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Abstract

We present new, wide and deep images in the 1.1 mm continuum and the 12CO

(J=1–0) emission toward the northern part of the Orion A Giant Molecular Cloud
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(Orion-A GMC). The 1.1 mm data were taken with the AzTEC camera mounted on

the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in Chile,

and the 12CO (J=1–0) data were with the 25 beam receiver (BEARS) on the NRO 45

m telescope in the On-The-Fly (OTF) mode. The present AzTEC observations are

the widest (1.◦7 × 2.◦3, corresponding to 12 pc × 17 pc) and the highest-sensitivity

(∼9 mJy beam−1) 1.1 mm dust-continuum imaging of the Orion-A GMC with an

effective spatial resolution of ∼ 40′′. The 12CO (J=1–0) image was taken over the

northern 1.◦2× 1.◦2 (corresponding 9 pc × 9 pc) area with a sensitivity of 0.93 K

in TMB, a velocity resolution of 1.0 km s−1, and an effective spatial resolution of

21′′. With these data, together with the MSX 8 µm, Spitzer 24 µm and the 2MASS

data, we have investigated the detailed structure and kinematics of molecular gas

associated with the Orion-A GMC and have found evidence for interactions between

molecular clouds and the external forces that may trigger star formation. Two types

of possible triggers were revealed; 1) Collision of the diffuse gas on the cloud surface,

particularly at the eastern side of the OMC-2/3 region, and 2) Irradiation of UV

on the pre-existing filaments and dense molecular cloud cores. Our wide-field and

high-sensitivity imaging have provided the first comprehensive view of the potential

sites of triggered star formation in the Orion-A GMC.

Key words: stars:formation — ISM: molecules — ISM: cloud

1. Introduction

Giant Molecular Clouds (GMCs) are main sites of star formation. There are approxi-

mately three thousand GMCs in our Galaxy, with a size of 10 - 80 pc and a mass of 104 - 5

× 106 M⊙ (Solomon et al. 1977). While only low-mass stars form in dark clouds (Myers et al.

1995; Momose et al. 1998; Saito et al. 1999; Takakuwa et al. 2004), in GMCs both low-mass and

high-mass stars form (Megeath 1994; Homeier & Alves 2005; Yonekura et al. 2005). There are

many uncertain aspects of star formation in GMCs, such as the core mass function (CMF), its

link to the initial mass function (IMF), massive star formation, and cluster formation. Hence,

studies of star formation in GMCs are imperative to the comprehensive understanding of star

formation.

Theoretical studies of massive star formation and cluster formation have proposed that

external effects on molecular clouds, such as ultraviolet (UV) radiation from HII regions, super-

nova remnants (SNRs), molecular outflows, and cloud-cloud collisions are required to trigger

the massive-star (Elmegreen 1998) and cluster formation (Whitworth et al. 1994; Hosokawa

& Inutsuka 2005; Nakamura & Li 2007). Furthermore, it is proposed that the shape of the

∗ Last update: Sep, 20, 2010
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CMF could also be affected by the presence of those external effects (Zinnecker & Yorke 2007).

Hence, it is essential to unveil the global picture of those external effects on molecular gas in

GMCs. It is, however, not yet clear how ubiquitous those external effects and the triggered star

formation in GMCs are. Unbiased and extensive mapping observations of GMCs in molecular

and dust continuum emission, covering an entire GMC and resolving individual cores with a

typical size of ∼ 0.1 pc, and the comparison with the images at other wavelengths, are required

to approach the global picture of star formation in GMCs.

The Orion-A GMC, with an extent of ∼ 10◦ (corresponding to ∼ 72 pc) in the southern

part of Orion constellation, is the nearest ( d= 400 pc; Menten et al. 2007; Sandstrom et al.

2007; Hirota et al. 2008) GMC and one of the well studied regions in star formation studies

(Tatematsu et al. 1993; Lis et al. 1998; Tatematsu et al. 1998; Johnstone & Bally 1999; Aso

et al. 2000; Stanke et al. 2002; Tsujimoto et al. 2002; Takahashi et al. 2008; Takahashi et al.

2009; Davis et al. 2009). Many authors have proposed that the Orion-A GMC is externally

affected, both at small (∼ 0.1 pc) and large scales (∼ several × 10 pc), by molecular outflow,

ionizing radiation, SNRs, and stellar winds generated by the Orion OB association, from its

morphological structure, velocity structure, and the stellar ages (Cowie et al. 1979; Bally et al.

1987; Sandell & Knee 2001; Yokogawa et al. 2003; Wilson et al. 2005; Lee & Chen 2009). OB

stars embedded in the Orion-A GMC form the HII region, M 42, 43, and NGC 1977 (Goudis

et al. 1982). Molecular outflows driven from OMC-2/FIR 3 and FIR 6c interact with the

surrounding dense cores, which triggers gravitational instabilities in the dense cores and the

next generation star formation (Shimajiri et al. 2008; Shimajiri et al. 2009). These facts imply

that the Orion-A GMC is one of the most suitable GMCs for an unbiased extensive study of

triggered star formation.

With the advent of multi-beam receivers at millimeter wavelengths, wide-field mapping

observations over several square degrees at an angular resolution of several × 10′′ are now

feasible. In this paper, we present a wide, sensitive 1.1-mm dust-continuum and 12CO (J=1–0)

line imaging of the northern part of the Orion A GMC with the AzTEC camera mounted on the

ASTE telescope and BEARS mounted on the Nobeyama (NRO) 45-m telescope, respectively.

The aim of this paper is to reveal the overall structure of the Orion-A GMC from a cloud (≥

10 pc) to a core scale (≤ 0.1 pc ) with the wide coverage and high sensitivity, and specifically,

to unveil the global picture of the external triggers of star formation in the GMC from the

comparison with the near-infrared (NIR) and mid-infrared (MIR) images. The detailed physical

processes of individual triggered star formation will be discussed in the forthcoming papers.

