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Abstract

In this paper, the homotopy perturbation method HPM, is employed
to obtain an approximate solution for the nonlinear differential equation
which describes an alternating current RC circuit, taking into account
the effect of a nonlinear resistance on the current. In order to compare
this solution, the problem is solved using two homotopy approaches:
the standard HPM method and a modified version of HPM. From these
methods, two different approximate solutions are obtained. Comparison
with exact solution shows that the HPM method is extremely efficient
if the initial guess is chosen adequately.
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1 Introduction

Industrial competition constantly pushes the area of electronics circuits to the
limits of technology. This has caused a rapid growth in the levels of integra-
tion for integrated circuits (IC) and the emergence of novel devices such as
single electron transistors and memristors. Because of this, it is important the
development and improvement of mathematical and numerical tool, applied
to circuit simulation at the static and dynamic domain. In the dynamic do-
main (AC or transient), the circuit analysis is carried out only numerically (by
methods such as Runge Kutta), because the resulting differential equations
are highly nonlinear. Nevertheless, there are several methods used to find ap-
proximate solutions for nonlinear problems such as variational approximations
[2, 15], Tanh method [7], exp function [21], Adomian decomposition method
[1, 3], parametric expansion [22], HPM [12, 11, 14, 8, 16, 4, 13, 6, 10, 9, 20, 19],
and so on. Among all the above methods, the HPM method is one of the most
employed because is powerful and its practical application is simpler than other
techniques.

Homotopy perturbation method [12, 11] was first proposed by Ji Huang
He, and it was introduced as a powerful tool to approach various kinds of
nonlinear problems. As it is well known, nonlinear phenomena appear in a
broad variety of scientific fields, such as, applied mathematics, physics, engi-
neering. Scientists in those disciplines are constantly faced with the task of
discovering solutions for nonlinear ordinary differential equations, partial dif-
ferential equations and nonlinear differential equations systems. HPM method
can be considered as a combination of the classic perturbation technique and
the homotopy (whose origin is in topology) but limitations from traditional
perturbation methods have been eliminated. For instance HPM method does
not require a small parameter or linearisation, in fact, it only requires few iter-
ations to obtain highly precise solutions. Furthermore, this method has been
successfully used to solve integral equations, for example the Volterra integral
equation case [6].

The homotopy perturbation method can be used to solve, analytically,
nonlinear problems from electronic circuits. This paper presents two versions
of this method in order to calculate the effects that a nonlinear resistance has
on the current for the case of an RC circuit. Will be seen that, in this case,
one version is clearly better and discuss the reasons.
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2 HPM Methods

2.1 Standard Homotopy Perturbation Method

To get an idea of how HPM works consider a general nonlinear equation of the
form

A(u) − f(r) = 0, r ∈ Ω, (1)

with the following boundary conditions

B

(
u,

∂u

∂n

)
, r ∈ Γ, (2)

where A is a general differential operator, B is a boundary operator, f(r) is a
known analytical function, and Γ is the domain boundary for Ω.

A can be divided into two parts, L and N , where L is linear and N non-
linear; from this last statement, (1) can be rewritten as

L(u) + N(u) − f(r) = 0. (3)

Generally, a homotopy can be constructed in the form [11]

H(v, p) = (1 − p)(L(v) − L(u0)) + p[A(v) − f(r)] = 0, p ∈ [0, 1], r ∈ Ω,
(4)

or

H(v, p) = (L(v) − L(u0) + pL(u0) + p[N(v) − f(r)] = 0 p ∈ [0, 1], r ∈ Ω,
(5)

where p is an homotopy parameter and uo is the first approach to the approx-
imation for the solution of (1) which satisfies boundary conditions.

Assuming that solution for (4) or (5) can be written as a power series of p

v = v0 + v1p
1 + v2p

2 + ... (6)

Substituting (6) into (5) and equating identical powers of p terms, there
can be found values for the succession u0, u1, u2, . . . . When p → 1, it yields
in the approximate solution for (1), in the form
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v = v0 + v1 + v2 + · · · (7)

Another way to develop an homotopy, which is relevant for this article, is
by considering the following general equation

L(u) + N(u) = 0, (8)

where L(u) and N(u) are linear and nonlinear operators, respectively; solution
for L = 0, appropriately describes the original nonlinear system. Employing
the homotopy technique it is possible to construct an homotopy such as [8]

(1 − p)L(v) + p(L(v) + N(v)) = 0, (9)

assuming, again, that solution for (9) can be written in the form (6) and taking
the limit p → 1, results an approximate solution for (8).

