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ABSTRACT
We explore the possibility of setting stringent constraints to the dark energy equation of state
using alternative cosmic tracers like (a) the Hubble relation using H II galaxies, which can be
observed at much higher redshifts (z � 3.5) than those currently traced by Type Ia supernovae
(SNeIa) samples, and (b) the large-scale structure using the clustering of X-ray selected active
galactic nuclei (AGN), which have a redshift distribution peaking at z ∼ 1.

In this paper we use extensive Monte Carlo simulations to define the optimal strategy for the
recovery of the dark energy equation of state using the high-redshift (z � 2) Hubble relation,
but accounting also for the effects of gravitational lensing, which for such high redshifts can
significantly affect the derived cosmological constraints. We investigate the size of the sample
of high-z H II galaxies needed to provide useful constraints in the dark energy equation of
state. Based on a ‘figure of merit’ analysis, we provide estimates for the number of 2 �
z � 3.5 tracers needed to reduce the cosmological solution space, presently provided by the
Constitution SNIa set, by a desired factor. The analysis is given for any level of rms distance
modulus uncertainty and we find that an expected reduction (i.e. by ∼20–40 per cent) of the
current level of H II-galaxy-based distance modulus uncertainty does not provide a significant
improvement in the derived cosmological constraints. It is much more efficient to increase the
number of tracers than to reduce their individual uncertainties.

Finally, we propose a framework to put constraints on the dark energy equation of state by
using the joint likelihood of the X-ray AGN clustering and of the Hubble relation cosmological
analyses. A preliminary joint analysis using the X-ray AGN clustering of the 2XMM survey
and the Hubble relation of the Constitution SNIa set provide �m = 0.31 ± 0.01 and w = −1.06
± 0.05. We also find that the joint SNIa–2XMM analysis provides significantly more stringent
cosmological constraints, increasing the figure of merit by a factor of ∼2, with respect to that
of the joint SNIa–baryonic acoustic oscillation analysis.

Key words: galaxies: active – galaxies: starburst – cosmological parameters – dark energy –
large-scale structure of Universe – X-rays: galaxies.

1 IN T RO D U C T I O N

We live in a very exciting period for our understanding of the cos-
mos. Over the past decade the accumulation and detailed analyses of

�E-mail: mplionis@astro.noa.gr

high-quality cosmological data [e.g. Type Ia supernovae (SNeIa),
cosmic microwave background (CMB) temperature fluctuations,
galaxy clustering, high-z clusters of galaxies, etc.] have strongly
suggested that we live in a flat and accelerating universe, which
contains at least some sort of cold dark matter (CDM) to explain the
clustering of extragalactic sources, and an extra component which
acts as having a negative pressure, as for example the energy of
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the vacuum [or in a more general setting the so-called dark energy
(DE)], to explain the observed accelerated cosmic expansion (e.g.
Riess et al. 1998, 2004; Perlmutter et al. 1999; Schuecker et al.
2003; Spergel et al. 2003, 2007; Tonry et al. 2003; Allen et al. 2004;
Tegmark et al. 2004; Basilakos & Plionis 2005, 2006, 2009, here-
after BP09; Seljak et al. 2005; Blake et al. 2007; Davis et al. 2007,
hereafter D07; Riess et al. 2007; Wood-Vasey et al. 2007; Kowalski
et al. 2008; Hicken et al. 2009; Komatsu et al. 2009; Amanullah
et al. 2010, etc.).

Because of the absence of a well-motivated fundamental theory,
there have been many theoretical speculations regarding the nature
of the DE, on whether it is a cosmological constant or a field that
provides a time varying equation of state, usually parametrized by

pQ = w(z)ρQ, (1)

with pQ and ρQ the pressure and density of the exotic DE fluid. For
a large class of DE models, we have

w(z) = w0 + w1f (z), (2)

with w0 = w(z = 0) and f (z) an increasing function of redshift.
A particular example of w(z) is its first-order Taylor’s expansion
around w(0), which provides f (z) = z/(1 + z), i.e. the so-called
CPL form of the DE equation of state (Chevallier & Polarski 2001;
Linder 2003; see also Peebles & Ratra 2003; Dicus & Repko 2004;
Wang & Mukherjee 2006). Of course, it could also be conceived
that the equation of state parameter does not evolve cosmologically
[quintessence dark energy (QDE) model].

It is clear that one of the most important questions in cosmology
and cosmic structure formation is related to the nature of DE (as well
as whether it is the sole explanation of the observed accelerated ex-
pansion of the Universe) and its interpretation within a fundamental
physical theory (e.g. Albrecht et al. 2006; Peacock et al. 2006). To
this end, a large number of very expensive experiments are proposed
and/or are at various stages of development, viz. the Dark Energy
Survey: http://www.darkenergysurvey.org/, the Joint Dark En-
ergy Mission: http://jdem.gsfc.nasa.gov/, the Hobby–Eberly Tele-
scope Dark Energy Experiment: http://www.as.utexas.edu/hetdex/,
the Panoramic Survey Telescope and Rapid Response System:
http://pan-starrs.ifa.hawaii.edu, Euclid: http://sci.esa.int/euclid/,
Wfirst: http://wfirst.gsfc.nasa.gov, etc.

Therefore, the paramount importance of the detection and quan-
tification of DE for our understanding of the cosmos and for funda-
mental theories implies that the results of the different experiments
should not only be scrutinized, but alternative, even higher risk,
methods to measure DE should be developed and applied as well.
It is within this paradigm that our current work falls. Indeed, we
wish to constrain the DE equation of state using, individually and
in combination, the Hubble relation and large-scale structure (clus-
tering) methods, but utilizing alternative cosmic tracers for both of
these components.

Thus, we will trace the Hubble relation using H II galaxies, which
can be observed at higher redshifts than reached by current SNIa
surveys to distances where the Hubble relation is more sensitive
to the cosmological parameters. The H II galaxies can be used as
standard candles (Melnick, Terlevich & Terlevich 2000; Melnick
2003; Siegel et al. 2005; Plionis et al. 2009) due to the correla-
tion between their velocity dispersion, Hβ luminosity and metallic-
ity (Melnick 1978; Terlevich & Melnick 1981; Melnick, Terlevich
& Moles 1988). Furthermore, the use of such alternative high-z
tracer will enable us to check the SNIa results and lift any doubts
that arise from the fact that they are the only tracers of the Hub-
ble relation used to-date [for possible usage of gamma-ray bursts

(GRBs) see e.g. Ghirlanda, Ghisellini & Firmani 2006; Basilakos &
Perivolaropoulos 2008; Ghirlanda 2009, and references therein].1

Additionally, we use X-ray selected active galactic nuclei (AGN)
at a median redshift of ∼1, which is roughly the peak of their redshift
distribution (see Basilakos et al. 2004, 2005; Miyaji et al. 2007), in
order to determine their clustering pattern and compare it with that
predicted by different cosmological models (see Matsubara 2004).

Although each of the previously discussed components of our
project (Hubble relation using H II galaxies and angular/spatial clus-
tering of X-ray AGN) will provide interesting and relatively strin-
gent constraints on the cosmological parameters, especially under
our anticipation that we will reduce significantly the corresponding
random and systematic errors, it is the combined likelihood of these
two type of analyses that enables us to break the known degen-
eracies between cosmological parameters and determine with great
accuracy the DE equation of state (see Basilakos & Plionis 2005,
2006; BP09).

Below we present the basic methodology and expectations of the
two components of our method. In Section 2 we present the details
of the first component where we develop a Monte Carlo simulation
approach designed to ultimately provide a rule of thumb of how
many H II galaxies we need to obtain a particular level of the DE
equation of state parameter uncertainty. We also develop a method
to account for the effects of gravitational lensing, which at such
high redshifts are significant. In Section 3 we present the details
of the second component, and in Section 4 we present an example
of joining the two components to provide cosmological constraints.
The conclusions are listed in Section 5.

2 C O S M O L O G I C A L PA R A M E T E R S FRO M TH E
HUBBLE RELATI ON

In the matter-dominated epoch, the Hubble relation depends on the
cosmological parameters via the following equation:

H (z) = H0E(z), (3)

with

E2(z) = �m(1 + z)3 + �k(1 + z)2 + �Q exp

[
3
∫ z

0

1 + w(x)

1 + x
dx

]
,

(4)

which is simply derived from Friedman’s equation. We remind the
reader that �m, �k and �Q(≡ 1 − �m − �k) are the present
fractional contributions to the total cosmic mass-energy density of
the matter, the spatial curvature and DE source terms, respectively.

