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Abstract: We describe pulse propagation through a slab with periodic
dielectric function ε(t), thus extending our previous investigation for
monochromatic incidence [Phys. Rev. A 79, 053821 (2009)]. Based on
the concepts of phase and group delays, we prove that, for an incident
quasi-monochromatic pulse, the transmitted pulse can be expressed as a
superposition of partial pulses that are exact replicas of the incident pulse
and that exit the slab with a time delay. These partial pulses have harmonic
carrier frequencies ωc − nΩ (n is an integer, ωc is the carrier frequency of
the incident pulse, and Ω = 2π/T is the slab modulation frequency). We
find numerically that these partial pulses can be fast (peak velocity vn > c or
vn < 0) or slow (vn � c). Further, we investigate the peak velocity vp of the
outcoming pulse for several cases. We find that this peak velocity vp and the
partial peak velocities vn do not diverge —as occurs to the group velocity
vg of the bulk dynamic-periodic medium when ωc = Ω/2. We expect that
these results could be verified in the microwave regime [see Halevi et al.,
Proc. SPIE 8095, 80950I (2011)].
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1. Introduction

Over the past two decades, a high degree of control of pulse velocity in various media has been
accomplished experimentally. Diverse experimental schemes lead to both slow light (vg � c)
and fast light (either vg > c or vg < 0) [c is the vacuum light velocity and vg is the group
velocity]. Originally, Garrett and McCumber theoretically predicted that, in the vicinity of an
absorption line, the peak velocity of a Gaussian pulse is equal to the group velocity even if
vg > c, vg = ∞, or vg < 0 [1]. Later, this prediction was confirmed experimentally by Chu
and Wong [2]. Subsequent studies found that the interaction of a gas of atoms with a strong
field could eliminate the absorption and modify the dispersive refractive index seen by a weak-
intensity wave [3–5]. This possibility was the milestone for achieving great pulse velocity con-
trol. For example, in an ultracold gas of atoms a very low group velocity [vg ≈ c/(1.76×107)]
was measured [6], while in a hot gas of caesium atoms, fast light was observed vg ≈−c/310 [7]
where this superluminal velocity in a medium with anomalous dispersion is simply explained
by light interference [8]. Other nonlinear mechanisms, as the coherent population oscillations
and stimulated Brillouin scattering, allow to observe the slow-fast light effects in solid media
as ruby [9] and in optical fibers [10]. Since solids are propitious for practical implementation,
potential applications in optical communications such as pulse delay control devices have been
envisioned. Despite these remarkable achievements, a central concern still is pulse propagation
without distortion (that is inexorably caused by the dispersion of the medium) [11].

Recently, there is renewed interest in exploring dynamic media that could lead to new meth-
ods for controlling and manipulating light propagation. The readers can find numerous refer-
ences on dynamic media in our recent works [12, 13]. We mention that, in the context of pulse
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propagation, it was found theoretically that a pulse passing through layered dielectric struc-
tures with arbitrary space-time dependence of the refractive index experiences reshaping (com-
pression and broadening) and its central frequency is shifted [14]. Similar effects are reported
for pulses propagating in a linear medium with time-varying refractive index [15]. Spectral
shifts of pulses, resulting from the passage through dynamic cavities and waveguides, were
observed [16–19]. In other recent studies, the incorporation of dynamic inclusions has been ex-
plored. Dynamic metamaterials that work at GHz and THz frequencies can be made by filling
the split-ring resonator gaps with a photoconductive semiconductor [20, 21]. These dynamic
metamaterials could exhibit an effective dielectric function that can be strongly modulated with
a frequency ∼ 1 GHz (limited by the lifetime and the mobility of the charge carriers). The
parametric response in a single split-ring resonator with a time-varying capacitive element was
studied in [22]. Phase conjugation and negative refraction effects can occur in a metamaterial
composed of split-ring resonators with nonlinear varactors [23].

In prior studies, we theoretically analyzed the wave propagation in a medium whose dielec-
tric function ε(t) varies periodically in time, namely, ε(t) = ε(t + T ) (T is the period). We
found that the dispersion relation is a band structure with forbidden wave vector gaps and we
studied the electromagnetic response of a dynamic-periodic slab to monochromatic plane wave
excitation [12]. Due to the periodic modulation, harmonics ω −nΩ are generated (ω is the an-
gular frequency of the exciting monochromatic wave, Ω = 2π/T is the modulation frequency,
n is an integer). Consequently, the slab becomes a polychromatic source. Later, we found that
this dynamic-periodic slab can exhibit resonances when the excitation frequency is ω = mΩ/2
with m = 1,3,5, . . . and, in addition, the modulating frequency obeys a certain condition [13].
On the other hand, the temporal variation of our dielectric function relies on the interaction
of an external agent with the medium. For optical frequencies, the modulation strength of the
dielectric function that can be reached by current nonlinear methods is a small fraction of the
unperturbed dielectric constant, and the typical temporal response of a material allows modu-
lating frequencies not higher than ∼ 10 GHz. On the other hand, very recently we have shown
that, in the long-wavelength limit, a low-pass dynamic transmission line for microwaves can
be characterized by a time-dependent effective dielectric function εef(t) with a large modula-
tion strength, thus overcoming the aforementioned limitation for optical frequencies [24]. This
transmission line is a linear array of cells that are formed each by an inductance L and a varactor
whose capacitance C(t) is modulated periodically. The response of this transmission line can be
characterized with an effective dielectric function εef(t) =C(t)/(εoa) (a is the lattice constant
and εo is the vacuum permittivity) with the restriction that the dominant wavevectors k satisfy
ka � 1. Therefore, the experimental implementation of a medium exhibiting an effective and
strongly modulated dielectric function ε(t) is feasible, at least in the microwave regime.

