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Abstract

In this paper, an accurate classifier based on Class Association Rules

(CARs), called CAR-NF, is proposed. CAR-NF introduces a new strat-

egy for computing CARs, using the Netconf as measure of interest, that

allows to prune the CAR search space for building specific rules with high

Netconf. Moreover, we propose and prove a proposition that supports the

use of a Netconf threshold value equal to 0.5 for mining the CARs. Addi-

tionally, a new way for ordering the set of CARs based on their rule sizes

and Netconf values is introduced in CAR-NF. The ordering strategy to-

gether with the “Best K rules” satisfaction mechanism allows CAR-NF to

have better accuracy than CBA, CMAR, CPAR, TFPC and HARMONY

classifiers, the best classifiers based on CARs reported in the literature.

∗Corresponding author
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1 Introduction

The Classification Association Rule Mining (CARM) or associative classifica-

tion, introduced in [22], integrates Classification Rule Mining (CRM) [7, 25]

and Association Rule Mining (ARM) [1, 19]. This integration involves mining

a special subset of association rules, called Class Association Rules (CARs).

Associative classification aims to mine a set of CARs from a class-transaction

dataset; where a CAR describes an implicative co-occurring relationship be-

tween a set of items (itemset) and a class, expressed as “⟨item1, . . . , itemn⟩ ⇒

class”. A classifier based on this approach usually consists of an ordered CAR

list l, and a mechanism for classifying unseen transactions using l.

Associative classification has been used in different tasks, for example: text

classification [9, 39], determination of DNA splice junction types [6], text seg-

mentation [10], automatic image annotation [29], mammalian mesenchymal

stem cell differentiation [34] and prediction of protein-protein interaction types

[23], among others.

Currently, all classifiers based on CARs use the Support and Confidence

measures for computing and ordering the set of CARs [15, 21, 22, 30, 31, 38]. In

CARM, similar to ARM, it is assumed that a set of items I = {i1, i2, . . . , in}, a

set of classes C, and a set of transactions D are given, where each transaction

t ∈ D consists of an itemset and a class. The Support of an itemset X ⊆ I

(denoted as Sup(X)) is the fraction of transactions in D containing X (see Eq.

1). A CAR is an implication of the form X ⇒ c where X ⊆ I and c ∈ C. A

CAR with k items (including the class i.e. |X| = k− 1) will be called a k-CAR.

The rule X ⇒ c is held in D with certain Support s and Confidence α, where s
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(see Eq. 2) is the fraction of transactions in D that contains X∪{c}, and α (see

Eq. 3) is the probability of finding c in transactions that also contain X, which

represents how “strongly” the rule antecedent X implies the rule consequent c.

A CAR X ⇒ c satisfies or covers a transaction t if X ⊆ t.

Sup(X) =
|DX |
|D|

(1)

where DX is the set of transactions in D containing X.

Sup(X ⇒ c) = Sup(X ∪ {c}) (2)

Conf(X ⇒ c) =
Sup(X ⇒ c)

Sup(X)
(3)

Many studies [1, 19, 40] have pointed out the combinatorial number of asso-

ciation rules that could be obtained when a small Support threshold is used.

To address this problem, recent works [15, 35, 36, 37] prune the CAR search

space stopping the growth of the rule when a CAR satisfies the Support and

Confidence thresholds, it means that CARs satisfying both thresholds are not

extended anymore leading to obtain general (small) rules. This strategy has

some drawbacks, for example:

• Many branches of the CAR search space could be explored in vain because

the CAR search space is not pruned when a CAR satisfies only the Support

threshold, instead the CAR is extended until it also satisfies the Confidence

threshold, which could never happen.

• If a CAR X ⇒ c is obtained then a CAR X
′ ⇒ c with X ⊂ X

′
can not

be obtained, it does not allow to generate specific (large) rules, some of

which could be more interesting (i.e. “with higher Confidence”).
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In order to overcome these drawbacks, in this paper we introduce the use

of Netconf measure instead of support and confidence for computing the rules

with a new pruning strategy.

Although previous works [22, 36] have shown that associative classification

seems to achieve better accuracy than other classification approaches such as de-

cision trees, rule induction and probabilistic methods, associative classification

still has some weaknesses that must be addressed, for example:

• The Confidence measure detects neither statistical independence nor neg-

ative dependence among items, because Confidence does not take into

account the Support of the consequent [5].

• Previous CAR pruning strategies do not allow to generate specific (large)

rules, some of which could be more interesting than general (small) rules.

• Threshold values used to compute the set of CARs are not supported.

The main contribution of this paper is an accurate classifier, called CAR-NF,

which has better performance than the best classifiers based on CARs reported

in the literature CBA, CMAR, CPAR, TFPC and HARMONY classifiers, all

of them following the Support-Confidence framework. CAR-NF introduces a

new pruning strategy to generate the set of CARs, which allows to find specific

rules with high Netconf. Additionally, CAR-NF introduces a new way for or-

dering the set of CARs, based on the size of the CARs and their Netconf value.

Moreover, we determine an appropriate Netconf threshold value, supported by

a proposition, that avoids ambiguity at the classification stage.

This paper is organized as follows: The next section describes the related

work. The third section introduces our classifier. In the fourth section the

experimental results are shown. Finally the conclusions and future works are

given in section five.
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2 Related work

Classification Association Rule Mining was first presented in [3] where it was

used for two specific tasks: reducing telecommunication order failures and de-

tecting redundant medical tests. Later, several classifiers based on CARs have

been developed. In general, these classifiers can be divided in two groups ac-

cording to the strategy used for computing the set of CARs:

1. Two Stage classifiers. In a first stage all the CARs satisfying predefined

Support and Confidence thresholds are mined and later, in a second stage,

a classifier is built by selecting a subset of CARs. The second stage in-

volves a coverage analysis where each CAR is examined in order to find

a small set of CARs that fully covers the training set. Some classifiers

following this approach are CBA (Classification Based on Associations)

[22], CMAR (Classification based on Multiple Association Rules) [21] and

MCAR (Multi-Class Classification based on Association Rule) [31]. The

CBA classifier uses an apriori-like based algorithm for CAR generation

[1]. CMAR and MCAR are similar to CBA but for generating the set of

CARs they use FP-growth [17] and Eclat [40] algorithms respectively.

2. Integrated classifiers. In these classifiers the subset of CARs is generated

during the classification stage. Some classifiers following this approach

are: TFPC (Total From Partial Classification) [14, 15, 37], HARMONY

(Highest confidence clAssification Rule Mining fOr iNstance-centric clas-

sifYing) [32]; and induction systems such as FOIL (First Order Inductive

Learner) [26], PRM (Predictive Rule Mining) and CPAR (Classification

based on Predictive Association Rules) [38].