2.2 A modified version of HPM Method

In [10] was introduced a modified HPM method to solve the problem of a non-
damped, nonlinear oscillator. This method consists in adding and subtracting
an adequate linear term from the equation, in such way that the equation itself
remains unaltered; however, one of the additional terms need to be added to
the linear operator, this is done to avoid a divergent solution and, at the same
time, results in a quick and precise convergent solution. If this is compared
with the stardard HPM method, the only difference between this version of
HPM and the standard method is the linear operator, while the rest of the
procedures are the same for both cases. In this work is employed this modified
version of HPM method in order to improve the obtained results from standard
HPM method.

3 Study case

In order to show how to obtain approximate analytical solutions in some non-
linear circuits, we consider the case of dependence of the resistance R with the
current i(t). We assume, for simplicity, the following first order expression [5]

R(t) = R0 + Ki(t), (10)

where R0 and K are constant parameters.
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Figure 1: Basic RC circuit

A basic RC alternate current circuit may consists of a constant resistor R0

and a capacitor c, connected in series with a source V = V0 sin(wt), as shown
in Fig. 1.

Equation for electric current, is obtained from Kirchoff’s second Law

R0i +
1

c

∫
idt = V0 sin(wt), (11)

differentiating (11), we obtain

R0
di

dt
+

i

c
= V0w cos(wt). (12)

To exemplify, assigning the following quantities: w = 1, R0 = 2, V0 = 1,
and c = 1, in such way that (12) adopts the simple form

di

dt
+

1

2
i =

1

2
cos(t). (13)

Assuming, for instance, that i(0) = 0 it is possible to solve (13), and obtain

i(t) =
1

5
(cos(t) + 2 sin(t)) − 1

5
exp

(−t
2

)
. (14)

Fig. 2 shows that there is a short transitory period where the exponential
term of equation (14) is notorious, and the graphic for i(t) is not symmetrical
with respect to t axis since the beginning. Next, the value of the current
approaches the stationary solution, which is given by the trigonometrical part
of (14). At this stage, current oscillates at the frequency given by the driving
source w = 1. It is clear that the graphic quickly becomes symmetrical with
respect to t axis. Rewriting the stationary part is(t) of (14) in the form
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Figure 2: Numerical solution RK (14).

is(t) =
1√
5

sin

(
t +

23

50

)
, (15)

it is observed another characteristic in this kind of circuits, current leads volt-
age in capacitive circuits [17, 18].

Nonlinear effects are taking into account replacing R0 by R(t), given in
(10), into (11) and differentiating to obtain

(R0 + 2Ki)
di

dt
+

i

c
= V0w cos(wt). (16)

Substituting values: w = 1, R0 = 2, V0 = 1, c = 1, and K = 1
2
, the equation

results in a generalization of (13)

(1 +
1

2
i)

di

dt
+

1

2
i =

1

2
cos(t), i(0) = 0. (17)

However, unlike (13), this is a nonlinear equation.

Next, approximate solutions for (17) are found utilizing HPM techniques
showed in sections 2A and 2B.

3.1 Method 1 Standard HPM Method

Following (4), a homotopy is constructed in the form
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(1 − p)

[
dv

dt
+

(
1

2
+ α

)
v − β − dio

dt
−

(
1

2
+ α

)
io + β

]

+p

[
dv

dt
+

1

2
v
dv

dt
+

1

2
v − 1

2
cos(t)

]
= 0 (18)

where α and β are adjusting constants. Assuming that the initial approxima-
tion for (17) that satisfies the initial condition has the form

i0(t) =
2β

1 + 2α

[
1 − exp

(
−(

1

2
+ α)t

)]
. (19)

Substituting (6) into (18), and grouping coefficients of similar powers of p,
yields

p0)
dvo

dt
+

[
1

2
+ α

]
v0 − β − di0

dt
−

(
1

2
+ α

)
i0 + β = 0, v0 = 0,

(20)

p1)
dv1

dt
+

[
1

2
+ α

]
v1 +

[
dvo

dt
+

1

2
vo

dvo

dt
+

1

2
vo − 1

2
cos(t)