SNeIa are considered standard candles at peak luminosity and
therefore they have been used not only to determine the Hubble
constant (at relatively low redshifts) but also to trace the curvature

1 GRBs appear to be anything but standard candles, having a very wide
range of isotropic equivalent luminosities and energy outputs. Nevertheless,
correlations between various properties of the prompt emission and in some
cases also the afterglow emission have been used to determine their dis-
tances. A serious problem that hampers a straightforward use of GRBs as
cosmological probes is the intrinsic faintness of the nearby events, a fact
which introduces a bias towards low (or high) values of GRB observables
and therefore the extrapolation of their correlations to low-z events is faced
with serious problems. One might also expect a significant evolution of the
intrinsic properties of GRBs with redshift (also between intermediate and
high redshifts) which can be hard to disentangle from cosmological effects.
Finally, even if a reliable scaling relation can be identified and used, the
scatter in the resulting luminosity and thus distance modulus is still fairly
large.
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of the Hubble relation at high redshifts (see Perlmutter et al. 1998,
1999; Riess et al. 1998, 2004; Tonry et al. 2003; Astier et al. 2006;
D07; Riess 2007; Wood-Vasey et al. 2007; Kowalski et al. 2008;
Hicken et al. 2009; Amanullah et al. 2010; Adak, Bandyopadhyay &
Majumdar 2011; Kim 2011; Li et al. 2011; March et al. 2011; Wang,
Li & Li 2011). In practice one relates the distance modulus of the
SNIa to its luminosity distance, dL, through which the cosmological
parameters enter:

μ = m − M = 5 log dL + 25 (5)

and

dL = c(1 + z)

H0
√

�k
sinh

[√
�k

∫ z

0

dx

E(x)

]
, (6)

which for a flat universe (�k = 0) reduces to

dL = c(1 + z)

H0

∫ z

0

dx

E(x)
. (7)

The main result of numerous studies using this procedure is that
distant SNeIa’s are on average dimmer by ∼0.2 mag than expected
in an Einstein–de Sitter model, which translates in them being ∼10
per cent further away than expected.

The amazing consequence of these results is that we live in an
accelerating phase of the expansion of the Universe, an assertion
that needs to be scrutinized on all possible levels, one of which is to
verify the accelerated expansion of the Universe using alternative
to SNIa’s extragalactic standard candles. Furthermore, the cause
and rate of the acceleration is of paramount importance, i.e. the DE
equation of state is the next fundamental item to search for and to
these directions we hope to contribute with our current project.

2.1 Theoretical expectations

To appreciate the magnitude of the Hubble relation variations due
to the different DE equation of states, we plot in Fig. 1 the relative
deviations of the distance modulus, �μ, of different DE models
from a nominal standard (w = −1) � cosmology (with �m = 0.27
and �� = 0.73), with the relative deviations defined as

�μ = μ� − μmodel. (8)

The parameters of the different models used are shown in Fig. 1.
As far as the DE equation of state parameter is concerned, we
present the deviations from the standard model of two models with
a constant w value and of two models with an evolving equation

of state parameter, utilizing the form of equation (2). In the left-
hand panel of Fig. 1 we present results for selected values of �m,
while in the right-hand panel we use the same DE equations of state
parameters but for the same value of �m(= 0.27) (i.e. we avoid the
�m–w(z) degeneracy).

Three important observations should be made from Fig. 1.

(i) The relative magnitude deviations between the different DE
models are quite small (typically �0.1 mag), which puts severe
pressure on the necessary photometric accuracy of the relevant ob-
servations.

(ii) The largest relative deviations of the distance moduli occur
at redshifts z � 1.5, quite larger than those currently traced by SNIa
samples.

(iii) There are strong degeneracies between the different cosmo-
logical models at redshifts z � 1, and in some models even up
to much higher redshifts [e.g. between the models with (�m, w0,
w1) = (0.31, −1, 0) and (0.29, −1, 0.3); see Fig. 1].

Luckily, as discussed already in the Introduction, such degen-
eracies can be broken by using other cosmological probes [e.g.
the clustering of extragalactic sources, the CMB shift parameter,
baryonic acoustic oscillation (BAO), etc.]. Indeed, current evidence
overwhelmingly show that the total matter content of the universe is
within the range: 0.2 � �m � 0.3, a fact that reduces significantly
the degeneracies between the cosmological parameters.

2.2 Gravitational lensing effects on high-z distance moduli

A potentially important systematic effect that could hinder attempts
to put stringent cosmological constraints via the Hubble relation,
especially when using high-z standard candles (which as we saw
are those precisely that differentiate between DE equations of state)
is related to gravitational lensing by structures intervening between
source and receptor. It is indeed known that the gravitational po-
tential of large-scale structure affects the propagation of light from
high-redshift sources and thus also the distance modulus of simi-
larly high-redshift standard candles (e.g. Holz & Wald 1998; Holz
& Linder 2005, hereafter HL05; Brouzakis & Tetradis 2008 and ref-
erences therein). These studies assume a Robertson–Walker back-
ground superimposing a locally inhomogeneous universe and take
into account both strong and weak lensing effects. The resulting
magnification distribution of a single source over different paths is

Figure 1. Left-hand panel: the expected distance modulus difference between the DE models shown and the reference � model (w = −1) with �m = 0.27.
Right-hand panel: the expected distance modulus differences once the �m–w(z) degeneracy is broken (imposing the same �m value as in the comparison
model).
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non-Gaussian and therefore has a non-trivial effect on its distance
modulus, especially so for the high-z standard candles.

The main characteristics of the magnification probability density
function, P(μa), as derived from a variety of studies based on Monte
Carlo analyses and ray-tracing techniques, is that P(μa) resembles
a lognormal distribution with zero mean (the mean flux of each
source over all possible different paths is conserved, since lensing
does not affect photon numbers), with a mode shifted towards the
demagnified regime and a long tail to high magnification. This im-
plies that most sources will be demagnified, inducing an apparently
enhanced accelerated expansion, while a few will be highly mag-
nified. The effect is obviously stronger for higher redshift sources
since the lower the redshift the less the optical depth of lensing.
Note that although the detailed shape of P(μa) is a function of
the underlying cosmology, density profile and evolutionary phase
of the intervening cosmic structures, the main features discussed
previously remain unaltered (e.g. Wang, Holz & Munshi 2002).

We will therefore model the lensing effect using a lognormal
magnification distribution, according to appendix A of HL05. The
fact that the mean flux, over all different paths of a source, converges
to the unlensed value implies that if we had a large number of
standard candles densely populating all the redshift bins, the lensing
effects would be smoothed out and it would be unnecessary to
correct. However, this is not usually the case and therefore we need
to take lensing into account (especially for the high-z sources).

Two main effects of lensing will be accounted for the following.

(i) The increase of the distance modulus uncertainty by a fur-
ther term due to lensing, σ eff , which was found by HL05 to be a
linear function of redshift with σ eff = 0.093z. For a large number,
N, of paths (or equivalently of sources) the lensing distribution is
approximately Gaussian with variance σ 2

N and although the lensing
distribution of a single path (source) is non-Gaussian, we can define
the effective variance of a single path (or source) as σ 2

eff = Nσ 2
N .

As suggested by HL05 a reasonable σ 2
eff /N contribution to the total

distance modulus variance is given by requiring N � 10 within z
bins of ∼0.1z width. Note that this is the only lensing-dependent
effect that has been taken into account in some of the SNIa-based
analyses (e.g. Kowalski et al. 2008; Amanullah et al. 2010).

(ii) The shift of the mode of the distance modulus distribution to
demagnified values (fainter) due to lensing. This is an effect that
has not yet been taken into account in the SNIa-based studies.

In order to investigate this later effect, and as we have already
pointed out previously, we will use the lognormal approximation
to the magnification distribution due to its nice analytical prop-
erties and its resemblance to the actual magnification distribution

(see HL05). If μa is the source magnification, then its probability
distribution is approximated by

P (μa) = 1

2π

1

Sμa

exp

[
− (ln μa − 〈ln μa〉)2

2S2

]
, (9)

with S2 the variance of ln μa. The mean magnification is given by
〈μa〉 = exp (〈ln μa〉 + S2/2) = 1, implying that 〈ln μa〉 = −S2/2.
Therefore, the probability function is skewed (〈ln μa〉 < 0) and de-
termined by only the S parameter. From equation (9) HL05 derived
the corresponding flux distribution, which is also lognormal, and
then the corresponding magnitude distribution, which is given by

P (m) = 1

σm

√
2π

exp

[
(−m − m0 + b〈ln μa〉)2

2σ 2
m

]
, (10)

with b = 2.5/ln 10 and σ 2
m =σ 2

obs + (bS)2. Therefore, we recapitulate
that the effects of lensing are

(a) an offset of the mean, given by

〈m〉 = m0 + δm, (11)

where m0 is the intrinsic (demagnified) magnitude, and δm =
−b〈ln μa〉 = bS2/2, and

(b) an increase of the variance for which we have that σ 2
eff =

(bS)2 and thus S2 = σ 2
eff /b

2.

Recalling that for large enough sources (N), in relatively small z
bins (∼0.1z), we have that σ 2

eff = Nσ 2
N , we obtain that the magnitude

offset of sources within the redshift bin is given by

δm(z) = σ 2
eff

2bN
= (0.093z)2

2bN
, (12)

and the total source variance

σ 2
m(z) = σ 2

obs + (0.093z)2/N. (13)

In Fig. 2 we plot as an example the magnification, flux and
magnitude probability distributions for the case of a single source
placed at two different redshifts (z = 1 and 3) and for an intrinsic
observational magnitude uncertainty of σ obs = 0.1. The intrinsic flux
of the source is assumed to be 10−17 erg s−1 cm−2 and the intrinsic
apparent magnitude m = 18. The main effects discussed previously
are clearly seen, i.e. a mode offset towards the demagnification
(fainter) regime and an enhanced variance, both increasing with
redshift. In Fig. 3 we plot the expected increase of both the mode
offset and variance (in magnitudes) as a function of redshift for a
single source (left-hand panel). In the right-hand panel of the same
figure we plot the suppression of both quantities as we increase the
source sampling (the case shown corresponds to a source located at
a redshift z = 3).