Once a subset of CARs has been generated, regardless of the used strategy,

the CARs are ordered. There are five main ordering schemes reported in the
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literature:

a) CSA (Confidence - Support - Antecedent size): The CSA ordering scheme

combines Confidence, Support and the size of the rule antecedent. CSA

sorts the rules in a descending order according to the Confidence. Those

CARs that share a common Confidence value are sorted in a descending

order according to the Support, and in case of tie, CSA sorts the rules in

ascending order according to the size of the rule antecedent [21, 22].

b) ACS (Antecedent size - Confidence - Support): The ACS ordering scheme

is a variation of CSA. But it takes into account the size of the rule an-

tecedent as first ordering criterion followed by the Confidence and the

Support [14].

c) WRA (Weighted Relative Accuracy): The WRA ordering scheme, pro-

posed in [20], assigns to each CAR a weight (based on Support and Con-

fidence) and then sorts the set of CARs in a descending order according

to the assigned weights. The WRA has been used to order lists of CARs

in several CAR classifiers [14, 36, 37]. Given a rule A ⇒ B the WRA is

computed as follows:

WRA(A ⇒ B) = Sup(A)(Conf(A ⇒ B)− Sup(B))

d) LAP (Laplace Expected Error Estimate): The LAP ordering scheme was

introduced by Clark and Boswell [12] and it has been used to order the

list of CARs in some CAR classifiers [36, 38]. Given a rule A ⇒ B, in [38]

the LAP is defined as follows:

LAP (A ⇒ B) =
Sup(A ⇒ B) + 1

Sup(A)+ | C |
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where C is the set of predefined classes.

e) χ2 (Chi-Square): The χ2 ordering scheme is a well known technique in

statistics, which can be used to determine whether two variables are inde-

pendent or related. After computing an additive χ2 value for each CAR

(also based on Support and Confidence), this value is used to sort the set

of CARs in a descending order [21].

All these ordering schemes take into account the Confidence measure. But,

as we have mentioned in the introduction, this measure has some drawbacks.

We will come back to this point in the next subsection.

Once a classifier has been built, usually presented as a list of sorted rules,

there are three main satisfaction (or covering) mechanisms for classifying unseen

data.

1. Best rule: This mechanism selects the first (“best”) rule in the order

that satisfies the transaction to be classified (unseen data), and then the

class associated to the selected rule is assigned to this transaction [22].

2. Best K rules: This mechanism selects the best K rules (for each class)

that satisfy the transaction to be classified and then the class of the new

transaction is determined using these K rules, according to different cri-

teria [36].

3. All rules: This mechanism selects all rules that satisfy the transaction

to be classified and then these rules are used to determine the class of the

new transaction [21].

Algorithms following the “Best rule” mechanism could suffer biased classifica-

tion or overfitting since the classification is based on only one rule. On the

other hand, the “All rules” mechanism includes rules with low ranking for clas-

sification and this could affect the accuracy of the classifier. Since the “Best K
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rules” mechanism has been the most widely used for CAR classifiers, reporting

the best results, we will use it in our work.

2.1 Drawbacks of the Confidence measure

As we mentioned above, all the classifiers developed for CARM use the Con-

fidence measure for mining the set of CARs. However, several authors have

pointed out some drawbacks of this measure that could lead us to discover

many more rules than it should [5, 8, 27, 28]. In particular, the presence of

items with high Support can lead us to obtain misleading rules (see Example 1)

because higher-Support items appear in many transactions and they could be

predicted by any itemset [5].

Example 1 Let’s assume that Sup(X) = 0.5, Sup(Y ) = 0.7, Sup(X ⇒ Y ) =

0.3 and the Confidence threshold is set to 0.5. By Eq. 3, Conf(X ⇒ Y ) = 0.6.

We are tempted to choose X ⇒ Y as an interesting rule, but there is a problem.

Y occurs in 70% of the transactions, but as the rule only has 60% of Confidence

it does worse than just randomly guessing. In this case, X ⇒ Y is a misleading

rule.

This is a key weakness of the Confidence measure, and it is particularly

evident in Census data, where many items are very likely to occur with or

without other items (e.g. the Census dataset employed in [8], where |I| = 2166

and there are many items with Support above 95%).

In [24], the authors defined a good accuracy measure (ACC), as a measure

that separates strong rules from weak rules, assigning them high and low values

respectively. Additionally, the authors suggested several desirable properties

that a good ACC should satisfy. These properties are the following:

Property 1 If Sup(A ⇒ B) = Sup(A)Sup(B) then ACC(A ⇒ B) = 0

8



This property claims that any good accuracy measure must test the indepen-

dence [5].

Property 2 ACC(A ⇒ B) monotonically increases with Sup(A ⇒ B) when

all other parameters remain the same.

The property 2 can be interpreted as follows: Suppose a dataset D and two rules

A ⇒ B and A
′ ⇒ B

′
such that Sup(A) = Sup(A

′
) and Sup(B) = Sup(B

′
). If

the fraction of transactions in D that contains A ∪B (Sup(A ⇒ B)) is greater

than the fraction of transactions in D that contains A
′ ∪ B

′
(Sup(A

′ ⇒ B
′
))

then ACC(A ⇒ B) > ACC(A
′ ⇒ B

′
) (which means that A ⇒ B is stronger

than A
′ ⇒ B

′
).

Property 3 ACC(A ⇒ B) monotonically decreases when Sup(A) (or Sup(B))

increases and all other parameters remain the same.

An ACC satisfying property 3 avoids to obtain misleading rules because its value

does not increase by only increasing the consequent (or antecedent) Support.

An ACC satisfying properties 2 and 3 has local maxima when

Sup(A ⇒ B) = Sup(A) or Sup(A ⇒ B) = Sup(B) and it has a global

maximum when Sup(A ⇒ B) = Sup(A) = Sup(B).

Now we will show that Conf(A ⇒ B) (see Eq. 4), which has been used in all

the algorithms for CARM, does not satisfy simultaneously all these properties:

Conf(A ⇒ B) =
Sup(A ⇒ B)

Sup(A)
(4)

Proposition 1 Conf(A ⇒ B) does not satisfy the property 1.

Proof. Here is a counterexample: Consider the transactional dataset shown

in table 1(a), where rows represent transactions and columns represent items.