We focus on the transmission of a pulse through a slab whose dielectric function ε(t) varies
periodically, namely, ε(t) = ε(t +T ) (T is the period). We present a theoretical framework for
obtaining the transmitted and reflected pulses when a pulse is incident on this dynamic-periodic
slab. This framework is an extension of our aforementioned theory of bulk dynamic-periodic
media and response of a dynamic slab excited by a monochromatic plane wave [12]. Further-
more, we present an alternative description of the transmitted pulses for an incident quasi-
monochromatic pulse that is based on the concepts of group and phase delays [25]. From this
description, the transmitted pulse can be decomposed as the superposition of partial pulses.
Particularly, we analyze the pulse propagation through the dynamic-periodic slab for incident
Gaussian pulses with narrow (quasi-monochromatic) and with broad bandwidths for selected
values of the carrier frequency, slab thickness, and modulation strength. We investigate the
propagation velocities of the aforementioned partial pulses for incoming quasi-monochromatic
pulses. Also, we study the peak velocity of the pulse when a Gaussian pulse is incident on
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the slab. We address the question whether these propagation velocities are related to the group
velocity obtained from the bulk dispersion relation. We pay special attention to the case when
the carrier frequency of the incoming pulse is ωc = nΩ/2, since the dispersion relation (a band
structure with forbidden wave vector gaps) yields infinite group velocities at these frequencies.
Finally, we discuss the energy balance between the incident pulse and the outcoming transmit-
ted and reflected pulses.

This paper is organized as follows. Section 2 presents the general theory of pulse propagation
through the dynamic-periodic slab (reflected and transmitted pulses). In addition, we present a
simplified description of the transmitted pulses that is based on the concepts of phase and group
delays, being valid for quasi-monochromatic incident pulses. In Sec. 3, we analyze the pulse
propagation of quasi-monochromatic incident Gaussian pulses for particular carrier frequen-
cies, slab thicknesses, and modulation strengths. Conversely, Sec. 4 deals with the analysis of
the pulse transmission of a Gaussian pulse with large spectral bandwidth. Investigation of the
peak velocity of a pulse propagating through the dynamic slab is presented in Sec. 5. Section 6
is devoted to the discussion of the energy carried by the reflected and transmitted pulses in
comparison with that of the incoming pulse. Section 7 contains the conclusions.

2. Theory

2.1. An electromagnetic pulse interacting with a dynamic slab

In Ref. [12] we studied a dynamic medium whose dielectric function ε(t) varies periodically
with the time t, the period T being related to the modulation frequency Ω by T = 2π/Ω. For an
excitation frequency ω , the modulation induces an infinite number of harmonics with frequen-
cies ω − nΩ, n = 0,±1,±2, . . . Moreover, for any given ω and a given propagation direction
(say, y), an infinite number of plane waves, differing in their wavelengths, can propagate. These
are characterized by wave vectors kp(ω), p = 1,2, . . . The index p labels the wavevector bands,
and the corresponding band structure is characterized by band gaps Δk between adjacent bands
p and p+1. We also showed in Ref. [12] that a monochromatic wave (frequency ω), normally
incident at a slab of thickness D in vacuum, gives rise to reflected and transmitted waves with
all the frequencies ω − nΩ (all integers n). Furthermore, inside the slab, in addition to waves
with wave vectors kp(ω) there will also be excited counterpropagating waves with wave vec-
tors −kp(ω). Here we apply the former treatment to an incident pulse or wave packet whose
electric field is given by

Ei(y, t) =
∫ ∞

−∞
Eo(ω)exp[iω(y/c− t)]dω, (1)

where c is the vacuum speed of light. The spectral amplitude Eo(ω) is given by the inverse
transform

Eo(ω) =
1

2π

∫ ∞

−∞
Ei(0, t)exp(iωt)dω. (2)

It is now straightforward to generalize the Eqs. (34), (36), and (38) of Ref. [12] for, respectively,
the electric field within the slab Es, the reflected field Er, and the transmitted field Et:

Es(y, t) =
∞

∑
p=1

∞

∑
n=−∞

∫ ∞

−∞

{
Ap(ω)exp[ikp(ω)y]+Bp(ω)exp[−ikp(ω)y]

}

×epn(ω)exp[−i(ω −nΩ)t]dω, (3)

Er(y, t) =
∞

∑
n=−∞

∫ ∞

−∞
Er

n(ω)exp[−i(ω −nΩ)(y/c+ t)]dω, (4)

Et(y, t) =
∞

∑
n=−∞

∫ ∞

−∞
E t

n(ω)exp{i(ω −nΩ)[(y−D)/c− t]}dω. (5)
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Here, epn(ω) is the amplitude of the bulk mode of wave vector kp and harmonic ω −nΩ, while
Ap(ω) and Bp(ω) are the spectral amplitudes of the waves propagating, respectively, to the
right and left in the slab. In Eqs. (4) and (5), Er

n(ω) and E t
n(ω) are the spectral amplitudes

of the reflected and transmitted fields, respectively. For a given Eo(ω), the amplitudes Ap(ω),
Bp(ω), Er

n(ω), and E t
n(ω) are determined from the linear set of equations (45)-(48) of Ref. [12],

obtained from the boundary conditions for the electric and magnetic fields at the interfaces y= 0
and y = D.

