
J. Parallel Distrib. Comput. 72 (2012) 791–795
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

From the Happened-Before Relation to the Causal Ordered Set Abstraction
S.E. Pomares Hernandez a,∗, J.R. Perez Cruz a, M. Raynal b
a Computer Science Department, National Institute of Astrophysics, Optics and Electronics (INAOE), Luis Enrique Erro 1, C.P. 72840, Tonantzintla, Puebla, Mexico
b Institut Universitaire de France & IRISA-ISTIC Université de Rennes, 35 042 Rennes-cedex, France

a r t i c l e i n f o

Article history:
Received 13 May 2011
Received in revised form
15 February 2012
Accepted 22 February 2012
Available online 5 March 2012

Keywords:
Happened-Before Relation
Event ordering
Distributed systems
Ordered sets

a b s t r a c t

Several works in distributed systems have been designed based on the Happened-Before Relation
(HBR). Most of these works intend to be efficient in their implementation by identifying and ensuring
dependency constraints among single events. Evenwhen theminimal causal dependencies among events
have been clearly identified, the evolution of systems, whichmay involve a high number of processes and
a high volume of transmitted data, calls for the need to design evenmore efficient approaches. This paper
proposes the Causal Ordered Set Abstraction (CAOS) where the causally related events are arranged in sets
that are strictly causally ordered. As for single events, CAOS establishes that any pair of resultant sets
can be, and can only be, causally or concurrently related. We claim that our ordered set abstraction can
be used to design more efficient algorithms based on the HBR principle. This assertion is based on two
main properties. First, CAOS attains a consistent compact representation of a distributed computation.
Second, as a consequence of the causal ordering of the events in the resultant sets, it is sufficient to verify
only a pair of single events, one per each set, in order to determine whether these sets are causally or
concurrently related, regardless of the cardinality of the sets.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The Happened-Before Relation (HBR) introduced by Lamport [6]
has been one of the most important contributions in the field of
distributed systems; this work received the ACM PODC Influential
Paper Award in 2000. The HBR establishes, without using global
references, the conditions to determine for any pair of single events
a, b in a system if the event a occurs before the event b (denoted
by a → b). Based on the HBR, it has been established that if two
events are not causally related, then they are concurrently related
(denoted by a∥b). Several works of different domains in distributed
systems have been designed based on the HBR principle. Most
of these works intend to be efficient in their implementation by
identifying and ensuring dependency constraints among single
events. At single events, the necessary and sufficient dependency
constraints that must be satisfied are determined by the transitive
reduction of the HBR [1,11] (See Definition 2). Even when the
minimal causal dependencies among events have been clearly
identified, the evolution in the systems, which considers a high
number of processes and a high volume of transmitted data,
calls for the need to design even more efficient approaches.
In this pursuit, some previous works have proposed to work

∗ Corresponding author.
E-mail addresses: spomares@inaoep.mx (S.E. Pomares Hernandez),

jrpc@inaoep.mx (J.R. Perez Cruz), michel.raynal@irisa.fr (M. Raynal).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.02.015
instead with causal dependencies considering an ordered event
set level. The most important works are: Shimamura et al. [12]
and Pomares et al. [10] for multimedia synchronization, Chandra
and Kshemkalyani [2] for predicate detection, and Hélary et al. [5,
4] and Netzer and Xu [9] for checkpointing. All these works use
and/or extend the theory presented by Lamport in [7] that defines
two abstract precedence relations for sets called precedes, denoted
in this paper by ‘‘→’’, and can affect relation denoted by ‘‘99K’’.
The precedes relation establishes that two sets are causally related
A→ B if every event in A precedes every event in B. On the other
hand, the second relation establishes that A 99K B if some event in
A precedes some event in B. The referred works partially take into
account the HBR principle and the theory of sets of Lamport since
they only consider for the precedes relation that a set is composed
by local events of a process pi and totally ordered→i. The present
paper proposes the Causal Ordered Set Abstraction (CAOS) that
defines the rules and conditions of association to construct ordered
sets of events according to all three conditions of the HBR, thus
allowing the events that compose a set to originate from different
sources (processes). Furthermore, CAOS is characterized by strictly
fulfilling the causal ordering at the set level. This is important
because, as for single events, we establish that any pair of resultant
sets in CAOS can be, and can only be, causally or concurrently
related. In our proposal, two sets are concurrently related, denoted
by A∥B, if all the events of A are concurrent to all the events of B.

