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We demonstrate that the non-steady-state photoelectromotive force induced by a vibrating Ronchi grating has a
very complicated but deterministic dependence on the propagation distance. The characteristic minima of this
dependence are found at fractional values of the Talbot distance, and their width is determined by the maximal
transversal spatial frequency resolved by the system. This permits high accuracy in the determination of the Talbot
distance. © 2013 Optical Society of America
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1. INTRODUCTION
The light intensity distribution after a grating illuminated by a
plane wave is unexpectedly complicated. It was first observed
by Talbot in the 19th century that the intensity distribution
after a grating repeats itself exactly at even multiples of the
propagation length z0, known as the Talbot distance [1].
The theory of the effect was later given by Rayleigh [2,3].
In the paraxial approximation, the Talbot distance is given
by z0 � d2∕λ, where d is the period of the grating and λ is
the illuminating wavelength. In 1996, Berry and Klein
described the fractal structure of the Talbot effect [4]. For
rational parts of the Talbot distance z0, i.e., z � z0q∕p (with
integers q and p), the image is composed of p copies of the
initial distribution, shifted 1∕p part of a period from each
other. The field amplitudes from different copies are added
with phase factors, and these factors are related to Gauss
sums from number theory [4]. For Ronchi gratings stepwise
distributions appear. For propagation lengths irrational with
respect to the Talbot length, it was shown in [4] that the in-
tensity distribution has fractal structure; i.e., similar shape is
reproduced at all scales.

Physically, the fractal structure is limited by the finite
spatial bandwidth. Factors such as the finite size of the grating
and the breaking of the paraxial approximation contribute to
the disappearance of fractals at a certain small scale. Fractals
exist in longitudinal coordinates as well, in function of the
distance from the grating [4].

An effort has been made to observe directly these phenom-
ena in the optical domain. In particular, transverse and
longitudinal patterns were measured in [4], and in [5]
measurements of Talbot carpets were reported. Similar ef-
fects are observed in quantum mechanics as well [6,7].

We consider here the manifestation of the longitudinal
fractal structure of the Talbot effect in the non-steady-state
photoelectromotive force (photoEMF) induced by the light
diffraction on a vibrating Ronchi grating. The photoEMF is

a technique based on the properties of highly resistive
photoconductors, which produce an electric current when
they are illuminated with a moving (vibrating) pattern of light
[8,9]. The photoEMF effect has been extensively used for the
determination of photoconductor properties such as the
photocarrier sign and diffusion length [10]. Applications to
the detection of laser-generated ultrasound [11], correlation
analysis [12,13], measurements of the coherence length
[14], and for measuring the visibility of Fresnel diffraction pat-
terns were demonstrated [15]. We show that, because of the
special character of the detection process, the longitudinal
fractal structure of the Talbot effect becomes very prominent
here and the magnitude of the photoEMF current as a function
of distance to the grating has a complicated deterministic mul-
tispike character, with a big number of narrow spikes, some of
which are centered on positions that are simple fractions of
the Talbot distance. The spike width is mainly determined by
the numerical aperture of the grating; this width diminishes
if the detector is placed closer to the grating.

The study of photoEMF induced by a vibrating Ronchi
grating is not only interesting from a theoretical viewpoint.
Geometries with Ronchi gratings are widely used for optical
systems testing [3,16–19] and for several metrological applica-
tions [20–23]. We show that, from the positions of the minimal
current in the photoEMF dependence on the propagation
distance, the Talbot distance can be determined with
high precision (of the order of 10−4 of the Talbot distance).

This paper is organized as follows. In Section 2 we briefly
review the main features of the light field amplitude distribu-
tion generated by the diffraction on a Ronchi grating, illumi-
nated by a plane wave, and in Section 3, we analyzed the
photoEMF currents generated by the these light patterns
and present some numerical simulations. In Section 4 we re-
port the experiments carried out to verify the theoretical si-
mulations; and in Section 5, we present the discussion and
conclusions.
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2. LIGHT INTENSITY DISTRIBUTION
AFTER THE RONCHI GRATING
In this section we briefly reproduce the known properties of
the light field amplitude distribution produced by a Ronchi
grating. The treatment mostly follows [4] with slightly differ-
ent notation.

