico. The estuary
‘‘El Riito’’ provides a source of seawater to shrimp ponds. In order
to have an accurate assessment, samples were taken monthly
along 4 months, from May, 2008 to August, 2008, each 30 min dur-
ing a day to obtain diary fluctuations and parameter behavior. This
caution is especially important for parameters affected by photo-
synthesis, such as dissolved oxygen and pH.

5.2. Water quality assessment

There are several indices implemented by different interna-
tional organizations that compute water quality in water bodies.
In order to estimate how the WQI index performs in comparison
to CCME and (HI)c indices. We performed a comparative analysis
against these indices obtaining interesting conclusions. The Cana-
dian Council Ministry of Environment (CCME, 2004) proposed a
method that can be used in coastal water, and it is based on com-
puting the number of failed tests of a set of environmental param-
eters, and the average of the deviations of them. CCME index is
used for assessing water quality in any water body since it is based
on statistical results of environmental tests. On the other hand, the
(HI)c index was proposed by Ferreira et al. (2011) as a new effective
water quality index for assessment of Litopenaeus vanammei
shrimp. Appendix A describes briefly how to compute CCME and
(HI)c indices.

WQI index is compared to the CCME and (HI)c indices using dai-
ly measured parameters. The treatment of the information within
Px Si ChA N Tmb Vb Fc

3 3 3 3 8 8 8



Table 15
Pairwise comparison matrix for parameters monitored by request.

Criteria Ak CO2 Ss P H2S HS� Px Si ChA N Tmb Vb Fc Priority value

AK 1 9/6 9/6 9/3 9/3 9/3 9/3 9/3 9/3 9/3 9/8 9/8 9/8 0.13636
CO2 6/9 1 1 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/8 6/8 6/8 0.09085
Ss 6/9 1 1 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/8 6/8 6/8 0.09085
P 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
H2S 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
HS� 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
Px 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
Si 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
ChA 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
N 3/9 3/6 3/6 1 1 1 1 1 1 1 3/8 3/8 3/8 0.04551
Tmb 8/9 8/6 8/6 8/3 8/3 8/3 8/3 8/3 8/3 8/3 1 1 1 0.12113
Vb 8/9 8/6 8/6 8/3 8/3 8/3 8/3 8/3 8/3 8/3 1 1 1 0.12113
Fc 8/9 8/6 8/6 8/3 8/3 8/3 8/3 8/3 8/3 8/3 1 1 1 0.12113

Table 16
Pairwise comparison matrix for parameters group.

Criteria Groups 286

Daily Weekly By request Priority value

Daily 1 9/6 9/4 0.47368
Weekly 6/9 1 6/4 0.31578
By request 4/9 4/6 1 0.21052

Table 17
Random consistency index, Saaty (2004).

n 1 2 3 4 5 6 7 8 9 10

Random
Index

0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49
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the FIS directly influences the final score. The indices (HI)c and
CCME take values always greater than 0.5, giving good or excellent
water quality in a non-fuzzy environment; these scores are high
because (HI)c and CCME indices do not consider particular
situations as hypoxia, anoxia, alkalinity or acid concentrations,
DO     0.28012 