We claim that the Causal Ordered Set Abstraction of events
introduced in this paper can be used to design more efficient

http://dx.doi.org/10.1016/j.jpdc.2012.02.015
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:spomares@inaoep.mx
mailto:jrpc@inaoep.mx
mailto:michel.raynal@irisa.fr
http://dx.doi.org/10.1016/j.jpdc.2012.02.015

792 S.E. Pomares Hernandez et al. / J. Parallel Distrib. Comput. 72 (2012) 791–795
Fig. 1. A distributed computation scenario.

algorithms based on the HBR principle. This assertion is based
on two main properties. The first property is that CAOS attains a
consistent compact representation of a distributed computation.
The second property is that, as a consequence of the ordering of
the events in the resulting sets, it is sufficient to check a single
pair of events (one from each set) in order to determine whether
these sets are causally or concurrently related regardless of the
cardinality of the sets.

This paper proceeds as follows. Section 2 presents the system
model and associated definitions. Section 3 introduces the CAOS
abstraction. Finally, Section 4 concludes with a few remarks.

2. Preliminaries

2.1. System model

Processes. The system under consideration (see Fig. 1) is
composed of a set of processes P = {p1, p2, . . . , pn}. The processes
present an asynchronous execution and communicate only by
message passing.

Messages. We consider a finite set of messages M , where each
message m ∈ M is sent considering an asynchronous reliable
network that is characterized by no transmission time boundaries,
no order delivery, and no loss of messages. The set of destinations
of a messagem is identified by Dest(m).

Events. We consider two types of events: internal and external
events. An internal event is a unique action that occurs at a process
p in a local manner and which changes only the local process state.
We denote the finite set of internal events as I . On the other hand,
while an external event is also a unique action that occurs at a
process, it is seen by other processes, thus, affecting the global state
of the system. The external events considered in this paper are the
send and delivery events. Letm be amessage.Wedenote by send(m)
the emission event and by delivery(p,m) the delivery event of m
to participant p ∈ P . The set of events associated to M is the set
E(M) = {send(m) : m ∈ M} ∪ {delivery(p,m) : m ∈ M ∧ p ∈ P}.
The whole set of events in the system is the finite set E = I∪E(M).
Each event e ∈ E is identified by a tuple id(e) = (p, x), where p ∈ P
is the producer of e, and x is the local logical clock for events of p,
when e is carried out. Whenwe need to refer to a specific event we
use the notation ep,x or simply (p, x).

2.2. Background and definitions

The Happened-Before Relation for single events (HBR). The HBR was
defined by Lamport [6]. This relation establishes causal precedence
dependencies over a set of events. The HBR is a strict partial order
(i.e. transitive, irreflexive and antisymmetric) defined as follows:

Definition 1. The causal relation ‘‘→’’ is the smallest relation on a
set of events E satisfying the following conditions:

1. If a and b are events belonging to the same process, and a was
originated before b, then a→ b.
Fig. 2. Graph of the IDR of the scenario in Fig. 1.

2. If a is the sending of a message by one process, and b is the
receipt of the same message in another process, then a→ b.

3. If a→ b and b→ c , then a→ c.

By using Definition 1, Lamport defines that a pair of events is
concurrently related ‘‘a∥b’’ if it satisfies the following condition:

a∥b if ¬(a→ b ∨ b→ a).

