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The aim of the present work is twofold: first we obtain analytical expressions for both the wavefronts and the
caustic associated with the light rays reflected by a spherical mirror after being emitted by a point light source
located at an arbitrary position in free space, and second, we describe, in detail, the structure of the ronchigrams
when the grating or Ronchi ruling is placed at different relative positions to the caustic region and the point
light source is located on and off the optical axis. We find that, in general, the caustic has two branches: one
is a segment of a line, and the other is a two-dimensional surface. The wavefronts, at the caustic region, have
self intersections and singularities. The ronchigrams exhibit closed-loop fringes when the grating is placed at

the caustic region. © 2013 Optical Society of America
080.0080, 120.5700, 110.4190, 220.4840.
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1. INTRODUCTION

The spherical mirror is one of the most used components to
construct optical devices and to carry out a variety of experi-
ments. For these reasons, a natural and fundamental question
is, “How do we determine the quality of a real polished mir-
ror?” To answer this question, not only for a spherical mirror
but also for an arbitrary optical system, there has been a de-
velopment of several tests [1,2]. The Ronchi test [3,4], devel-
oped by Ronchi in the 1920s, is one of those. The basic idea
of this test is to deduce the quality of an optical system by
comparing a real pattern, referred to as the real ronchigram,
obtained from the experiment, with the ideal one, obtained by
simulation assuming that all the characteristics of the ideal
optical system that we want to construct are known. There-
fore, as remarked by Ronchi himself, a clear understanding
of the properties of the ideal ronchigram is crucial to apply
this test. Thus, there has been considerable research on the
simulation of ronchigrams for spherical and aspherical mir-
rors [5-11] (see also [4] and the references cited therein).
It is important to point out that the Ronchi test is established
in a quantitative way only when the grating or Ronchi ruling is
placed off the caustic region. This is so because in that case
the ronchigram does not contain any closed-loop fringes and
thus it is easy to carry out the comparison between the real
and ideal fringes. However, the most important feature
associated with the reflected light rays by the spherical
mirror after being emitted by a point light source placed at
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a determined position in space is its set of focal points or
caustic surface, so we claim that working at the caustic region
the sensitivity of the Ronchi test will be improved and thus a
clear description of the ronchigram when the grating is placed
at the caustic region is needed. In a recent work [12], by using
the caustic touching theorem established by Berry [13] and
the geometrical point of view of the Ronchi test, we discov-
ered that the caustic associated with the reflected light rays
play a major role in the computation of the ideal ronchigram.
We remarked that the closed-loop fringes observed in the
ronchigram can be interpreted as a disruption of shadows
and that they appear when the grating touches the caustic re-
gion. The general results were applied to a spherical mirror
when the point light source is located on the optical axis.
In this work we use our general equations obtained in
[12,14,15] to study the structure of the reflected wavefronts,
caustics, and ronchigrams for a spherical mirror when the
point light source is located at an arbitrary position of space.
More explicitly, we obtain analytical expressions for the re-
flected wavefronts and the caustic when the point light source
is located on and off the optical axis. With the knowledge of
the caustic, we present a detailed study of the structure of the
ronchigram when the grating is placed at the caustic region.
These results complete the study started in [12] for a spherical
mirror. The organization of this work is as follows: in
Section 2, following [12,14], we present the basic equations
to compute the reflected wavefronts, the caustic, and the

© 2013 Optical Society of America
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Fig. 1. Schematic drawing of the Ronchi test arrangement. In this diagram we have the surface under test, locally given by z = f(x, y), a point
light source located on the optical axis, and a Ronchi ruling. The pattern observed through the grating on the surface of the mirror is referred to as

the real ronchigram.

ronchigram for an arbitrary configuration of the point light
source, grating, and mirror. In Section 3 these general
equations are applied to the spherical mirror and we obtain
analytical compact expressions for the reflected wavefronts,
the caustic, and the ronchigram. These analytical expressions
are used to present a detailed description of the ronchigrams
when the point light source is placed on and off the optical
axis and the grating is placed at different relative positions
to the caustic region. Finally, the conclusions are presented.