Temp  0.23958 

Sal   021023 

pH   0.27005 

Daily monitored indicators 

Global 
Water Quality

0.47368

0.21052

0
NH    0.18194 

NO3   0.18294 

NO2   0.15118 

NH3 0.27264 

Tb   0.21227 

Weekly monitored indicators 

Fig. 5. Optimized weights for indicators included in the water quality inde
moreover the negative scores for critical parameters are compen-
sated by other computed indicators. WQI matches better with real
data since it considers the negative ecological impact of some
parameters in the fuzzy inference process. For example, Fig. 6
shows very low concentrations of dissolved oxygen that are cor-
rectly penalized by the FIS. However, (HI)c and CCME take values
greater than 0.5 (good conditions), it means these indices do not
process correctly low concentrations of dissolved oxygen. A better
analysis can be observed in Table 15, where numerical assessments
of negative situations are processed by the three indices; they were
scaled in a [0,1] range in order to facilitate comparison. From this
table, it can be observed that only the proposed WQI index cor-
rectly computes potentially harmful situations. (HI)c index is too
sensitive to harmful concentrations, however, since it is built in a
non-fuzzy environment, when concentrations are on the bound,
it assesses with a zero score (poor water quality), giving a non-
accurate assessment; for example, when dissolved oxygen concen-
trations are 1.9 or 2.1 mg/l respectively (see Table 18). This behav-
ior can be also observed in Fig. 6.

Fluctuations of water quality parameters can be generated due
to stocking rates, feeding rates, or routine water quality manage-
ment protocols (i.e., water exchange rates, aeration intensity,
 Index 

.31578

AK   0.13636 

CO2  0.09085 

Ss     0.09085 

P      0.04551 

H2S  0.04551 

HS-   0.04551 

Px     0.04551 

Si       0.04551 

ChA   0.04551     

N       0.04551 

Tmb  0.12113 

Vb     0.12113 

Fc      0.12113 

By request indicators 

x (WQI) estimated with the analytic hierarchy process methodology.



Fig. 6. Results of the assessment of the water quality of ‘‘Gez Acuícola’’ marine shrimp farm: (a) measurements, (b) results of water quality indices.

Table 18
Comparison between WQI, CCME and (HI)c indices using the daily measured data set.

Water quality parameters Scores Observations

Temp (�C) Salt (mg/l) DO (mg/l) pH WQI (HI)c CCME

28.0 45.8 1.9 8.2 0.18 0.00 0.75 Dissolved oxygen in hypoxia
28.0 45.8 2.1 8.2 0.15 2.83 0.74 Dissolved oxygen in hypoxia
25.0 47.0 6.8 8.2 0.66 6.92 0.84 Salt is high
22.0 47.0 5.8 8.2 0.66 6.18 0.84 Salt is high, pH low and temp high
28.0 19.0 5.6 3.1 0.00 0.00 0.88 pH is acid
16.0 21.0 6.3 11.7 0.00 0.00 0.97 pH is alkaline
28.0 35.0 3.0 6.0 0.01 4.23 0.79 DO low, Sal high and pH low
31.4 35.0 3.0 5.7 0.00 3.19 0.81 DO low, Sal high, pH low and temp high
33.3 11.0 3.0 9.8 0.00 2.80 0.87 DO low, Sal low, pH high and temp high
34.5 10.5 3.3 9.9 0.00 2.43 0.87 DO low, Sal low, pH high and temp high
25.0 12.0 7.0 10.5 0.00 0.00 0.88 Sal low, pH high
25.0 20.0 6.0 7.5 1.00 8.08 1.00 Optimal conditions
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etc.) affecting directly water quality Hernández, Zirino, Marione,
Canino, and Galindo (2003); Arredondo and Ponce (1998). Unlike
(HI)c and CCME indices fluctuations can be efficiently detected by
the proposed WQI index. Therefore, our index provides a powerful
solution to detect anomalous conditions on shrimp ponds.

6. Conclusion and discussions

Some researchers have demonstrated that pollutant concentra-
tions stress shrimp, and consequently organisms are more suscep-
tible to disease (Li et al., 2006). Following this idea, aquaculture
efforts are focused on tackling environmental problems in the eco-
system trying to control and prevent illness (for example Taura
virus, White Spot Syndrome, Melanosis Syndrome, etc.). A fuzzy
inference system as the proposed in this paper is an effective tool
for supporting an accurate treatment of water, because it provides
an immediate assessment. This characteristic of our system is very
useful to reduce stress levels in organisms and to prevent illnesses.
In early stages as well as for determining feeding and growth rates
in extensive ponds.