9



Table 1(b) shows the Supports of the itemsets {i1}, {i2} and {i1, i2}. Since

Sup({i1})Sup({i2}) = 0.25 = Sup({i1, i2}), {i1} and {i2} are statistically in-

dependent and hence the Confidence of {i1} ⇒ {i2} should be 0. However,

Conf({i1} ⇒ {i2}) = 0.25/0.5 = 0.5 ̸= 0 ⊓⊔

Proposition 2 Conf(A ⇒ B) satisfies the property 2

Proof. Trivial according to Eq. (4). ⊓⊔

Proposition 3 Conf(A ⇒ B) satisfies the property 3 for Sup(A)

Proof. Trivial according to Eq. (4). ⊓⊔

Proposition 4 Conf(A ⇒ B) does not satisfy the property 3 for Sup(B).

Proof. Since Sup(B) does not appear in Eq. (4) then the property 3 is not

satisfied for Sup(B). ⊓⊔

In summary, the Confidence measure detects neither statistical independence

(property 1) nor negative dependence between items because the Support of the

consequent is not considered in its definition. Thus we can see that, according

[24], the Confidence measure is not a good accuracy measure for separating

strong rules from weak rules.

In [5] the authors analyzed several measures (Conviction, Interest or Lift,

χ2 and Certainty factor), as an alternative to the Confidence measure, for es-

timating the strength of an association rule. Some of these measures overcome

the drawbacks of the Confidence measure but only Interest and Certainty fac-

tor fulfill the properties 1 − 3 suggested in [24]. However, both Interest and

Certainty factor have other limitations.

The Interest measure has a not bounded range [5], therefore differences

among its values are not meaningful and for this reason, it is difficult to de-

fine an Interest threshold. Moreover, the Interest measure is symmetric (Eq. 5)

but this almost never happens in practice.
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Int(A ⇒ B) =
Sup(A ⇒ B)

Sup(A)Sup(B)
=

Sup(A ∪B)

Sup(A)Sup(B)
=

Sup(B ⇒ A)

Sup(B)Sup(A)
= Int(B ⇒ A) (5)

On the other hand, Certainty factor is defined by Eq. 6.

CF (A ⇒ B) =


Conf(A⇒B)−Sup(B)

1−Sup(B) if Conf(A ⇒ B) > Sup(B)

Conf(A⇒B)−Sup(B)
Sup(B) if Conf(A ⇒ B) < Sup(B)

0 otherwise

(6)

Negative values of Certainty factor mean negative dependence, while positive

values mean positive dependence and 0 means independence. However, the value

that Certainty factor takes depends on the Support of the consequent (the class

in our case). When Conf(A ⇒ B) is close to Sup(B), even if the difference of

Conf(A ⇒ B) and Sup(B) is close to 0 but still positive, the Certainty factor

measure shows a strong positive dependence when Sup(B) is high (close to 1).

For better understanding let’s see the following example taken from [2]:

Example 2 Suppose that Sup(A) = 0.5 and Sup(B) = 0.9. If Sup(A ⇒ B) =

0.45 then A and B are independent according Certainty Factor, since:

Conf(A ⇒ B) =
Sup(A ⇒ B)

Sup(A)
=

0.45

0.5
=

0.5 ∗ 0.9
0.5

= 0.9 = Sup(B)

∴ CF (A ⇒ B) = 0

If Sup(A ⇒ B) = 0.43, the Certainty factor of A ⇒ B is −0.044 by equation

6. This means that there is a slightly negative relationship between A and B.

But if Sup(A ⇒ B) = 0.47, the Certainty factor of A ⇒ B is 0.4 by equation
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6. This shows that A and B are positively dependent. The difference between

0.43 and 0.45 is equal to the difference between 0.45 and 0.47. However, the

Certainty factor obtains very different results.

In [2], the authors introduced a measure to estimate the strength of an

association rule, called Netconf. This measure, defined in equation 7, has among

its main advantages that it detects misleading rules produced by the Confidence.

As a simple example, suppose that Sup(X) = 0.4, Sup(Y ) = 0.8 and Sup(X ⇒

Y ) = 0.3, therefore Sup(¬X) = 1 − Sup(X) = 0.6 and Sup(¬X ⇒ Y ) =

Sup(Y ) − Sup(X ⇒ Y ) = 0.5 (see table 2). If we compute Conf(X ⇒ Y ) we

obtain 0.75 (a high Confidence value) but Y occurs in 80% of the transactions,

therefore the rule X ⇒ Y does worse than just randomly guessing, clearly,

X ⇒ Y is a misleading rule [5]. For this example, Netconf(X ⇒ Y ) = −0.083

showing a negative dependence between the antecedent and the consequent. If

we analyze the rule ¬X ⇒ Y then Conf(¬X ⇒ Y ) = 0.83 > 0.8 = Sup(Y ), it

means that rule ¬X ⇒ Y does better than just randomly guessing. However,

the Netconf value for rule ¬X ⇒ Y is 0.083 showing a positive dependence

between the antecedent and the consequent.

Netconf(A ⇒ B) =
Sup(A ⇒ B)− Sup(A)Sup(B)

Sup(A)(1− Sup(A))
(7)

The authors in [2] showed that Netconf measure overcomes the drawbacks

of all above mentioned measures but they did not prove that Netconf is a good

ACC measure by proving that it fulfils properties 1-3, we will come back to this

point further.

Since Netconf overcomes the drawbacks of all above mentioned measures but

it was not used before in CAR based classification, it motivated the classifier

based on CARs presented in the next section.
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3 CAR-NF classifier

The explanation of our classifier is divided in three subsections. First of all,

in subsection 3.1, we prove that the Netconf measure completely fulfills the

properties 1-3 above mentioned. Also, we show that Netconf does not have the

drawbacks of other measures. Additionally, we propose and prove a proposition

that supports the use of a Netconf threshold value equal to 0.5 for mining the

CARs. An important part of the CAR-NF classifier is the algorithm for mining

the set of CARs, in subsection 3.2 we introduce this algorithm based on the

efficient use of equivalence classes and bit-to-bit operations for computing the

set of CARs employing the Netconf measure. Finally, in section 3.3, we propose

a new way for ordering the set of CARs that together with the “Best K rules”

mechanism defines the CAR-NF classifier.

3.1 Netconf measure

In [2], the authors introduced a measure to estimate the strength of an associ-

ation rule, called Netconf. As mentioned in subsection 2.1, Netconf overcomes

the drawbacks of Confidence, Conviction, Interest or Lift, χ2 and Certainty fac-

tor. Additionally, the authors of [2] show that the Netconf measure has some

useful properties, for example:

• Netconf tests independence, therefore Netconf(A ⇒ B) = 0 ⇔ Sup(A ⇒

B) = Sup(A)Sup(B).