Figure 2. Probability density function of the lensing magnification (left), flux (middle) and magnitude (right) distributions for a source with intrinsic magnitude
uncertainty of σ int = 0.1 at two different redshifts (thin line corresponds to z = 1, while the thick line to z = 3).
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Figure 3. The mode offset (δm) and effective variance (σ eff ) (a) of a source
as a function of redshift (left-hand panel) and (b) as a function of the number
of sources, N, tracing the same redshift (for this example z = 3).

We will therefore correct statistically the distance moduli of ob-
served standard candles (SNIa, GRBs, H II galaxies, etc.) by sub-
tracting an offset δm(z) from their raw distance modulus (according
to equation 12), within redshift bins of ∼0.1z width and using as
the total distance modulus uncertainty that given by equation (13).

2.3 Best strategy to determine the DE equation of state

2.3.1 Fitting models to the data

We can now proceed with our investigation to find an efficient
strategy to put more stringent constraints on the DE equation of state.
To this end we have decided to re-analyse two recently compiled
SNIa samples, the D07 compilation of 192 SNIa (based on data
from Astier et al. 2006; Riess 2007; Wood-Vasey et al. 2007) and
the Constitution compilation of 397 SNIa (Hicken et al. 2009). Note
that the two samples are not independent since most of the D07 is
included in the Constitution sample.

First, we present in the left-hand panel of Fig. 4 the Constitu-
tion SNIa distance moduli overplotted (red continuous line) with
the theoretical expectation of a flat cosmology with (�m, w) =
(0.27, −1). In the inset we plot the distance moduli difference

Figure 4. SNIa distance moduli as a function of redshift. Inset panel: dis-
tance moduli difference between the best-fitting model (see Table 1) and the
SNIa data. The blue dashed line is the corresponding difference between the
reference (red continuous line) (�m, w) = (0.3, −1.04) and the (�m, w) =
(0.3, −0.85) DE models.

between the SNIa data and the previously mentioned model. To
appreciate the level of accuracy needed in order to put constraints
on the equation of state parameter, we also plot the distance moduli
difference between the reference (�m, w) = (0.27, −1) and the (�m,
w) = (0.27, −0.85) models (continuous red and dashed blue line,
respectively).

We proceed to analyse the SNIa data by defining the usual like-
lihood estimator2 as

LSNIa( p) ∝ exp
[−χ 2

SNIa( p)/2
]
, (14)

where p is a vector containing the cosmological parameters that we
want to fit for, and

χ 2
SNIa( p) =

N∑
i=1

[
μth(zi, p) − μobs(zi)

σi

]2

, (15)

where μth is given by equation (5), zi is the observed redshift and
σ i is the distance modulus uncertainty, which includes the observa-
tional uncertainty and the gravitational lensing variance (see equa-
tion 13). Since in occasions the observational distance modulus
uncertainty has the form μ

+σp

−σn
, i.e. it is non-symmetric (due to its

logarithmic dependence on the flux), we will use a slightly different
weighting scheme in the minimization function that takes into ac-
count the asymmetric observational uncertainty. Following Barlow
(2004), and assuming that the likelihood function of the observed
μ, derived from the theoretical μ( p), is a Gaussian, we can use the
following weighting scheme of the χ 2 function:

σi = σ1 + σ2[μth( p) − μobs], (16)

with σ 1 = 2σ pσ n/(σ p + σ n) and σ 2 = (σ p − σ n)/(σ p + σ n).
Obviously, when σ p = σ n we recover the usual symmetric error
weighting.

In what follows we will constrain our analysis within the frame-
work of a flat (�k = 0) cosmology and therefore p ≡ (�m, w0, w1).
Note that we sample the various parameters on a grid as follows: the
matter density �m ∈ [0.04, 0.64], the equation of state parameter
w ∈ [−2.0, −0.5], while when using a time-dependent equation of
state w0 ∈ [0, −2] and w1 ∈ [−3, 3]. The typical step size that we
use is 0.0015. Note that the uncertainty of each fitted parameter will
be estimated after marginalizing one parameter over the other, pro-
viding as its uncertainty the range for which �χ 2 ≤ 2.3 (2σ ). Such
a definition, however, may hide the extent of a possible degeneracy
between the two fitted parameters and therefore it is important to
visualize the 2D solution space, as indicated in the relevant contour
plots.

2.3.2 Larger numbers?

The first issue that we wish to address is how better have we done
in imposing cosmological constraints by increasing the available
SNIa sample from 181 to 366 (excluding the z < 0.02 SNIa),3 i.e.
more than doubling the sample. Table 1 presents various solutions
using each of the two previously mentioned samples. Note that since
only the relative distances of the SNeIa are accurate and not their
absolute local calibration, we always marginalize with respect to the
internally derived Hubble constant (for methods that do not need to
a priori marginalize over the internally estimated Hubble constant;
see e.g. Wei 2008).

2 Likelihoods are normalized to their maximum values.
3 We use only SNIa with z ≥ 0.02 in order to avoid redshift uncertainties
due to the local bulk flow (e.g. Hudson et al. 1999 and references therein).
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Table 1. Cosmological parameter fits using the SNIa data for a flat prior cosmology. Note that for the case
where p = (�m, w), the indicated uncertainties are estimated by fixing one parameter at its best value and
allowing the other to vary, providing as its uncertainty the range for which �χ2 ≤ 2.3.

D07 Constitution
w �m χ2

min/dof w �m χ2
min/dof

Raw

−1 0.287 ± 0.020 186.721/180 −1 0.285+0.015
−0.014 439.745/365

−1.005 ± 0.076 0.289 ± 0.030 186.721/179 −1.038 ± 0.053 0.300 ± 0.022 439.703/364

Lensing corrected

−1 0.288 ± 0.020 184.775/180 −1 0.284 ± 0.014 438.263/365
−0.995 ± 0.075 0.286 ± 0.030 184.775/179 −1.036 ± 0.053 0.299 ± 0.022 438.229/364

Regarding the fitted parameters uncertainty, we remind the reader
that the definition we use (see above) cannot clearly reveal the extent
of the degeneracy between the two parameters. A possible measure
of such a degeneracy, beyond inspecting the relevant contour plots,
is to also present the whole range of the 1σ contours for each
parameter. For example, the corresponding ranges are �m ∈ [0.11,
0.42] and �m ∈ [0.18, 0.40] for the D07 and Constitution SNIa
data sets, respectively, while the corresponding w ranges are w ∈
[−0.66, −1.48] and w ∈ [−0.78, −1.38].

Although the derived cosmological parameters are consistent be-
tween the two data sets, possibly indicating the robustness of the
method, the corresponding goodness of fit (the reduced χ 2) is sig-
nificantly larger in the case of the Constitution set (1.21 compared to
1.045 of the D07 set). This appears to be the outcome of the different
approaches chosen in order to join the different contributing SNIa
subsets. According to Hicken (private communication) in the case
of the D07 the nearby SNeIa were constrained to provide a χ 2/dof
� 1 by hand, while no such fine-tuning was imposed on the UNION
set (on which the Constitution set is based). A secondary reason
could be that the latter set includes distant SNIa which have typ-
ically larger distance modulus uncertainties, with respect to those
used in D07. Overall, the higher χ 2/dof value of the Constitution
set should be attributed to a typically lower uncertainty in μ. As a
crude test, we have increased by 20 per cent the distance modulus
uncertainty of the Constitution nearby SNIa (z � 0.4) and indeed
we obtain χ 2/dof � 1.07, similar to that of D07. To also test whether
lensing could have a significant effect on the derived cosmological
values, we apply our lensing magnification correction procedure
(see Section 2.2) to both SNIa compilations and find a very small
and insignificant change of the uncorrected for lensing results (see
Table 1, last two rows), but interestingly a slightly better reduced
χ 2 value.

In Fig. 5 we can also see that although the SNIa sample has dou-
bled in size, the well-known banana shape region of the (�m, w)
solution space, indicating the degeneracy between the two cosmo-
logical parameters, is roughly the same for both data sets. However,
there is a reduction of the size of the solution space when using
the Constitution SNIa compilation (see also Table 1) at roughly the
level expected from Poisson statistics.

A first conclusion is therefore that the increase by ∼100 per cent
of the Constitution sample has not broken the degeneracy in the
(�m, w) plane and thus has not provided significantly more strin-
gent constraints to the cosmological parameters. We have further
verified that the larger number of SNIa’s in the Constitution sample
are not preferentially located at low redshifts (see inset panel of
Fig. 5) – in which case we would not have expected more stringent

Figure 5. Cosmological parameter solution space using either of the two
SNIa data sets (Constitution: red shaded contours and D07: black contours).
Contours corresponding to the 1 and 3σ confidence levels are shown (i.e.
plotted where −2lnL/Lmax is equal to 2.30 and 11.83, respectively). Inset
panel: normalized redshift distributions of the two SNIa data sets (the shaded
histogram corresponds to the Constitution set).

cosmological constraints using the latter SNIa sample, but they have
very similar z distributions.

We already have a strong hint, from the previously presented com-
parison between the D07 and Constitution results, that increasing
the number of Hubble relation tracers, covering the same redshift
range and with the current level of uncertainties, as in the avail-
able SNIa samples, does not appear to be an efficient avenue for
providing stringent constraints of the cosmological parameters.

