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1 Instituto Nacional de Astrofı́sica Optica y Electrónica, AP 51, 72000 Puebla, Mexico; silich@inaoep.mx

2 Space Research Institute, 84/32 Profsoyuznaya, Moscow 117810, Russia; gkogan@iki.rssi.ru
Received 2011 July 25; accepted 2011 September 1; published 2011 November 29

ABSTRACT

A hydrodynamic model for steady-state, spherically symmetric winds driven by young stellar clusters with an
exponential stellar density distribution is presented. Unlike in most previous calculations, the position of the
singular point Rsp, which separates the inner subsonic zone from the outer supersonic flow, is not associated with
the star cluster edge, but calculated self-consistently. When the radiative losses of energy are negligible, the transition
from the subsonic to the supersonic flow occurs always at Rsp ≈ 4Rc, where Rc is the characteristic scale for the
stellar density distribution, irrespective of other star cluster parameters. This is not the case in the catastrophic
cooling regime, when the temperature drops abruptly at a short distance from the star cluster center, and the
transition from the subsonic to the supersonic regime occurs at a much smaller distance from the star cluster center.
The impact from the major star cluster parameters to the wind inner structure is thoroughly discussed. Particular
attention is paid to the effects which radiative cooling provides to the flow. The results of the calculations for a set
of input parameters, which lead to different hydrodynamic regimes, are presented and compared to the results from
non-radiative one-dimensional numerical simulations and to those from calculations with a homogeneous stellar
mass distribution.
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1. INTRODUCTION

High spatial resolution observations have modified drastically
our view of star formation in starburst and normal galaxies
leading to the discovery of a large number of extremely massive
and compact young stellar clusters with masses 105–106 M�,
effective radii 3–5 pc, and ages less than a few times 106–107 yr.
The clusters, whose masses and expected lifetimes coincide with
those of the globular clusters, are usually named in the literature
super star clusters (SSCs; see for a review Turner 2009; de
Grijs 2010; Portegies Zwart et al. 2010). Massive and compact
star clusters are also a common feature in the nuclei of spiral
galaxies. While the effective radii of nuclear clusters are similar
to the sizes of globular and super star clusters, their luminosities
and thus masses exceed them by up to two orders of magnitude
(e.g., Böker et al. 2004; Walcher et al. 2005).

Extremely high concentration (up to 104–105 M� pc−2) of
young stars implies that SSCs are some of the most powerful
feedback agents which heat up, shape, and enrich the interstellar
gas with the product of supernova explosions. The combined
action of such clusters may lead to the formation of powerful
gaseous outflows (galactic superwinds) which link regions with
extreme star formation activity (starbursts) to the intergalactic
medium (e.g., Heckman et al. 1990; Marlowe et al. 1995; Rupke
et al. 2005; Westmoquette et al. 2008, see for a review Veilleux
et al. 2005 and references therein). Thus, the hydrodynamic
feedback from SSCs to the surrounding interstellar medium is
crucial in many respects, as it is the origin and the duration of
the starburst event, the impact that starbursts provide to their
host galaxies and the intergalactic medium, the evolution of
the assembling galaxies, and the feeding of supermassive black
holes located within nuclear starburst regions.

It was suggested by Chevalier & Clegg (1985) and Chevalier
(1992) that the kinetic energy supplied by supernovae and stellar
winds is thermalized within the star cluster volume. This leads

to a high central overpressure which drives the inserted gas away
from the cluster in the form of a star cluster wind. If the sources
of energy and mass (stars) are homogeneously distributed inside
the star cluster volume with an outer radius RSC and the radiative
losses of energy are negligible, then the hydrodynamics of
the outflow depend only on the energy and mass deposition
rates, LSC and ṀSC, and the radius of the cluster RSC. In this
case the distributions of the hydrodynamical variables can be
calculated analytically (see Chevalier & Clegg 1985; Cantó
et al. 2000). Silich et al. (2003, 2004), Tenorio-Tagle et al.
(2007), and Wünsch et al. (2008, 2011) showed that in the case
of very massive and compact clusters, radiative cooling becomes
an important issue and developed a radiative star cluster wind
model.

Real clusters, however, are not homogeneous. Observations
(see Portegies Zwart et al. 2010 and references therein) show that
the stellar density drops rapidly with distance to the star cluster
center and that the characteristic scale for the stellar density
distribution (core radius) is much smaller then the star cluster
effective radii. This effect has been discussed by Rodrı́guez-
González et al. (2007) who found an analytic non-radiative
solution in the case of power-law stellar density distributions
and then compared it to three-dimensional gas dynamic sim-
ulations. It is important to note that in Rodrı́guez-González
et al.’s (2007) solution the central gas density goes to infin-
ity if the stellar density drops faster than 1/r . This implies
that for steep stellar density distributions radiative cooling in
the central zone of the cluster might also be a crucial fac-
tor. Note also that in Rodrı́guez-González et al.’s (2007) so-
lution the stellar density (and thus the energy and the mass
deposition rates) abruptly drops to zero value at some dis-
tance from the star cluster center and it is assumed that the
transition from the subsonic to supersonic regime occurs ex-
actly at this point. Thus, in Rodrı́guez-González et al.’s (2007)
model the cutoff radius in the stellar density distribution
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remains an important parameter although the stellar density
distribution is not homogeneous. Ji et al. (2006) neglected the
gravitational pull from the cluster and radiative cooling and
integrated the one-dimensional stationary hydrodynamic equa-
tions numerically in the case of an exponential stellar density
distribution. These results were then used to discuss the impact
of non-equilibrium ionization onto the star cluster wind X-ray
emission.