The 1.1 mm dust-continuum emission is optically thin and traces the total mass of molecular gas

in cores and envelopes (Enoch et al. 2006). The 12CO (J=1–0) emission traces low-density gas

(≤ 103 cm−3) and is usually optically thick and easily thermalized. Hence, the 12CO emission

traces global structures of GMCs, and the peak intensities of the 12CO emission at the emission

ridge often reflect kinetic temperature of molecular gas.
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This paper is organized as follows: in section 2, the NRO 45-m and AzTEC/ASTE

observations are described. In section 3, we present results of the AzTEC 1.1 mm continuum

and the NRO 12CO (J=1–0) mapping of the Orion-A GMC. In section 4, we focus on the

possible external triggers of the star formation in the Orion-A GMC. First, we describe the

possibility that the entire Orion-A GMC is influenced over ∼ several × 10 pc scale by the

external effect. Then, we show the region irradiated by the UV radiation from OB stars

embedded in the Orion-A GMC over a few pc-scale. In section 5, we summarize this paper.

2. Observations

2.1. AzTEC/ASTE Observations

From October to December 2008, we carried out 1.1 mm dust-continuum observations

toward the 1.◦7 × 2.◦3 region in the northern part of the Orion A molecular cloud with the

AzTEC camera (Wilson et al. 2008) equipped in the ASTE 10 m telescope (Ezawa et al.

2004; Kohno et al. 2004) located at Pampa la Bola (altitude = 4800 m), Chile. The weather

conditions during our observing period were moderate and the typical opacity at 225 GHz

was in the range of 0.1 - 0.2. The AzTEC camera mounted on the ASTE telescope is an

144-element bolometric camera tuned to operate in the 1.1 mm atmospheric window, and

provides an angular resolution of 28′′ in full width at half maximum (FWHM)(Wilson et al.

2008). Observations were performed in the raster scan mode toward a pair of 100′ × 100′ fields,

centered on (αJ2000,δJ2000)=(5h35m14.s5,−5◦22′30.′′4) and (5h35m14.s5,−6◦00′30.′′0). Each field

was observed several times with azimuth and elevation scans. The separation among scans was

adopted to be 117′′, which is a quarter of the AzTEC field of view (FoV;∼ 7.′8). A scanning

speed of the telescope was 250′′ sec−1. Totally 30 individual maps in the entire field with an

integration time of 26 minutes were taken, and those maps were averaged to produce the final

map with the total integration time of 26 minutes × 30 maps = 13 hours. The telescope pointing

was checked every 2 hours by observing a quasar 0539-057 over a 4 × 4 arcmin2 region. The

derived pointing offsets were linearly interpolated along the time sequence and the interpolated

pointing offset was applied to each target map. The pointing uncertainty of the AzTEC map

is estimated to be better than 2′′. We observed Uranus as a flux calibrator twice per night. By

observing Uranus with each AzTEC detector element, we measured the flux conversion factor

(FCF) from the optical loading value (in watts) to the source flux (in Jy beam−1) for each

detector element. The principal component analysis (PCA, Scott et al. 2008) cleaning method

was applied to remove the atmospheric noise. Details of the flux calibration are described by

Wilson et al. (2008) and Scott et al. (2008). Since the PCA method does not have sensitivity to

extended sources, we apply the iterative mapping method (FRUIT, Liu et al. 2010) to recover

the extended components. The noise level is ∼ 9 mJy beam−1 in the central region and ∼ 12

mJy beam−1 in the outer edge, the effective beam size is ∼ 40′′, after the FRUIT imaging.
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We describe the performance of FRUIT in appendix 1.

2.2. NRO 45m 12CO (J=1–0) Line Observations

From December 2007 to May 2008, we carried out 12CO (J=1–0; 115.271204 GHz) line

observations toward the 1.◦2 × 1.◦2 region in the northern part of the Orion A molecular cloud

with the 25-element focal plane receiver BEARS equipped in the 45 m telescope at NRO. At

115 GHz, the telescope has a FWHM beam size of 15′′ and a main beam efficiency of 32 %. The

beam separation of the BEARS is 41.′′1 on the plane of the sky (Sunada et al. 2000; Yamaguchi

et al. 2000). At the back end, we used 25 sets of 1024 channel auto-correlators (ACs) which

have the bandwidth of 32 MHz and the frequency resolution of 37.8 kHz (Sorai et al. 2000). The

frequency resolution corresponds to the velocity resolution of ∼ 0.1 km s−1 at 115 GHz. During

the observations, the system noise temperatures were in the range between 250 and 500 K in

a double sideband. The standard chopper wheel method (Kutner & Ulich 1981) was used to

convert the output signal into the antenna temperature T ∗

A (K), corrected for the atmospheric

attenuation. The telescope pointing was checked every 1.5 hours by observing a SiO maser

source, Ori-KL, and was better than 3′′ during the whole observing period. To correct the

gain variation among the 25 beams of the BEARS, we used calibration data obtained from

the observations toward Orion IRC 2 using another SIS receiver, S100, with a single sideband

(SSB) filter and acousto-optical spectrometers (AOSs) as a back end.

Our mapping observations were made with the OTF mapping technique (Sawada et al.

2008). We used the emission-free area near (∼ 2◦ away) the observed area as the off position.

We obtained an OTF map with a scanning direction both along the RA and DEC over the 1.◦2

× 1.◦2 region and combined them into a single map, in order to reduce the scanning effects. We

adopted a convolutional scheme with a spheroidal function (Sawada et al. 2008) to calculate

the intensity at each grid point of the final map-cube data with a spatial grid size of 7.′′5, half

of the beam size. The resultant effective resolution is 21′′. The rms noise level of the final map

is 0.94 K in TMB (1 σ) at a velocity resolution of 1.0 km s−1.

We summarize the parameters for the 1.1 mm continuum and the 12CO (J=1–0) line

observations in Table 1.