2.3.3 Lower uncertainties or higher z’s

We now resort to a Monte Carlo procedure to investigate which of
the following two directions, that bracket many different possibili-
ties, provide the required more stringent cosmological constraints:

(i) reduce significantly the distance modulus uncertainties of
SNIa, tracing however the same redshift range as the currently
available samples, or

(ii) use tracers of the Hubble relation located at redshifts where
the models show their largest relative differences (z � 2), with
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Figure 6. Comparison between the Constitution SNIa constraints (red
shaded contours) and those derived by a Monte Carlo procedure designed
to closely reproduce them (for clarity we show only contours corresponding
to 1 and 3σ confidence levels). Inset panel: the Constitution SNIa distance
modulus deviations from the best-fitting model (�m, w) � (0.30, −1.01);
see Table 1 – and a random realization of the model deviations (red shaded
histogram).

distance modulus uncertainties comparable to that of the highest
redshift SNeIa (〈σμ〉 � 0.4). At such large redshifts, however, we
expect that the gravitational lensing magnification/demagnification
effects will be significant and therefore we will also use the algo-
rithm presented in Section 2.2 to statistically degrade the intrinsic
source flux and investigate its effects on the derived cosmological
parameters.

The Monte Carlo procedure is based on using the observed high-z
SNIa distance modulus uncertainty distribution (σμ) and a model
to assign random μ deviations from a reference H(z) function, that
reproduces exactly the original banana-shaped contours of the (�m,
w) solution space of Fig. 5, or in the case of the CPL model of
the DE equation of state the corresponding contours in the w0, w1

solution space. Indeed, after a trial and error procedure we have
found that by assigning to each SNIa (using their true redshift) a
distance modulus deviation (δμ) from a reference model having a
Gaussian distribution with zero mean and variance given by the ob-
served 〈σμ〉2, and using as the relevant individual distance modulus
uncertainty the following σ 2

i =
√

(1.2δμi)2 + φ2 (with φ a ran-
dom Poisson deviate within [−0.01, 0.01]) we reproduce exactly
the banana-shaped solution range of the reference model. This can
be seen clearly in Fig. 6, where we plot the original Constitution
SNIa solution space (red shaded contours) and the model solution
space (black contours). In the inset panel we show the distribution
of the true SNIa deviations from the best-fitted model as well as a
random realization of the corresponding model deviations.

Armed with the above procedure we can now address the ques-
tions posed previously. First, we reduce to half the random devia-
tions of the SNIa distance moduli from the reference model (with
the corresponding reduction of the relevant uncertainty, σ i). The
results of the likelihood analysis can be seen in the left-hand panel
of Fig. 7. There is a reduction of the range of the solution space,
but indeed quite a small one. Secondly, we add to the Constitution

SNIa sample, a mock subsample of 76 high-z tracers with a distance
modulus mean uncertainty of 〈σμ〉 � 0.5 (corresponding to that of
the current H II galaxy data) randomly distributed between 2 � z �
3.5, i.e. in a range where the largest deviations between the different
cosmological models occur (see Fig. 1). We now find a significantly
reduced solution space (central panel of Fig. 7), which shows that
indeed by increasing the H(z) tracers by a few tens, at those redshifts
where the largest deviations between models occur, can have a sig-
nificant impact on the recovered cosmological parameter solution
space. If we include the expected lensing degradation of the distance
modulus (according to equation 12), then we observe (right-hand
panel of Fig. 7) a slightly worsening of the solution space, but still
significantly smaller than that of the left-hand panel of Fig. 7.

The main conclusion of the previous analysis is that a more
efficient strategy to decrease the uncertainties of the cosmological
parameters, based on the Hubble relation, is to use standard candles
which trace also the redshift range 2 � z � 3.5. However, in such
a case the effects of gravitational lensing can be severe, especially
for small number of high-z tracers, and therefore it is necessary to
be taken into account.

2.3.4 Figure of merit analysis

In order to study the relation between the number of high-z tracers
used and the corresponding reduction of the cosmological parameter
solution space, we will use the figure of merit (FoM; Bassett 2005;
Albrecht et al. 2006; Bueno Sanchez, Nesseris & Perivolaropoulos
2009), defined as the reciprocal area of the 2σ contour (i.e. where
−2lnL/Lmax = 6.14) in the parameter space of any two degenerate
cosmological parameters [e.g. (�m, w) for the QDE model or (w0,
w1) for the CPL model], and which has been found to be a useful
measure of the effectiveness of a data set in constraining cosmo-
logical parameters. A larger FoM indicates a greater accuracy in
constraining the cosmological parameters.

Here we will use a slightly different quantity, which we call
‘reduction factor’ and is indicated by S, defined as the ratio of the
FoM of the SNIa+high-z Hubble relation solution to that of only
the SNIa (in both cases we use the Constitution set), in order to
study the question of how better can we constrain the cosmological
parameter space, when adding Nhigh-z high-z tracers of the Hubble
relation, with respect to the best current SNIa data set as a function
of the number of high-z tracers. For example a value S = 2 indicates
that the FoM based on the SNIa+high-z Hubble relation is half of
that based on the Constitution SNIa data set, i.e. the 2σ range of the
solution space is reduced by a factor of 2.

In Fig. 8 we present the results of our analysis as a function of
the number of high-z tracers for the QDE model. We present results
only for the realistic lensing degradation case and for two different
values of the distance modulus mean observational uncertainty,
ranging between a pessimistic (〈σμ〉 = 0.5; open circles) and an
optimistic (〈σμ〉 = 0.25; filled points) value.

It is evident that including even a small number of high-z tracers
we can reduce significantly the cosmological parameter solution
space. There is a roughly linear relation between S and the number
of high-z tracers used, Nhigh-z, which depends obviously on the
distance modulus mean uncertainty, 〈σμ〉 and on whether one uses
in addition to the high-z tracers also the lower redshift SNIa data.

It is also interesting to note that the high-z H II galaxies could
constrain cosmological parameters with the level of accuracy pro-
vided by current SNIa data sets (for Nhigh-z � 200) and thus lift
any doubts that arise from the fact that SNeIa are the only reliable
tracers of the Hubble relation used to-date. Of course the above
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Figure 7. Comparison of the model Constitution SNIa constraints (black contours) with those (filled contours) derived by reducing to half their uncertainties
(left-hand panel), with those derived by adding a sample of 76 high-z tracers (2 � z � 3.5) with a distance modulus mean uncertainty of 〈σμ〉 � 0.5 and no
lensing degradation (central panel), and with those by including statistically the expected lensing degradation (right-hand panel). For clarity we show only
contours corresponding to the 1 and 3σ confidence levels.

Figure 8. The ‘reduction’ parameter S, indicating the factor by which we
reduce the 2σ contour area of the cosmological parameters (�m, w) solution
space (QDE model) as a function of the number of high-z tracers (2 < z
< 3.5) of the Hubble relation and for two different values of the mean
intrinsic distance modulus scatter (as indicated in the plot). Circular points
correspond to using the high-z tracers together with the current best SNIa
data set, while the squares to using only the high-z tracers (and a local z
< 0.2 calibration sample). Inset panel: the ‘reduction’ parameter for the
case of using 100 high-z tracers as a function of the mean distance modulus
uncertainty, 〈σμ〉. The lines correspond to logarithmic fits to the data (see
text).

relatively large number of high-z H II galaxies can be significantly
reduced by including an intermediate population of H II galaxies, i.e.
tracing similar depths as the current SNIa samples (z � 1). In such a
case the expected values of S will be intermediate between the only
high-z and SNIa–high-z curves of Fig. 8. For example, a realistic
case of a sample with 80 0.2 < z < 1 and 60 z � 2 H II galaxies and
a rms distance modulus uncertainty of ∼0.35 will provide similar
constraints as the current SNIa based analyses (S � 1).

In order to quantify the previous results and provide a tool to
estimate the number of high-z tracers necessary to reduce the cur-
rent SNIa solution space by a given factor, taking into account the

whole parameter space, we first normalize the S values by that given
for, say, Nhigh-z = 100 (S100). We then quantify how S100 depends
on 〈σμ〉, which is shown in the inset panel of Fig. 8. The continu-
ous curves are logarithmic fits to the data, which are given by the
following equations:

S
QDE
100 �

{
1.87 log10(〈σμ〉−1 + 0.74) + 1.28 SNIa + high-z,

0.44 log10(〈σμ〉−1 + 0.15) + 0.30 only high-z.
(17)

Then, in order to obtain the number of high-z tracers, Nhigh-z, neces-
sary to reduce the cosmological solution space (in the QDE model)
by a factor S, we fit the normalized value S/S100 and find

Nhigh-z �
{

187 S/S100 − 88 SNIa + high-z,

139 S/S100 − 39 only high-z,
(18)

which has a typical uncertainty of σ N � ±5 for both the SNIa+high-
z and only high-z cases. The continuous (red) lines in the left-hand
panel of Fig. 8 are derived from equations (17) and (18) for 〈σμ〉 =
0.25 and 0.5, and it is evident that they reproduce extremely well
the observed S values (points). As an example, we can ask how
many high-z tracers, with say 〈σμ〉 = 0.4, do we need to add to
the current SNIa data set in order to reduce by a factor of 2 (S =
2) the current SNIa QDE solution space. Using equations (17) and
(18) we find Nhigh-z � 80, which drops to ∼60 for 〈σμ〉 = 0.25. It
is therefore interesting to point out that a reduction by a factor of 2
in the distance modulus uncertainty of the high-z tracers (which is
really a non-trivial aim) can be compensated by a relatively small
increase in the number of high-z tracers.