The posetE = (E,→) constitutes the formal model adopted in
this paper for a distributed computation.
The Immediate Dependency Relation (IDR). The IDR is the transitive
reduction of the HBR [1,11]. We denote it by ‘‘↓’’, and it is defined
as follows:

Definition 2. Two events a, b ∈ E have an immediate dependency
relation ‘‘a ↓ b’’ if the following restriction is satisfied.

a ↓ b if a→ b and ∀c ∈ E,¬(a→ c → b).

Thus, an event a causal-immediately precedes an event b, if and
only if no other event c belonging to E exists, such that c belongs
to the causal future of a and to the causal past of b.

The graph for the IDR of the scenario in Fig. 1 is shown in Fig. 2.
The partial order of events is established from left to right.

Based on the IDR, we now present the following property.

Property 1. For all pair of events a, b ∈ E, a ≠ b

if ∃c ∈ E such that (a ↓ c and b ↓ c) or
(c ↓ a and c ↓ b) then a∥b.

This means that for every pair of events a, b ∈ E with common IDR
dependencies, these events are concurrently related.
The Happened-Before Relation for sets of events. Lamport in [7]
introduced two abstract precedence relations for sets called
precedes, and can affect relation. In the present work we are only
interested in the precedes relation. We refer to it indistinctly as
HBR or causal relation for sets. The HBR for sets is also a strict
partial ordering. We formally define it as follows:

Definition 3. The causal relation ‘‘→’’ is established at the set level
by satisfying the following conditions:

1. A→ B if a→ b,∀(a, b) ∈ A× B,
2. A→ B if ∃ C | (A→ C ∧ C → B).

However, according to the specification of ordered sets
presented by Shimamura et al. [12] and Pomares et al. [10], which
assume a local total ordering among the events that compose a set,
the causal relation for sets can be accomplished only in terms of
the endpoints as follows:

Property 2. The relation ‘‘→’’ is accomplished at the ordered set level
if the following conditions are satisfied:

1. A→ B if a+ → b−,
2. A→ B if ∃C | (a+ → c− ∧ c+ → b−)

S.E. Pomares Hernandez et al. / J. Parallel Distrib. Comput. 72 (2012) 791–795 793
Table 1
Causal set abstraction.

I. A new set W (e) is created in S when:

C1. ∃ e ∈ E,¬(∃ Z ∈ S : e ∈ Z) 1

W (e) ←

R1. {e : ∅ ↓ e} or 2
R2. {e : ∃(ea, eb) ∈ E such that ea ↓ e and ea ↓ eb} or 3
R3. {e : ∃(ea, eb),∈ E, ea ≠ eb such that ea ↓ e and eb ↓ e}. 4

II. The rest of the events e′ ∈ E are assigned to a setW (e) ∈ S as follows:

C2. ∃W (e) ∈ S, ∃ e′ ∈ E,¬(∃ Z ∈ S : e′ ∈ Z) 5
W (e) ← R4. W (e) ∪ {e′ : ∃ ea ∈ W (e), ∃ eb ∈ E such that ea ↓ e′ and ¬(ea ↓ eb)}. 6
where a+ and b− are the right and the left endpoints of A and B,
respectively; c− and c+ are the endpoints of C .

Finally, we present the concurrent relation for ordered sets,
which is defined as follows:

Definition 4. Two ordered sets of events, A and B, are said to be
concurrently related ‘‘A∥B’’ if the following condition is satisfied:

1. A∥B if a∥b,∀a ∈ A,∀b ∈ B.

We note that for our purpose, we assume that a∥b presents the
same behavior as b∥a.

3. The Causal Ordered Set Abstraction (CAOS)

Assuming the poset E = (E,→) as the model adopted for a
distributed computation, the objective of CAOS is to establish over
this poset the rules and conditions of association of events and
the conditions of ordering between the resulting sets. For this, we
begin by defining the composition of an ordered set considered in
this work.