Here we present a steady-state semi-analytic hydrodynamic
solution for winds driven by stellar clusters with an exponen-
tial stellar density distribution, which includes also radiative
cooling. As in the above-mentioned papers, we regard such a
stellar distribution as more realistic than the formerly used ho-
mogeneous one. We thoroughly discuss boundary and initial
conditions, which define the position of the singular point, and
thus the radius where the flow changes the hydrodynamic regime
and becomes supersonic. We also discuss the impact which ra-
diative cooling provides to the flow. The paper is organized
as follows: the input star cluster wind model is formulated in
Section 2. In Section 3 we introduce the set of main equa-
tions and present them in the form suitable for numerical in-
tegration. The initial and boundary conditions are discussed in
Section 4. The method, which allows one to select a wind so-
lution from a branch of possible integral curves, is described
in Section 5. In Section 6 we first present the results of the
simulations for three reference models with different star clus-
ter mechanical luminosities and then discuss how other in-
put parameters affect the solution. An extreme regime with
catastrophic gas cooling is discussed in Section 7. We com-
pare our results with those obtained under the assumption
that stars are homogeneously distributed within the cluster
volume in Section 8. Our major results are summarized in
Section 9.

2. THE MODEL

We consider a young stellar cluster with constant energy and
mass deposition rates, LSC and ṀSC, and an exponential stellar
density distribution,

ρ�(r) = ρ�0 exp(−r/Rc), (1)

where ρ�0 is the central stellar density and Rc is the radius of the
star cluster “core.” The total mass of the cluster is then

MSC = 4π

∫ ∞

0
ρ�0r

2 exp(−r/Rc)dr = 8πρ�0R
3
c . (2)

Note that the half-mass radius of the cluster in the case of
exponential stellar density distribution is Rhme = 2.67Rc.

It is assumed that the kinetic energy supplied by stellar winds
and supernova explosions is completely thermalized, that the
gravitational field of the cluster is negligible, and that the energy
and mass deposition rates per unit volume, qe and qm, are in
direct proportion to the local stellar density:

qe(r) = qe0 exp(−r/Rc), (3)

qm(r) = qm0 exp(−r/Rc), (4)

where the normalization constants qe0 and qm0 are

qe0 = LSC/8πR3
c , (5)

qm0 = ṀSC/8πR3
c . (6)

3. BASIC EQUATIONS

The hydrodynamic equations for the stationary, spherically
symmetric flow driven by stellar winds and supernova explo-
sions if gravity is neglected are (see, for example, Johnson &
Axford 1971; Chevalier & Clegg 1985; Cantó et al. 2000; Silich
et al. 2004; Ji et al. 2006)

1

r2

d

dr
(ρur2) = qm, (7)

ρu
du

dr
= −dP

dr
− qmu, (8)

1

r2

d

dr

[
ρur2

(
u2

2
+

γ

γ − 1

P

ρ

)]
= qe − Q, (9)

where u, P, and ρ are the outflow velocity, thermal pressure, and
density, γ is the ratio of the specific heats, Q = neniΛ(T ,Z)
is the cooling rate, and Λ(T ,Z) is the cooling function, which
depends on the gas temperature T and metallicity Z. Hereafter
we relate the energy and the mass deposition rates, LSC and
ṀSC, via the equation

LSC = ṀSCV 2
A∞

/
2, (10)

and assume that the adiabatic wind terminal speed, VA∞, is
constant. Thus, the model input parameter VA∞ defines the mass
deposition rate for a given cluster mechanical luminosity LSC.

The integration of the mass conservation Equation (7) yields

ρur2 = −qm0
(
Rcr

2 + 2R2
c r + 2R3

c

)
exp(−r/Rc) + C . (11)

If the density and the velocity of the flow in the star cluster
center are finite, the constant of integration is C = 2qm0R

3
c .

Using this expression and taking the derivative of Equation (9),
one can present the main equations in the form

du

dr
= (γ − 1)(qe − Q) + (γ + 1)qmu2/2 − 2ρuc2/r

ρ(c2 − u2)
(12)

dP

dr
= −ρu

du

dr
− qmu, (13)

ρ = 2qm0R
3
c

r2u

[
1 −

(
1 +

r

Rc

+
1

2

r2

R2
c

)
exp(−r/Rc)

]
, (14)

where c is the local speed of sound, c2 = γP/ρ. Note that the
central density remains finite and is not zero, ρ �= 0 g cm−3,
only if the flow velocity in the star cluster center is 0 km s−1

and grows linearly with radius near the center. The derivatives
of the wind velocity and pressure in the star cluster center then
are

du

dr
= [

(γ − 1)(qe − Q) − 2qm0c
2/3

]
/ρc2, (15)

dP

dr
= 0. (16)

We make use of these equations in order to move away from the
center and start the numerical integration.
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Figure 1. Possible integral curves. The value of the central temperature selects
the type of the integral curve. If the central temperature is large, the integral
curve reaches the maximum radius r = RD (vertical dashed line), where the
denominator in Equation (12) changes sign and the velocity becomes supersonic.
The integral curve then goes back toward the center. This is a non-physical
double-value solution. If the central temperature is low, the integral curve reaches
the maximum velocity at r = RN (vertical dotted line), where the numerator
in Equation (12) changes the sign. The velocity then drops with distance to the
star cluster center. The velocity is always subsonic in this case. This is known
as a “breeze” solution (e.g., Bjorkman 1995). The wind solution is the unique
solution, which passes by the singular point at r = Rsp (vertical solid line),
where both the numerator and denominator in Equation (12) vanish and the
flow becomes supersonic for larger radius.