3. Results

3.1. 1.1 mm Dust Continuum Emission

Figure 1 shows the distribution of the 1.1 mm dust-continuum emission in the northern

part of the Orion A molecular cloud. Previous observations of the northern part of the Orion

A molecular cloud in dust-continuum emissions at 850 µm (Johnstone & Bally 1999; Nutter

& Ward-Thompson 2007), 1.2 mm (Davis et al. 2009), and 1.3 mm (Chini et al. 1997) have

revealed an “integral-shape” filamentary feature from the south to the north of Ori-KL (αJ2000,

δJ2000 = 5h35m14.s5,−5◦22′30.′′4), where the northern end, region surrounding Ori-KL, and the
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southern region of Ori-KL in the integral-shape filament are called OMC-2/3, OMC-1, and

OMC-4, respectively. The global feature seen in our 1.1 mm dust-continuum map is consistent

with that found in the previous observations, that is, the integral-shape filament along the

north-south direction (named as ”Integral-shape filament” in Figure 2). The central Orion-

KL region has been masked out, because around the Ori-KL region the continuum emission

is too bright to be reconstructed as an accurate structure with the AzTEC observing and

data-reduction technique (see Appendix 1).

Our mapping area extends ∼ 1.◦7 along the eastern and the western directions centered

on the integral-shape filament, and is wider than that of the previous observations. As a

result, we have found new dust-continuum features in the eastern and the western areas of the

integral-shape filament, as described below.

3.1.1. New Features around the OMC-2/3 Region

Toward the east of the OMC-2/3 region, our high-sensitivity (∼ 9 mJy) 1.1 mm contin-

uum observations have revealed the presence of another filamentary structure (named as ”new

filament” in Figure 2). In addition, a continuum feature extending almost perpendicular to

the integral-shape filament centered on MMS 9 (αJ2000, δJ2000 = 5h35m26.s00,−5◦05′42.′′4) was

detected clearly at a signal to noise ratio of ≥ 50 σ, although this feature was not clearly seen

in the previous studies (named as ”east-west extension” in Figure 2 ). In the most eastern side

of this structure, a cavity-like structure with a size of 0.4 pc was found at a central position of

αJ2000, δJ2000 = 5h35m44s,−5◦06′48′′ (named as ”cavity-shape” in Figure 2).

3.1.2. Features around the HII regions, M 42 and M 43

The distribution of the 1.1 mm dust-continuum emission around the HII region, M 43,

which is excited by a B0.5 star, NU Ori (αJ2000, δJ2000 = 5h35m31.s36,−5◦16′02.′′5) (Thum et

al. 1978), shows a shell-like structure with a size of ∼ 0.5 pc (named as “shell” in Figure 2).

Toward the south of M 42 (OMC-4 region) the 1.1 mm dust-continuum emission shows a “V-

shape” structure with a size of ∼ 2 pc, which is also seen in the 850 µm continuum emission

(Johnstone & Bally 1999), and a cavity-like structure with a central position of (αJ2000, δJ2000

= 5h35m13s,−5◦31′42′′)(named as “cavity” in Figure 2). Toward the northwest of M 42, the

1.1 mm dust-continuum emission forms an “L-shape” structure with a size of ∼ 0.5 pc (named

as ”L-shape” in Figure 2).

3.1.3. Filaments in peculiar shapes outside the integral filament

As well as the integral-shape filament there appears a branch of the 1.1 mm dust-

continuum emission extending toward the southeast of Ori-KL. The branch forms a filamentary

structure with a length of ∼ 3 pc along αJ2000 ∼ 5h36m. This filament is known as one of photo-

dominated regions (PDRs) from the CN line observations (Rodŕıguez-Franco et al. 2001) and

is named as “dark lane south filament” (DLSF, named as “DLSF” in Figure 2). Furthermore,

toward the opposite side of DLSF with respect to the integral-shape filament there is another

filamentary structure with a size of ∼ 3 pc, which is bending at the middle (named as “Bending
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structure” in Figure 2).

In the southmost region where an active cluster-forming region of L 1641 N (Chen et

al. 1995; Chen et al. 1996; Stanke & Williams 2007) resides, four filamentary structures with

a size of ∼ 0.5 - 2.0 pc are seen aligned almost in parallel (named as ”paralleled filament” in

Figure 2).

3.2. 12CO (J=1–0) Emission

Figure 3 and 4 show the total integrated and the peak intensity maps of the 12CO (J=1–

0) emission in the northern part of the Orion A molecular cloud, respectively. The main feature

seen in these maps is the same as that in the 1.1 mm continuum map, namely, integral-shape

filament. At the eastern edge of the integral-shape filament there appears a sharp emission

contrast while at the western edge the emission intensity decreases gradually. Hereafter we call

the sharp emission contrast at the eastern edge of the integral-shape filament “CO front” (see

Figure 5). In the total integrated intensity map the brightest point at the center corresponds

to the location of Ori-KL. Toward the south-east of Ori-KL there appears a bar-like feature

with a length of ∼ 0.6 pc, which is more evident in the peak intensity map. This feature

corresponds to “Orion-Bar” (see Figure 5). As well as the 12CO components associated with

the integral-shape filament, there appears a branch of the 12CO emission extending toward the

southeast from Ori-KL. This 12CO structure corresponds to DLSF seen in the AzTEC 1.1 mm

dust-continuum emission (see Figure 5 as well as Figure 2). Similarly to CO front, there is a

sharp emission contrast at the western side of DLSF. In addition to these filamentary features,

a 12CO emission extending to the east from Orion-KL and a diffuse CO emission at the west

of the integral-shape filament are seen. These 12CO emission features are consistent with the

features found by the previous 12CO (J=1–0) observations at an angular resolution of 45′′ and

a grid spacing of 45′′ (Heyer et al. 1992). Toward the emission ridge, the peak intensity map

of the 12CO (J=1–0) emission probably shows the temperature structure, under the condition

that the 12CO (J=1–0) emission is optically thick and thermalized. The temperature around

Ori-KL is the highest (∼ 110 K), and the temperature around NGC 1977 is relatively high (∼

64 K).

Figure 6 shows the velocity channel maps of the 12CO (J=1–0) emission with a velocity

width of 1.0 km s−1. In the high-velocity range (VLSR = 2.5 - 3.5 & 15 - 18 km s−1), a point-like
12CO emission associated with Ori-KL is seen at (αJ2000, δJ2000) = (5h35m14.s5,−5◦22′30.′′4).