Repeating the previous analysis for the case of an evolving DE
equation of state (CPL; as in equation 2), and after marginalizing
with respect to �m, we also find a reduction of the (w0, w1) solu-
tion space, when we include the high-z tracer subsample (Fig. 9),
but significantly smaller than that of the QDE parametrization. We
can again estimate what is the necessary number of high-z tracers,
Nhigh-z, having a mean distance modulus error of 〈σμ〉, in order
to reduce the cosmological (w0, w1) solution space by a factor S.
Again using a parametrization based on the value of S for Nhigh-z =
100, we have that

SCPL
100 �

{
0.49 log10(〈σμ〉−1 + 0.65) + 1.09 SNIa + high-z,

0.20 log10(〈σμ〉−1 + 0.69) + 0.22 only high-z
(19)
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Figure 9. As in Fig. 8 but for an evolving DE equation of state (CPL model)
and after marginalizing with respect to �m. The input cosmological model
has (�m, w0, w1) = (0.3, −0.98, −0.48). The axes scale has been kept as
in Fig. 8 in order to appreciate the significant reduction of efficiency of the
high-z Hubble relation in providing cosmological constraints for the CPL
model.

and

Nhigh-z �
{

404 S/S100 − 300 SNIa + high-z,

211 S/S100 − 106 only high-z,
(20)

with a typical uncertainty of σ N � ±17 and ±7 for the SNIa+high-
z and only high-z cases, respectively. These results imply than in
order to reduce by a factor of 2 (S = 2) the current SNIa CPL
solution space using high-z tracers with 〈σμ〉 = 0.35, one needs
Nhigh-z � 300 and 1200 for the SNIa+high-z and only high-z tracers
case, respectively. The latter value can be significantly reduced if
we include an intermediate-redshift (0.2 � z � 1) H II sample, as
discussed also for the QDE case previously. For example, using a
sample of 80 such intermediate-z H II galaxies reduces this number
by a factor of 2. In any case, the large number of high-z tracers of the
Hubble expansion, needed to effectively constrain the CPL equation
of state, renders this task rather unrealistic. Therefore, in order to
provide stringent cosmological constraints for the CPL model (i.e.
the values of w0 and w1), it would be necessary (a) to combine the
high-z Hubble relation with that of current SNIa data, and (b) to
join the Hubble relation analysis with other cosmological tests, like
the one that is an integral part of our proposal, i.e. the clustering of
X-ray AGN. Of course other cosmological probes, like BAOs, can
and should be used as well.

We now draw the main conclusions of our Monte Carlo analysis
are as follows.

(i) Even a small number of high-z (2 � z � 3.5) tracers of the
Hubble expansion can reduce significantly the QDE model param-
eter solution space.

(ii) For the case of the CPL model, in order to reduce the (w0,
w1) solution space, provided by the current Constitution SNIa set,
by the same amount as in the corresponding QDM model, one needs
three or more as many high-z Hubble expansion tracers.

(iii) It appears that the effort to reduce significantly the current
level of random distance modulus scatter of H II galaxies is not as

important as it is to increase the number of high-z H II galaxies,
unless one is able to reduce it to 〈σμ〉 � 0.1–0.2 (as can be seen in
the inset panel of Fig. 8).

2.4 A high-z Hubble relation tracer: H II galaxies

H II galaxies, compact extragalactic objects experiencing massive
bursts of star formation, have a high-luminosity per unit mass, in
large part concentrated in a few strong emission lines in the optical
rest frame. This ensures that the first, obvious, requirement for a
standard candle to be usable at very large distances is met.

The potential use of H II galaxies as distance indicators stems from
the fact that as one increases the mass of the young stellar compo-
nent, not only the ionizing output increases, but also the turbulent
velocity of the gas, which is indicative of supersonic motions in the
gas in the stellar gravitational potential, becomes larger. This effect
induces a correlation between the integrated luminosity in a nebular
hydrogen recombination line, e.g. L(Hβ), which is proportional to
the number of ionizing photons, and the linewidth σ .

Terlevich & Melnick (1981) found the first observational con-
firmation of a correlation between Hβ luminosity and line profile
width for giant extragalactic H II regions and H II galaxies, with
residuals that are correlated with the nebular metallicity. Subse-
quent work by Melnick et al. (1987, 1988) was devoted to obtain a
calibration of this correlation in order to make it suitable for distance
measurements.

The distance indicator, defined as Mz = σ 5/(O/H) with O/H the
oxygen abundance of the nebular gas, provides the predicted lumi-
nosity from the relation

log L(Hβ) = log Mz + P0, (21)

where the zero-point P0 = 29.60 was originally defined from a sam-
ple of 14 giant extragalactic H II regions (Melnick et al. 1988) and
from which they obtained H0 = 80 ± 5 km s−1 Mpc−1. Obviously,
a critical prerequisite for using such scaling relations as distance
estimators is an accurate calibration of their zero-points. Note that a
semi-empirical upper limit of σ = 65 km s−1 has been proposed for
suitable galaxies, which can be explained by the requirement that
H II galaxies are powered by clusters of coeval starbursts with their
dynamics dominated by pressure and not rotation.

The L(Hβ)–σ relation has been shown to hold also at large red-
shifts (Koo et al. 1996; Pettini et al. 2001; Erb et al. 2003). Melnick
et al. (2000) showed that H II-like starburst galaxies up to z � 3,
satisfy the L(Hβ)–σ relation, opening the possibility of using the
relation to measure cosmological parameters. They derived the fol-
lowing distance modulus relation for H II galaxies:

μ = 2.5 log(σ 5/FHβ ) − 2.5 log(O/H) − AHβ + Z0, (22)

where FHβ and AHβ are the flux and extinction in Hβ, respectively.
The originally determined zero-point was Z0 = −26.18 and the rms
distance modulus dispersion was found to be ∼0.52 mag. Although,
such an rms uncertainty is larger than what is obtained with SNIa,
the advantage of using H II galaxies is that we can reach a much
larger redshift limit (z ∼ 4 versus z ∼ 1.7).

Using recent galaxy distance determinations we should be able to
better determine the zero-point of the distance indicator, Z0. To this
end we have repeated the original analysis of Melnick et al. (1988,
2000), using Cepheid and RR Lyrae distance determinations and
indeed the rms scatter of the distance indicator relation is reduced
by ∼7 per cent while P0 = 29.44. This results in a reduction by
∼0.42 mag of the zero-point (i.e. Z0 = −26.60), which provides

C© 2011 The Authors, MNRAS 416, 2981–2996
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2990 M. Plionis et al.

results consistent with H0 = 73 km s−1 Mpc−1 (Chávez et al., in
preparation).

It should also be mentioned that there are some systematic ef-
fects than can bias distances obtained with the L(Hβ)–σ relation,
in particular differences in the ages of the stellar populations, con-
tamination from underlying old stellar components, or different
extinction laws. To some extent these effects can be mitigated by
using the equivalent widths of the lines to select only very young
objects, and the use of modern instrumentation that allows a precise
control of the size, orientation and location of the spectrograph slits.
Still the observations remain challenging and require a high level
of planning and control.

We are at the process of completing an investigation of these
effects by using high-resolution spectroscopy of a relatively large
number of Sloan Digital Sky Survey (SDSS) low-z H II galaxies
with a wide range of relevant parameters (Hβ equivalent widths
and luminosities, metal content and local overdensity) in an attempt
to understand systematics and to reduce the scatter of the distance
estimator (Chávez et al., in preparation).

Most high-z H II galaxies known until recently were found in
broad-band searches aimed mostly to search for Lyman break galax-
ies, which means that they generally have relatively strong continua.
Still, a substantial fraction present strong emission lines making
them ideal for our distance estimator (see e.g. Erb et al. 2006a,b)
Furthermore, deep slit-less surveys using the Wide Field Camera
3 (WFC3) on Hubble Space Telescope (HST) and narrow-band fil-
ters at Subaru have revealed substantial numbers of H II galaxies
with large equivalent widths (i.e. strong emission lines and weak
continua) at intermediate and high redshifts (Yamada et al. 2005;
Kazaku, Cowie & Hu 2007; Atek et al. 2010; Nestor et al. 2011;
Straughn et al. 2011; Xia et al. 2011). In all, the present sample
has more than 400 H II galaxies covering the redshift range 0.5 <

z < 3.7 with about 100 in the range 3.0 < z < 3.7 and about 150
at z ∼ 2.

Summarizing, the use of H II galaxies to trace the Hubble relation,
as an alternative to the traditionally used SNIa, is based on the
following facts.

(a) Local and high-z H II galaxies define a phenomenological
relation between Hβ luminosity, velocity dispersion and metallicity
as traced by O/H that holds out to cosmological distances. Thus, H II

galaxies can be used as alternative tracers of the Hubble expansion.
(b) H II galaxies can be readily observed at much larger redshifts

than those currently probed by SNIa samples.
(c) It is at such higher redshifts that the differences between

the predictions of the different cosmological models appear more
vividly (see Fig. 1).

A more recent application using 15 starburst galaxies with red-
shift in the range z = 2.17–3.39 has been carried out by Siegel et al.
(2005) in an attempt to constrain cosmological parameters, but the
resulting constraints are rather weak. They found �m = 0.21+0.30

−0.12

for a �-dominated Universe. Clearly, the errors are still large, and
up to this point the results are not competitive with SNIa.