4. INITIAL AND BOUNDARY CONDITIONS

In the non-radiative solution the sound speed in the center is
defined directly by the adiabatic wind terminal speed VA∞ and
does not depend on the wind central density (Chevalier & Clegg
1985; Cantó et al. 2000): cA0 = [(γ − 1)/2]1/2VA∞. This is
not the case when radiative cooling is taken into consideration.
The central gas density, ρc, and the central temperature, Tc, are
then related by the equation (Sarazin & White 1987; Silich et al.
2004)

ρc = q
1/2
m0

[
V 2

A,∞
/

2 − c2
0

/
(γ − 1)

Λ(Z, Tc)

]1/2

, (17)

where c0 is the sound speed in the star cluster center.
Equation (17) shows that the central temperature in the ra-
diative solution can never exceed the non-radiative value,
Tc0 = μac

2
c0/γ k, where k is the Boltzmann’s constant and

μa = 14/23mH is the mean mass per particle in the fully ionized
plasma with 1 He atom per 10 H atoms. It also defines the ther-
mal pressure in the star cluster center if the central temperature
is known:

Pc = kncTc = kρcTc/μa . (18)

Thus, the value of the central temperature selects the unique
solution from the branch of possible integral curves presented
in Figure 1. The wind solution is the unique solution, which
passes through the singular point, where both, the numerator
and the denominator in Equation (12), vanish and the subsonic
flow in the inner zone, r < Rsp, becomes supersonic at r > Rsp.
This outer boundary condition, i.e., that the integral curve must
pass through the singular point, allows one to select the value
of the central temperature which leads to the wind solution, and
also defines the singular point position.

5. THE INTEGRATION PROCEDURE

As shown in Figure 1, there are three possible types of inte-
gral curves. We will call them N-type, D-type, and wind-type
solutions, as indicated in Figure 1. The N-type solution is sub-
sonic everywhere. In this case the velocity grows monotonically
with distance from the star cluster center until it reaches a max-
imum value when the numerator in Equation (12) vanishes. For
larger distances the numerator in Equation (12) becomes nega-
tive, however the denominator does not, and thus the velocity
drops and the flow remains always subsonic. The D-type so-
lution passes the sonic point at some distance from the center.
At this point the denominator in Equation (12) vanishes, how-
ever the numerator does not. The integral curve then reaches the
maximum radius and then turns back toward the center as the
velocity grows. Note that one can easily obtain this solution, if
the velocity is used instead of the radius as the independent vari-
able. The wind-type solution is the only solution, which meets
the singular point where both the numerator and denominator in
the equation of motion vanish.

Which type of the integral curve is selected depends on
the value of the central temperature. D-type solution occurs
when the central temperature exceeds that which results into
the wind-type solution. N-type solution occurs in the opposite
case. This allows one to build up a simple iteration procedure,
which allows one to obtain the central temperature and the
position of the singular point for the wind-type solution. The
procedure is based on the bisection method and includes three
integrations with three different central temperatures, Tmax,
Tmin, and TA = (Tmax + Tmin)/2 at each iteration step. The
initial values of Tmax and Tmin must be selected in such a
way that Tmax is larger and Tmin is smaller than the wind-type
central temperature. The central temperature, Tc, for the wind-
type solution is always between the values of Tmax and Tmin:
Tmin < Tc < Tmax. At the end of each iteration step, either Tmax
or Tmin is replaced with TA, which allows one to narrow the
interval for the wind central temperature and approach closer to
the singular point. We usually stop iterations, when the position
of the singular point is within an accuracy δ � 10−3, where
δ = [(RA − Rmin)2 + (RA − Rmax)2]1/2/RA. Rmax, Rmin, and
RA are the radii, at which the denominator or numerator in the
equation of motion (12) vanishes in the solutions with central
temperatures Tmax, Tmin, and TA, respectively. This procedure
allows one to obtain the value of the wind central temperature
and to localize the position of the singular point with high
accuracy.

However, it does not allow one to pass through the singular
point and obtain the runs of the hydrodynamic variables for
r � Rsp. In order to extend integral curves outside of the
singular radius Rsp and complete the solution, one must know
the values and the derivatives of the hydrodynamical variables in
the singular point. We obtain these quantities from the condition
that at the singular point both the numerator and the denominator
in Equation (12) vanish, and thus the velocity of the flow is equal
to the local speed of sound, usp = csp (see the Appendix).

6. RESULTS AND DISCUSSION

In order to verify our model, we first compared our results
with those obtained by Ji et al. (2006), who integrated numeri-
cally Equations (7)–(9) assuming that the impact from radiative
cooling is negligible. Ji et al. (2006) obtained the singular ra-
dius Rsp = 1.97 pc for Rc = 0.48 pc, ṀSC = 10−4 M� yr−1,
and VA∞ = 1000 km s−1 (see Section 4 and Figure 8 in their
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Figure 2. Stationary wind solution. Panels (a), (b), (c), and (d) present the wind velocity, temperature, density, and pressure, respectively. Solid, dotted, and dashed
lines present the results of the calculations for models A, B, and C. Thick and thin lines in panel (d) display the thermal and ram pressure, respectively.