• Netconf(A ⇒ B) ̸= Netconf(B ⇒ A) for Sup(A) ̸= Sup(B), it means

that Netconf is not symmetric and it can indicate the strength of impli-

cation in both directions, not only the degree of dependence.

• Netconf(A ⇒ B) takes values in [-1,1].
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• Positive values of the Netconf measure represent positive dependencies,

negative values of Netconf represent negative dependencies and a zero

value represents independence.

However, the authors did not prove that Netconf satisfies the properties

suggested in [24].

According to Eq. (7) and taking into account that the Support takes values

in [0, 1], it is easy to see that Netconf satisfies the properties 1 and 2, and also

satisfies the property 3 for Sup(B).

In order to show that Netconf completely satisfies property 3 we will prove

the next proposition.

Proposition 5 Netconf satisfies the property 3 for Sup(A).

Proof. In Eq. (7), let Sup(A ⇒ B) = Sab, Sup(B) = Sb, Sup(A) = x be the

Support of A ⇒ B, B and A respectively, with Sab and Sb constants satisfying

0 < Sab ≤ Sb < 1 and x ∈ (0, 1). We can rewrite the right member of Eq. (7)

in terms of Sab, Sb, and x, as follows:

f(x) =
Sab − Sbx

x(1− x)

Now, we will prove that f ′(x) < 0, which implies that f(x) is strictly decreasing

and therefore proposition 5 is true. Computing the first derivative and reducing

terms we have:

f ′(x) =
−Sbx

2 + 2Sabx− Sab

x2(1− x)2

Due to 0 < Sab ≤ Sb < 1 then:

−Sbx
2 + 2Sabx− Sab ≤ −Sabx

2 + 2Sabx− Sab = −Sab(x− 1)2 < 0,

14



and x2(1− x)2 > 0, therefore, f ′(x) < 0. ⊓⊔

With the proof of proposition 5, we have showed that Netconf fulfills the

properties 1 − 3. In particular, the fact that Netconf satisfies the property

3 is the main motivation for using it in our CAR-NF classifier. As it was

shown in subsection 2.1, an accuracy measure satisfying property 3 avoids to

obtain misleading rules. Thus if we return to the example 1 of subsection 2.1

and we evaluate the Netconf measure for Sup(X) = 0.5, Sup(Y ) = 0.7 and

Sup(X ⇒ Y ) = 0.3, we obtain a Netconf value equal to −0.2, meaning that

there is a negative dependence between X and Y and consequently this is a

bad rule. In our CAR-NF classifier, we bet for CARs with high Netconf values

(positive dependence between X and Y ), therefore, the misleading rules are

avoided. In this paper we propose to use Netconf for computing and ordering

the set of CARs.

Previous works use different Support and Confidence thresholds for mining

the set of CARs. The threshold values used in those works must be carefully

defined because a huge volume of CARs could be generated. However, those

threshold values are not supported. In our case, we choose a Netconf threshold

that allows to obtain CARs with different antecedent, avoiding ambiguity at

classification stage. In order to determine the appropriate Netconf threshold

we introduce and prove the proposition 6, which states that for any itemsex X,

only one CAR with X as antecedent can have a Netconf value greater than 0.5.

Proposition 6 Let C = {c1, c2, . . . , cm} be the set of predefined classes, for

each itemset X we can obtain at most one rule X ⇒ ck (ck ∈ C) with Netconf

value greater than 0.5.
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Proof. Let us assume that there are two CARs X ⇒ ck1
and X ⇒ ck2

with

ck1 , ck2 ∈ C such that:

Netconf(X ⇒ ck1) > 0.5

Netconf(X ⇒ ck2) > 0.5

then, adding these inequalities we obtain the following statement,

Netconf(X ⇒ ck1) +Netconf(X ⇒ ck2) > 1 (8)

From Eqs. 1 and 2 defined in section 1, we have that Sup(ck1) ≥ Sup(X ⇒ ck1),

Sup(ck2) ≥ Sup(X ⇒ ck2), Sup(X) ≥ Sup(X ⇒ ck1) + Sup(X ⇒ ck2) and

Sup(X) ∈ [0, 1], therefore the following inequalities are fulfilled,

Sup(ck1
)−Sup(X⇒ck1

)

1−Sup(X) ≥ 0

Sup(ck2
)−Sup(X⇒ck2

)

1−Sup(X) ≥ 0

1 ≥ Sup(X⇒ck1
)+Sup(X⇒ck2

)

Sup(X)

(9)

Since the three inequalities of Eq. 9 have the same direction, we can add them

obtaining

1 +
Sup(ck1

)−Sup(X⇒ck1
)

1−Sup(X)
+

Sup(ck2
)−Sup(X⇒ck2

)

1−Sup(X)
≥ Sup(X⇒ck1

)

Sup(X)
+

Sup(X⇒ck2
)

Sup(X)

and moving some terms to the right side we have

1 ≥ Sup(X⇒ck1
)

Sup(X)
− Sup(ck1

)−Sup(X⇒ck1
)

1−Sup(X)
+

Sup(X⇒ck2
)

Sup(X)
− Sup(ck2

)−Sup(X⇒ck2
)

1−Sup(X)
(10)

Now, working with the first and second terms of the right side of (10)
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Sup(X⇒ck1
)

Sup(X) − Sup(ck1
)−Sup(X⇒ck1

)

1−Sup(X) =

=
Sup(X⇒ck1

)−Sup(X⇒ck1
)Sup(X)−Sup(ck1

)Sup(X)+Sup(X⇒ck1
)Sup(X)

Sup(X)(1−Sup(X))

=
Sup(X⇒ck1

)−Sup(ck1
)Sup(X)

Sup(X)(1−Sup(X))

= Netconf(X ⇒ ck1) (see Eq.7)

Analogously,
Sup(X⇒ck2

)

Sup(X) − Sup(ck2
)−Sup(X⇒ck2

)

1−Sup(X) = Netconf(X ⇒ ck2) and sub-

stituting in (10) we obtain

1 ≥ Netconf(X ⇒ ck1) +Netconf(X ⇒ ck2)

which contradicts (8). ⊓⊔

Based on proposition 6, if we select a Netconf threshold γ ≥ 0.5, for

each itemset X we can obtain at most one CAR X ⇒ c, c ∈ C such that

Netconf(X ⇒ c) > γ, and in this way, we can select CARs with different an-

tecedent and consequently the ambiguity at the classification stage is avoided.