From VLSR = 2.5 to 6.5 km s−1, there is another compact 12CO component seen toward the west

of Ori-KL at (αJ2000, δJ2000) = (5h34m20.s4,−5◦22′24.′′2). This 12CO component is associated

with the AzTEC 1.1 mm dusty condensation (named as ”Region B”, see §3.3). From VLSR = 4.5

km s−1 to 14 km s−1 the main integral-shape filament shows a velocity gradient from the south

to the north of Ori-KL, as already reported by previous observations (Bally et al. 1987; Heyer

et al. 1992; Ikeda et al. 2007; Tatematsu et al. 2008). On the other hand, from VLSR = 5.5 to
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8.5 km s−1 the 12CO emission originated from DLSF shows a velocity gradient from the north

to the south (see Figure 5), which suggests that the velocity gradient of the 12CO emission

associated with DLSF is opposite compared to the large scale velocity gradient of the Orion

A molecular cloud. The central velocity of DLSF (∼ 7 km s−1) is also different from that of

the integral-shape filament. Hence, DLSF is likely to be kinematically distinct from the main

cloud component. In the velocity range of 12 to 16 km s−1, the 12CO emission forms a shell-like

structure with a size of ∼ 2 pc toward the south of Ori-KL (named as ”shell around Ori-KL” in

Figure 5). Bally et al. (1987) and Heyer et al. (1992) also found this shell-like structure around

Ori-KL in the 13CO (J=1–0) and the 12CO (J=1–0) lines observations.

As well as these emission-ridge components, in the velocity range of 3.5 - 7.5 km s−1

there is extended diffuse CO component at the eastern region of the integral-shape filament.

The peak intensity and the velocity width of the diffuse CO component are ∼ 5 K and ∼ 5 km

s−1, respectively. The origin of this rather featureless and extended 12CO emission is likely to

be different from that of the ridge components. Sakamoto et al. (1997) also found the diffuse

CO component with a velocity width of ∼ 7 km s−1 and a peak intensity of ∼ 5 K in the east

of the L 1641 N region, which locates in the southern part of the AzTEC 1.1 mm continuum

map (Figure 1) and out of our 12CO observing region. The diffuse CO component in the east

of the L 1641 N region found by Sakamoto et al. (1997) is probably the same component as

that in the east of the OMC-2/3 region and in the east of DLSF. Their and our results suggest

that the diffuse CO component distributes along the east of the integral-shape filament over

the extent of ≥ 14 pc. We will discuss the origin of the diffuse CO component in more detail.

Figure 3 shows the mean velocity map of the 12CO (J=1–0) emission. The large-scale

velocity gradient from the south to north can be confirmed in this mean velocity map as

already shown in the channel maps (see Figure 6). Figure 4 shows the velocity dispersion map

of the 12CO (J=1–0) emission. The velocity dispersion map shows the increase of the velocity

dispersion toward the east of CO front in the OMC-2/3 region (see Figure 5). Moreover, there

is a shell-like structure around Ori-KL in the velocity dispersion map (see Figure 5).

3.3. Comparison Among the AzTEC 1.1 mm, 12CO peak Intensity, 2MASS, and the MSX 8

µm Map

Figure 8 (a)-(d) show the AzTEC 1.1 mm, 12CO (J=1–0) peak intensity, 2MASS, and

the midcourse space experiment (MSX) 8 µm maps in the 12CO observing region, respectively.

The 8 µm emission mostly arises from polycyclic aromatic hydrocarbons (PAHs) and has been

observed at the boundary of the HII regions (Zavagno et al. 2006). Recent laboratory experi-

ments have shown that PAHs are produced on the dust grains irradiated by the FUV radiation

(Bernstein et al. 1999). Hence, presence of the strong 8 µm emission suggests presence of the

FUV radiation from HII regions. While the 1.1 mm and the 12CO images show the distribution

of the molecular gas, the 2MASS and the 8µm images show three bright nebulae, M 42, M
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43, and NGC 1977. Although the millimeter and infrared emission distributions appear quite

distinct from each other, detailed comparisons among the 1.1 mm, 12CO, and the 8 µm images

show their spatial correlations in several regions.

Figure 9 (a) and (b) compare the 1.1 mm continuum distribution to the MSX 8 µm and

the 12CO (J=1–0) emission distributions in the M 43 and DLSF region. In this region there

are two HII regions, M 42 and M 43, excited by θ1 Ori C and NU Ori, respectively. There are

systematic trends of the 8 µm, 1.1 mm, and, the 12CO emission distributions as a function of

the distance from the HII regions. Toward M 43, there is a shell-like structure in the 12CO, 1.1

mm, and the 8 µm emissions, however, the radius of the shell decreases systematically from the
12CO, 1.1 mm, and the 8 µm emissions. DLSF is likely to be irradiated by θ1 Ori C and the
12CO, 1.1 mm, and the 8 µm emissions show systematic emission distributions as a function

of the distance from θ1 Ori C; the 12CO emission distribution is located farthest and the 8 µm

closest.

We have also identified other four regions with the systematic 12CO, 1.1 mm, and the

8 µm emissions distribution. These regions are labeled as Region A-D, and the locations of

Region A-D are shown in Figure 5.

Figure 10 - 13 show the same maps as those in Figure 9 but for Region A-D, respectively.