Ordered sets of events. We consider a finite collection S of sets
of events, where each set W ∈ S is a set of events W ⊆

E. The elements of a set are ordered according to the IDR (See
Definition 2). Such elements compose a causal path (linearization)
from an event e1 to an event ek such thatW = {e1 ↓ e2 ↓ · · · ↓ ek}.
We denote by w− and w+ the endpoint events of W (w− = e1
and w+ = ek). When |W | = 1, we have that w− = w+ and we
denote it simply by w. Each set W ∈ S is identified by the tuple
id(W) = (w−, w+).Whenwe need to refer to a specific set, we use
W (w−, w+) or the short notationW (w−) according to the context.

3.1. CAOS specification

The definition of CAOS is made up of three parts. The first part
specifies the conditions and rules for the identification/creation
of new sets to be included in the collection S. The second part
specifies the conditions and rules to associate events to an existing
set in S. The third part specifies the arrangement of sets by
establishing the conditions of order between sets. All the rules of
parts one and two (lines 2–4 and 6, Table 1) are based on the IDR
(See Definition 2) and particularly the rules R2–R4 make use of
Property 1. According to the conditions C1 and C2 (Lines 1 and 5,
Table 1), an event e ∈ E can be only associated to one set W ∈ S;
this means that for every pair of resultant sets X, Y ∈ S it implies
that X

Y = ∅. The events are verified from left to right according

to the partial order established by the IDR (See Fig. 2). For each
event, the conditions and rules of Table 1 are verified from top to
bottom.
Part I—Creation of sets. The rules R1–R3 establish the creation of
sets (See lines 2–4, Table 1). An event that satisfies one of these
rules creates a new set, and it is by default associated to such set as
its left endpoint. Rule R1 creates a new set W (e) when an event e
does not have causal history. Rule R2 creates a new setW (e)when
it is detected that e is concurrent with respect to another event
eb. Only as a reminder of Property 1, ea ↓ e and ea ↓ eb implies
e∥eb. R2 ensures that when the pattern ea ↓ (e∥eb) occurs, the
event e will be associated to a different set W than the sets for ea
and eb. Finally, rule R3 creates a new set W (e) when it is detected
that two concurrent events ea∥eb converge to a same event e. The
concurrency of events is also determined by Property 1. R3 ensures
that when the pattern (ea∥eb) ↓ e occurs, the event e will be
associated to a different setW than the sets for ea and eb.
Part II—Association of events. It is important to note that if an event
does not accomplish any of the rules of Part I, then it will be
associated to an existing setW according to R4 (See Line 6, Table 1).
R4 associates events to sets by respecting the specification of the
ordered set of events previously presented where the elements
of a set compose a linearization based on the IDR. Each new
event associated to a set W becomes the right endpoint of the
linearization represented byW .
Part III—Arrangement of sets. The resulting setsW ∈ S are arranged
according to the IDR. We say that a pair of sets X, Y ∈ S are IDR
related ‘‘X ↓ Y ’’ if the following condition is satisfied:

X ↓ Y if x+ ↓ y−.

After the specification of the creation of sets, association of
events, and arrangement of sets, for every pair of sets X, Y ∈ S,
one of the following conditions is satisfied:
• X → Y if x+ → y−, or
• Y → X if y+ → x−, or
• X∥Y if ¬(x+ → y− ∨ y− → x+).

Thismeans that for any pair X, Y ∈ S, according to Definitions 3
and 4, the pair can be only causally or concurrently related.
Definitions 3 and 4 say that all the events of a set X , are causally
or concurrently related with respect to all the events of a set Y ,
respectively. The importance of this result is that it is possible to
determine how two sets X and Y in S are related by only verifying
their right and their left endpoints, regardless of the cardinality of
the sets. The proof is given in Section 3.4.

3.2. Scenario example

After applying the CAOS abstraction to the scenario in Fig. 1
which consider the verification of each event from left to right
according to the IDR, and by following the rules from R1 to R4,
twelve sets have been obtained (See Table 2). It is important to note
that an event can satisfy more than one rule of Part I. For example,
the event (1, 4) satisfies R2 and R3. The ambiguity of rule for this
case is avoided by following the order of verification fromR1 to R4;
the events such as (1, 4) will always be taken by R2. The important
aspect ensured by CAOS is that for each event in E, the events will
be associated only once, and this is achieved by C1 and C2.