In this work, we consider the geometrical point of view
of the Ronchi test. The essential features of this test for a
concave mirror when the point light source is located on
the optical axis may be described by reference to Fig. 1 [4,16].
The light rays emitted by the point light source are reflected
by the mirror under test and they focus on a region in the
space. This region is the caustic associated with the reflected
light rays. The grating, also referred to as a Ronchi ruling, is
located at different positions on the optical axis. The pattern
observed through the grating on the surface of the mirror is
referred to as the real ronchigram. From the geometrical point
of view, the fringes of the real ronchigram are interpreted as
shadows of the ruling bands. The defects of the mirror under
test can be deduced by comparing the real fringes with the
ideal ones, which are obtained by simulation assuming that
the form of the ideal mirror and the position of both the point
light source and grating are known [17].

2. BASIC RESULTS

In this section, following [12,14], we present the equations to
compute the wavefronts and the caustic associated with the
reflected light rays by an arbitrary smooth surface after being
emitted by a point light source located at an arbitrary position
in free space. Furthermore, we present the equations to simu-
late the ideal ronchigram for an arbitrary smooth reflector

when the point light source and the grating are located at
arbitrary positions.

A. Equations Describing the Reflected Wavefronts

Using a complete integral of the eikonal equation a direct com-
putation shows that the wavefronts associated with the light
rays reflected by an arbitrary smooth surface after being
emitted by a point light source located at an arbitrary position
s = (81,89, S3) in free space are described by

X(s,x, y) = l'(.%', y) + [C - |l'(.%', y) - s|]ﬁ(s,x, y)’ (1)

where r = (x,y,f(x,y)) denotes the position of the point on
the smooth curved reflector at which is reflected the light
ray that is emitted by the point light source in the direction
I, C denotes each one of the reflected wavefronts, and
R denotes the direction of the reflected light ray, which
is computed using the reflection law and is explicitly
given by

=
I

@)

RIE

with h = (hl,hg,hg) and

hy = (x-s))(1-f2 +f§) = 2folfy(y = s2) + 83 = f1, 6)

hy = (y = $9) (L +f35 = f3) = 2f [f (@ = 51) + 55— 1. C))

hs = (f - s3) (-1 + 12 +f§) +2[f (X —s1) +fy(y -s2)]. (5)

a= (L4121 (51— + (2 -9 + (5P (©)
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Fig. 2. Schematic drawing of the two sets of coordinate systems used to compute the image of a one-dimensional object obtained by reflection
on an arbitrary smooth surface locally given by z = f(x,y). We also have included an emitted light ray such that its associated reflected light
ray connects a point of the smooth surface with a point of the one-dimensional object. The point, on the smooth surface, where the emitted light

ray is reflected belongs to the shadow of the one-dimensional object.

B. Caustic Associated with the Reflected Wavefronts

If the position of the point light source is assumed to be
known; that is, if s is given, then from a mathematical point
of view Eq. (1) describes a map between two subsets of
R3, where (x,y,C) are the coordinates labeling the points
in the domain space and (X, Y,Z) are local coordinates in
the target space. In general, there is a region in the space
where the reflected wavefronts will be singular or equivalently
the reflected light rays will focus. This region is referred to
as the caustic associated with the reflected wavefronts or
reflected light rays. By definition, the caustic [18-20] is the
image of the critical set of the map (1). The critical set is
the set of points in the domain space where the map is not
locally one to one. In our case, it is given by

—H, + \/H? - 4H,H,

C=Ci(x,y)=|r-s|+a

)

2H, ’

where

v ()]
e [(2)-2)+ ()]

oh oh
o ()]

and the caustic, which is obtained substituting Eq. (7) into
Eq. (1), is given by

—H\ + \JH? - 4H,H,

X=ch:=r+ 2H2

®

From this equation, it is clear that when H, = 0, the caustic
associated with the reflected wavefronts described by Eq. (1),
in general, is composed by two branches, which for very par-
ticular forms of the reflecting surface and particular positions
of the point light source reduce to a single point. For example,

Fig. 3. (Color online) Caustic given by Egs. (28) and (29) when the point light source is placed at (a) (0, 0, and 13.5 cm), (b) (2, 0, and 13.5 cm), and