In Region A where the 1.1 mm continuum peak locates at (αJ2000,

δJ2000)=(5h34m35.s5,−5◦18′05.′′3), the nearest (d= ∼ 1.4 pc) HII region, M 42, is located

on the southeast from the continuum peak (see an arrow in Figure 10). The 8 µm, 1.1 mm, and

the 12CO emissions show the systematic distributions along the direction to the HII region;

The 8 µm emission distributes on the southeastern part of the 1.1 mm dust-continuum conden-

sation, while the 12CO emission distributes on the central part of the 1.1 mm dust-continuum

condensation.

In Region B where the 1.1 mm continuum peak locates at (αJ2000,

δJ2000)=(5h33m57.s4,−5◦23′28.′′9), the nearest (d= ∼ 2.3 pc) HII region, M 42, is located

on the east from the continuum peak (see an arrow in Figure 11). The 8 µm and the
12CO emissions show the positional offset along the direction to the HII region, and the 8

µm emission locates on the side of the HII region. The dusty condensation in Region B is

associated with a Spitzer 24 µm source.

In Region C where the 1.1 mm continuum peak locates at (αJ2000,

δJ2000)=(5h33m49.s9,−5◦39′00.′′1), the nearest (d= ∼ 3.2 pc) HII region, M 42, is located

on the north from the continuum peak (see an arrow in Figure 12). The 8 µm, 12CO, and the

1.1 mm emissions show the systematic distributions along the direction to the HII region; The

8 µm emission distributes on the northern part of the 1.1 mm dust-continuum condensation,

while the 12CO emission distribution is similar to the 1.1 mm emission distribution.

In Region D where the 1.1 mm continuum peak locates at (αJ2000,

δJ2000)=(5h35m30.s5,−5◦40′06.′′5), the nearest (d= ∼ 2.0 pc) HII region, M 42, is located

9



on the north from the continuum peak (see an arrow in Figure 13). The 8 µm, 1.1 mm, and the
12CO emissions show the systematic distributions along the direction to the HII region; The

8 µm emission distributes on the northern part of the 1.1 mm dust-continuum condensation,

while the 12CO emission distributes on the southern part of the 1.1 mm dust-continuum

condensation.

4. Discussion

4.1. Large Scale Possible External Effect; Collision of the Diffuse Components on the Cloud

Surface

One of the first findings in our extensive 12CO (J=1–0) emission observations of the

northern part of the Orion A molecular cloud is the presence of the diffuse CO component

over the entire eastern region of the integral-shape filament. Figure 14 highlights the total

integrated intensity map of the diffuse CO component with respect to the peak intensity map

at the OMC-2/3 region, and Figure 15 shows position - velocity (P-V) diagrams whose cut lines

are along the RA direction shown in Figure 14. In the P-V diagrams, the central velocity of

the diffuse CO component is 5 - 6 km s−1, while that of the main component is 11 - 12 km s−1.

These two velocity components appear to be connected at CO front, raising the 12CO velocity

dispersion at CO front. Figure 16 shows peak intensity profiles whose cut lines are the same as

that of the P-V diagrams in Figure 15. While the peak intensity of the diffuse CO component

is around 4 - 7 K at TMB, that of the main cloud component exceeds 50 K, and hence there

is an abrupt increase of the 12CO peak intensity at CO front. In contrast, toward the western

outskirts of the main cloud component the 12CO peak intensity decreases gradually (see Figure

3 - 5). These peculiar features extend over the entire CO front as can be seen in Figures 3 - 6,

although toward the southern part of CO front the difference of the central velocities becomes

smaller. The reason why the velocity difference between the diffuse CO component and the

main cloud component becomes less clear is the large scale velocity gradient of the main cloud

component (see §3.2).

There are two possible interpretations on the origin of the diffuse CO component; One

is the trail of the main cloud component moving away from the galactic plane and the other is

the pre-existing surrounding diffuse gas swept up by neighboring external sources. Sakamoto

et al. (1997) has suggested these two possibilities on the origin of the diffuse CO component

in the east of the L 1641 N region. It is, however, difficult to explain the difference of the

central velocity between the diffuse CO component and the main cloud component and the

abrupt increase of the 12CO peak intensity by the former interpretation. We consider that the

“L-shaped” feature of the diffuse CO component in the P-V diagrams and the abrupt increase

of the 12CO peak intensity imply presence of the interaction between the diffuse CO component

and the main cloud component (Takakuwa et al. 2003; Shimajiri et al. 2008), and that the diffuse
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CO component is being accumulated on to the surface of the main cloud component at CO

front. In fact, Bally et al. (1987), Lee & Chen (2009) and Wilson et al. (2005) have suggested

that Ori OB 1a and Ori OB 1b, ∼ 100 pc away from the Orion A molecular cloud, affect the

Orion A molecular cloud and disturb the morphology and kinematics of the cloud, respectively.

These OB stars are the possible sources to sweep up the pre-existing diffuse material toward

the direction to the main cloud component. Our observational results favor the proposal by

Wilson et al. (2005), since Ori OB 1b locates in the east of the Orion A molecular cloud and the

diffuse CO component also distributes toward the same direction from the Orion A molecular

cloud. The collision of the diffuse CO component with the main cloud component might trigger

the next star formation in the cloud (Lada 1987).

4.2. Intermediate Scale Possible External Effect; Photo-Dominated Regions

In the last section, we suggest the possibility that the diffuse CO component is swept

up by Ori OB 1b and interacts with the entire Orion A molecular cloud. In this section, we

focus on more local effects in a few pc-scale, namely, the HII regions embedded in the Orion

A molecular cloud. As well as the external sources away from the cloud, newly born OB stars

embedded in the cloud can also influence on the structure, chemistry, thermal balance, and the

star formation in the cloud (Hollenbach & Tielens 1997). There are several OB stars (such as

θ1 Ori C and NU Ori) and HII regions in our mapping area of the Orion A molecular cloud

and these sources are likely to affect star formation in the Orion A molecular cloud. As shown

in §3.3, we found that there are systematic differences of the distribution among the 12CO, 1.1

mm, and the 8 µm emissions and that the 8 µm, 1.1 mm, and the 12CO emissions are distributed

as a function of the distance from the OB stars. The most clear example is in DLSF irradiated

by θ1 Ori C, and the intensity profiles as a function of the distance from θ1 Ori C are shown in

Figure 17.