]
= 0, v1 = 0,

(21)

from (20) is obtained

vo = io =
2β

1 + 2α

[
1 − exp

(
−(

1

2
+ α)t

)]
. (22)

Substituting (22) into (21), yields

dv1

dt
+

[
1

2
+ α

]
v1

+ exp

(
−

(
1

2
+ α

)
t

) [
β +

2β2

1 + 2α

[
1 − exp

(
−

(
1

2
+ α

)
t

)]
− β

1 + 2α

]

(23)

+
β

1 + 2α
− 1

2
cos(t) = 0,

integrating this equation using an integration factor, yields
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v1(t) =
sin(t) + α(cos(t) − 1)

2(1 + α2)

+
2β

[
2β (1 − exp (−(1 + 2α)t)) − (α + β)(1 + 2α)t exp

(−(1
2

+ α)t
)]

(1 + 2α)2
.

(24)

According to (7) an approximate solution for (17) would be

i(t) = v0 + v1 + ...

For this case, we choose the first order approximation

i(t) = v0 + v1, (25)

substituting (22) and (24) into (25) this results in,

i(t) =
sin(t) + α(cos(t) − 1)

2(1 + α2)2

+
2β(1 + 2α)(1 − exp(−(1

2
+ α)t))

(1 + 2α)2

+
4β2 (1 − exp(−(1 + 2α)t))

(1 + 2α)2

− 2β(α + β)t exp(−(1
2

+ α)t)

(1 + 2α)
(26)

Constants α and β are calculated using the non linear fit command followed
by the ”convert” command (using the ”rational” option) in maple 15; which
results in

i(t) =
24

59
sin(t) − 22

113
cos(t) +

46

277
+

14

475
exp

(
− 2

93
t

)

− 1

1151
exp

(
− 4

93
t

)
− 5

354
t exp

(
− 2

93
t

)
(27)

Equation (27) is an approximation to the solution of differential equation
(17), (see Fig. 3).

It is evident that the proposed standard HPM method is not adequate to
provide a first order approximation in this case. Higher order approximations,
although possible, would give place to much larger and difficult expressions to
handle. Instead, we solve (17) using the modified HPM method.



HPM applied to solve nonlinear circuits 4339

Figure 3: Numerical solution RK (17) (dashed) and its approximate solution
(27) (solid line).

3.2 Method 2 Modified HPM Method

In order to obtain a better approximation with less effort; we differentiate (17)
with respect to time and obtain the second order equation

d2i

dt2
+

1

2

di

dt
+

1

2
sin(t) +

1

2

(
di

dt

)2

+
1

2
i
d2i

dt2
= 0, i(0) = 0, i′(0) =

1

2
,

(28)

where the initial conditions are deduced from (17).
Linear part from last equation is identified as

L(t) =
d2i

dt2
+

1

2

di

dt
+

1

2
sin(t), (29)

and the nonlinear

N(t) =
1

2

(
di

dt

)2

+
1

2
i
d2i

dt2
. (30)

Following references [8] and [10], adding and subtracting a
d2i

dt2
+ b

di

dt
, as

shown, in such way that equation (28) can be rewritten as

(1 + a)
d2i

dt2
+

(
1

2
+ b

)
di

dt
+

1

2
sin(t) +

1

2

(
di

dt

)2

+

(
1

2
i − a

)
d2i

dt2
− b

di

dt
= 0
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where a and b are adjustment parameters.
In this manner, it is possible to identify the new L(t) and N(t) as follows

L(t) = (1 + a)
d2i

dt2
+

(
1

2
+ b

)
di

dt
+

1

2
sin(t), (31)

N(t) =
1

2

(
di

dt

)2

+ (
1

2
i − a)

d2i

dt2
− b

di

dt
. (32)

Substituting (32), (31), and (6) into (9) and equating identical powers of p
we obtain

(1 + a)
d2v0

dt2
+

(
1

2
+ b

)
dv0

dt
+

1

2
sin(t) = 0, v0(0) = 0, v′

0(0) =
1

2
(33)