It is important to notice that a Netconf value greater than 0.5 can be considered

as a high Netconf value because the Netconf takes values in [-1,1], being the de-

pendence between antecedent and consequent more positive when the Netconf

value is closer to 1. In our classifier, we want to compute as many CARs as

possible but avoiding the ambiguity in the classification stage. Since the num-

ber of CARs increases when the Netconf threshold decreases and the smallest

Netconf threshold value that avoids ambiguity in the classification stage is 0.5,

then in our classifier we use this value as Netconf threshold.
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3.2 CAR-CA algorithm

In order to generate the set of CARs, we propose an algorithm, called CAR-

CA, which is a modification of the frequent itemset mining algorithm CA [18],

which according to the experiments shown in [18], outperforms other efficient

algorithms for mining frequent itemsets, as Apriori (used in CBA), Fp-growth

(used in CMAR), Eclat (used in MCAR) and TFP (used in TFPC).

CAR-CA uses a new equivalence relation to group the CARs and bit-to-

bit operations for fast computing Supports and in this way to speedup CAR

computing employing the Netconf measure.

In [40], for mining ARs the authors propose partitioning the itemset space

into equivalence classes grouping itemsets of the same size k which have a com-

mon (k − 1)-length prefix. An equivalence class grouping k-itemsets will be

denoted as ECk. In CAR-CA, unlike the algorithm proposed in [40] we con-

sider each predefined class c ∈ C as another item and we propose to divide the

CAR space into equivalence classes defined by the following equivalence rela-

tion: “The CARs of size k that share the consequent (the same class) and the

first k − 2 items of the antecedent (which has k − 1 items) belong to the same

equivalence class”. In Fig. 1 we show graphically this equivalence relation.

In order to take advantage of bit-to-bit operations we represent the dataset

as anm x n binary matrix beingm the number of transactions and n the number

of items including the class item. The binary values 1 and 0 denote the presence

or absence of an item in a transaction, respectively. Each column, associated to

an item j, can be compressed and represented as an integer array Ij , as follows:

Ij = {W1,j ,W2,j , . . . ,Wq,j}, q = ⌈m/32⌉ (11)

where each integer of the array represents 32 transactions (in a 32 bit architec-

ture).
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Previous algorithms developed for CAR mining need extra operations or ex-

tra dataset scans to compute the Support of rule antecedents. Our proposal

avoids these extra operations; for that, it iteratively generates a list LECk
rep-

resenting the equivalence classes containing k-CARs, whose elements have the

next format:

⟨c, AntPrefk−2, IAAntPrefk−2
, AntSuff⟩, (12)

where c is the consequent of the grouped CARs, AntPrefk−2 is the (k − 2)-

itemset that is common to all the antecedents of the grouped CARs (antecedent’s

prefix), AntSuff is the set of all items j which can extend AntPrefk−2 (an-

tecedent suffixes), where j is lexicographically greater than each item in the an-

tecedent prefix, and IAAntPrefk−2
is an array of pairs (value, id), with value > 0

and 1 ≤ id ≤ q, that is built by intersecting (using AND operations) the arrays

Ij , where j belongs to AntPrefk−2. The IA arrays store the Support of the

antecedent prefix of each equivalence class ECk, which is used to compute the

Support of the rule antecedent of each CAR in ECk. If k is large, the number

of elements of IA is small because the AND operations generate null integers,

and null integers are not stored because they do not have influence neither over

the Support nor over the Netconf. The procedure for obtaining IA is as follows:

Let i and j be two items, then:

IA{i}∪{j} = {(Wk,i & Wk,j , k) | (Wk,i & Wk,j) ̸= 0, k ∈ [1, q]} (13)

now let X be an itemset and j be an item, then:

IAX∪{j} = {(b & Wk,j , k) | (b, k) ∈ IAX , (b & Wk,j) ̸= 0, k ∈ [1, q]} (14)

In order to compute the Support of an itemset X with an integer-array IAX ,
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the expression (15) is used:

Sup(X) =
∑

(b,k)∈IAX

BitCount(b) (15)

where BitCount(b) is a function that calculates the Hamming weight of b. The

Netconf (Eq. 7) can be easily computed taking into account the format used to

store the equivalence classes, see (12), and using the equations (13), (14) and

(15).

To illustrate the overall CAR mining process, suppose that we have the

equivalence class E = ⟨c1, i1i2, IAi1i2 , {i3, i4, . . .}⟩, which stores CARs of size

4 (E ∈ EC4) i.e. i1i2i3 ⇒ c1, i1i2i4 ⇒ c1, etc. For simplicity, we assume a

4-bit architecture and we show, in Fig. 2, the arrays Ic1 , Ii3 and Ii4 for only 16

transactions (four blocks of four transactions each one). Additionally, we show

the pairs (value, id) resulting from the intersection of the arrays Ii1 and Ii2 (see

IAi1i2 in Fig. 2).

In Fig. 3, we show the steps for building the equivalence classes of EC5 from

the equivalence class E. In the first step, see Fig. 3(a), the IAi1i2i3 array is

obtained by intersecting (using AND operations) the Ii3 array with the values

stored in IAi1i2 , only the blocks with equal id are intersected. The IAi1i2i3

array stores the support of i1i2i3, which can be computed as BitCount(6) = 2

(Eq. 15). In the second step, see Fig. 3(b), the IAi1i2i3i4c1 array is obtained

in analogous way and the support of the rule i1i2i3i4 ⇒ c1 can be computed

as BitCount(4) = 1. If Netconf(i1i2i3i4 ⇒ c1) satisfies the Netconf threshold

then the equivalence class ⟨c1, i1i2i3, IAi1i2i2 , {i4, . . .}⟩ is built.

Using integer arrays, CAR-CA avoids extra operations or extra dataset scans

to compute rule antecedent Supports, which increases its efficiency. At first

sight, the use of integer arrays seems to require more memory than other clas-

sifiers but it is not true. The number of elements of the integer arrays stored
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by CAR-CA decreases rapidly because they are built using AND operations,

which generate a lot of null integers, and null integers are not stored by our

algorithm.

The efficiency of CAR-CA is based on two main features: the efficient use of

equivalence classes and the efficient use of bit-to-bit operations for computing

the Netconf of a CAR.