Our analysis of the reflected and transmitted pulses will take place at the slab borders y =
0, and D, respectively. Then, from the Eqs. (4) and (5) we obtain

Er(0, t) =
∞

∑
n=−∞

∫ ∞

−∞
rn(ω)Eo(ω)exp[−i(ω −nΩ)t]dω, (6)

Et(D, t) =
∞

∑
n=−∞

∫ ∞

−∞
tn(ω)Eo(ω)exp[−i(ω −nΩ)t]dω, (7)

where rn(ω) ≡ Er
n(ω)/Eo(ω) and tn(ω) ≡ E t

n(ω)/Eo(ω) are the reflection and transmission
coefficients for the harmonic ω −nΩ, respectively.

2.2. Quasi-monochromatic pulses

We analyze the response to an incident quasi-monochromatic pulse. This incident pulse is rep-
resented as the product of a slow time-varying signal E (t) peaked at t = 0 and a harmonic signal
oscillating with frequency ωc (carrier frequency), that is,

Ei(y = 0, t) = E (t)exp(−iωct). (8)

By performing the variable transformation ω = ωc +α , Eq. (2) for Eo(ω) yields

Eo(α +ωc) = Ẽ (α), (9)

where Ẽ (α) is the Fourier transform of E (t), namely,

Ẽ (α) =
1

2π

∫ ∞

−∞
E (t)exp(iαt)dt. (10)

By also carrying out the transformation ω = α+ωc to Eq. (7) and using Eq. (9), the transmitted
pulse becomes

Et(y = D, t) =
∞

∑
n=−∞

exp[−i(ωc −nΩ)t]
∫ ∞

−∞
tn(ωc +α)Ẽ (α)exp[−iαt]dα. (11)

We express tn(ω) as
tn(ω) = An(ω)exp[iφn(ω)], (12)

where An(ω) ≡ |tn(ω)| and φn(ω) ≡ arg[tn(ω)] (arg[. . .] denotes argument). Since E (t) is a
slowly time-varying signal, Ẽ (α) is sharply localized around α = 0, namely most spectral
components of the pulse should satisfy the condition that

|α|= |ω −ωc| � ωc. (13)

As a consequence, we can expand tn(ω) in a power series around ωc. The first order approxi-
mation renders

tn(ωc +α)≈ An(ωc)exp[iφn(ωc)]+
[
A′

n(ωc)+ iφ ′
n(ωc)An(ωc)

]
exp[iφn(ωc)]α. (14)
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Here, the superscript ”′” denotes derivative. We further consider that the term containing A′
n(ωc)

can be neglected. This implies that ∣∣∣∣A′
n(ωc)

An(ωc)

∣∣∣∣�
∣∣φ ′

n(ωc)
∣∣ . (15)

With this assumption and Eq. (12), the approximation (14) is reduced to

tn(ωc +α)≈ An(ωc)exp[iφ(ωc)]
[
1+ iφ ′

n(ωc)α
]≈ tn(ωc)exp[iφ ′

n(ωc)α]. (16)

Hence, the transmitted pulse at the end of the slab becomes

Et(y = D, t) =
∞

∑
n=−∞

An(ωc)exp{−i[(ωc −nΩ)t −φn(ωc)]}

×
∫ ∞

−∞
Ẽ (α)exp{−iα[t −φ ′

n(ωc)]}dα,

=
∞

∑
n=−∞

tn(ωc)exp[−i(ωc −nΩ)t]E [t −φ ′
n(ωc)]. (17)

Then, the transmitted field can be described as a superposition of pulses that correspond to
each of the harmonics created by the dynamic slab. The amplitude of n-th pulse is An(ωc).
Moreover, the partial carrier signals oscillate with frequencies ωc − nΩ and acquire phases
φn(ωc) (phase delays [25]), whereas the pulse envelope shape remains unchanged, but suffers
temporal shifts φ ′

n(ωc) (group delays [25]). These outcoming pulses are characterized by the
transmission coefficient tn(ωc).