The arrangement of the sets is presented in Fig. 3. The partial
order at the set level is established from left to right. In such
arrangement, an arc is established between a pair of sets X, Y ∈ S if
they are IDR relatedX ↓ Y . For example,W (e3,1, e3,2) is IDR related
with W (e1,2, e1,3) and W (e3,3, e3,4), since we have e3,2 ↓ e1,2 and
e3,2 ↓ e3,3.

794 S.E. Pomares Hernandez et al. / J. Parallel Distrib. Comput. 72 (2012) 791–795
Table 2
Resultant sets of scenario in Fig. 1.

W (e1,1) = {(1, 1), (2, 1), (2, 2)}, W (e3,3) = {(3, 3), (3, 4)},
W (e3,1) = {(3, 1), (3, 2)}, W (e2,5) = {(2, 5), (2, 6)},
W (e1,2) = {(1, 2), (1, 3)}, W (e1,5) = {(1, 5), (1, 6)},
W (e2,3) = {(2, 3)}, W (e2,7) = {(2, 7), (3, 5), (3, 6)},
W (e1,4) = {(1, 4)}, W (e1,7) = {(1, 7)},
W (e2,4) = {(2, 4)}, W (e3,7) = {(3, 7)}.

Fig. 3. Graph of the causal set abstraction of the scenario in Fig. 1.

3.3. Discussion about CAOS

Where can CAOS be useful? Let us first consider the following
properties provided by CAOS. The CAOS sets define a posetS = (S,→) that captures the strict causal partial order on sets
of events. This means that S is irreflexive, antisymmetric and
transitive. Based on these partial order properties, the principles
developed for the HBR relation naturally extend and can be easily
adapted to work at the causal set level. For example, IDR, which
is the minimal expression of the HBR for single events (see
Definition 2), can be directlymodified to express causal immediate
dependency between sets. This is important because the extension
of IDR to sets represents exactly the causality at the set level.

By taking these properties into consideration, the theory of
vector of clocks [8] can be adapted to ensure the causal ordering
on sets. An interesting approach to explore is to update the
vector clocks according to the number of messages sent into the
linearization of each causal set. The premise behind is that it will
be less costly to ensure the causal ordering of single events at the
set level than at the single event level sincewedonot need to verify
all single events in the causal past.

Another domain where CAOS can be useful is inmodel checking.
One main problem of model checking in asynchronous systems
is the state explosion. The most successful techniques for dealing
with this problem are based on partial order reduction [3]. The
compact representation of a distributed computation achieved by
CAOS can be exploited for the partial order reduction to reduce
the state space to be explored. Specifically, the resultant graph
can be adapted for testing state reachability and the identification
of independent transitions/actions. We note that concurrent sets in
CAOS represent independent sets of actions.

3.4. Proof

In this section we prove that for every pair of sets X = {x− ↓
· · · ↓ x+}, Y = {y− ↓ · · · ↓ y+} ∈ S, these sets are causally or
concurrently related according to Definitions 3 and 4, respectively.
The proof of the causal and concurrent relation between sets is
done by only comparing the x+ and y− endpoints. The causality of
sets is proven by Theorem 1 and the concurrency of sets is proven
by Theorem 2.

Theorem 1. If x+ ∈ X, y− ∈ Y , X, Y ∈ S such that x+ → y−, then
a→ d,∀(a, d) ∈ X × Y .
Proof. We prove Theorem 1 by direct proof. We have that the
events of the sets in X, Y ∈ S compose a separate causal path
between x−, x+ and y−, y+, respectively. Therefore, ∀a ∈ X, a ≠
x+ we have a→ x+, since x+ → y− by transitivity ∀a ∈ X implies
a → y−. Finally, ∀d ∈ Y , d ≠ y− implies y− → d, since the HBR
is antisymmetric and transitive, we conclude that ∀a ∈ X,∀d ∈ Y
implies a→ d. �
Theorem 2. If x+ ∈ X, y− ∈ Y , X, Y ∈ S such that x+ ∥ y−, then
a ∥ d,∀a ∈ X,∀d ∈ Y .