(c) (4, 0, and 13.5 cm).
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Fig. 4. (Color online) Intersections of the caustic surface, given by Egs. (28) and (29), with the plane y = 0 when the point light source is placed at
(@) (0, 0, and 13.5 cm), (b) (2, 0, and 13.5 cm), and (c) (4, 0, and 13.5 cm).

this happens when the reflecting surface is part of a spherical
mirror and the point light source is located at the center of the
mirror (see Section 3). In the general case, the two branches
of the caustic are two-dimensional surfaces, and when they
are stable under small deformations of the reflecting surface
and the position of the point light source, they locally have
singularities of well-known types: the swallowtail, the pyra-
mid or elliptic umbilic, and the purse or hyperbolic umbilic
[18-20]. From the results presented in Section 3, we conclude
that the caustic associated with the reflected wavefronts, for a
spherical mirror when the point light source is located either
on or off the optical axis, is not stable under a local deforma-
tion of the spherical surface.

C. Equations to Compute the Ideal Ronchigram
Equation (1) describes the reflected wavefronts and also
the reflected light rays. Observe that for fixed values of
x and y this equation provides the parametric representation
of a reflected light ray. In this parametrization each point on
the reflected light ray is labeled by a particular value of C.
Since we are interested in computing the ronchigram of a
Ronchi ruling placed at a particular plane Z = constant, it
is convenient to use other more appropriate parametrization
for the reflected light rays. To this end, we take Z = 2, where
2y is another coordinate. Therefore, Eq. (1) can be rewritten in
the following form:
h/l (x Y, S)
XG0 =+ -l ).

Y(@,y.20) =y +1[20-f(x, y)](%)

Z(x,Y,2) = 2, (10)

where now 2, labels the points on the reflected light rays and
is such that for fixed values of x and y, f(x,¥y) < 25 < «. A di-
rect computation shows that the caustic associated with this
map is also given by Eq. (9). This is so, because Egs. (1) and
(10) are two different representations of the same reflected
light rays and the caustic is an observable entity; that is, it
is independent of the coordinated system used to compute
it. Equation (1) provides directly the wavefronts associated
with the reflected light rays, while Eq. (10) are more appro-
priate to compute the ronchigram, as we will see later on.
Observe that for a fixed position of the point light source
Eq. (10) describe the parametric representation of a map be-
tween two subsets of R?, where (x,v,2,) are the coordinates
labeling the points in the domain space and (X, Y, Z) are local

coordinates in the target space. Equivalently, Eq. (10), can be
seen as a one-parameter family of maps between subsets of
R?, where each map is characterized by a particular value of
2o. This family is explicitly given by

hl (Z', Y, S)
hg(.%', Y, S)) ’ Y(x* y)

h’2 (‘7/‘, Y, S))
h3(x7 Y, S) '

X@.y) = 2+ [0 - (@, y)](

=y o - y)]( D

Each member of the family, characterized by a specific
value of 2z, maps points of the reflecting surface to points
on the plane Z =z,. It is important to remark that in
Eq. (11), 2 is not a coordinate as it is in Eq. (10), but it is
a parameter characterizing a particular member of the family
of maps, and is such that for fixed values of x and
Y, S (@, y) 2 < oo

To compute the image of a one-dimensional object lying on
the Z = 2, = constant plane, we introduce in that plane a
second coordinate system (7', 7T,), with origin at (0,0, z2)
such that T, and T', are parallel to the axes X and Y, respec-
tively (see Fig. 2). A one-dimensional object lying on this plane
can be described in a parametric way by

T, =10,
T, = XZ(0), (12)
[ T T T T T T T ]
04t .
02t 8
x 00f i
02+ -
-04 -
L " 1 " " 1 " " 1 " " 1 " " 1 " " 1 " " " 1 ]
74 -72 -70  -68  -66 64 62

4

Fig. 5. (Color online) Intersections of some reflected wavefronts and
the caustic surface, with the plane ¥ = 0 when the point light source is
placed at (0, 0, and 13.5 cm).
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Fig. 6. (Color online) Some reflected wavefronts when the point light source is placed at (4, 0, and 13.5 cm). Observe that the wavefronts are
smooth surfaces out of the caustic region [(a) and (f)], while at the caustic region they are singular [(b)-(e)].