The electric field as a function of the propagation length z
(normalized to z0 � π) and the transversal coordinate x is
given by the equation

E�x; z� � 1∕2�
X∞
n�−∞

1
iπ

1
2n� 1

exp�i�2n� 1�2z

� i�2n� 1�x�: (1)

This corresponds to 2π periodic square wave initial
conditions:

E�x; 0� � 1 if 0 < x < π and E�x; 0� � 0 if π < x < 2π:

(2)

The series in Eq. (1) is quite badly convergent. A simpler
expression can be obtained if the propagation length z is
set equal to πq∕p with integers q, p (z0 � π). In this case
the electric field of the wave as a function of x is a piecewise
constant (step) function with discontinuities in points x �
xm � πm∕p with m being an integer number (Fig. 1). The am-
plitude of the discontinuity for the electric field in x � xm
defined as

Δm � limε→0�E�xm � ε� − E�xm − ε�� (3)

is given by

Δm � 1
p

Xp−1
s�0

exp�i�2s� 1�2πq∕p� i�2s� 1�mπ∕p�: (4)

The derivation of Eq. (4) is discussed in detail in [4]. To
calculate the total electric field, it is sufficient to perform
additions of terms with different m in Eq. (4), taking into ac-
count that, due to the symmetry of the Ronchi grating, for
m � 0, Re�E�0� � 1∕2� Re�Δ0∕2� and Im�E�0� � Im�Δ0∕2�,
where E�0 is the field amplitude for infinitely small positive
x. The result of Eq. (4) can be estimated explicitly in terms of
Gauss sums (see [4]). For practical calculations, Eq. (4) is
easier to compute than employing the Gauss sums, and the
calculation is sufficiently fast at least for p of an order of
1000. The direct computation with Eq. (1) is not practical
because of its very slow convergence.

From the analysis carried out in [4], it follows that the
fractional images of the Ronchi grating with small p values
(p � 2; 3; 4…) are relatively simple stepwise functions. How-
ever, even very small z displacements from these fractional
images produce a transversal structure, which gives a signifi-
cant contribution to the photoEMF signal. Let us consider a
small displacement from the initial distribution at z � π∕p.
[The p value is supposed to be large, though Eqs. (5) and
(6) below are valid for all p]. By manipulating the Gauss sums,
for odd p we obtain

Δm � 1���
p

p exp
�
i
π

4

�
5 −

�p −m�2
p

��
(5)

if m is even and

Δm � 1���
p

p exp
�
i
π

4

�
1 −

m2

p

��
(6)

if m is odd.
For large p, as a function of the quasi-continuous coordi-

nate x � πm∕p, the derivative of the field using Eq. (6) for
x close to x � 0 is approximately given by

dE�x�
dx

≈

���
p

p
2π

exp
�
i
π

4
�1 − px2∕π2�

�
: (7)

The contribution of the terms expressed in Eq. (5) to the field
close to x � 0 can be neglected for large p because there the
function given by Eq. (5) rapidly oscillates—it contains the
factor exp�imπ∕2�. A similar expression is obtained for x
close to π, (jp −mj ≪ p) using Eq. (3).

Thus, the electric field distribution in the vicinity of the
Ronchi grating is approximately expressed in terms of Fresnel
integrals [24] on the normalized variable x

���
p

p
. As a function of

displacement z, the amplitude of the spikes in these integrals
does not diminish when one approximates to the grating
(1∕p → 0), but the spike widths are proportional to the square
root of the distance to the grating. Physically, the result is
quite clear—it means that, close to the Ronchi grating, we
observe the diffraction from the edges. It is interesting, how-
ever, that simple discrete expressions are possible. Equations
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Fig. 1. Theoretical intensity profiles for (a) z � �π∕2� − �π∕390� and
(b) z � �π∕2� − �π∕96�. The Talbot distance is normalized to z0 � π.
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similar to Eqs. (5) and (6) are obtained for even p as well, but
they are more complicated, and we do not reproduce
them here.

Because of the above-mentioned properties of fractional
images, one will observe similar structures near the field dis-
continuities for all fractional images. In fact, the image at a
plane z � π��q0∕p0� � �1∕p�� can be considered as a result
of the propagation of the field in a plane z � π�1∕p� from the
position z0 � π�q0∕p0�. If p0 ≪ p, a small number of displaced
copies of the distribution at z � π�1∕p� will be produced,
which inherit the structure near the edges. The numerical
demonstration of this effect is shown in Fig. 1, close to the
characteristic plane z � π∕2 � z0∕2, where the pattern inten-
sity is just constant (I � jEj2 � 1∕2), but the electric field
itself has a discontinuity in phase. In Fig. 2 a similar effect is
depicted for a vicinity of the z � π∕3 plane.

3. PHOTOEMF PRODUCED BY A VIBRATING
RONCHI GRATING
The experimental setup for measuring the non-steady-state
photoEMF produced by the diffraction of vibrating Ronchi
grating is depicted in Fig. 3.

For an intensity distribution I�x� the amplitude of the
photoEMF current for vibration amplitude of the illuminating
pattern δ at a distance z is approximately given by [9,12]

J�δ; z� ≈ J0δ

Z
π

−π

�
∂I�z; x�

∂x

�
2
dx: (8)

The characteristic current J0 is proportional to the average
sample photoconductivity [10], which is assumed to be inde-
pendent of z. For Eq. (8) to be valid, several conditions are
necessary: both the vibration amplitude and the crystal diffu-
sion length have to be smaller than a characteristic peak width
and the period of the Ronchi grating, the vibration frequency
has to be higher than the crystal cutoff frequency, and the con-
trast of the pattern has to be small (additional illumination is
generally required).