Now let us consider as a temporal reference the time in which the peak of incident envelope
hits the entrance interface. Since the envelope of the n-th outcoming partial pulse is just a
delayed replica of the incident one, the peak of this partial pulse must exit the slab at a time
φ ′

n(ωc) after this reference. Therefore, the group delay of the partial pulses can be related to
peak velocities as

vn = D/φ ′
n(ωc). (18)

3. Quasi-monochromatic Gaussian pulses

We apply the theory to the case of an incident Gaussian pulse having the form

Ei(y, t) = exp[−(y− ct)2/(c2τ2)]cos[ωc(y/c− t)], (19)

where τ is the temporal width of the pulse and an unitary amplitude is assumed. The peak hits
the left surface of the slab (y = 0) at the time t = 0. Equation (19) corresponds to the real part
of Eq. (8), that is, E (t) = exp(−t2/τ2). The spectral amplitude of the Gaussian pulse yields
[Eq. (2)]

Eo(ω) =
τ

4
√

π
{

exp[−τ2(ω −ωc)
2/4]+ exp[−τ2(ω +ωc)

2/4]
}
, (20)

where the spectral width is Δω = 2/τ . By Eq. (13), we assume that ωcτ 	 1.
We consider that the dielectric function ε(t) of the slab is modulated sinusoidally as

ε(t) = ε̄ [1+M sin(Ωt)] , (21)

where ε̄ is the time average of ε(t), and M is the modulation strength. For reference to our pre-
vious work, we set ε̄ = 5.25 and, M = 0.016 (”weak modulation”), 0.162 (”moderate modula-
tion”) or 0.648 (”strong modulation”). In addition, it is convenient to normalize the modulation
frequency as

Ω̃ = Ωts = Ω
√

ε̄D/c (22)
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and the time as
t̃ = t/ts = tc/(

√
ε̄D), (23)

where ts is the time it takes for the peak of a pulse propagating at speed vs = c/
√

ε̄ to cross the
slab. Note that Ωt = Ω̃t̃.

We compare the numerical simulations for the transmitted pulse obtained from the exact
response (5) and for the approximate response (17) for particular cases. First we consider
that the normalized modulation frequency is Ω̃ = 2 and the incident pulse has a carrier fre-
quency ωc = Ω/2 and spectral width Δω/Ω = 0.1. This pulse is shown in Fig. 1(a) as function
of t̃. Figures 1(b) and 1(c) show the transmitted pulse arising from the exact (5) and the ap-

Fig. 1. Incident and transmitted pulses as a function of the normalized time t̃ for a slab with
normalized modulation frequency Ω̃ = 2. (a) The incident electric pulse Ei with carrier
frequency ωc/Ω = 0.5 and spectral bandwidth Δω/Ω = 0.1. (b) The transmitted pulse
for a modulation strength M = 0.162. (c) The transmitted pulse for a modulation strength
M = 0.648. Here ωcτ = 10 and ts Δω = 0.2.

proximate (17) responses for the cases: M = 0.162 (moderate modulation) and 0.648 (strong
modulation). Despite that Δω is not very small in comparison with ωc (ωcτ = 10), we notice
from Figs. 1(b) and 1(c) that practically perfect matches between the exact and the approx-
imate responses are obtained. We also observe in these figures that the transmitted pulse for
M = 0.648 is more distorted than for M = 0.162. This is explained by the fact that the ampli-
tudes of the higher order harmonics generated inside the dynamic slab become larger as the
modulation strength increases (see also [12]). Now we consider another particular case where
ωc/Ω = 0.67, Δω/Ω = 0.1, M = 0.648, and Ω̃ = 8, that is, the carrier frequency ωc and the
normalized modulation frequency Ω̃ have increased with respect to previous strong modulation
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case. The incident pulse is depicted in Fig. 2(a), while the transmitted pulse resulting from the
exact and approximate responses is shown in Fig. 2(b). For this case, contrary to the prior cases,

Fig. 2. Incident and transmitted pulses as a function of the normalized time t̃ for a slab
with normalized modulation frequency Ω̃ = 8 and modulation strength M = 0.648. (a)
The incident electric pulse Ei with carrier frequency ωc/Ω = 0.67 and spectral bandwidth
Δω/Ω = 0.1. (b) The transmitted pulse. Here ωcτ = 13.4 and ts Δω = 0.8.

there is a difference between the exact and the approximate responses. This difference is more
evident at times t̃ ≈ −1.3, −0.3, 0.4, 4.3 and 5.2. We attribute the deviation of the approxi-
mate response from the exact one to the fact that the condition τ 	 D/vs = ts (equivalently
ts Δω � 2) for obtaining a single well defined outcoming pulse is not satisfied as well as in
Fig. 1(c). Now we reduce the pulse spectral width of the incident pulse one order of magnitude,
that is, Δω/Ω = 0.01. This is illustrated in Fig. 3(a). Due to this spectral reduction, the approx-

Fig. 3. Incident and transmitted pulses as a function of the normalized time t̃ for a slab
with normalized modulation frequency Ω̃ = 8 and modulation strength M = 0.648. (a)
The incident electric pulse Ei with carrier frequency ωc/Ω = 0.67 and spectral bandwidth
Δω/Ω = 0.01. (b) The transmitted pulse (inset shows the whole pulse). Here ωcτ = 134
and ts Δω = 0.08.

imate and the exact responses coincide as seen in Fig. 3(b). Therefore, we have shown that the
transmission of an incident quasi-monochromatic pulse passing through the dynamic-periodic
slab can be well described by Eq. (17).