Recent algorithms for mining the set of CARs [15, 35, 36, 37] prune the

CAR search space each time a CAR satisfying the Support and Confidence

thresholds is found, it produces general (small) rules, with high Confidence. In

our algorithm, instead of pruning the CAR search space when a CAR satisfies

the Netconf threshold, we propose the following pruning strategy: If a candidate

CAR X ⇒ c does not satisfy the Netconf threshold we do not extended the CAR

anymore avoiding to explore this part of the CAR search space in vain, i.e., we

prune the CAR search space avoiding to generate candidate CARs from CARs

that do not satisfy the Netconf threshold. Otherwise, if the candidate CAR

X ⇒ c satisfies the Netconf threshold we follow extending it while Netconf(X∪

{i} ⇒ c) is greater than or equal to Netconf(X ⇒ c), thus we allow to obtain

more specific rules (large rules) with high Netconf.

The pseudo code of CAR-CA is shown in Algorithm 1.

In line 3 of Algorithm 1, the 1-itemsets are calculated. In line 5, the equivalence

classes of size 2 for each class c are built. In lines 7− 15, each equivalence class

of size 2 is processed using the ECGen function.

The ECGen function takes, as an argument, an equivalence class of size

k − 1 and generates a set of equivalence classes of size k (see Algorithm 2).

The equivalence classes generated by ECGen only contain CARs with Netconf

greater than 0.5.
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Algorithm 1: CAR-CA

Input: Training dataset in binary representation
Output: Set of CARs

Answer = ∅1

C = {Set of pre-defined classes}2

L = {1-itemsets}3

forall c ∈ C do4

ECGen(⟨{c}, ∅, NULL, {L}⟩, LEC2
= ∅)5

Answer = Answer ∪ LEC26

k = 37

LECk
= ∅, LECk+1

= ∅, . . .8

while LECk−1
̸= ∅ do9

forall ec ∈ LECk−1
do10

ECGen(ec, LECk
) // ec is in < . . . > format11

end12

Answer = Answer ∪ LECk
13

k = k + 114

end15

end16

return Answer17

Algorithm 2: ECGen

Input: An EC in ⟨c, AntPref, IAAntPref , AntSuff⟩ format
A set of equivalence classes ecSet

Output: The updated set of equivalence classes ecSet

forall i ∈ AntSuff do1

AntPref ′ = AntPref ∪ {i}2

IAAntPref ′ = IAAntPref ∪{i}∪{c}3

AntSuff ′ = ∅4

forall (i′ ∈ AntSuff) and (i′ lexicographically greater than i) do5

NC = Netconf(AntPref ′ ⇒ c)6

NC ′ = Netconf({AntPref ′ ∪ {i′}} ⇒ c)7

if NC ′ > 0.5 and NC ′ >= NC then8

AntSuff ′ = AntSuff ′ ∪ {i′}9

end10

end11

if AntSuff ′ ̸= ∅ then12

ecSet = ecSet ∪ {⟨c, AntPref ′, IAAntPref ′ , AntSuff ′⟩}13

end14

end15

return ecSet16

22



3.3 Ordering and Classifying

Once the set of CARs has been generated, using the CAR-CA algorithm, the

CAR list is sorted. As mentioned earlier, for classifying, we will use specific

(large) rules with high Netconf; for this purpose, we propose sorting the set of

CARs in a descending order according to the size of the CARs (the largest first)

and in case of tie, we sort the tied CARs in a descending order according to

their Netconf (the highest values first).

The intuition behind this ordering is that more specific rules should be pre-

ferred before more general rules because in general more specific rules have a

higher Netconf than general rules. In case of tie in size, rules with high Net-

conf valued should be preferred before rules with low Netconf value. Remember

that a rule with high Netconf value has a high positive dependence between its

antecedent and its consequent (the class) therefore, it is a good predictor. For

example, in table 3(a), we have a classifier with three CARs, which are sorted by

the criterion of the most general first. Given the transaction {i1, i2, i3, i4, i5, i6},

using the “Best rule” mechanism, this transaction would be classified as belong-

ing to class c1 when intuitively class c2 or c3 would be more likely to be the

correct class because the rules {i1i2i3} ⇒ c2 and {i4i5i6} ⇒ c3 take into account

three of the six items of the transaction, while the rule {i1} ⇒ c1 only consid-

ers the item i1. In table 3(b), we show the same three CARs but sorted with

our ordering strategy, more specific rules first and in case of tie in size, highest

Netconf values first. Therefore, given the transaction {i1, i2, i3, i4, i5, i6}, our

classifier assigns the class c3 because the rule {i4i5i6} ⇒ c3 has the same size

that the rule {i1i2i3} ⇒ c2 but the former has a grater Netconf value.

For classifying unseen transactions, we decided to follow the “Best K rules”

satisfaction mechanism, because, as it was explained above, the “Best rule”

mechanism could suffer biased classification or overfitting since the classification
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is based on only one rule; and the “All rules” mechanism takes into account rules

with low ranking, which affects the accuracy of the classifier. Algorithms 3 and 4

show the pseudo code of the training phase and classification phase respectively:

Algorithm 3: CAR-NF (training phase)

Input: training dataset db
Output: the classifier

Answer = ∅1

CARs = CAR-CA(db)2

Answer = Ordering CARs(CARs)3

return Answer4

Algorithm 4: CAR-NF (classification phase)

Input: set of sorted CARs, unseen transaction t
Output: the assigned class

Answer = ∅1

BestK = Select BestK(t)2

Answer = Classify(BestK)3

return Answer4

In the training phase (Alg. 3), the CAR − CA function computes the set

of CARs from the training dataset. After, the Ordering CARs function sorts

the set of CARs in a descending order according to the size of the CARs and if

there is a tie, in a descending order according to the Netconf.

In the classification phase (Alg. 4), to classify an unseen transaction t, for

each class, the “best K rules” covering t are selected (Select BestK function),

and a class is assigned according to the average of the Netconf values (Classify

function). If there is a tie, one of the tied classes is randomly assigned. If no

rule covers t, unlike other evaluated classifiers which assign the majority class,

our classifier refuses to classify t, and such abstentions are counted as errors.

This is done in order to avoid hiding uncovered transactions.
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4 Experimental results

In this section, we report some experimental results where the CAR-NF clas-

sifier is compared against the main classifiers based on CARs reported in the

literature: CBA [22], CMAR [21], CPAR [38], TFPC [15] and HARMONY [32].

Other good classifiers like RCBT [16] and DDPMine [11] were not included in

our experiments because of the authors of these works did not provide the pro-

grams of their algorithms, which can not be implemented based on the details

provided in [11] and [16]. Besides, the first one was evaluated using only four

gene expression datasets, which were not provided by the authors; and the sec-

ond one was evaluated using only 8 unusual datasets from the UCI repository.