Table 1
Reference Models

Model Core Radius Half-mass Radius Mechanical Luminosity Adiabatic Terminal Speed
(pc) (pc) (erg s−1) (km s−1)

(1) (2) (3) (4) (5)

A 1.0 2.67 3 × 1040 1000
B 1.0 2.67 3 × 1039 1000
C 1.0 2.67 3 × 1041 1000

paper). The run of the wind velocity obtained with our code for
such an input model is shown in Figure 1 by the solid line. It
is very similar to that obtained in the one-dimensional simula-
tions (note that Ji et al. normalized their radii to the singular
radius, Rsp). The radius of the singular point in our calcula-
tions is Rsp = 1.94 pc. This implies that in the quasi-adiabatic
case our model is in excellent (about 1.5%) agreement with the
one-dimensional results of Ji et al. (2006).

Figure 2 shows the results of the calculations for our three
reference models presented in Table 1. The model clusters
have the same core radius (1 pc) and adiabatic wind terminal
speed (1000 km s−1) but different mechanical luminosities:
LSC = 3 × 1040 erg s−1, LSC = 3 × 1039 erg s−1, and

LSC = 3 × 1041 erg s−1. These mechanical luminosities
correspond to young stellar clusters with masses about MSC =
106 M�, 105 M�, and 107 M�, respectively. The distributions of
velocity, temperature, density, and pressure are shown in panels
(a), (b), (c), and (d), respectively. The solid, dotted, and dashed
lines correspond to cases A, B, and C. In all cases the flow
velocity near the center grows almost linearly with radius, passes
the singular point at about 4 pc distance from the center, and
then gradually approaches the terminal speed value. The wind
velocities are almost identical in the quasi-adiabatic models A
and B (solid and dotted lines, respectively).

The impact of strong radiative cooling is noticeable in the
most energetic case C. In this case the terminal wind velocity
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Figure 3. Results of the calculations for models with different VA∞. Panels (a), (b), (c), and (d) present the wind velocity, temperature, density, and pressure, respectively.
Solid, dotted, and dashed lines present the results of the calculations for models with VA∞ = 1000 km s−1, VA∞ = 2000 km s−1, and VA∞ = 750 km s−1, respectively.
Thick and thin lines in panel (d) display the thermal and ram pressure, respectively.

is smaller than in the cases A and B because radiative cooling
reduces the amount of thermal energy in the central zone, that
results into a smaller wind energy, and thus smaller terminal
speed. The impact from radiative cooling is best noticed in the
radial profiles of temperature and thermal pressure (panels (b)
and (d), respectively). In the quasi-adiabatic cases A and B, the
temperature drops slowly with distance from the star cluster
core showing almost undistinguishable distributions (solid and
dotted lines in panel (b)). In model C the temperature profile
is different. The temperature deviates from the quasi-adiabatic
profile significantly already at about 10 times the core radius and
then drops rapidly to the lower permitted value, of about 104 K,
at about 35 pc from the center. This leads to the fast decrease in
the thermal pressure (panel (d)) which drops more than an order
of magnitude at this distance. Note that thermal pressure always
drops rapidly with distance from the star cluster center in the
free wind region. Figure 2 shows also that the central pressure
grows with the star cluster mass/power. This is also the case for
the central density (see panel (c)). However, radiative cooling
does not affect the density distribution significantly even in the
most powerful case C (panel (c)).

The value of VA∞ parameterizes the ratio of the star cluster
mechanical luminosity to the mass deposition rate. Both param-
eters, LSC and ṀSC, vary as the cluster evolves (e.g., Leitherer
et al. 1999). Beside this, the flow may be mass loaded by the gas
leftover from star formation (Stevens & Hartwell 2003; Silich
et al. 2010). Figure 3 presents the results of the calculations for
three different values of this parameter: VA∞ = 1000 km s−1,
VA∞ = 750 km s−1, and VA∞ = 2000 km s−1 (solid, dashed,
and dotted lines, respectively). The rest of the input parameters
in this set of models are the same as in the reference model A:
LSC = 3 × 1040 erg s−1 and Rc = 1 pc. The calculated wind
central temperature (see panel (b)) increases for larger VA∞ as
it is also the case in the non-radiative solution (see Cantó et al.
2000). The calculated wind terminal speed is similar to the adi-
abatic value when VA∞ parameter is large. However, in the low-
velocity case, VA∞ = 750 km s−1, the difference between the
adiabatic and the calculated terminal speeds is noticeable. This
is because the density in the wind, ρ = Ṁ(r)/4πr2u(r), is larger
if the selected adiabatic wind terminal speed is smaller (Figure 3,
panel (c)) that leads to a stronger radiative cooling. Strong ra-
diative cooling removes a fraction of the deposited energy and
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Figure 4. Results of the calculations for models with different Rc. Panels (a), (b), (c), and (d) present the wind velocity, temperature, density, and pressure, respectively.
Solid, dotted, and dashed lines present the results of the calculations for models with Rc = 1 pc, Rc = 5 pc, and Rc = 0.2 pc, respectively. Thick and thin lines in
panel (d) display the thermal and ram pressure, respectively.

thus decreases the flux of mechanical energy and consequently
the wind terminal speed. Indeed, in the quasi-adiabatic cases
with VA∞ = 2000 km s−1 and VA∞ = 1000 km s−1 the amount
of radiated energy is negligible, but it reaches about 14% of the
deposited energy in the model with VA∞ = 750 km s−1. In this
case, radiative cooling leads to the rapid decrease in the temper-
ature distribution at about 35 pc distance from the star cluster
center as it is also the case in the reference model C. This results
into the sharp drop of thermal pressure at the same distance (see
panel (d)). Nevertheless, the position of the singular point, Rsp,
remains about the same, Rsp ≈ 4 pc.