Now we discuss the implications resulting from the description based on the concepts of
group and phase delays. According to Eq. (17), the transmitted pulse can be decomposed as a
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superposition of exact replicas of the incident pulse in which the partial carrier signal has a fre-
quency ωc−nΩ (n = 0,±1,±2, . . .) and suffers a phase delay φn(ωc), the envelope experiences
a time delay φ ′

n(ωc), and the amplitude is An(ωc). In terms of the normalized parameters t̃ and
Ω̃, the partial Gaussian pulse at the slab exit (y = D) for the harmonic n can be expressed as

E t
n(D, t̃) = An(ω̂c)exp[−t2

s (t̃ −Δτ̃n)
2/τ2]cos

[
(ω̂c −n)Ω̃t̃ −φn(ω̂c)

]
, (24)

where ω̂c ≡ ωc/Ω is the normalized carrier frequency and Δτ̃n = (1/Ω̃)dφn/dω̂c is the normal-
ized temporal shift of the partial pulse. Tables 1 and 2 show the characterizing parameters of
the partial pulses for the lowest orders in which the transmitted pulses of Figs. 1(c) and 3(b) are
decomposed, respectively. From Tables 1 and 2, we notice that Δτ̃n that can be either positive
or negative.

Table 1. The characteristics of the outcoming partial Gaussian pulses [Eq. (24)] for the har-
monic n and modulation strength M = 0.648 (strong). Incident Gaussian pulse with carrier
frequency ωc/Ω = 0.5 and spectral width Δω/Ω = 0.1; slab with normalized modulation
frequency Ω̃ = 2. Here ωcτ = 10 and ts Δω = 0.2.

n An(ω̂c) φn(ω̂c)/π Δτ̃n vn/c

−2 0.1213 −0.9132 0.2565 1.7013
−1 0.3457 −0.3268 0.6186 0.7055

0 0.16261 0.3315 0.8964 0.4869
1 0.1940 1.0000 1.1998 0.3637

Table 2. The characteristics of the outcoming partial Gaussian pulses [Eq. (24)] for the
harmonic n and modulation strength M = 0.648 (strong). Incident Gaussian pulse with
carrier frequency ωc/Ω = 0.67 and spectral width Δω/Ω = 0.01; slab with normalized
modulation frequency Ω̃ = 8. Here ωcτ = 134 and ts Δω = 0.08.

n An(ω̂c) φn(ω̂c)/π Δτ̃n vn/c

−3 0.0064 0.6759 8.0334 0.0543
−2 0.0141 0.1372 −5.4397 −0.0802
−1 0.1460 0.16298 −0.4390 −0.9942

0 0.7907 −0.3944 0.5524 0.7901
1 0.1885 0.8299 1.2764 0.3419
2 0.0581 −0.4351 1.3903 0.3139

The transmission of partial pulses (for a given harmonic n) can be both fast and slow. On one
hand, fast pulse propagation occurs when Δτ̃n < 0 or 0< Δτ̃n < 1/

√
ε̄ = 0.4364 (corresponding

to Δt < D/c), namely, when the transmitted pulse peak has emerged before the incident pulse
peak has entered into the slab or when the transmitted pulse peak has traveled at a velocity
faster than c, respectively. As seen in Table 1, fast light appears for the partial pulse n =−2 for
which the peak velocity is v−2/c = 1.7013. Also in Table 2, fast light shows up for the partial
pulses with harmonics n = −2,−1. For these partial pulses, the temporal shifts are negative
(Δτ̃−2 =−5.4397 and Δτ̃−1 =−0.4390) which yield negative peak velocities. This effect of the
pulse peak propagating with velocity vn > c or vn < 0 does not violate the causality principle,
but comes from the interference of the generated spectral components inside the slab that causes
the reconstruction of the partial pulses at advanced times.

On the other hand, slow pulse transmission happens when Δτ̃n 	 1/
√

ε̄ , that is, the trans-
mitted pulse peak has traveled at a velocity much slower than c. In Table 2, we call attention
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to the partial pulse n = −3 whose peak exits the slab with a long delay Δτ̃−3 = 8.0334 which
corresponds to a peak velocity v−3/c = 0.0543. This peak velocity reduction is due to the same
aforementioned interference effect, but the partial pulse reconstruction takes place at delayed
times.

We stated above that the dispersion relation of the bulk dynamic medium is a band structure
which exhibits forbidden wavevector bandgaps. This dispersion relation yields infinite group
velocities at frequencies ωc = Ωm/2 with integer m. This frequency condition is satisfied in
Fig. 1 and Table 1 with ωc = Ω/2. However, as can be seen in the Table 1, the peak velocities
do not diverge, that is, the time delay Δτ̃n is finite for all the partial pulses n. This is not really
surprising, given the fact that the group velocity in the bulk medium is in general different than
the peak velocity (velocities) of a pulse (pulses) emerging from a slab of the same medium. In
fact, the group and peak velocities could coincide only if the incident pulse does not decompose
into several pulses in the medium (which is the case in Refs. [1, 2]). However, clearly, that is
not the case at hand, for, inside our dynamic slab there is, in principle, an infinite number of
partial pulses centered at ωc −nΩ and moving to the left and right.