The codes of CBA, CMAR, CPAR and TFPC were downloaded from the

Frans Coenen’s homepage (http://www.csc.liv.ac.uk/∼frans) and for HAR-

MONY, we used the accuracy values reported in [32]. In classification, the

accuracy of a classifier depends on the number of transactions correctly classi-

fied and is computed as:

Accuracy =
T

S

where T is the number of transactions correctly classified, and S is the total

number of transactions presented to the classifier.

All our experiments were done using ten-fold cross-validation, reporting the

average over the ten folds. Our tests were performed on a PC with an Intel

Core 2 Duo at 1.86 GHz CPU with 1 GB DDR2 RAM, running Windows XP

SP2.

In the same way as in other works [15, 21, 22, 38], experiments were con-

ducted using several datasets, 20 in our case. The chosen datasets (see char-

acteristic in Table 4) were originally taken from the UCI Machine Learning
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Repository [4], and their numerical attributes were discretized by the author of

[13] using the LUCS-KDD discretized/normalized ARM and CARM Data Li-

brary. The discretization technique used in LUCS-KDD is different from those

used in [15, 21, 22, 38]; thus, our results reported in tables 6, 7 and 8 are dif-

ferent from previous studies, even for the same classifier and the same dataset

[33]. However, in table 9, we show a comparison of the accuracies obtained by

our classifier, CAR-NF, against the best reported accuracies of all the other

evaluated classifiers.

For CBA, CMAR, CPAR and TFPC classifiers we used the Confidence

threshold set to 50% and the Support threshold set to 1%, as their authors

suggested because, after testing these classifiers with different threshold values

as it is shown in table 5, the best results, appearing bold faced, were obtained

for Support = 1% and Confidence = 50%, i.e., we obtained the same results as

those reported by Coenen in [15]. In [32], the authors of HARMONY obtained

the best results using a support threshold of 50%. In CAR-NF we used the

Netconf threshold set to 0.5 (equivalent to 75% if we map Netconf from [−1, 1]

to [0, 1]) based on proposition 6 and in our previous analysis in section 3.1.

For classifying a new transaction we used the “Best K rules” satisfaction

mechanism (section 2), which selects the best K rules per class (we used K=5

as in the other evaluated classifiers) satisfying the transaction to be classified,

and later, the K rules having the greatest average Netconf determine the class

that will be assigned to the new transaction.

In Table 6, the results show that CAR-NF yields an average accuracy higher

than the other evaluated classifiers, having in average a difference in accuracy

(average difference) of more than 1.5% with respect to the classifier in the second

place. Table 7 shows for each dataset the differences between the accuracy of

each classifier and the accuracy of the classifier in the first place (accuracy
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differences), Table 8 shows the position obtained, from 1 to 6, by each classifier

according to its accuracy value (ranking position), i.e. the best average in the

first place, the second best average in the second place and so on.

Analyzing these tables, we can see that CBA had the worst performance

in average accuracy and average difference w.r.t. the best classifier while it

had a good performance in average ranking; this is because, although CBA had

low accuracy for some datasets (e.g. letRecog, ionosphere and mushroom), it

reached the first or second place in 10 of the 20 datasets, as opposed to CMAR,

which had a good average accuracy but a poor average ranking.

For CAR-NF, we can see that it was the best in accuracy as well as in average

difference w.r.t. the best classifier; obtaining the best average ranking position.

The classifier with the second best performance was HARMONY. HARMONY

was the second best in average accuracy and average difference w.r.t. the best

classifier; and it shared with CBA the second place in average ranking position.

Although the original implementations of CBA, CMAR and CPAR use dif-

ferent discretization/normalization techniques, we consider interesting to show,

in Table 9, a comparison of the accuracies obtained by CAR-NF against the

best reported accuracies of all the evaluated classifiers. In the case of HAR-

MONY, the authors did not report which technique was used for discretiza-

tion/normalization. Notice that, for this comparison, we used only 15 datasets

because there are not values reported, for all classifiers, in the other datasets.

Despite the discretization/normalization technique is not the same, CAR-NF

obtains the best average accuracy being 2.1% better than the second best.

5 Conclusions

In this paper, we have proposed an accurate classifier based on CARs. This clas-

sifier, called CAR-NF, introduces a new strategy for computing CARs, using the
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Netconf as measure of interest, which allows pruning the CAR search space for

obtaining specific rules with high Netconf (greater than 0.5 which corresponds

to greater than 0.75 if we map Netconf from [−1, 1] to [0, 1]). We also prove

that the Netconf measure satisfies several desirable properties that a good rule

quality measure should satisfy; additionally, we propose and prove a proposition

that supports the use of a Netconf threshold equal to 0.5 for generating rules

that avoid ambiguity at the classification stage. Besides, we propose a new way

for ordering the set of CARs using the CAR size and the Netconf value.

The experimental results show that CAR-NF has better performance than

CBA, CMAR, CPAR, TFPC and HARMONY classifiers. In general, CAR-NF

has the best classification accuracy.

As future work, we are going to study the problem of producing rules with

multiple labels, it means rules with multiple classes in the consequent. This

kind of rules could be useful for problems where some transactions can belong

to more than one class.
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Table 1: (a) Transactional dataset D and (b) Supports of several itemsets in D.

(a) (b)

Tid i1 i2 i3 Itemset Support
t1 1 0 0 {i1} 0.5
t2 0 0 1 {i2} 0.5
t3 1 1 1 {i1i2} 0.25
t4 0 1 1

Table 2: Different ways in which two itemsets can appear in a dataset.

Transactions Support
¬X ¬Y 0.1
¬X Y 0.5
X Y 0.3
X ¬Y 0.1
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Fig. 1: CARs search space grouped in equivalence classes.
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Fig. 3: Obtaining the equivalence classes of EC5 from an equivalence class
storing 4-CARs.

Table 3: Example of CARs ordering strategies.

(a) More general rules first (b) More specific rules first

# CAR Netconf # CAR Netconf
1 {i1} ⇒ c1 0.75 1 {i4i5i6} ⇒ c3 0.75
2 {i4i5i6} ⇒ c3 0.75 2 {i1i2i3} ⇒ c2 0.70
3 {i1i2i3} ⇒ c2 0.70 3 {i1} ⇒ c1 0.75
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Table 4: Tested dataset characteristics.
Dataset # instances # items # classes

adult 48842 97 2
anneal 898 73 6
breast 699 20 2

connect4 67557 129 3
dematology 366 49 6

ecoli 336 34 8
flare 1389 39 9
glass 214 48 7
heart 303 52 5

hepatitis 155 56 2
horseColic 368 85 2
ionosphere 351 157 2

iris 150 19 3
led7 3200 24 10

letRecog 20000 106 26
mushroom 8124 90 2
pageBlocks 5473 46 5
penDigits 10992 89 10

pima 768 38 2
waveform 5000 101 3

Table 5: Average accuracy of each algorithm over tested datasets, for different
threshold values.