Finally, Figure 4 shows how the distributions of the hydro-
dynamical variables change with the star cluster core radius.
This figure displays the resulting velocity, temperature, den-
sity, and pressure profiles for clusters which have the same
mechanical luminosity (LSC = 3 × 1040 erg s−1) and adiabatic
wind terminal speed (VA∞ = 1000 km s−1), but different core
radii: Rc = 1 pc, Rc = 5 pc, and Rc = 0.2 pc (solid, dot-
ted, and dashed lines, respectively). Certainly, the speed of the
wind grows faster when the cluster is more compact, as it is
shown in panel (a). The central temperatures are the same in
all cases. However, the temperature profiles are different. In the

case with a larger core radius the flow is quasi-adiabatic and
the temperature drops slowly with radius. On the other hand,
the most compact model with Rc = 0.2 pc is strongly affected
by radiative cooling (dashed line in panel (b)). In this case the
temperature drops rapidly and reaches the 104 K value at about
17 pc distance from the center. One can also notice the effects
of strong radiative cooling on panel (d), which displays the cal-
culated star cluster wind thermal and ram pressure profiles. The
value of the core radius affects also the wind central density
which grows for smaller core radius, as shown in panel (c).

7. THE CATASTROPHIC COOLING REGIME

The density in the wind grows with the star cluster me-
chanical luminosity/mass. It also increases if the wind is mass
loaded (as the adiabatic wind terminal speed is smaller) or if
the cluster is more compact (for a smaller Rc). In all these
cases the impact of radiative cooling on the flow hydrodynam-
ics becomes progressively more significant, as discussed in the
previous section. The turnoff point in the temperature distribu-
tion moves toward the star cluster center and the temperature
rapidly drops to the 104 K value. At larger radii it falls even to
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Figure 5. Catastrophic cooling regime. The distribution of the hydrodynamic variables in the model with LSC = 3×1042 erg s−1, Rc = 1 pc, and VA∞ = 1000 km s−1.
Panels (a), (b), (c), and (d) present the wind velocity, temperature, density, and pressure, respectively. Solid and dotted lines in panel (d) display the thermal and the
ram pressure, respectively.

lower values because of the gas expansion. Hereafter we will
assume that the outflow is photoionized by young massive stars
and thus the wind becomes isothermal as soon as the temperature
reaches the 104 K value. Outward of this radius we replace the
set of the main Equations (12)–(14) with equations describing
isothermal flows:

du

dr
= 2ρc2/γ r − (1 + c2/γ u2)qmu

(1 − c2/γ u2)ρu
(19)

ρ = 2qm0R
3
c

r2u

[
1 −

(
1 +

r

Rc

+
1

2

r2

R2
c

)
exp(−r/Rc)

]
, (20)

where the sound speed, c2 = γ kT /μa , is constant and the
temperature is T = 104 K. The thermal pressure then is
P = ρc2/γ . However, in the numeric code we obtain thermal
pressure by integrating the differential equation

dP

dr
= c2

γ

(
qm

u
− ρ

u

du

dr
− 2ρ

r

)
. (21)

This allows us to minimize changes in the numerical code, when
the transition occurs from the radiative to the isothermal regime.

In the catastrophic cooling regime the singular point detaches
from its quasi-adiabatic position and then rapidly moves toward
the center. One can note that in this respect our solution is
similar to that found by Bisnovatyi-Kogan & Blinnikov (1980)
for the accretion of the pre-heated gas onto a neutron star.
In the later case the singular point is also located far away
from the center, near the Bondi radius, if the accretion rate is
low and the pre-heating of the accretion flow is small. However,
when the accretion rate grows, the catastrophic heating regime
sets in. The singular point detaches then from the Bondi radius
and moves rapidly toward the neutron star surface.

Figure 5 presents an example of the catastrophic cooling
regime. In this case the star cluster core radius and the adiabatic
wind terminal speed are the same as in our reference model A,
but the mechanical luminosity of the cluster is two orders of
magnitude larger: LSC = 3 × 1042 erg s−1. The singular point
moves then inside the core radius, to Rsp = 0.66 pc distance
from the star cluster center. The maximum flow velocity is much
smaller than in the quasi-adiabatic case. It reaches only about
300 km s−1 at the singular point (see panel (a) in Figure 5).
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Figure 6. Catastrophic cooling regime. The ratio of the mechanical energy flux
to the energy input rate as a function of radius. The solid and dotted lines
present the results of the calculations for the reference model A and the model
with the same core radius and adiabatic wind terminal speed, but two orders of
magnitude larger mechanical luminosity, respectively.

The flow slows down then to about 16 km s−1 being loaded
with the newly re-inserted matter with zero initial momentum.
In this regime the last term in Equation (8) dominates over the
thermal pressure gradient. The velocity then increases slowly
because in the isothermal regime the ionizing photons heat up
and dump additional energy to the flow. The density grows in the
region, where the wind slows down, and then decreases again
in the isothermal wind region. The temperature drops abruptly
to the 104 K value when the flow passes the singular point.
The thermal pressure also drops just after the singular point and
then increases in the region where the density grows up and the
temperature reaches a constant value.