4. Gaussian pulses with large spectral band-widths

Now we discuss the transmission of a Gaussian pulse with a large spectral bandwidth (Δω/Ω >
1) which corresponds to a short pulse. Since the outcoming pulse is the result of the super-
position of a large number of harmonics that are created in the slab by the extended range
of frequencies of the incident pulse, the analysis of the transmission of these pulses passing
through the dynamic slab is complicated. We consider an incident Gaussian pulse with car-
rier frequency ωc/Ω = 5 and bandwidth Δω/Ω = 5 as depicted in Fig. 4(a). The transmitted
pulses with the slab modulated at strengths M = 0.162 (moderate modulation) and M = 0.648
(strong modulation) and for normalized modulation frequency Ω̃ = 2 and 8 are also illustrated
in Fig. 4. Interestingly, for the behavior in time we observe that after the main pulse traverses
the slab (with peak at t̃ ≈ 1), two small pulses emerge. For the moderate modulation and both
normalized modulation frequencies, these pulses are peaked at t̃ ≈ 3 and t̃ ≈ 5. From Eq. (23),
we recall that t̃ ≈ 1 is just the normalized time for light propagating at the speed vs = c/

√
ε̄ to

traverse the slab. Such behavior could be expected for a transparent static plate, provided that
the temporal width τ = 2/Δω of the pulse is much smaller than the transit time D/vs (a condi-
tion satisfied in Fig. 4). Under such circumstances, because of Fabry-Perot reflections, a series
of pulses should emerge with their peaks exiting the slab at the times D/vs,3D/vs,5D/vs, . . .
(normalized times t̃ = 1,3,5, . . .). Thus, it is not all that surprising that, for τ � D/vs and mod-
erate modulation, several of these transmission peaks are found. (On the contrary, if τ 	 D/vs,
as occurs for the quasi-monochromatic case, then the emerging wave forms strongly overlap
and a single pulse is observed, see Figs. 1-3. Evidently, the physics at hand is very different).
However, in our dynamic slab, an infinite number of plane waves p and harmonics n interfere,
so it is rather unexpected that the exit times t̃ = 2.98 and 5.05 for Ω̃ = 2 and t̃ = 2.99 and 4.99
for Ω̃ = 8 (for the moderate modulation) are so near to t̃ = 3 and 5 of the static plate. On the
other hand, in the case of strong modulation (M = 0.648), greater departure from these times is
experienced [see Fig. 4(b)]. Also, the emergent peaks at t̃ 
 3 are considerably diminished in
comparison to the primary peak at t̃ 
 1, and the peaks at t̃ 
 5 can be scarcely seen on the scale
of Fig. 4. As a final comment, for strong modulation we can observe considerable distortion in
the wings of the transmitted pulse, obviously due to the generation of significant high-order
harmonics.
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Fig. 4. Incident and transmitted pulses vs. the normalized time t̃ for M = 0.162 (moderate
modulation) and M = 0.648 (strong modulation). The incident Gaussian pulse has a large
bandwidth Δω/Ω = 5 and carrier frequency ωc/Ω = 5, and the normalized time t̃ is taken
with respect to Ω̃ = 2. (a) Ω̃ = 2 and ts Δω = 10. (b) Ω̃ = 8 and ts Δω = 40 (the inset is a
closeup of the second pulse). Here ωcτ = 2.

5. Peak velocity

According to our result Eq. (17), every harmonic component of frequency ω − nΩ exits the
slab with the very same envelope form as the quasi-monochromatic incident pulse. Then, for a
Gaussian pulse incident at the slab, all the emerging partial pulses are also Gaussian. What can
we say about the superposition of these pulses, namely, the total electric field Et(y = D, t), as
given by Eq. (17)? In general one cannot expect that all these partial pulses will coalesce into a
single pulse. However, this does occur for pulses that are wide in time, ωcτ 	 1, and Figs. 1-3
confirm that, indeed, for ωcτ 
 10 a single well defined pulse exits the slab. The peak velocity
of such a pulse is a measurable quantity, and it is worthwhile examining its dependence on the
parameters that define the dynamic-periodic slab and the pulse itself.

In what follows, we analyze the peak velocity vp of a Gaussian pulse with small spectral
width (Δω/Ω = 0.1 and 0.01) and carrier frequency ωc/Ω = 0.5 for which the group velocity
is infinite, as seen in the inset of Fig. 5. This velocity is determined from the transit time of
the peak of the pulse, namely, we calculate the transmitted electric field as a function of time
at y = D and observe the time to that it takes for the peak of the Gaussian pulse to traverse the
slab of width D. The velocity is obtained from vp = D/to. In Fig. 5 we plot the peak velocity
vp normalized to the velocity vs as a function of the normalized thickness (Ω

√
ε̄/c)D. The

cases compared are no modulation (M = 0), weak modulation (M = 0.016) for Δω/Ω = 0.1,
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Fig. 5. Peak velocity of a Gaussian pulse with carrier frequency ωc/Ω = 0.5, as a function
of the normalized thickness (Ω

√
ε̄/c)D for weak (M = 0.016) and strong (M = 0.648)

modulations with Δω/Ω = 0.1, strong modulation with reduced spectral width Δω/Ω =
0.1, and a static case. For the static case M = 0 we consider a wide pulse in time with τ 	
D/vs. The inset is the bulk dispersion relation [normalized frequency ω/Ω vs. normalized
wavevector kc/(Ω