The presence of the strong 8 µm emission suggests the FUV radiation from the HII

regions. On the other hand, 12CO molecules are dissociated by the FUV radiation, since the

energy of FUV (6 eV - 13.6 eV) is high enough to dissociate 12CO molecules with an dissociative

energy of 11.4 eV. Hence, the 12CO emission does not distribute at the near side of the exciting

star. The 1.1 mm emission traces both the cold and warm dusts. Hence, the systematic

distributions of the 8 µm, 1.1 mm, and the 12CO emissions can be explained by the PDR

model (Hollenbach & Tielens 1997). In fact, toward DLSF and M 43, where the systematic

distributions of the 12CO, 1.1 mm, and the 8 µm emissions are seen, the observations of the

CN line, one of the excellent tracers for PDR, suggest the presence of PDR.

Region A-D, relatively isolated dusty condensations, also exhibit the systematic distri-

butions of the 12CO, 1.1 mm, and the 8 µm emissions along the direction to the exciting sources.

These isolated condensations are likely to be pre-existing molecular cloud cores. When an ex-

panding HII region interacts with a pre-existing molecular cloud core, the strong UV radiation
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will compress the core. This compression could induce the gravitational collapse of the core

(Bertoldi 1989; Motoyama et al. 2007). Our results suggest that the dusty condensations of

Region A-D are affected by the UV radiation from the OB stars. Moreover, the dusty conden-

sation of Region B is associated with the spitzer 24 µm sources, suggesting the presence of the

star formation.

5. Summary

We have carried out extensive mapping observations of the northern part of the Orion

A molecular cloud in the 1.1 mm dust-continuum emission with the AzTEC camera equipped

in the ASTE telescope and in the 12CO (J=1–0) emission with the BEARS receiver equipped

in the NRO 45 m telescope. The main results of our wide-field (1.◦7×2.◦3) and high-sensitivity

(∼ 9 mJy beam−1) observations are summarized as follows;

1. We have found new features of the 1.1 mm dust-continuum emission in addition to the

previously known integral-shape filament. In the OMC-2/3 region, a new dusty filamentary

structure is detected toward the east of the integral-shape filament. A dusty shell-like

structure around the HII region, M 43, and a filamentary structure associated with DLSF

are detected. In the southmost region where an active cluster-forming region of L 1641 N

is located, four filamentary structures with a size of ∼ 0.5 - 2.0 pc are seen aligned almost

in parallel.

2. In the 12CO (J=1–0) line observations, we found diffuse CO component over the entire

eastern region of the integral-shape filament. The peak intensity profiles from the diffuse

CO component to the integrals-shape filament show an abrupt increase at the border line

(CO front) and the P-V diagrams show the sudden velocity change from 5 - 6 km s−1

to 11- 12 km s−1. We suggest that these peculiar features of the diffuse CO component

show that the diffuse material swept up by Orion OB 1b, ∼100 pc away from the Orion

A molecular cloud, is being accumulated onto the surface of the integral-shape filament.

3. Comparisons among the 12CO, 1.1 mm, and the 8 µm emission distribution in M 43, DLSF,

and Region A-D have revealed that the 8 µm, 1.1 mm, and the 12CO emissions are located

sequentially as a function of the distance from the neighboring OB stars. These results

suggest the presence of the PDRs around M 43, DLSF, and Region A-D, excited by the

NU Ori, θ1 Ori C, and θ1 Ori C, respectively. In particular, the dusty condensation of

Region B is associated with a Spitzer 24 µm source, suggesting the presence of the star

formation. Region A-D are possible site of star formation triggered by the PDRs.
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Appendix 1. AzTEC Data Reduction & Performance

In this appendix, we present our imaging simulation with artifact gaussian sources as

input models, in order to test the performance of the AzTEC data reduction.

A.1.1. AzTEC Data Reduction

The AzTEC data set is reduced by using the available AzTEC data reduction pipeline

written in IDL and developed by the University of Massachusetts according to guidelines in

Scott et al. (2008). This pipeline includes the despiking, atmosphere removal, and optimal

filtering. The despiking which is removal of the cosmic ray is, however, not applied to Orion

data reduction to avoid the removal of source emission, since the emission in the Orion region is

too strong. Principal components analysis (PCA) cleaning method is applied for removal of the

atmospheric noise in this pipeline. Finally, the 30 individual maps were coadded. This data

reduction pipeline has, however, been optimized for the identification of point sources. The

PCA cleaning removes the astronomical signals in the case that the emission has an extended

structure, since the signals which are a good correlation among each element are regarded as the

atmospheric components and are removed. Hence, the flux and size of the extended sources are

underestimated. In order to recover the extended features in the Orion map which is subtracted

by the PCA cleaning, we apply an iterative mapping method to the Orion data-set. Hereafter,

we call this method, FRUIT. This method is based on an iterative mapping method applied

to the BOLOCAM data reduction pipeline (Enoch et al. 2006). The FRUIT data reduction

pipeline is also written in IDL and developed by the University of Massachusetts. The FRUIT

algorithm is described in Liu et al. (2010).