where ¢ is a parameter that labels the points on the object. If
we eliminate the parameter ¢, we have that the object could be
described by

T, = A(T,). (13)

Therefore, all the points on the reflecting surface that
are connected by a reflected light ray with the points of
the one-dimensional object given by Eq. (12), located on
the plane Z = z, are given by (x,y,f(x,y)), where x and y
are solutions to
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(Since we are assuming that the curved reflector, the
position of the point light source, and the object are
known, then in these equations the unknown variables are
x and y.)
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Fig. 7. (Color online) (a) Object space: the grating or Ronchi ruling and the caustic, which is a circle of radius R, = 0.0213 cm and its center.
(b) Image space: the associated Ronchigram. In this case s = (0,0, and 13.5 cm) and the grating is placed at the plane z = -6.51 cm.
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Fig. 8. (Color online) (a)—(d) Object space and (e)-(h) image space for nd = -(1.2)R,,-R,, R, /2, and 0, respectively. In this case s =

(0,0, and 13.5 cm) and the grating is placed at the plane z = -6.51 cm.

Therefore, if in free space we have a point light source
located at s and a smooth mirror described by r =
(x,y,f(x,y)); then the shadow on the reflecting mirror of
the one-dimensional object given by Eq. (12) is described
by (x,y.f(x,y)), where x and y are solutions to Eq. (14)
(see Fig. 2). In accordance with the caustic touching theorem,
the relative position between the object and the caustic is cru-
cial to compute the shadow of the object. Remember that the
map given by Eq. (11) maps points on the reflecting surface to
points on the plane Z = z;. If the plane Z = z;,, which contains
the object, is outside the caustic region—that is, there is no
intersection between this plane and the caustic given by
Eq. (9)—then the map (11) is locally one to one. This means
that for each point (T,(c), T, (5).2) on the object there is a
unique solution (x, ) to Eq. (14) and therefore, under this con-
dition, the shadow on the reflecting surface of the object is a
curve. Now we assume that the plane Z = 2, is located at the
caustic region given by Eq. (9). In this second case, the map
given by Eq. (11) is not locally one to one at those points that
belong to the intersection of the caustic and the plane Z = z,,.
Therefore, if the object lying on this plane is outside the

T,
02 :
0.1 N
/ N\
/ N\
/ \
T,00
\ /
\ /
-0.1 \\_//
0253 o1 0.0 0.1 0.2

(a)

caustic region, then we have the previous case, but if the
object reaches the caustic in such a way that they become tan-
gent to each other—that is, there is a touch between them—
then in accordance with the caustic touching theorem, there
will be shadow disruption. Such disruption may be elliptic,
loop born from an isolated point, or hyperbolic, loop pinched
off from an already existing one. In these cases, the object and
its shadow do not have the same topology, and then we may
see several shadows corresponding to a single object.

In this work we are interested in the case when the one-
dimensional object is one of the rulings belonging to a Ronchi
ruling. In other words, we are interested in computing the rul-
ing shadows. To this end, we assume that in the plane Z = 2,
we place a Ronchi ruling with its rulings making an angle, ©,
with the positive T, axis such that the distance between two
adjacent rulings is d. That is, we assume that the Ronchi ruling
is described by

T,=T, tan O + nd, (15)

where n = +1, +2...,.

X

yo

-5

-10 =5 5 10

0
®

Fig. 9. (Color online) (a) Object space: the grating or Ronchi ruling and the caustic, which is a circle of radius R, = 0.1142 cm. (b) Image space:
the associated Ronchigram. In this case s = (0,0, and 13.5 cm) and the grating is placed at the plane z = -6.79 cm.
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Fig. 10. (Color online) (a)-(d) Object space and (e)—(h) image space for nd = —(1.2)R,, -R,;, —R,;, /2, and 0, respectively. In this case s =

(0,0, and 13.5 cm) and the grating is placed at the plane z = -6.79 cm.