√
ε̄)] for the strong modulation as in Ref. [12].

and strong modulations (M = 0.648) for Δω/Ω = 0.1 and 0.01. The velocity of the peak in the
absence of modulation is obtained from Ref. [26], which deals with the peak velocity for a wide
Gaussian pulse (τ 	 D/vs in addition to ωcτ 	 1), interacting with a static plate in vacuum. In
Ref. [26], the following peak velocity has been derived:

vp = vs

[
2
√

ε̄
1+ ε̄

cos2
(

ωc
√

ε̄D/c
)
+

1+ ε̄
2
√

ε̄
sin2

(
ωc

√
ε̄D/c

)]
. (25)

Equation (25) is plotted for comparison with the dynamic plate. For Δω/Ω = 0.1 and
(Ω

√
ε̄/c)D � 1, the peak velocity vp in absence of modulation is seen to converge to that

obtained for the weak modulation strength. Indeed, Fig. 5 confirms that, in the limit D → 0, all
four curves converge to vp/vs = 2

√
ε̄/(1+ ε̄) = 0.733, obtained from Eq. (25).

It is apparent from Fig. 5 that the slab width is an important factor in the resulting peak
velocity. We observe that the transit time is not proportional to the slab width; as the slab
thickness increases, the velocity of the pulse may rise or fall. Results in Fig. 5 indicate an
oscillatory behavior of the velocity of the peak with the thickness of the slab. This behavior is
in part associated with interference, in the dynamic slab, of all the harmonics ω −nΩ, and the
infinite number of plane waves with wave vectors kp(ω) for each of these frequencies. However,
even in the absence of modulation, for a pulse with τ 	 D/vs [see Fig. 5 and Eq. (25)], the peak
velocity is a periodic function of the slab thickness D, with period λ/2, where λ = 2πc/(ωc

√
ε̄)

is the wavelength in the plate. A generalization of Eq. (25) to allow for absorption (see Ref. [27])
also shows that the peak velocity varies with the thickness although is no longer a periodic
function of D. Now, expressing the peak velocity (25) in terms of (Ω

√
ε̄/c)D [using Eq. (22)]

results in the period of 2π . It is interesting to observe that, for weak modulation (M = 0.016),
an approximate spacing of 2π between minima can be indeed noticed, despite the fact that
in this case the pulse is not very wide in time. Nevertheless, the shape and amplitude of the
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oscillations for the weak modulation and for lack of modulation (with a very wide pulse) differ
substantially for most of the (Ω

√
ε̄/c)D range.

For the dynamic cases [see Fig. 5], the behavior is more complicated than it is for static
conditions. The interference of all waves generated in the medium results in differing peak
velocities for different thicknesses. As the modulation increases, the velocity profile changes
and the separation between minima deviates from 2π . For strong modulation it is not possible to
extend the analysis to very large slab widths due to the increased deformation of the transmitted
pulse.

As it has been seen, the peak velocity vp is sensitive to the modulation strength M. This
was expected since the dispersion relation changes with the modulation strength (see Fig. 3
in Ref. [12]), thus affecting the speeds of the frequency components of the pulse. Also, from
Fig. 5, the peak velocity vp depends on the spectral width of the pulse (see strong modulation for
Δω/Ω = 0.1 and 0.01). Despite the bandwidths Δω/Ω here differing by an order of magnitude,
the peak velocities vp for these cases are nearly equal. In fact, if we reduced the spectral width
by one more order of magnitude we would observe, on the scale of Fig. 5, that the corresponding
peak velocity plot would overlap with that for Δω/Ω = 0.01. Thus, for this case, the velocity
is not sensitive to the spectral width of the pulse.

We have also calculated the peak velocity vp as a function of the modulation strength M (with
(Ω

√
ε̄/c)D and Δω/Ω as parameters) and as function of the normalized bandwidth Δω/Ω

(with (Ω
√

ε̄/c)D and M as parameters). The most important conclusion from this analysis, as
well as from Fig. 5 is that, for an incident Gaussian pulse and sinusoidal variation in time of the
dielectric function, the infinite group velocities found in Ref. [12] at integer multiples of half
the modulation frequency (ω = Ωn/2 with n an integer) have no repercussions for the peak
velocity vp of the transmitted pulse. This is due to the slab boundaries and the broadening of
the transmitted pulse spectral content (generation of harmonics by the dynamic slab) which
void the description based on a single pulse that traverses the slab at the group velocity in the
bulk medium (see Sec. 3). Moreover, while the peak of the pulse can travel at speeds above
vs = c/

√
ε̄ , the pulse peak velocity vp is never superluminal (contrary to the case of Table 1 for

ωc = Ω/2 where the partial peak velocity for n = −2 is v−2 = 1.7c), at least for our closely
studied carrier frequency ωc = Ω/2.