In the case under consideration the radiative losses of en-
ergy are catastrophic indeed. Figure 6 shows the ratio of
the energy flux through the surface with radius r, Lw(r) =
4πρu(r)r2(u2(r)/2 + H (r)), where H is the enthalpy, to the me-
chanical energy input rate inside the enclosed volume, LSC(r) =
LSC[1 − (1 + r/Rc + r2/2R2

c ) exp(−r/Rc)]. The solid line in
Figure 6 displays this ratio for the reference model A, whereas
the dotted one shows the same ratio in the catastrophic cooling
regime. In the catastrophic cooling regime, Lw(r)/LSC(r) drops
very rapidly to about 10−3 value, whereas in the quasi-adiabatic
model A it is close to unity at any distance from the star cluster
center. This implies that in the extreme case, here discussed, the
star cluster wind carries away only about 0.1% of the deposited
mechanical energy. The rest is radiated away because of strong
radiative cooling.

Note that the catastrophic cooling regime also sets in if
one provides simulations for less energetic, but more compact
clusters, and in the case of less energetic models with smaller
adiabatic wind terminal speed parameter. In this regime the
terminal wind velocity is small and may fall below the escape
velocity. In this case a fraction of the re-inserted matter might
remain gravitationally bound and accumulate inside the star
cluster volume. Thus, in the catastrophic cooling regime the

gravitational pull from the cluster becomes an important factor
(Silich et al. 2010), which should be included in the model. The
impact that gravitational field of the cluster provides on the flow
will be discussed in a future communication.

8. COMPARISON WITH HOMOGENEOUS
MODEL PREDICTIONS

In this section we confront the predictions from the exponen-
tial model with those obtained under the assumption that stars
are homogeneously distributed within the star cluster volume.
Throughout this section we will assume that the two clusters
have the same mass and their winds the same adiabatic ter-
minal speed, but different, either exponential or homogeneous,
stellar mass distributions. As shown in Section 6 and in our
prior papers, the distribution of the hydrodynamical variables
and thus the observational manifestations of star cluster winds
strongly depend on the characteristic space scale of the stellar
mass distribution: the core radius, Rc, in models with an expo-
nential stellar density distribution and on the star cluster radius,
RSC, in models with a homogeneous stellar distribution. Thus,
one has to link these two parameters in order to compare the
models. This could be done in different ways. For example, Ji
et al. (2006) compared two models assuming that in both cases
the singular points are located at the same distance from the
star cluster center. One can instead use the same half-mass ra-
dius Rhm (e.g., Portegies Zwart et al. 2010). Specifically, here
we assume equally massive clusters with different stellar mass
distributions but with the same half-mass radii, Rhme = Rhmh,
where the half-mass radius is Rhme = 2.67Rc in the exponential
case and Rhmh = 0.79RSC in models with a homogeneous mass
distribution. The relation between the core radius Rc and the star
cluster radius RSC then is

Rc ≈ 0.3RSC. (22)

We present three cases, our reference models A and B
and an intermediate model with an energy input rate LSC =
1041 erg s−1, and assume that in each case the mass distribution
may be either exponential, or homogeneous. The results of
the calculations are presented in Figure 7. Solid, dotted, and
dashed lines in Figure 7 display the results of the calculations
for models with LSC = 3 × 1040 erg s−1, LSC = 1041 erg s−1,
and LSC = 3 × 1041 erg s−1, respectively. Thick and thin lines
show the distributions of the hydrodynamical variables in the
case with an exponential and a homogeneous mass distribution,
respectively. One can note that models with an exponential
stellar mass distribution are less affected by radiative losses
of energy. Indeed, in the calculations with homogeneous mass
distribution the temperature and the thermal pressure already
deviate significantly from the quasi-adiabatic profiles when the
star cluster mechanical luminosity is LSC = 1041 erg s−1,
whereas in the exponential case are not (compare thin and
thick dotted lines in panels (b) and (d)). The mechanical
energy input rate in the most energetic homogeneous model
with LSC = 3 × 1041 erg s−1 exceeds the threshold value
(see Figure 2 in Tenorio-Tagle et al. 2007). In this case the
stagnation point (the point where the wind velocity is 0 km s−1)
shifts from the center to Rst = 1.9 pc and the shock-heated
plasma becomes thermally unstable within the central zone
with r � Rst (Wünsch et al. 2008). We did not find a similar
bimodal regime in calculations with an exponential stellar
distribution. In these cases, the faster drop in density inhibits
catastrophic cooling in the center. The two models are quite
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Figure 7. Comparison of the exponential and the homogeneous model predictions. Panels (a), (b), (c), and (d) present the distributions of the wind velocity,
temperature, density, and thermal pressure, respectively. Solid, dotted, and dashed lines display the results of the calculations for models with LSC = 3 × 1040 erg s−1,
LSC = 1041 erg s−1 and LSC = 3 × 1041 erg s−1. Thick and thin lines show the distributions of the hydrodynamical variables in the case with exponential and
homogeneous mass distribution, respectively. It was assumed that the adiabatic wind terminal speed parameter is the same in all cases: VA∞ = 1000 km s−1.

different in this respect. In the models with a homogeneous
star distribution, the position of the singular point is fixed
at r = RSC but the stagnation point may move from the
center due to catastrophic cooling. In the models with an
exponential stellar mass distribution it is quite the opposite:
the stagnation point remains always at the center, whereas the
singular point may detach from its quasi-adiabatic position
and move closer toward the center. Thus, the definition of the
threshold mechanical luminosity as the mechanical luminosity
above which the stagnation point moves from the star cluster
center and the central zone becomes thermally unstable does not
occur in models with an exponential stellar mass distribution.
However, it is not clear if the flow remains thermally stable
outside of the singular point in this case. This will be thoroughly
discussed in a forthcoming publication.