From Egs. (14) and (15), we find that for each value of  the
fringes or shadows on the ronchigram are computed by
solving for x and y the following equation:

hy(x.y.s)
v+ -

hy(x,y,s)

= {x +[20 - f (=, y)](hg(x ’ s))} tan ® + nd.  (16)

In the next section we solve this equation for a spherical
mirror when the point light source is located on and off the
optical axis.

It is important to remark that due to practical purposes it is
more convenient to plot the simulated ronchigrams in a plane.
Therefore, in this work we plot the ronchigrams in the
plane Z = 0.

3. SPHERICAL MIRROR

In this section we obtain analytical expressions for the re-
flected wavefronts and the caustic for a spherical mirror when
the point light source is located on and off the optical axis.
Furthermore, using the caustic, we study the structure of
the ronchigram when the grating or Ronchi ruling is located
at different relative positions to the caustic associated with
the reflected light rays. To this aim, we assume that

r:(x,y,— az—xz—y2), an

where a is the radius of the sphere.

A. Equations Describing the Reflected Wavefronts
Using Egs. (3)-(5) and (17) a direct computation shows that
for this case

h = ([_12) [2(s- )r - a*(s + 1)), s
R = B Dr-a®s+n] (20)

s — r|a?

Therefore, from Egs. (1), (17), and (20), we find that the
map that describes the reflected wavefronts for a spherical
mirror when the point light source is located at an arbitrary
position in free space is given by

[C —[r-s[]2(s - r)r - a*(s + 1)]
r - s|a® '

X(s,x,y) =r+ @D

A very particular case is when the point light source is lo-
cated at the center of the mirror—that is, when s = (0,0, 0).
For this case Eq. (21) reduces to

X(0,2,y) = (2a - O)f. 22)

Therefore, the train of reflected wavefronts is a set of
spheres. Each sphere is labeled by a particular value of C
and has radius |2a - C|. Observe that C > a.

B. Caustic Associated with the Reflected Wavefronts

To compute the caustic associated with the map given
by Eq. (21), we first use Egs. (17) and (18) in Eq. (8) to
obtain

Hy = (‘;ii)[(s v (23)
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(d)
Fig. 11. (Color online) (a) Intersections of the caustic surface, given by Egs. (28) and (29), when the point light source is placed at
s = (0,0, and 13.5 cm) and the planes z = constant (where the Ronchi ruling is placed) with the plane y = 0. In (b)—(f) we present the ronchi-

grams when the grating is placed at the planes (b) 2 = —-6.23 cm, (c) 2 = -6.51 cm, (d) 2 = -6.79 cm, (e) 2 = -7.07 cm, and (f) 2 = -7.35 cm,
respectively.

20/2 2
H, = (f—5) (s-1)-[a*(s-1) + (s- D, @4)

H, = (‘;—:){|s—r|2[3(s-r) -a?] + s - r-a?]}, (25)

where s = /(s -s). Using Egs. (17) and (23)-(25) in Eq. (7),
a direct computation shows that the critical set is
given by

_2r-sfis-1) 1]
“=Teonr )
2|r —s)? @n

T 22 _3(s-1) + a2

In a similar manner using Egs. (17) and (18) and
Egs. (23)-(25) in Eq. (9), we obtain that the caustic set can
be written in the following form:

a’s

(28)

2[a?s® — (s - r)’Jr + a?[s - r — a®]s
Xet = 20,2 2
a’la” + 2s* = 3(s - 1)]

(29)

()

From Egs. (28) and (29) we have that when the point
light source is located at the center of the spherical
mirror—that is, when s = (0,0,0)—the caustic reduces to
the point (0,0,0), which is a well-known result. On the
other hand, a direct computation shows that when
s1=0, 85=0, s3>, (x/a) <1, and (y/a) < 1—that is,
in the paraxial approximation—the caustic reduces to
T.i(x,y) = (0,0,-a /2), which is also a well-known result.
This result implies that in the paraxial approximation of geo-
metrical optics a plane wave incoming from infinity after re-
flection on a spherical mirror of radius a will focus to the
point (0,0, —a /2); that is, the focal point in this case coin-
cides with the caustic. From Eq. (28) we have the important
result that, in general, this branch of the caustic is a segment
of line and the other given by Eq. (29) is a two-dimensional
surface.