In this paper, a fuzzy inference system based on a reasoning
process, which implicates aquaculture criteria established by offi-
cial organizations and researchers for assessing water quality,
has been introduced. This fuzzy inference system allows an imme-
diate assessment of concentrations and values of different water
quality parameters that integrates a water ecosystem. The fuzzy
inference system was built in three phases; the first, classifies
the levels of the water quality parameters; the second phase eval-
uates the negative ecological impact of the parameters in the
shrimp habitat using a fuzzy reasoning process; the third phase
prioritizes the most critical parameters using an analytic hierarchy
process, giving as result a new index of the ecological status of the
water quality. Experimental results in a real shrimp farm in México
demonstrate that the proposed fuzzy inference system works well.

Traditional reports on water quality tend to be too technical and
detailed, presenting monitoring data on individual substances,
without providing a complete and interpretable evaluation of
water quality. To solve this gap, several water quality indices have
been developed to integrate water quality parameters. Traditional
models evaluate water quality in a rigorous sense, where certain
levels of concentrations are classified in a strict level while the pro-
posed fuzzy inference system classifies following a soft approach,
thus measured concentrations for all the parameters are processed
together giving as result a water pollution grade, which constitutes
a water quality index (WQI). Although other water quality indexes
((HI)c and CCME) solve the problem of water pollution assessment,
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the reasoning process of harmful situations in WQI provides a
more accurate evaluation. In addition, the proposed WQI integrates
all parameter evaluations providing a complete water quality
index.
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Appendix A

A.1. Water quality index of the Canadian Council of Ministers of the
Environment

The CCME Index interprets the water quality status for any
water body. It computes a statistical analysis of how many mea-
surements are into a desired range and the deviation of measure-
ments outside this range as follows:

CCME ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

1 þ F2
2 þ F2

3

q
1:732

where F1 (scope) is the percentage of parameters whose current
concentration is out of their allowed limits and it is calculated as
follows:

F1 ¼
Number of failed variables

total of number of variables
� 100

F2 (frequency) is the percentage of individual tests within each
parameter that do not fulfill the limits and it is calculated as
follows:

F2 ¼
Number of failed variables

total of number of variables
� 100

F3 (amplitude) is the percentage of deviations in each individual test
and it is calculated in three steps. First, the cases in which the test
value must not be below or above the objective limit are computed
(excursions):

excursioni ¼
Objectivei

Failed test Valuei
� 1 if value fall above Failed test

ValueiObjectivei � 1 if value fall below

(

Then the normalized sum of excursions (nse) is calculated as
follows:

nse ¼
Pn

i¼1excursioni

number of tests
� 1

Finally, an asymptotic function that scales the normalized sum of
the excursions from objectives (nse) to yield a value between 0
and 100 is calculated as follows:

F3 ¼
nse

0:01nseþ 0:01
A.2. Hydrological water quality index (HI)c

The (HI)c index was developed to allow allocation of a range of
continuous weight from 0 to 5. A weight (VW) and a range (WR)
are assigned to each water quality parameter. VW and WR are mul-
tiplied to obtain a score for each sampling station (SVS, Eq. (14)).
The final score of the sampling station (FSS) is obtained by multi-
plying the score of each one of the four parameters (Eq. (15)).

SVSvar ¼ VWvar � WRvar ð13Þ
FSS ¼ SVSsalinity � SVSpH � SVStemp � SVSoxygen ð14Þ

According to Ferreira et al. (2011) and Beltrame et al. (2004), apply-
ing the Eqs. (14) and (15) allows the FSS may vary between 0.0 and
18,750. In order to facilitate the understanding of the index, these
values are mapped to the interval [0,10] according to the equation

ðHIÞc ¼ 0:8546ðFSSÞ0:25 ð15Þ

where (HI)c corresponds to the shrimp culture hydrological index.
Parameters weights, ranges and their respective assignments can
be consulted in Beltrame et al. (2004) and Ferreira et al. (2011).
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