A.1.2. Performance of FRUIT

In order to investigate the performance of FRUIT, we have performed the simulation

that the twenty five gaussian sources with a peak flux of 1 Jy and a FWHM size of 30, 60,

90, 120, 150, and 180′′ are inserted to Orion data-set and are applied the data reduction

pipeline. Figure 18 shows the fraction of the over-estimated (positive) or missed (negative) flux,
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(output total fluxinput total flux −1)×100, as a function of the FWHM size of the input model Gaussian. We

have applied the aperture photometry to estimate the total flux. Error bars show a standard

deviation (1 σ) of the output total flux among twenty five sources. In the case that the FWHM

size of the input model Gaussian is under 150′′, the output total flux is underestimated by less

than 20%. The total-flux reproductivity of the source with larger FWHM is lower than that

with smaller FWHM. We insert the twenty five sources with a peak flux of 1, 20, 40, 60, and

80 Jy and a FWHM size of 60′′ to the Orion data-set and applies the same data reduction

pipeline. Figure 19 shows the fraction of the over-estimated (positive) or missed (negative) flux

as a function of the peak flux of the input model Gaussian. The total flux of sources with a

peak flux under 20 Jy is underestimated by less than 10 %. The reproductivity of the total

flux is, however, low for the source with a peak flux over 20 Jy. In the case of Orion, the total

flux of sources in our map should be recovered by more than 80 %, since the peak flux and the

FWHM size of most sources are smaller than 20 Jy and 150′′. Moreover, the restored image

of the 1.1 mm dust continuum emission is consistent with that of the SCUBA 850 µm dust

continuum emission as shown in Figure 20.
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Rodŕıguez-Franco, A., Wilson, T. L., Mart́ın-Pintado, J., & Fuente, A. 2001, ApJ, 559, 985

Sakamoto, S., Hasegawa, T., Hayashi, M., Morino, J.-I., & Sato, K. 1997, ApJ, 481, 302

Sandell, G., & Knee, L. B. G. 2001, ApJL, 546, L49

Saito, M., Sunada, K., Kawabe, R., Kitamura, Y., & Hirano, N. 1999, ApJ, 518, 334

Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., & Plambeck, R. L. 2007, ApJ, 667,

1161

Sawada, T., et al. 2008, PASJ, 60, 445

Scott, K. S., et al. 2008, MNRAS, 385, 2225

Shimajiri, Y., Takahashi, S., Takakuwa, S., Saito, M., & Kawabe, R. 2008, ApJ, 683, 255

Shimajiri, Y., Takahashi, S., Takakuwa, S., Saito, M., & Kawabe, R. 2009, PASJ, 61, 1055

Solomon, P. M., Sanders, D. B., & Scoville, N. Z. 1977, BAAS, 9, 554

Sorai, K., Sunada, K., Okumura, S. K., Tetsuro, I., Tanaka, A., Natori, K., & Onuki, H. 2000, Proc.

SPIE, 4015, 86

Stanke, T., McCaughrean, M. J., & Zinnecker, H. 2002, A&A, 392, 239

Stanke, T., & Williams, J. P. 2007, AJ, 133, 1307

Sunada, K., Yamaguchi, C., Nakai, N., Sorai, K., Okumura, S. K., & Ukita, N. 2000, Proc. SPIE,

4015, 237

Takahashi, S., Saito, M., Ohashi, N., Kusakabe, N., Takakuwa, S., Shimajiri, Y., Tamura, M., &

Kawabe, R. 2008, ApJ, 688, 344

Takahashi, S., Ho, P. T. P., Tang, Y.-W., Kawabe, R., & Saito, M. 2009, ApJ, 704, 1459

Takakuwa, S., Ohashi, N., & Hirano, N. 2003, ApJ, 590, 932

Takakuwa, S., et al. 2004, ApJL, 616, L15

Tatematsu, K., et al. 1993, ApJ, 404, 643

15



Tatematsu, K., Umemoto, T., Heyer, M. H., Hirano, N., Kameya, O., & Jaffe, D. T. 1998, ApJS, 118,

517

Tatematsu, K., Kandori, R., Umemoto, T., & Sekimoto, Y. 2008, PASJ, 60, 407

Thum, C., Lemke, D., Fahrbach, U., & Frey, A. 1978, A&A, 65, 207

Tsujimoto, M., Koyama, K., Tsuboi, Y., Goto, M., & Kobayashi, N. 2002, ApJ, 566, 974

Whitworth, A. P., Bhattal, A. S.,Chapman, S. J., Disney, M. J., & Turner, J. A. 1994, A&A, 290, 421

Wilson, B. A., Dame, T. M., Masheder, M. R. W., & Thaddeus, P. 2005, A&A, 430, 523

Wilson, G. W., et al. 2008, MNRAS, 386, 807

Yamaguchi, C., Sunada, K., Iizuka, Y., Iwashita, H., & Noguchi, T. 2000, Proc. SPIE, 4015, 614

Yokogawa, S., Kitamura, Y., Momose, M., & Kawabe, R. 2003, ApJ, 595, 266

Yonekura, Y., Asayama, S., Kimura, K., Ogawa, H., Kanai, Y., Yamaguchi, N., Barnes, P. J., &

Fukui, Y. 2005, ApJ, 634, 476

Zavagno, A., Deharveng, L., Comerón, F., Brand, J., Massi, F., Caplan, J., & Russeil, D. 2006, A&A,

446, 171

Zinnecker, H., & Yorke, H. W. 2007, ARA&A, 45, 481

16



Fig. 1. AzTEC/ASTE 1.1 mm dust continuum map. The rms noise level is 9 mJy beam−1 in the central

region and 12 mJy beam−1 on the outer edge. The central Orion-KL region has been masked out for

this analysis, because the continuum emission around Orion-KL is too bright to be reconstructed as an

accurate structure with the AzTEC data-reduction technique.
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Fig. 2. Map of main 1.1 mm dust continuum features. The details of the features are described in section