Diffuse X-ray emission has been detected from many young
stellar clusters and their associated H ii regions (e.g., Moffat
et al. 2002; Law & Yusef-Zadeh 2004; see the review of the
recent results in Townsley et al. 2011). Cantó et al. (2000), Raga
et al. (2001), Stevens & Hartwell (2003), Silich et al. (2005),

Rockefeller et al. (2005), and Rodrı́guez-González et al. (2007)
suggested that the observed diffuse X-ray emission manifests
the hot, shock-heated star cluster winds. The contribution from
the hot massive stars to the observed X-ray emission has been
discussed by Oskinova (2005). The X-ray luminosity of the star
cluster wind then is

LX = 4π

∫ Rout

0
r2neniΛX(T ,Z) dr, (23)

where ne(r) and ni(r) are the electron and ion number densities,
ΛX(Z, T ) is the X-ray emissivity used by Strickland & Stevens
(2000) and Rout marks either the location of the outer wind
driven shock, or the X-ray cutoff radius (the radius where
the temperature in the wind drops below Tcut ≈ 5 × 105 K).
We integrate Equation (23) numerically using the temperature
and density profiles obtained from calculations with either
exponential or homogeneous stellar mass distribution, assuming
that ne = ni = ρ(r)/μi , where μi = 14/11mH is the ion
number density. We found that the exponential model predicts
a slightly smaller (within a factor of two) X-ray luminosity.

9
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Figure 8. Distribution of the X-ray emission along the star cluster wind.
The solid and dotted lines show the distribution of the X-ray luminosity
εX (see the text) along the star cluster wind in the case of the exponential
and the homogeneous stellar mass distribution, respectively. Note that both
luminosities are normalized to the total homogeneous wind luminosity, LXtot =
8.1 × 1038 erg s−1, and that X-ray emission is slightly more concentrated in the
case with homogeneous stellar mass distribution.

For example, when the mechanical luminosity of the cluster
is LSC = 3 × 1040 erg s−1 (model A), the calculations
with exponential stellar mass distribution predict the total
0.3–8.0 keV wind luminosity LXtot = 5.2×1038 erg s−1 whereas
the homogeneous model leads to LXtot = 8.1 × 1038 erg s−1.
When LSC = 1041 erg s−1, the exponential model predicts
LXtot = 6.1 × 1039 erg s−1 whereas the homogeneous one
LXtot = 1.0 × 1040 erg s−1. We cannot compare the X-ray
luminosities in the most energetic case C because the central
zone in the model with homogeneous stellar mass distribution is
thermally unstable and the distributions of the hydrodynamical
variables inside this zone cannot be obtained in the semi-
analytic calculations. Figure 8 compares the distributions of the
X-ray emission along the wind, εX = [LXtot − LX(r)]/LXtot,
in the case when the star cluster mechanical luminosity is
LSC = 3 × 1040 erg s−1. Very similar results were obtained
in the calculations where instead of Rhme = Rhmh the same
singular radius, as suggested by Ji et al. (2006), was used for
the two stellar mass distribution models.

9. SUMMARY

Here we present, for the first time, a radiative semi-analytic
solution for steady-state, spherically symmetric winds driven by
stellar clusters with an exponential stellar density distribution.
The method, here developed, improves previous calculations
provided for stellar clusters with a given size and a homogeneous
stellar density distribution and thus leads to more reliable
hydrodynamic predictions. It may be easily extended to clusters
with other stellar density distributions.

In our model, unlike in most previous calculations, the
position of the singular point, Rsp, where the transition from
the subsonic to the supersonic flow occurs, is not associated

with the star cluster edge, but calculated from the condition that
the integral curve must pass through the singular point. When
radiative losses of energy are negligible, the singular radius is
always about Rsp ≈ 4Rc, where Rc is the star cluster core radius,
irrespective of the other star cluster parameters. This is not the
case in the catastrophic cooling regime, when the temperature
drops abruptly at a short distance from the star cluster center
and the transition from the subsonic to the supersonic regime
occurs at the much smaller distance from the star cluster center.

Radiative cooling becomes a significant factor when the
cluster is very energetic/massive, compact, or the adiabatic wind
terminal speed parameter, VA∞ = (2LSC/ṀSC)1/2, is small. In
the catastrophic cooling regime outflows carry away of the star
cluster region only a small fraction of the deposited mechanical
energy. The gravitationally bound, partially ionized nebulae
may be formed then, if the photoionized gas cannot escape
the gravitational well of the cluster. On the other hand, the
low-mass clusters with small energy input rates and large radii
drive quasi-adiabatic winds. In these cases our results show
an excellent agreement with the results of non-radiative one-
dimensional numerical simulations.

The star-cluster-driven wind model presented here may be
applied to many problems, which are currently discussed in
the literature. For example, the star cluster diffuse X-ray emis-
sion, the origin of compact H ii regions, which are frequently
detected around young massive clusters, and the origin of the
low-ionization line emission in the starburst-driven galactic-
scale outflows. We will address some of them in a future
communication.
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APPENDIX

In order to obtain the flow velocity, pressure, their derivatives,
and also the density and the temperature at the singular point,
one has to use the condition that at this point the numerator and
the denominator in Equation (12) vanish. The denominator in
Equation (12) vanishes when the wind velocity reaches the local
speed of sound and thus usp = csp. The density in the singular
point (see Equation (14)) then is

ρsp = 2qm0R
3
c

R2
spcsp

[
1 −

(
1 +

Rsp

Rc

+
1

2

R2
sp

R2
c

)
exp(−Rsp/Rc)

]
.