Proof. We prove Theorem 2 by contradiction. We begin by
denying the conclusion statement as follows:

∃a ∈ X, ∃d ∈ Y such that ¬(a ∥ d).

Replacing the concurrent relation by its definition the following
sentence is obtained.

¬(¬(a→ d ∨ d→ a)) ≡ a→ d ∨ d→ a.

So we need to find

∃a ∈ X, ∃d ∈ Y such that (a→ d ∨ d→ a).

The proof is divided into two general cases. The first case
considers a = x+ and d = y−. The second case considers two
particular cases: when a ≠ x+ and when d ≠ y−.
Case 1. Let a = x+ and d = y−. We replace them in the conclusion
statement and we obtain:

x+ ∈ X, y− ∈ Y such that x+ → y− ∨ y− → x+.

This first conclusion statement is false because according to the
HBR of Lamport, a pair of events a, b ∈ (E,→) can be causally or
concurrently related but not both simultaneously. The conditional
statement establishes that x+∥y−, while the conclusion statement
affirms that x+ → y− ∨ y− → x+. Thus, this statement is false.
Case 2. When a ≠ x+, we search an a ∈ X such that a → d and
a → x+. And when d ≠ y−, we search an event d ∈ Y such that
a→ d and y− → d.
Case 2.1. When a ≠ x+, we have again two cases. The first case is
when a ↓ x+ and a ↓ d. The second case considers that for b, h ∈ X
and an event g ∈ Y , the causal paths (b ↓ h ↓ · · · ↓ x+) and
(b ↓ g ↓ · · · ↓ d) exist, if b ≠ awe assume that a→ b.

(2.1.a) When a ↓ x+ and a ↓ d, by applying R2 (See Line 3,
Table 1), the events a and x+ are associated to different sets in S.
This means that a ∈ X, x+ ∈ Z: for some Z ∈ S, X ≠ Z , and this
statement is false.

(2.1.b) When (b ↓ h ↓ · · · ↓ x+) and (b ↓ g ↓ · · · ↓ d), by
applying R2 we have again a ∈ X, x+ ∈ Z: for some Z ∈ S, X ≠ Z
and this statement is once again false.
Case 2.2. When d ≠ y− two other cases exist. The first case is when
y− ↓ d and a ↓ d. The second case considers that for an event
h ∈ X and c, g ∈ Y the causal paths (a ↓ · · · ↓ h ↓ c) and
(y− ↓ · · · ↓ g ↓ c) exist, if c ≠ dwe assume that c → d.

(2.2.a) When a ↓ d and y− ↓ d by applying R3 (See Line 4,
Table 1), the events d and y− are associated to different sets in S.
This means that y− ∈ Y , d ∈ Z: for some Z ∈ S, Y ≠ Z , and this
statement is false.

(2.2.b) When (a ↓ · · · ↓ h ↓ c) and (y− ↓ · · · ↓ g ↓ c) by
applying R3 we have again y− ∈ Y , d ∈ Z: for some Z ∈ S, Y ≠ Z
and this statement is once again false. �

4. Conclusions

The Causal Ordered Set Abstraction (CAOS) has been presented.
Assuming the poset E = (E,→) as the model of a distributed
computation, CAOS establishes over this poset the rules for the
association of events to compose sets while also establishing the
conditions of ordering among the resultant sets. CAOS attains
a compact and consistent representation of a causal distributed
computation. The resultant sets in CAOS are only causally or
concurrently related. We proved that such relation between sets
can be determined by comparing exclusively their endpoints,
regardless of the cardinality of the sets involved.

S.E. Pomares Hernandez et al. / J. Parallel Distrib. Comput. 72 (2012) 791–795 795
References

[1] E. Anceaume, J.M. Helary, M. Raynal, A note on the determination of the
immediate predecessors in a distributed computation, International Journal
of Foundations of Computer Science 13 (6) (2002) 865–872.