(1 + a)
d2v1

dt2
+

(
1

2
+ b

)
dv1

dt
+

1

2

(
dv0

dt

)2

+ (
1

2
v0 − a)

d2v0

dt2
− b

dv0

dt
= 0, v1(0) = 0, v′

1(0) = 0,

(34)

solving equation (33), we obtain

v0(t) = −1363

8912
exp

(
−24t

47

)
+

235

557
sin(t) +

120

557
cos(t) − 1

16
, (35)

where a and b were calculated using again the non linear fit command.
According to (7), an approximate solution would be

i(t) = v0(t) + v1(t) + v2(t) + · · ·
For this case, we choose the lowest order approximation

i(t) = v0(t), (36)

in such way that

i(t) = −1363

8912
exp

(
−24t

47

)
+

235

557
sin(t) +

120

557
cos(t) − 1

16
, (37)
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or rewriting (37)

i(t) = −1363

8912
exp

(
−24t

47

)
+

√
69625

557
sin

(
t +

47

100

)
− 1

16
. (38)

Fig. 4, shows the comparison between the approximate solution (37) and
the exact solution. It can be seen that figures are very similar. In fact, from
Table 1 we can see the accuracy of (37) as an approximate solution to (28)
and therefore to (17).

Figure 4: Numerical solution RK (17) (dashed) and its approximate solution
(37) (solid line).

4 Discussion

This study presents the results of applying the HPM method to an nonlinear
alternating current (AC) RC circuit. In the first case, a standard HPM method
was employed; for the second case, a modified HPM version proposed in [8]
and [10].

Two approximate solutions of different precision were found for the problem
(27) and (37). (37) shows that if the initial guess is chosen adequately, it is
possible to obtain an accurate approximation to the solution (see Fig. 4).
This is not unusual because the second solution method allows to introduce
the oscillatory character of the source since the beginning (see (33)), and the
standard method does not allow this (see (20)). Therefore, in this case, the
standard HPM requires higher order approximations, but from (27) is clear
that it would lead to a not so handy and cumbersome approximation. This
shows the convenience to use the modified HPM for this and similar cases.

Table 1 and Fig. 4 shows that (37) has good accuracy when compared
to the Runge-Kutta numerical method . Also (37) can be used to make a
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t MHPM RK4 RK4-MHPM
0.00 0.00000000 0.00000000 0.00000000
1.00 0.31714072 0.28977089 -0.02736983
2.00 0.17640176 0.205765 0.02936324
3.00 -0.24929846 -0.18927459 0.06002387
4.00 -0.54245403 -0.57991548 -0.03746145
5.00 -0.41786469 -0.31727632 0.10058837
6.00 0.01932911 0.1143201 0.09499099
7.00 0.37281829 0.38184233 0.00902404
8.00 0.32099410 0.35829268 0.03729858
9.00 -0.08646361 0.025988337 0.11245194
10.00 -0.47372012 -0.44207991 0.03164021
20.00 0.41058592 0.41384532 0.00325941
30.00 -0.44612168 -0.35463937 0.09148232
40.00 0.10818048 0.19933296 0.09115248
50.00 0.03469539 0.12681008 0.09211469

Table 1: Comparison between the obtained solution against Modified HPM.

qualitative and quantitative analysis of the solution, unlike Runge method,
which is only useful for qualitative analysis. For instance, HPM method allows
to quantitatively deduce that the current that satisfies the nonlinear equation
(17) is no longer symmetrical respect to t axis, in contrast of what is occurring
to the RC linear circuit described by (13) (see Figs. 2 and 4). Also, (38) shows
that the current leads the voltage; as in the case of linear RC circuit (see (15)).

5 Conclusion

In this work we have shown the usefulness of HPM method to quantitatively
describe the effect that a nonlinear resistance has on an alternating current RC
circuit. For instance, we employed the simple mathematical model (10); the
problem was solved using two versions of HPM method. A relevant fact of the
HPM modified version is that, even utilizing the lowest order approximation
(36) a highly precise solution for (17) can be obtained (see Fig. 4). In contrast
to Runge-Kutta numerical solution, HPM method allows both quantitatively
and qualitatively analyse the solution.

It is expected that other problems in the field of electronics described by
nonlinear differential equations can be solved in a similar way, following the
techniques employed in this work.
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