We have performed our own re-analysis of this data set, following
a similar procedure to that applied to the SNIa data in the previous
sections, but using the newly derived value of Z0 in equation (22),
allowing for the asymmetric uncertainties of the H II-galaxy dis-
tance moduli and correcting for the effects of gravitational lensing,
according to Section 2.2. Furthermore, we have updated the values
of the stellar velocity dispersion and its uncertainty, for some of the
galaxies in the Siegel et al. sample, according to Erb et al. (2006a).

Table 2. Cosmological parameter fits us-
ing the Siegel et al. H II galaxies and the
newly derived zero-point Z0 (equation 22).
The QDE equation of state parameter, w, re-
mains completely unconstrained by the cur-
rent analysis.

w �m χ2
min/dof

−1 0.198+0.051
−0.032 53.057/14

Unconstrained 0.280+0.048
−0.038 53.849/13

Excluding two galaxies with tilted emission
lines

−1 0.224+0.063
−0.038 43.119/12

Unconstrained 0.310+0.052
−0.046 42.954/11

Figure 10. The H II galaxy QDE constraints (in the �m, w plane) based
on the Siegel et al. sample after excluding two H II galaxies showing strong
indications for a rotational velocity component. Although the constraints are
weak, leaving completely unconstrained the value of w, they are consistent
at a ∼1σ level with the SNIa results (thin red contours).

The resulting constraints on the (�m, w) plane are indicated
in the first two rows of Table 2, while in the last two rows (and
in Fig. 10) we present results after excluding two H II galaxies
(Q1700−MD103 and SS A22a−MD41) that show indications of a
significant rotational velocity component (derived from the tilted
emission lines; Erb et al. 2006a), which contaminates the estimate
of their velocity dispersion.

Our results show that the derived �m values, independent of the
value of w, are towards the lower end of the generally accepted
range, while when excluding the two rotating galaxies the fitted
�m parameter moves towards higher values, while there is also a
decrease of the value of the corresponding reduced χ 2.

In any case, the main qualitative result of our H II-galaxy-based
analysis is that although the constraints in the (�m, w) plane are
consistent with those of the Constitution SNIa analysis, as can be
seen in Fig. 10, the provided cosmological parameter uncertain-
ties are significantly larger and the degeneracy between �m and w

is even more exacerbated. These results clearly indicate that the
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distance indicator for H II galaxies can become highly competitive
provided

(i) we increase the number of available high-z (z � 2) H II galax-
ies, but it is important to cover also the 0.2 < z < 1 range (as shown
in Section 2.3.4);

(ii) we apply the estimator to a significant sample of bona-fide
high-redshift H II galaxies selected by the strength of their emission
lines to ensure no contamination by rotation and/or underlying old
stellar populations;

(iii) we minimize all possible sources of systematic and random
errors.

3 C O S M O L O G I C A L PA R A M E T E R S FRO M T H E
CLUSTER ING O F X -RAY AG N

The method used to put cosmological constraints, based on the clus-
tering of some extragalactic mass tracer (Matsubara 2004; BP09,
and references therein), consists in comparing the observed spatial
or angular clustering with that predicted by different primordial fluc-
tuations power spectra, in the latter case using also Limber’s integral
equation (Limber 1953) to invert the spatial to angular clustering.
By minimizing the differences of the observed and predicted corre-
lation function, one can constrain the cosmological parameters that
enter in the power spectrum determination as well as in Limber’s
inversion. Using the latter we can relate the angular and spatial
clustering of any extragalactic population under the assumption of
power-law correlations and the small angle approximation.

We have chosen X-ray-selected AGN as a tracer of the large-scale
structure, in order to perform the previously described analysis, for
the following reasons.

(a) X-ray-selected AGN can be detected out to high redshifts (the
peak of their z distribution is ∼1) and thus trace the distant density
fluctuations providing a further anchor of the evolution parameter
at a redshift other than z ∼ 0, which most galaxy samples trace
to-date.

(b) AGN selected through their X-ray emission (and not in the op-
tical) provide a relatively unbiased census of the AGN phenomenon,
since obscured AGN, largely missed in optical surveys, are included
in X-ray surveys.

(c) Furthermore, determining the clustering at 〈z〉 ∼ 1 and z ∼
0, one can put better constraints on the cosmic evolution of the
AGN phenomenon and the evolution of the relation between AGN
activity and dark matter (DM) halo hosts (e.g. Mo & White 1996;
Sheth, Mo & Tormen 2001), and finally also on the cosmological
parameters and the DE equation of state (e.g. Basilakos & Plionis
2005, 2006, 2010; BP09).

3.1 Clustering of X-ray AGN: biases and systematics

The earlier ROSAT-based analyses (e.g. Boyle & Mo 1993;
Vikhlinin & Forman 1995; Carrera et al. 1998; Akylas, Georgan-
topoulos & Plionis 2000; Mullis et al. 2004) provided conflicting
results on the nature and amplitude of high-z AGN clustering. With
the advent of the XMM and Chandra X-ray observatories, many
groups have attempted to settle this issue, but in vain. Different
surveys have provided again a multitude of conflicting results, in-
tensifying the debate (e.g. Manners et al. 2003; Yang et al. 2003,
2006; Basilakos et al. 2004, 2005; Gilli et al. 2005; Gandhi et al.
2006; Puccetti et al. 2006; Carrera et al. 2007; Miyaji et al. 2007;
Coil et al. 2009; Starikova et al. 2010). However, strong indications
exist for a flux-limit-dependent clustering, interpreted as an X-ray

luminosity dependent clustering, which appears to remove most of
the above inconsistencies (Plionis et al. 2008). Such a luminosity-
dependent clustering trend was recently reported also by Cappelluti
et al. (2010) and Krumpe, Miyaji & Coil (2010).

Furthermore, there are indications for a quite large high-z AGN
clustering length, reaching values �10 h−1 Mpc at the brightest flux
limits (e.g. Basilakos et al. 2004, 2005; Puccetti et al. 2006; Plionis
et al. 2008; Cappelluti et al. 2010), which, if verified, has important
consequences for the AGN bias evolution and therefore for the evo-
lution of the AGN phenomenon (e.g. Miyaji et al. 2007; Basilakos,
Plionis & Ragone-Figueroa 2008, hereafter BPR08). An indepen-
dent test of these results would be to establish that the environment
of high-z AGN is associated with large DM haloes, which being
massive should be more clustered (work in progress).

It is also important to understand and overcome the shortcom-
ings and problems that one is facing in order to reliably and unam-
biguously determine the clustering properties of the X-ray-selected
AGN. Such a list of problems includes the effects of cosmic vari-
ance, the so-called amplification bias, the reliability of the log N–
log S distribution of the X-ray AGN luminosity function, etc. (see
discussion in Plionis et al. 2009).

Recently, Ebrero et al. (2009b) derived the angular correlation
function of the soft (0.5–2 keV) X-ray sources using 1063 XMM–
Newton observations at high galactic latitudes (2XMM survey). A
full description of the data reduction, source detection and flux
estimation are presented in Mateos et al. (2008). Note that the
survey contains ∼30 000 soft-band point sources within an effective
area of ∼125.5 deg2 (for fx ≥ 1.4 × 10−15 erg cm−2 s−1). The large
area covered and the corresponding large number of X-ray sources
ensure that the previously mentioned cosmic variance effects are
minimized. However, further details regarding the various biases
that should be taken into account (the amplification bias and integral
constraint), the survey luminosity and selection functions as well
as issues related to possible non-AGN contamination, which are
estimated to be �10 per cent, can be found in Ebrero et al. (2009a).

3.2 Cosmology from the 2XMM angular clustering

An optimal approach to unambiguously determine the clustering
pattern of X-ray-selected AGN would be to determine both the
angular and spatial clustering pattern. The reason being that various
systematic effects or uncertainties enter differently in the two types
of analyses. On the one side, using the angular two-point correlation
function, w(θ ), and its Limber inversion, one bypasses the effects
of redshift-space distortions and uncertainties related to possible
misidentification of the optical counterparts of X-ray sources. On
the other side, using spectroscopic or accurate photometric redshifts
to measure the spatial, ξ (r), or projected, wp(θ ), two-point corre-
lation function, one bypasses the inherent necessity, in Limber’s
inversion of w(θ ), of assuming a source redshift-selection function
(for the determination of which one uses the integrated X-ray source
luminosity function, different models of which exist).