3.1. A black box, ∼ 1.2 × ∼1.2 degree2 in size, shows the 12CO (J=1–0) observing region. The central

Orion-KL region has been masked out for this analysis, because the continuum emission around Orion-KL

is too bright to be reconstructed as an accurate structure with the AzTEC data-reduction technique.
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Fig. 3. 12CO (J=1–0) total integrated intensity map at a velocity range of 0.0 - 20.0 km s−1. The noise

level (1 σ) is 70.0 K km s−1, and the peak intensity is ∼ 1.62 × 107 K km s−1.
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Fig. 4. Peak intensity map in the 12CO (J=1–0) line. The noise level (1 σ) is 1.4 K at TMB and the peak

intensity is ∼ 111.7 K at TMB.
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Fig. 5. Map of 12CO (J=1–0) emission features. Grey scale is a peak intensity map in the 12CO (J=1–0)

line. The detail of the features are described in section 3.2.
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Fig. 6. 12CO (J=1–0) velocity channel maps. The image size is ∼ 1.2 × 1.2 degree2, and the effective

special resolution is ∼21′′. The velocity width of each map is 1.0 km s−1, and typical noise level (1 σ) is

0.93 K in TMB.
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Fig. 7. (a) 12CO intensity-weighted mean velocity map at a velocity range of 0.0 - 20.0 km s−1. Blue,

green, and yellow colors show the ≤ 9.0, 9.0 - 11.0 , ≥ 11.0 km s−1, respectively. (b) 12CO velocity

dispersion map at a velocity range of 0.0 - 20.0 km s−1. Blue, green, and yellow colors shows the ≤ 1.6,

1.6 - 2.8, ≥ 2.8 km s−1, respectively.
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Fig. 8. (a) AzTEC/ASTE 1.1 mm dust-continuum image. The central Orion-KL region has been masked

out for this analysis, because the continuum emission around Orion-KL is too bright to be reconstructed

as an accurate structure with the AzTEC data-reduction technique. (b) peak intensity map in the 12CO

(J=1–0) line (c) 2MASS image obtained from the archive of IPAC image mosaic service. (d) MSX 8 µm

image obtained from the archive of IRAC Services.
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Fig. 9. (a) AzTEC 1.1 mm contours overlaid on a MSX 8 µm map in the M 43 and DLSF region. (b)

AzTEC 1.1 mm contours overlaid on a peak intensity map in the 12CO (J=1–0) line in the M 43 and

DLSF region. Contour levels start from 5 σ with an interval of 10 σ for a range of 10 - 100 σ and 50 σ for

a range from 100 σ. The crosses show the position of NU Ori and θ1 Ori C, respectively. The green dash

line shows a cut line of the intensity profiles shown in Figure 17.
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Fig. 10. AzTEC/ASTE 1.1 mm contours overlied on a MSX 8 µm map and peak intensity map in the
12CO (J=1–0) line in Region A. Contour levels start from 10 σ with an interval of 10 σ for a range of 10

- 150 σ and 50 σ for a range from 150 σ.

Fig. 11. AzTEC/ASTE 1.1 mm contours overlied on a MSX 8 µm map and peak intensity map in the
12CO (J=1–0) line in Region B. Contour levels start from 10 σ with an interval of 10 σ for a range of 10

- 150 σ and 50 σ for a range from 150 σ.
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Fig. 12. AzTEC/ASTE 1.1 mm contours overlied on a MSX 8 µm map and peak intensity map in the
12CO (J=1–0) line in Region C. Contour levels start from 10 σ with an interval of 10 σ for a range of 10

- 150 σ and 50 σ for a range from 150 σ.

Fig. 13. AzTEC/ASTE 1.1 mm contours overlied on a MSX 8 µm map and peak intensity map in the
12CO (J=1–0) line in Region D. Contour levels start from 10 σ with an interval of 10 σ for a range of 10

- 150 σ and 50 σ for a range from 150 σ.
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Fig. 14. 12CO (J=1–0) peak intensity map (contour) superposed on the image of diffuse 12CO (J=1–0)

components (color) in the east of the OMC-2/3 region. A velocity range of the diffuse CO components is

2.6 - 8.6 km s−1. The integrated velocity range of the image of diffuse CO components is 2.6 - 8.6 km s−1.

Contour levels are 15, 30, 45 K in TMB.
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Fig. 15. Position-Velocity (P-V) diagrams of the 12CO (J=1–0) emission. The cut lines are shown in

Figure 14. The declination of the cut lines is −5◦2′26.′′14 and −5◦9′6.′′03, respectively. Vertical lines show

the position of CO front. Contour levels start at 2 σ levels with an interval of 2 σ.

Fig. 16. Peak intensity profiles of the 12CO (J=1–0) emission. The cut lines is shown in Figure 14. The

declination of the cut lines are −5◦2′26.′′14 and −5◦9′6.′′03, respectively. Vertical dash lines show the

position of CO front. Horizontal lines show the noise level (1 σ = 1.4 K at TMB) at the velocity channel

maps with a velocity width of 0.4 km s−1.
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Fig. 17. Intensity profiles of the 1.1 mm continuum emission, 12CO T
peak
MB peak, and 8 µm emission,

whose cut line is shown in Figure 9, as a function of the distance from trapezium cluster (θ1 Ori C).

Fig. 18. Fraction of the over-estimated (positive) or missed (negative) flux as a function of the FWHM

size of the input model Gaussian.
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Fig. 19. Fraction of the over-estimated (positive) or missed (negative) flux as a function of the peak flux

of the input model Gaussian.

Fig. 20. (a) AzTEC FRUIT map in the OMC-2/3 region. (b) SCUBA 850 µm map in the OMC-2/3

region obtained by Johnstone & Bally (1999).
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Table 1. PARAMETERS FOR OBSERVATIONS

Telecope/Receiver ASTE / AzTEC NRO 45 m / BEARS

Line / Wavelength 1.1 mm 12CO (J=1–0;115.271 GHz)

Observation date Oct. 2008 - Dec. 2008 Nov. 2007 - May 2008

Observing mode raster OTF

Observation time 15 hr 40 hr

Mapping size 1.◦7 × 2.◦3 1.◦2 × 1.◦2

Effective beam size 40′′ 21′′

Velocity width —— 1.0 km s−1

Typical r.m.s. 9 mJy beam−1 0.9 K
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