[2] P. Chandra, A.D. Kshemkalyani, Data-stream-based global event monitoring
using pairwise interactions, Journal of Parallel and Distributed Computing 68
(6) (2008) 729–751.

[3] E.M Clarke, O. Grumberg, M. Minea, D. Peled, State space reduction
using partial order techniques, International Journal on Software Tools for
Technology Transfer (STTT) 2 (3) (1999) 279–287.

[4] J.M. Helary, A. Mostefaoui, M. Raynal, Interval consistency of asynchronous
distributed computations, Journal of Computer and System Science 64 (2002)
329–349.

[5] J.M. Helary, R.H.B. Netzer, M. Raynal, Consistency issues in distributed
checkpoints, IEEE Transactions on Software Engineering 25 (2) (1999)
274–281.

[6] L. Lamport, Time, clocks and the ordering of events in distributed systems,
Communications ACM 21 (7) (1978) 558–565.

[7] L. Lamport, On interprocess communications: I. basic formalism, Distributed
Computing 1 (2) (1986) 77–85.

[8] F. Mattern, Virtual time and global states of distributed systems, in: Proceed-
ings of International Workshop on Parallel and Distributed Algorithms, 1989,
pp. 215–226.

[9] R.H.B. Netzer, J. Xu, Necessary and sufficient conditions for consistent global
snapshots, IEEE Transactions on Parallel Distribributed Systems 6 (2) (1995)
165–169.

[10] S.E. Pomares Hernandez, J. Estudillo Ramirez, L.A. Morales Rosales, G.
Rodriguez Gomez, An intermedia synchronization mechanism for multimedia
distributed system, International Journal of Internet Protocol Technology 4 (3)
(2009) 207–218.

[11] S.E. Pomares Hernandez, J. Fanchon, K. Drira, The immediate dependency
relation: an optimal way to ensure causal group communication, in: Annual
Review of Scalable Computing, in: Ser. Scal. Compt., vol. 6, World Scientific,
2004, pp. 61–79.

[12] K. Shimamura, K. Tanaka, M. Takizawa, Group communication protocol for
multimedia applications, in: Proceedings of the IEEE ICCNMC’01, 2001, pp.
303–308.
S.E. Pomares Hernandez is a Researcher in the Computer
Science Department at the National Institute of Astro-
physics, Optics and Electronics (INAOE), in Puebla, Mex-
ico. He completed his PhD Degree at the Laboratory for
Analysis and Architecture of Systems of CNRS, France in
2002. Since 1998, he has been researching in the field of
distributed systems and partial order algorithms.

J.R. Perez Cruz is currently a PhD student in the Depart-
ment of Computer Science at the INAOE. He obtained the
M.Sc. degree in Computer Science from the same insti-
tute in 2009. His research interests include distributed sys-
tems, partial order algorithms, sensor networks and secure
group communications. His postgraduate studies are sup-
ported by the National Council of Science and Technology
of Mexico (CONACYT).

M. Raynal is a full time professor at IRISA, University
of Rennes, France. His main research interest lies in dis-
tributed computing. He has published more than 125
papers in journals and more than 250 in conferences.
His h-index is 45. He has recently written two books,
both published by Morgan & Claypool Publishers: ‘‘Com-
munication and Agreement Abstractions for Fault-Tolerant
Asynchronous Distributed Systems’’ 251 pages, 2010 (ISBN
978-1-60845-293-4) and ‘‘Fault-Tolerant Agreement in Syn-
chronous Message-Passing Systems’’ 165 pages, 2010 (ISBN
978-1-60845-525-6).

	From the Happened-Before Relation to the Causal Ordered Set Abstraction
	Introduction
	Preliminaries
	System model
	Background and definitions

	The Causal Ordered Set Abstraction (CAOS)
	CAOS specification
	Scenario example
	Discussion about CAOS
	Proof

	Conclusions
	References