The basic integral equation relating the angular and spatial cor-
relation functions is

w(θ ) = 2
H0

c

∫ ∞

0

(
1

N

dN

dz

)2

E(z) dz

∫ ∞

0
ξ (r, z) du, (23)

where dN/dz is the source redshift distribution, estimated by inte-
grating the appropriate source luminosity function (in our case that
of Ebrero et al. 2009a), folding in also the area curve of the survey.
Note that to derive the spatial correlation length from equation (23),
it is necessary to model the spatial correlation function as a power
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law, assume the small angle approximation as well as a cosmolog-
ical background model. The latter is provided by the function E(z)
(equation 4), which for a flat background and the QDM equation of
state, it takes the form

E(z) = [�m(1 + z)3 + (1 − �m)(1 + z)3(1+w)]1/2. (24)

The AGN spatial correlation function can be written as

ξ (r, z) = (1 + z)−(3+ε)b2(z)ξDM(r), (25)

where b(z) is the evolution of the linear bias factor (e.g. Matarrese
et al. 1997; Mo & White 1996; Sheth & Tormen 1999; Basilakos
& Plionis 2001, 2003; BPR08; Tinker et al. 2010; Ma et al. 2011),
ε is a parameter related to the model of AGN clustering evolution
(e.g. de Zotti et al. 1990) and ξDM(r) is the corresponding cor-
relation function of the underlying DM distribution, given by the
Fourier transform of the spatial power spectrum P(k) of the matter
fluctuations, linearly extrapolated to the present epoch:

ξDM(r) = 1

2π2

∫ ∞

0
k2P (k)

sin(kr)

kr
dk. (26)

The CDM power spectrum is given by P(k) = P0knT2(�m, k), with
T(�m, k) the CDM transfer function (Bardeen et al. 1986; Sugiyama
1995), n � 0.967 and a baryonic density of �b h2 = 0.02249, fol-
lowing the 7-year Wilkinson Microwave Anisotropy Probe (WMAP)
results (Komatsu et al. 2011). The normalization of the power spec-
trum, P0, can be parametrized by the rms mass fluctuations on R8

= 8 h−1 Mpc scales (σ 8), according to

P0 = 2π2σ 2
8 /�(�m, R8), (27)

with

�(�m, R8) =
∫ ∞

0
kn+2T 2(�m, k)W 2(kR8) dk (28)

and W(kR8) = 3(sinkR8 − kR8coskR8)/(kR8)3.
Evidently, the essential parameters needed to characterize any

QDE cosmological model are �m, w, σ 8 and H0. Regarding the
Hubble constant we will use the WMAP7 results (Komatsu et al.
2011), which practically coincide with those of the HST key project
(Freedman et al. 2001), i.e. h = H0/100 = 0.704, while regarding
the σ 8 normalization of the CDM power spectrum we will use
the extrema of the range provided by the recent analysis of SDSS
luminous red galaxies (LRGs) for a range of DE equations of state
(σ b ∈ [0.78, 0.81]; Sánchez et al. 2009). Note that the upper limit of
the above range corresponds to the WMAP7 �CDM value (Komatsu
et al. 2011).

Furthermore, to estimate the predicted QDE model correlation
function of the underlying mass, ξDM(r, z), in order to compare it
with the observed AGN clustering, it is necessary to deal with the
following three issues.

(i) Clustering evolution model. As discussed earlier (see equa-
tion 25), in order to estimate the expected clustering of any mass
tracer it is important to assume a clustering evolution model (e.g.
de Zotti et al. 1990), which is encapsulated in the value of the pa-
rameter ε. A value ε = −1.2 corresponds to a constant in comoving
coordinates clustering model, while a value ε = −3, to a constant
in physical coordinates. According to Kundić (1997) and Basilakos
& Plionis (2005, 2006) we will use the former value of ε (although
we have also tested the effects of using ε = −3).

(ii) Bias evolution model. We need to calibrate the parameters of
the bias evolution model to each cosmological model. Although a
large number of bias evolution models have been proposed in the
literature (see Papageorgiou, Plionis & Basilakos, in preparation,

for a comparison of different models), we use here the approach
of Basilakos & Plionis (2001, 2003) which was extended to QDE
cosmological models in BPR08. This model is based on linear
perturbation theory and the Friedmann–Lemaitre solutions of the
cosmological field equations, and includes also the effects of inter-
actions and merging of the mass tracers. Its analytical form has been
derived for the QDE cosmological models, and its generalization to
the CPL and alternative gravity cosmological models is underway
(Basilakos et al., in preparation). Considering that each X-ray AGN
is hosted by a DM halo of mass Mh, we can analytically predict
its bias evolution behaviour within the QDE models. Conversely
fitting the model to observations, we can determine the mass of the
DM halo within which AGN live (for more details see Basilakos &
Plionis 2010).

For the case of a spatially flat cosmological model, our bias
evolution model has the following form:

b(Mh, z) = C1(Mh)E(z) + C2(Mh)E(z)I (z) + yp(z) + 1, (29)

where yp(z) determines the rate of halo merging.4 However, it is
important only for z � 3 and therefore we neglect it here (see
BPR08). Furthermore, we have

I (z) =
∫ ∞

z

(
1 + x

E(x)

)3

dx, (30)

while the constants C1 and C2 have been fitted using a �CDM
simulation with �m = 0.3 and σ 8 = 0.9 (BPR08), and have been
found to follow the form

C1,2(Mh) � α1,2

(
Mh

1013 h−1 M�

)β1,2

, (31)

with β1 = 0.34, β2 = 0.32, while α1 and α2 have been found to be
cosmological model dependent, with values given by (Papageorgiou
et al., in preparation)

α1 � κ1

(
0.9

σ8

)κ2

exp [κ3(�m − 0.3)], (32)

with κ1 � 3.44, κ2 � 2/5 and κ3 � 4/5, and

α2 � −0.36

(
�m

0.3

)3/2

. (33)

(iii) Non-linear power spectrum. Since the correlation function
on small angular scales is within the expected non-linear regime,
we should include in our model power spectrum the non-linear
contributions. To this end we use the corresponding fitting formula
introduced by Peacock & Dodds (1996) for the �CDM model
(see also Smith et al. 2003; Widrow et al. 2009). There is one
relatively free parameter in their formulation, which is the slope of
the power spectrum at the relevant scales, since the CDM power
spectrum curves slowly and thus it varies as a function of scale: neff

= dln P(k)/dln k. On the scales of interest the value is neff � −2, but
we have decided to actually derive, and then fix, the neff value from
the data analysis itself. Using the minimization procedure discussed
in Section 3.3 we compare the observed 2XMM AGN correlation
function with that provided by the WMAP7 �CDM model (i.e.
fixing �m = 0.272, w = −1 and σ 8 = 0.811) fitting the remaining
two free parameters (i.e. Mh and neff ). The corresponding solution
space can be seen in Fig. 12, while the best-fitting parameter values
are Mh � 6.5(±2.1) × 1012 h−1 M� and neff � −2.02+0.05

−0.04. In the

4 Note that the bias factor at the present time is given by b(Mh, 0) =
C1(Mh) + C2(Mh)I (0) + 1.
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Figure 11. Main panel: the 1, 2 and 3σ likelihood contours in the Mh, neff

parameter space for the �CDM (WMAP7) model. Inner panel: the Ebrero
et al. (2009b) 2XMM angular correlation function and the best-fitting �CDM
model (continuous line).

inset of Fig. 11 we also plot the 2XMM angular correlation function
together with the best-fitting �CDM model (continuous line).

As a consistency check we have verified that when fixing the
non-linear slope of P(k) to the above fitted value and leave as free
parameters Mh and σ 8, we recover the WMPA7 σ 8 value and exactly
the same Mh value, as above. The derived value of Mh is slightly
larger than that provided by Ebrero et al. (2009b) using the Sheth
et al. (2001) bias evolution model (i.e. �5 × 1012 h−1 M�). We
have tested also the case of a clustering evolution model with ε

= −3, in which case the derived value of the halo mass is �2 ×
1010 h−1 M�, a value significantly below any reasonable value that
has been proposed or derived in the literature. We will therefore use
ε = −1.2 throughout the rest of the paper.

3.3 Fitting models to the 2XMM clustering data

In order to constrain the cosmological parameters we use again the
standard χ 2 likelihood procedure and compare the measured XMM
soft-band source angular correlation function (Ebrero et al. 2009b)
with the predictions of different spatially flat cosmological models.
The corresponding likelihood estimator is defined as LAGN( p) ∝
exp[−χ 2

AGN( p)/2] with

χ 2
AGN( p) =

n∑
i=1

[wth(θi, p) − wobs(θi)]
2

σ 2
i + σ 2

θi

, (34)

where p ≡ (�m, w, Mh), σ i is the uncertainty of the observed
angular correlation function and σθi

corresponds to the width of the
angular separation bins.

We sample the various parameters as follows: the matter density
�m ∈ [0.1, 0.4] in steps of 0.002; the equation of state parame-
ter w ∈ [−1.4, −0.6] in steps of 0.005 and the parent DM halo
Mh/1013 h−1 M� ∈ [0.1, 3] in steps of 0.01. In this likelihood anal-
ysis we use as priors a flat universe, and the previously mentioned
values of h, σ 8 and �b.

The results of the minimization procedure for the case of σ 8 =
0.81 are �m = 0.301 ± 0.008, w = −0.990 ± 0.058 and Mh =
3.1(±1.1) × 1012 h−1 M�, with a χ 2 = 39.41 for 10 degrees of
freedom (dof). The large value of χ 2/dof is due to the sinusoidal

modulation of the 2XMM w(θ ), which could be due to systematic
effects possibly related to the size of the XMM fields (see discussion
in BP09). If we use the 2σ w(θ ) uncertainty in the denominator of
the χ 2 function of equation (34), then the χ 2 drops to �9.86 (and
the uncertainties of the fitted parameters increase to roughly twice
the values indicated previously).

These results slightly differ with respect to the similar analysis
of BP09 due to a number of improvements that we have currently
included, apart from the fact that we have also used the WMAP7
cosmological parameters (i.e. �b, n and h). The two main improve-
ments have to do with (a) the bias evolution model, in which we
have now taken into account the dependence of the parameter a1

(see equation 32) on �m and σ 8 (which has mostly affected the de-
rived value of Mh, reducing it significantly), and (b) the non-linear
power-spectrum corrections, for which we have used the Peacock
& Dodds (1996) �CDM fitting formula.