6. Energy considerations

Ordinarily, for a transparent material, it is expected that the incoming energy breaks down ex-
actly into the reflected and transmitted energies. However, since our system involves an unspec-
ified external agent modulating the dielectric function, this is an open system that may result
in supplying energy to the medium. Hence, conservation of energy is not necessarily satisfied.
This issue was discussed previously for response of a dynamic-periodic slab to monochromatic
incidence, even resulting in huge, resonant amplification of an incident plane wave [12, 13].
Herein we extend that study to an incident pulse. We define the reflectance R (transmittance
T ) as

R(T ) =

∫ ∞

−∞
|Ar(t)(ω)|2dω

/∫ ∞

−∞
|Eo(ω)|2dω. (26)

Here Ar(ω) [At(ω)] is the Fourier transform of the reflected [transmitted] field Er(0, t) [Et(D, t)]
at the entrance [exit] interface. By applying the variable transformation ω → ω + nΩ to
Eqs. (6,7), it follows that

Ar(ω) =
∞

∑
n=−∞

rn(ω +nΩ)Eo(ω +nΩ), At(ω) =
∞

∑
n=−∞

tn(ω +nΩ)Eo(ω +nΩ). (27)
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In Table 3, we have computed the sum of the reflectance and transmittance (R +T ), using
Eqs. (26) and (27), under a variety of conditions. Table 3 indicates that the sum of the reflected

Table 3. Sum of the reflectance and transmittance (R + T ) for incident Gaus-
sian pulses with carrier frequency ωc/Ω = 0.5 and 1 and spectral width Δω/Ω =
0.1; a normalized modulation frequency Ω̃ = 2, and modulation strengths M =
0.016 (weak), 0.162 (moderate), and 0.648 (strong).

ωc/Ω M R+T

0.5
0.016 1.002
0.162 1.033
0.648 1.276

1
0.016 1.000
0.162 1.007
0.648 1.151

and transmitted energies exceeds the energy of the incident pulse (R +T > 1) with the ex-
ception of the case ωc/Ω = 1 and M = 0.016 in which the gained energy is practically zero.
Obviously, this energy excess is supplied by the external agent. Also, we notice from Table 3
that as the modulation is increased, more energy is provided by the external modulating agent.

We have shown, as expected from our previous studies [12, 13], that pulses traversing a
dynamic-periodic slab can gain energy that is delivered by the external modulating agent.

7. Conclusions

We presented a theory of pulse propagation through a slab whose dielectric function varies
periodically with time. This theory follows from our previous work limited to monochromatic
excitation [12].

For quasi-monochromatic pulses, we found that the transmitted pulse at the exit surface can
be decomposed as a superposition of pulses. This representation is derived from the concepts of
phase and group delays and the outcoming pulse is completely characterized by the monochro-
matic transmission coefficients tn(ωc) of the harmonics n generated by the carrier frequency ωc.
The carrier signals of these partial pulses have frequencies ωc − nΩ and acquire phase shifts
φn(ωc), and these pulses exit the slab with the same form of their envelope as the incident pulse
and with temporal shifts φ ′

n(ωc). In this sense then, no distortion occurs in the pulse shape. We
analyzed the case of an incident monochromatic Gaussian pulse for several normalized mod-
ulation frequencies, carrier frequencies, and modulations strengths. We showed that the peak
velocity of the partial pulses can be both fast (vn > c or vn < 0) or slow (vn � c). It turns out
that infinite group velocities occurring in the band structure at frequencies ω = Ωm/2 (m is
an integer) are not related to any of the partial peak velocities vn. In the other extreme of very
short pulses, we studied the transmitted pulses for an incident Gaussian pulse with a large band-
width for several modulation frequencies and modulation strengths. Since here τ � D/νs, we
obtained multiple pulses coming out of the slab at different times t due to the multiple round
trips of the pulse between the slab surfaces. As a consequence, the amplitude of each pulse suc-
cessively decreases upon each round. We found that these pulses exit the slab with delay times
t̃ ≈ 1,3,5, . . . (the equality would give the exact pulse exit times for an unmodulated slab). The
departure from these times is larger as the modulation strength increases. Also, in this case the
pulses become more distorted.

We also investigated the peak velocity vp of the transmitted pulse when τ 	 D/vs and
ωcτ 	 1, that is, when a single well defined pulse exits the slab. We found that the peak ve-
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locity vp follows an oscillatory behavior as a function of the normalized thickness (Ω
√

ε̄/c)D
(similar to the unmodulated case). This behavior depends strongly on the modulation strength
M and weakly on the incident pulse spectral width Δω/ωc. The peak velocity vp turned out
be faster or slower than vs, but never faster than c for the analyzed cases. In these cases, the
carrier frequency was ωc = Ω/2 for which the bulk dispersion relation renders an infinite group
velocity. We concluded that this divergence has no repercussions for the transmitted pulse peak
velocity vp. At last, we mention that a strong modulation strength M and a large slab thickness
can lead to strong pulse deformation.

Further, we performed numerical calculations of the reflected and transmitted energies for
an incident Gaussian pulse with particular parameters. We showed that, in general, the sum of
these energies can exceed the incident energy. This gained energy is supplied by the external
modulating agent.

Current and future developments could lead to the implementation of metamaterials that
can be strongly and rapidly modulated and operated at higher frequencies than microwaves.
Then, hopefully, our dynamic-periodic slab could be applied as a controlling device for the
propagation velocity of light pulses. Also, such a dynamic slab could be used as a generator of
pulses with up-conversion of the carrier frequency.
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