(A1)
The second condition that the numerator in Equation (12)
vanishes then yields

c4
sp − 2F1(Rsp)c2

sp + F2(Rsp)Λ(Tsp, Z) = 0 , (A2)
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Figure 9. Different roots of Equation (A6). Solid, dashed, and dotted lines
display function FA tabulated at Rsp = 4 pc for three different mechanical
luminosities: LSC = 3 × 1040 erg s−1, LSC = 3 × 1041 erg s−1, and
LSC = 3 × 1042 erg s−1, respectively.

where functions F1 and F2 are

F1 = (γ − 1)

4F3(Rsp)
V 2

A∞ exp(−Rsp/Rc) , (A3)

F2 = 4(γ − 1)qm0R
6
c

μ2
i R

4
spF3(Rsp)

×
[

1−
(

1+
Rsp

Rc

+
1

2

R2
sp

R2
c

)
exp(−Rsp/Rc)

]2

, (A4)

and

F3 = 4

(
Rc

Rsp

)3

(1 − exp(−Rsp/Rc))

−
[

γ + 1

2
+ 4

(
Rc

Rsp

)2 (
1 +

Rsp

2Rc

)]

× exp(−Rsp/Rc) , (A5)

μi = 14/11mH is the mean mass per ion.
This nonlinear algebraic equation defines the temperature

at the singular point, Tsp, if Rsp is known. One can present
Equation (A2) in the dimensionless form and then solve it
numerically:

FA = 1 − 2F1(Rsp)c−2
sp + F2(Rsp)Λ(Tsp, Z)c−4

sp = 0. (A6)

Equation (A6) may have one, two, or have nor real roots as it
is shown in Figure 9, which displays function FA tabulated
at Rsp = 4 pc radius for three different values of the star
cluster mechanical luminosity: LSC = 3 × 1040 erg s−1,
LSC = 3 × 1041 erg s−1, and LSC = 3 × 1042 erg s−1—solid,
dotted, and dashed lines, respectively. The proper solution of
Equation (A6) is selected from the condition that segments of

the integral curve obtained by the outward integration from
the star cluster center and by the inward integration from the
singular point match in an interior radius 0 < Rfit < Rsp. Note
that one has to obtain the position of the singular point, Rsp, by
iterations as it is described in Section 5.

Having the value of Tsp, one can obtain the velocity in the
singular point, which is usp = csp. The density in the singular
point yields from Equation (A1), the pressure then is Psp =
ρspc

2
sp/γ . Thus, one can obtain the values of all hydrodynamic

variables in the singular point solving the nonlinear algebraic
Equation (A6). The value of the singular radius, Rsp, is obtained
by iterations, as explained in Section 5.

In order to obtain the derivative of velocity in the singular
point, one can use the L’Hopital’s rule. The derivatives of
numerator and denominator of Equation (12) over radius are

dN

dr
= ∂N

∂r
+

∂N

∂u

du

dr
+

∂N

∂c2

dc2

dr
+

∂N

∂T

dT

dr
+

∂N

∂ρ

dρ

dr

= F5
du

dr
+ F6 +

∂N

∂r
, (A7)

dD

dr
= ∂D

∂u

du

dr
+

∂D

∂c2

dc2

dr
= −(γ + 1)c

(
du

dr
+

qm

ρ

)
+

2c2

r
,

(A8)

where functions N, D, ∂N/∂r , F5, and F6 are

N (r, u, ρ, c, T ) = (γ − 1)(qe − Q) − 4qm0c
2(Rc/r)3

+ qm[(γ + 1)u2/2 + 4c2(Rc/r)3

× (1 + r/Rc + (r/Rc)2/2)] , (A9)

D(u, c) = c2 − u2 (A10)

∂N

∂r
= − 1

Rc

[
(γ − 1)qe + 4qm0c

2

(
Rc

r

)3

×
[

exp(−r/Rc) − 3Rc

r
(1 − exp(−r/Rc))

]

+ 4qmc2

[
γ + 1

8
+ 2

(
Rc

r

)3

+
3

2

(
Rc

r

)2

+
1

2

Rc

r

]]
,

(A11)

F5 = (1 − γ )cF4 + (1 + γ )qmc + 2(γ − 1)ρ2Λ/cμ2
i

(A12)

F6 = 2(γ − 1)Λρ2

μ2
i c

(
2c

r
− qm

ρ

)
−

[
(γ + 1)qmc

ρ
− 2c2

r

]
F4 ,

(A13)

and

F4 = 1 − γ

γ

ρ2

μik

∂Λ
∂T

+ 4qm0

(
Rc

r

)2

×
[(

1 +
r

2Rc

)
exp(−r/Rc) − (1 − exp(−r/Rc))

Rc

r

]
.

(A14)
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One can obtain then the derivative of the wind velocity (and
thus the derivative of the thermal pressure) at the singular point
substituting relations (A7) and (A8) into Equation (12) and
keeping in mind that at the singular point usp = csp. This leads
to a quadratic algebraic equation

(
du

dr

)2

− 2F7
du

dr
+ F8 = 0 , (A15)

where functions F7 and F8 are

F7 = [2ρc2/r − (γ + 1)cqm − F5]/2(γ + 1)cρ , (A16)

F8 = [F6 + ∂N/∂r]/[(γ + 1)cρ] . (A17)

The root of Equation (A15), which leads to the positive
derivative du/dr at the singular point, is used in the calculations.
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