% support / % confidence
Classifier 1/40 1/50 1/60 10/40 10/50 10/60 20/40 20/50 20/60

CBA 70.26 72.41 69.38 68.42 68.76 66.35 41.67 41.73 40.68
CMAR 74.33 77.63 73.15 71.98 72.06 70.15 43.02 43.65 41.85
CPAR 74.12 76.58 73.26 71.44 71.68 70.01 44.21 44.30 42.92
TFPC 72.21 75.46 71.87 71.25 71.31 69.40 41.88 42.15 39.76
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Table 6: Classification accuracy.
Dataset CBA CMAR CPAR TFPC HARMONY CAR-NF

adult 84.21 79.72 77.24 80.79 81.90 83.42
anneal 94.65 89.09 94.99 88.28 91.51 93.43
breast 94.09 88.84 92.95 89.98 92.42 85.26

connect4 66.67 64.83 65.15 65.83 68.05 62.18
dematology 80.00 82.92 80.08 76.30 62.22 78.78

ecoli 83.17 77.01 80.59 58.53 63.60 82.36
flare 84.23 83.30 64.75 84.30 75.02 86.31
glass 68.30 74.37 64.10 64.09 49.80 67.89
heart 57.33 55.36 55.03 51.42 56.46 56.79

hepatitis 57.83 81.16 74.34 81.16 83.16 85.87
horseColic 79.24 80.06 81.57 79.06 82.53 83.25
ionosphere 31.64 89.61 89.76 86.05 92.03 84.34

iris 94.00 92.33 94.70 95.33 93.32 96.67
led7 66.56 72.31 71.38 68.71 74.56 74.53

letRecog 28.64 26.25 28.13 27.57 76.81 71.14
mushroom 46.73 100.00 98.52 99.03 99.94 99.52
pageBlocks 90.94 87.98 92.54 89.98 91.60 92.44
penDigits 87.39 82.48 80.39 81.73 96.23 78.04

pima 75.03 72.85 74.82 74.36 72.34 77.65
waveform 77.58 72.22 70.66 66.74 80.46 74.68

Average 72.41 77.63 76.58 75.46 79.20 80.73

Table 7: Differences of accuracies respect to the best classifier.
Dataset CBA CMAR CPAR TFPC HARMONY CAR-NF

adult 0.00 4.49 6.97 3.42 2.31 0.79
anneal 0.34 5.90 0.00 6.71 3.48 1.56
breast 0.00 5.25 1.14 4.11 1.67 8.83

connect4 1.38 3.22 2.90 2.22 0.00 5.87
dematology 2.92 0.00 2.84 6.62 20.70 4.14

ecoli 0.00 6.16 2.58 24.64 19.57 0.81
flare 2.08 3.01 21.56 2.01 11.29 0.00
glass 6.07 0.00 10.27 10.28 24.57 6.48
heart 0.00 1.97 2.30 5.91 0.87 0.54

hepatitis 28.04 4.71 11.53 4.71 2.71 0.00
horseColic 4.01 3.19 1.68 4.19 0.72 0.00
ionosphere 60.39 2.42 2.27 5.98 0.00 7.69

iris 2.67 4.34 1.97 1.34 3.35 0.00
led7 8.00 2.25 3.18 5.85 0.00 0.03

letRecog 48.17 50.56 48.68 49.24 0.00 5.67
mushroom 53.27 0.00 1.48 0.97 0.06 0.48
pageBlocks 1.60 4.56 0.00 2.56 0.94 0.10
penDigits 8.84 13.75 15.84 14.5 0.00 18.19

pima 2.62 4.80 2.83 3.29 5.31 0.00
waveform 2.88 8.24 9.80 13.72 0.00 5.78

Average 11.66 6.44 7.49 8.61 4.88 3.35
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Table 8: Ranking position based on accuracy.
Dataset CBA CMAR CPAR TFPC HARMONY CAR-NF

adult 1 5 6 4 3 2
anneal 2 5 1 6 4 3
breast 1 5 2 4 3 6

connect4 2 5 4 3 1 6
dematology 3 1 2 5 6 4

ecoli 1 4 3 6 5 2
flare 3 4 6 2 5 1
glass 2 1 4 5 6 3
heart 1 4 5 6 3 2

hepatitis 5 3 4 3 2 1
horseColic 5 4 3 6 2 1
ionosphere 6 3 2 4 1 5

iris 4 6 3 2 5 1
led7 6 3 4 5 1 2

letRecog 3 6 4 5 1 2
mushroom 6 1 5 4 2 3
pageBlocks 4 6 1 5 3 2
penDigits 2 3 5 4 1 6

pima 2 5 3 4 6 1
waveform 2 4 5 6 1 3

Average 3.05 3.90 3.60 4.45 3.05 2.80

Table 9: Comparison of the accuracies obtained by CAR-NF against the best
accuracies reported by the methods CBA, CMAR, CPAR, TFPC and HAR-
MONY.

Dataset CBA-R CMAR-R CPAR-R TFPC-R HARMONY-R CAR-NF

adult 84.20 80.10 76.70 80.80 81.90 83.42
anneal 97.90 97.30 98.40 88.30 91.51 93.43
ecoli 83.17 77.01 80.59 58.53 63.60 82.36
flare 84.20 84.30 64.75 84.30 75.02 86.31
glass 73.90 70.10 74.40 64.50 49.80 67.89
heart 81.90 82.20 82.60 51.40 56.46 56.79

hepatitis 81.80 80.50 79.40 81.20 83.16 85.87
horseColic 82.10 82.60 84.20 79.10 82.53 83.25

iris 94.70 94.00 94.70 95.30 93.32 96.67
led7 71.90 72.50 73.60 57.30 74.56 74.53

letRecog 28.64 25.50 28.13 26.40 76.81 71.14
mushroom 46.70 100.00 98.52 99.00 99.94 99.52
pageBlocks 90.90 90.00 92.54 90.00 91.60 92.44

pima 72.90 75.10 73.80 74.40 72.34 77.65
waveform 80.00 83.20 80.90 74.40 80.46 74.68

Average 76.99 79.63 78.88 73.66 78.20 81.73

38

View publication statsView publication stats

https://www.researchgate.net/publication/233886206