It is important to point out that Burkhard and Shealy
[21,22], and Theocaris [23,24] have presented a thorough
study of the properties of the caustics obtained by illumi-
nating any conic reflector with a point light source lying
along the principal axis of the reflector (see also [25-27]).
The main result obtained by these researchers was to pre-
sent a description of the behavior of the properties of the
caustic surface depending on the shape of the particular
reflector, its aperture, and the relative position of the
light source and the reflector. Equations (28) and (29)
are equivalent to those obtained by Shealy and co-
workers [28,29] for a spherical mirror by using a different
procedure.
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Fig. 12. (Color online) (a) Intersections of the caustic surface, given by Egs. (28) and (29), when the point light source is placed at s =
(2,0, and 13.5 cm) and the planes z = constant (where the Ronchi ruling is placed) with the plane y = 0. In (b)-(f) we present the ronchigrams
when the grating is placed at the planes (b) 2 = —-6.23 cm, (¢) 2 = -6.51 cm, (d) 2 = -6.79 cm, () 2 = -7.07 cm, and (f) 2 = -7.35 cm, respectively.

C. Equations to Compute the Ideal Ronchigram

Now that we know the caustic associated with the reflected
light rays by a spherical mirror when the point light source is
located at an arbitrary position in the space, we finally study
the structure of the ronchigram when the Ronchi ruling is
placed at different relative positions to the caustic. Using
Egs. (16)-(18) we find that the equation that allows us to
simulate the ideal ronchigram for a spherical mirror when
the point light source is located at an arbitrary point in free
space and the Ronchi ruling is placed on the plane
Z = z; = constant, with its rulings making an angle ® with
the positive T', axis, is given by

. _ g2
Yt e f)(Z(s Ny -a (s2+y))

2(s - O)f —a*(s3 +f)
2(s - r)x — a®(s; +x)
2(s- r)f - a*(s3 +.f)

Within the geometrical optics approximation this equation
is exact, and it is the equation that we use to study the struc-
ture of the ronchigrams. But before that, we present the para-
xial approximation expression to this equation:

y(2zy + a) = x(225 + a) tan O - nda. (G1))

Remember that in the paraxial approximation the caustic
reduces to the point (0, 0, —a /2). Therefore, if the Ronchi rul-
ing is located at the caustic, that is, at the plane Z =z, =
-a /2, then Eq. (31) implies that n must be zero without

any restriction on the values of x, y, and ©. In this case, the
shadow coincides with the entire mirror. On the other hand,
if the Ronchi ruling is not located at the caustic, that is,
22y + a) # 0, then Eq. (31) can be rewritten in the following way:

da
220+ a’

y=xtan ® —nD with D= (32)

which describes a set of straight shadows making an angle ®
with the positive x axis and D is the distance between two
adjacent shadows. Observe that D = d when z, = 0.

D. Plots

Here we describe the caustic, the reflected wavefronts, and
the ronchigrams associated with a spherical mirror when
the point light source is located at different given positions
to the mirror. In all the plots we assume that a = 24.15 cm.

1. Plots of the Caustic

To obtain the plots of the caustic for a spherical mirror, we
assume that the position of the point light source is given
and we use polar coordinates; that is, in Egs. (28) and (29)
we take x =p cos ¢ and y = p sin ¢, with 0<p <10 cm
and 0 < ¢ < 27.

When the point light source is placed at the center of
the spherical mirror, the optical system has spherical symme-
try and for this reason the reflected wavefronts associated
with the reflected light rays are spherical and they will focus
at the center of the mirror. As pointed out before, this point
coincides with the caustic associated with the reflected light
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Fig. 13. (Color online) (a) Intersections of the caustic surface, given by Egs. (28) and (29), when the point light source is placed at
s = (2,0, and 13.5 cm) and the planes z = constant (where the Ronchi ruling is placed) with the plane y = 0. In (b)-(f) we present the ronchigrams
when the grating is placed at the planes (b) 2z = -6.23 cm, (¢) 2 = -6.51 cm, (d) 2 = -6.79 cm, (e) 2 = -7.07 cm, and (f) 2 = -7.35 cm,
respectively. In this case the grating makes an angle = /4 with the T, axis.