Nevertheless, our current procedure can and will be improved in
the future in a number of ways.

(i) We will eventually use the clustering of X-ray-selected AGN
from a large contiguous X-ray survey, a fact which will solve, we
believe, the quasi-sinusoidal small amplitude modulation of the
2XMM w(θ ) (see discussion in BP09). Such a future survey is the
XMM–Newton Very Large Programme (XXL), which was recently
granted time to map two extragalactic regions of 25 deg2, at a depth
of ∼5 × 10−15 erg cm−2 s−1 (Pierre et al. 2011).

(ii) We will investigate more accurate non-linear power-spectrum
corrections of w(θ ) (e.g. Widrow et al. 2009).

(iii) We will ultimately test a large range of DE equations of state
to include CPL and alternative gravity [f (R)] models. To this end
we will use the recent generalization of the BPR08 bias evolution
model of Basilakos, Plionis & Pouri (2011).

4 J O I N T H U B B L E R E L AT I O N , AG N
CLUSTERI NG AND BAO A NA LY SI S

Here we will perform an example of the joint analysis between
the previously discussed results from 2XMM clustering and the
Hubble relation, which is the basic aim of our overall project. For the
current exercise we will use the Constitution SNIa Hubble relation
since we are still working on the development of the H II-galaxy-
based methodology. For completeness we will also use the recent
results of the BAO technique. We remind the reader that BAOs
are produced by pressure (acoustic) waves in the photon–baryon
plasma in the early universe generated by DM overdensities. At the
recombination era (z ∼ 1100), photons decouple from baryons and
free stream while the pressure wave stalls. Its frozen scale, which
constitutes a standard ruler, is equal to the sound horizon length,
rs ∼ 100 h−1 Mpc (e.g. Eisenstein & Hu 1998). This appears as a
small, ∼10 per cent excess in the galaxy, cluster or AGN power
spectrum (and its Fourier transform, the two-point correlation func-
tion) at a scale corresponding to rs. First evidence of such an ex-
cess have been reported in the clustering of the SDSS LRGs (see
Eisenstein et al. 2005; Padmanabhan et al. 2007; Percival et al.
2010). In this work we use the latest measurement of Percival et al.
(2010):

rs(zd)/DV(z�) = 0.1390 ± 0.0037

(see also Kazin et al. 2010a,b). Note that rs(zd) is the comoving
sound horizon size at the baryon drag epoch zd, which is given by
the fitting formula of Eisenstein & Hu (1998), DV(z�) is the effective
distance measure and z� = 0.275. Of course, the quantities rs, DV
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Figure 12. QDE model parameter constraints (i.e. in the �m, w plane) provided by the joint likelihood analysis of pairs of cosmological data. The red shaded
contours are the joint likelihood contours of the indicated pairs of data. For clarity we show only contours corresponding to the 1 and 3σ confidence levels. The
2XMM results shown correspond to those based on a power spectrum normalization of σ 8 = 0.81. Note also that we have followed the conservative approach
of using 2σ w(θ ) uncertainties in the minimization process, to allow for the small amplitude sinusoidal w(θ ) modulation (see main text and BP09). Upper
left-hand panel: Constitution SNIa Hubble relation (blue contours) and 2XMM AGN clustering (black contours). Upper right-hand panel: Constitution SNIa
Hubble relation (blue contours) and LRGs BAO (green contours). Lower left-hand panel: 2XMM AGN clustering (black contours) and LRGs BAO (green
contours). Lower right-hand panel: the joint likelihood contours of the SNIa–2XMM (red contours) and of the SNIa–BAO (blue contours) pairs.

can be defined analytically, and are given by

rs(zd) = c√
3

∫ ad

0

da

a2H (a)
√

1 + (3�b/4�γ )a
, (35)

where ad = (1 + zd)−1 and �γ h2 � 2.47 × 10−5 the energy density
of photons. In this context, the effective distance is (Eisenstein et al.
2005)

DV(z) ≡
[

(1 + z)2D2
A(z)

cz

H (z)

]1/3

, (36)

where DA(z) is the angular diameter distance. Therefore, the corre-
sponding χ 2

BAO function is simply written as

χ 2
BAO( p) = [(rs(zd))/(DV(z�))( p) − 0.1390]2

0.00372
, (37)

where p is the vector containing the cosmological parameters that
we want to fit for. In this case p = (�m, w).

We therefore perform a joint likelihood analysis, assuming that
any two pairs of cosmological data sets are independent (which
indeed they are) and thus the joint likelihood can be written as the
product of the two individual ones. The results based on the joint
analysis of the different pairs of cosmological data are shown in
Fig. 12 and quantified in Table 3. It is evident that the addition

Table 3. The best-fitting values of the cosmological parameters based on
the joint likelihood analysis of the indicated cosmological data. For the case
of the 2XMM clustering analysis we followed the conservative approach
of using 2σ w(θ ) uncertainties. The uncertainty of each fitted cosmological
parameter has been estimated after marginalizing over the other parameter
(i.e. by fixing one parameter at its best value and allowing the other to vary,
providing as its uncertainty the range for which �χ2 ≤ 2.3). The last column
indicates the reduction parameter (related to the FoM) as defined in Section
2.3.4.

Joint data �m w χ2 dof S

SNIa+BAO 0.296 ± 0.021 −1.027 ± 0.053 439.711 365 2.32

XMMa+SNIa 0.310 ± 0.012 −1.064 ± 0.053
0.048 449.591 374 4.49

XMMa+BAO 0.302 ± 0.014 −0.995 ± 0.096
0.128 9.860 11 1.74

XMMb+SNIa 0.318 ± 0.013 −1.085 ± 0.059
0.048 449.644 374 4.35

XMMb+BAO 0.306 ± 0.015 −0.973 ± 0.096
0.123 9.861 11 1.70

a2XMM results based on a P(k) normalization of σ 8 = 0.811.
bBased on σ 8 = 0.78.

of the XMM clustering analysis provides significantly more strin-
gent constraints than, for example, the joint SNIa and BAO results.
The reduction parameter, i.e. the ratio of the FoM of the joint
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XMM–SNIa analysis to that of the Constitution SNIa analysis (see
definition in Section 2.3.4) shows that the 2σ range of the (�m, w)
solution space is reduced by a factor of ∼2 with respect to that of
the BAO–SNIa analysis (see lower right-hand panel of Fig. 12).

The necessity, however, to impose constraints on a more general,
time-evolving, DE equation of state (equation 2), implies that there
is ample space for improving the current analysis and indeed our
aim is to develop further this project by (a) using a new Hubble
relation analysis, based on high-z H II galaxies, as detailed in this
paper, and (b) by generalizing the BPR08 bias evolution model for
any DE equation of state (CPL and alternative gravity models).

5 C O N C L U S I O N

We have investigated the question of which is the most efficient
strategy to tighten the cosmological constraints provided by fitting
the Hubble relation. Using extensive Monte Carlo simulations we
have verified that by using only a few tens of high-z tracers (in the
range 2 � z � 3.5), even with a relatively large distance modulus
uncertainty, we can reduce significantly the present cosmological
parameter solution space. We have taken into account the effects
of lensing magnification/demagnification, which not only increases
the distance modulus uncertainty but it also shifts systematically the
mean distance modulus of individual sources. Although the effects
can be severe for an individual source, they can be statistically
treated and they are significantly reduced the denser the source
sampling is in redshift space. Applying our lensing magnification
correction to the Constitution SNIa set (Hicken et al.), we find that
the fitted cosmological parameters are not significantly affected by
such effects due to the fact that the SNIa sample traces relatively
small redshifts (z � 1).

Based on a FoM analysis we have provided a simple procedure
to estimate the necessary number of 2 � z � 3.5 tracers needed to
reduce the cosmological solution space, presently provided by the
Constitution set, by a desired factor of our choice and for any level
of rms distance modulus uncertainty. This analysis has shown that
in order to significantly reduce the cosmological parameter solution
space, it is more efficient to increase the number of high-z tracers
than to reduce their individual uncertainties. A re-analysis of the
cosmological constraints provided by a small sample of high-z (2.2
� z � 3.4) H II galaxies, previously analysed by Siegel et al. (2005),
but now using a novel determination of the zero-point of the relevant
distance scaling relation, provides consistent cosmological results
with those of SNIa, although the DE equation of state parameter
remains unconstrained at present.

Finally, using the clustering of X-ray-selected AGN we provide
the framework that will be used, joining their cosmological likeli-
hood with that of the Hubble relation analysis, to put stringent DE
equation of state constraints. An example of such a joint analysis,
using the 2XMM clustering and the Constitution SNIa Hubble re-
lation, and under the priors of a flat universe, h = 0.704 and σ 8

= 0.81 or 0.78, provides significantly more stringent QDE model
constraints, as indicated by the fact that the FoM increases by a
factor of ∼2, with respect to that of the joint SNIa–BAO analysis.
The QDE cosmological parameters provided by the 2XMM–SNIa
joint analysis are �m = 0.31 ± 0.01 and w = −1.06 ± 0.05, with
the uncertainties being estimated after marginalizing one parameter
over the other.
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MNRAS, 400, 1643
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