rays. If the point light source is shifted along the optical axis at
a fixed position, the spherical symmetry is broken but there
still remains a symmetry; that is, the optical system now has
axial symmetry about the optical axis. For this reason the
caustic is a segment of line and a two-dimensional surface
of revolution with a degenerated singularity of the cusp type.
These characteristics of the caustic can be seen in Figs. 3(a)
and 4(a). Finally, when the point light source is moved off the
optical axis to get its final fixed position, in general as can be
seen from Egs. (28) and (29) and Figs. 3(b), 3(c), 4(b),
and 4(c), the caustic continues being a segment of a line
and a two-dimensional surface. The fact that one branch of
the caustic in general is a segment of a line is an intrinsic prop-
erty associated with a spherical mirror. If the spherical mirror
is deformed, for example, to a parabolical mirror, then when
the point light source is off the optical axis the two branches
of the caustic are two-dimensional surfaces that locally have
stable singularities of well-known types [15].

2. Plots of the Reflected Wavefronts

When the point light source is placed at the center of the sphe-
rical mirror, the reflected wavefronts are spheres. If the point
light source is shifted along the optical axis, the reflected
wavefronts have axial symmetry about the optical axis
and are such that before the caustic they are smooth, at
the caustic they are singular and have self-intersections,
and after the caustic they are smooth; see Fig. 5. When the
point light source is placed off the optical axis, the wavefronts

are singular and have self-intersections at the caustic region
too; see Fig. 6.

3. Describing the Structure of the Ronchigrams

Here we describe the structure of the ronchigrams for a sphe-
rical mirror when the point light source is on and off the op-
tical axis and the grating or Ronchi ruling is placed at different
relative positions to the caustic associated with the reflected
light rays. To this end, we have written a computer program in
Mathematica to solve Eq. (30) for a spherical mirror when
the point light source is on and off the optical axis; in
both cases we take a = 24.15 cm, —10 cm < x < 10 cm, and
-10 cm <y <10 cm and the grating is placed in different
planes z = 2, = constant. In order to present the results as
clearly as possible, we first describe the case when the point
light source is located on the optical axis and then when the
point light source is off the optical axis.

When the point light source is on the optical axis the optical
system has axial symmetry about the optical axis—in our
case, the z axis. The caustic associated with the reflected light
rays shares this symmetry (in general it is a segment of a
line and a two-dimensional surface of revolution with a
degenerated singularity of the cusp type). Therefore, in this
case, to describe the structure of the ronchigram when the
grating is placed at the caustic region, it is enough to consider
the case when ©® = 0—that is, we need to compute the level
curves of T',. Observe that the intersections of the caustic with
planes z = constant are of two different types. The first type is
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a circle and an isolated point that coincides with the center of
that circle, and the second type is a circle.

Now we describe the structure of the ronchigram asso-
ciated with the first type of intersection. To this end, we
take s=(0,0,and13.5cm) and in the object space
(T,,T,,-6.51 cm) we plot the object, in our case the ruling
and the caustic; the caustic is a circle of radius equal to
R, = 0.0213 cm and an isolated point that coincides with
the center of the circle. After that, Eq. (30) is solved for x
and y. Finally, the values obtained for x and y are plotted
in the plane 2z =0. In Fig. 7(a) we show the caustic and
the Ronchi rulings, while in Fig. 7(b) we show the shadows
of the rulings;that is, the ronchigram. As can be seen in
Fig. 7(b), the ronchigram has closed-loop shadows. We re-
mark that in accordance with the caustic touching theorem
they can be interpreted as image disruptions. To show up this
property we compute the shadow corresponding to some
ruling bands. In Fig. 8(a), we show the caustic and the ruling
corresponding to the case nd = —(1.2)R,,. Since the ruling is
outside the caustic, there is a one-to-one correspondence
between the points of the ruling and the points of its shadow,
which is plotted in Fig. 8(e). The ruling is tangent to the
caustic, the circle, in the object space at the point
(0 cm, -R,, -6.561 cm) [Figs. 8(b) and 8(c)]; at this point there
is an image disruption of the elliptic type, which is a loop born
from an isolated point; see Figs. 8(f) and 8(g). There is another
image disruption at the origin of coordinates; this is so be-
cause this point belongs to the caustic too. In this case, the
shadow of the ruling is a circle and a segment of line parallel
to the x axis; see Figs. 8(d) and 8(h). Here it is important to
remark that the circle observed in Fig. 8(h) is the shadow or
image of the single point of the ruling (0, 0, and -6.51 cm).
Finally, at the point (0 cm, R,, —6.51 cm) the last image dis-
ruption appears, this time of hyperbolic type—that is, a loop
pinched off from an already existing one.

Now we describe the structure of the ronchigram asso-
ciated with the second type of intersection. To this end,
we take s = (0,0, and13.5 cm) and in the object space
(T, T,,—6.79 cm) we plot the rulings and the caustic that
is a circle of radius equal to R, = 0.1142 cm. In Fig. 9(a)
we show the caustic and the Ronchi rulings, while in
Fig. 9(b) we show the associated ronchigram. To understand
how it is formed, as in the previous case we compute the
shadow of some particular rulings. In Fig. 10(a) we show
the caustic and the ruling for the case nd = -(1.2)R,; in this
case there are no reflected light rays connecting the ruling,
and then as can be seen in Fig. 10(e) there is no shadow
or image associated with this ruling. The ruling is tangent
to the caustic, the circle, in the object space at the point
(0 cm, -R;,, —6.79 cm) [see Fig. 10(b)]; at this point there is
an image disruption of the elliptic type—that is, a loop born
from an isolated point—and because of the dimensions of the
mirror in this case we can observe only the isolated point cor-
responding to the born image; see Fig. 8(f). In Fig. 10(c) we
have the ruling corresponding to the case nd = —(1 /2)R, and
in Fig. 8(g) we have presented its corresponding image as
we can see the image that was born has evolved to a
loop. In Fig. 10(d) we present the ruling corresponding
to the case nd =0, and in Fig. 10(h) we have that its
image is a single segment of a line. Finally, in Fig. 11 we
present the ronchigrams when the point light source is at
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s = (0,0, and 13.5 cm) and the grating is placed at different
positions on the optical axis.

When the point light source is placed out off the optical
axis, the axial symmetry of the optical system is broken. There-
fore, to study the structure of the ronchigram when the Ronchi
ruling is placed at the caustic region, we assume that s =
(2,0,13.5 cm) and we consider two different subcases; in the
first we take ® = 0, and in the second ® = 7 /4. The results for
© = 0 are shown in Fig. 12, and for ©® = r /4 they are shown in
Fig. 13. In order to appreciate the differences between the
ronchigrams when the point light source is on and off the op-
tical axis, we have placed the Ronchi ruling in exactly the same
2 = constant plane to obtain Figs. 11-13. From Fig. 12 we can
see that the effect of taking the point light source off the optical
axis on the ronchigrams is a kind of translation along the
positive x axis. Finally, from Fig. 13 we see that the rotation
of the Ronchi ruling produces a ronchigram that is also rotated.

It is important to point out that to generate Figs. 11-13 we
have assumed that the grating is such that -3 cm < 7, <3 cm,
and d = 0.02 cm.

4. CONCLUSIONS

In this work we have used our general results on the wave-
fronts and the caustic associated with the light rays reflected
by an arbitrary smooth mirror after being emitted by a point
light source located at an arbitrary position in free space to
obtain compact analytical expressions for the reflected wa-
vefronts and caustic surface for a spherical mirror. We found
that in general the caustic is a segment of line and a two-
dimensional surface. This result implies that the caustic for
the spherical mirror is not stable under a small deformation
of the spherical surface. Furthermore, we obtained the equa-
tions that allow us to compute the ronchigram when the point
light source is placed at an arbitrary position in space. We ob-
tained the ronchigram when the grating is placed at different
relative position to the caustic region. When the grating is
placed at the caustic region, the ronchigram contains closed-
loop fringes. These fringes appear when the grating becomes
tangent to the caustic region. Finally, from Figs. 11-13 we
conclude that in general if the caustic is a closed curve, for
example, a circle, then the image or shadow of each Ronchi
ruling that crosses the caustic in general is two curves: one is
open, and the other one is a loop.
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