For stepwise intensity distributions, such as those obtained
for fractional images, Eq. (8) is not valid; instead the charac-
teristic signal for these positions is given by

J�δ� ≈ J0

X
m

�ΔIm�2; (9)

where the sum is taken over all the discontinuities within a
period andΔIm is the light intensity at each discontinuity step.
The vibration amplitude is assumed to be smaller than the dis-
tance between the closest discontinuities.

The results according to Eq. (9) of the photoEMF current
for fractional images at planes zq � πq∕p for p values up to
∼100 are given in Fig. 4. All odd values of p produce the
same of photocurrent (J � 2), just as the one obtained for
the initial field at z � 0. For z � π∕2 � z0∕2, the current is
zero, which corresponds to the position of zero contrast
(i.e., a phase grating), and, consequently, there is no
photoEMF effect. The second-lowest value of photoEMF is
obtained at z � π∕4 � z0∕4. The idealized function presented
in Fig. 4 has discontinuities for all rational z∕z0.

For small displacements from simple fractional images,
however, Eq. (8) has to be used for finite vibration amplitude.
This makes dependences even more complicated because
formally the integrals of Eq. (8) diverge for p → ∞, i.e., for
all z∕π values given by irrational numbers. Thus, practically,
one can expect that the dependence of photoEMF on z is a
highly complicated multispike function.

To estimate the influence of the finite spatial bandwidth
on the z dependence of the photoEMF, we have performed
the numerical simulation for the propagation of a 1� 1D
Gaussian beam with amplitude E�x; z� that has an initial
distribution given by E�x; z � 0� � exp�−�x∕100�2�modulated
by a Ronchi grating with a 2π period. The beam profile upon
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Fig. 2. Theoretical intensity distribution for z � π∕3 (square wave)
and z � �160∕481�π. The Talbot distance is normalized to z0 � π.
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Fig. 3. Experimental setup for measuring the photoEMF currents
generated in a GaAs crystal by the diffraction of a vibrating Ronchi
grating. SG, signal generator; B.S., beam splitter.
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propagation was calculated with a fast Fourier transform, and
the integral in Eq. (8) was evaluated numerically over 10
central fringes of the image. The grating vibration, some pos-
sible misalignments, and the spatial-frequency transfer func-
tion of the crystal introduce certain spatial-frequency
cutoffs. Taking into account these factors exactly is rather
complicated; thus, to study the qualitative influence, we
simply abruptly limited the upper Fourier spatial frequency
in the x direction by a certain number k0. The simulation re-
sults are shown in Fig. 5 for three different cutoff spatial fre-
quencies. In this plot, we have taken a distance to the grating
in a range corresponding to our experimental conditions.

It is observed that the signal approximately conserves a
symmetry with respect to planes z∕z0 � 0.5 and 1, but gener-
ally the degree of this symmetry diminishes when the distance
to the grating becomes larger. The principal minimum for
z∕z0 � 0.5 is distinguished in all three curves as well as a
few minima corresponding to fractional images. The ampli-
tude in the principal minimum is not zero. The width of this
peak diminishes for larger spatial-frequency bands. The posi-
tions of secondary maxima/minima points, however, can vary,
depending on the detection band. At the plane z � z0 a local
maximum is present, but it is not very pronounced with re-
spect to nearby spikes. For the curve with k0 � 15, it is clearly
observed that the high-frequency detail becomes more promi-
nent when one moves closer to the grating.

4. EXPERIMENT
To verify the described theory, we carried out the detection of
the photoEMF electrical currents generated by a vibrating
Ronchi grating. The setup is depicted in Fig. 3. A 10 mW
He–Ne laser beam (λ � 632.8 nm) was filtered and then
collimated by a 20 cm focal length lens with 2.5 cm diameter.
The collimated beam illuminated a Ronchi grating of
50 lines∕in. (period d � 0.508 mm), so the Talbot distance
was z0 � 407.8 mm. The vibrations in the grating were
induced by attaching it to a low-frequency piezoelectric trans-
ducer driven by a signal generator. The amplitude of the in-
duced vibrations was 3 μm at a frequency of 600 Hz. The

GaAs crystal was similar to the one reported in [15]; it had
the frontal dimensions of 8 mm × 5 mm and 0.5 mm thick.
Two electrodes were deposited with silver paint on the front
surface in such a way that the interelectrode area was Lx �
5 mm and Ly � 5 mm. The diffusion length for this crystal is
≈40 μm. Note that both the amplitude of vibration and the dif-
fusion length of the crystal photocarriers are much smaller
than the period of the grating and any characteristic peak
width. The current was measured by the voltage drop across
the lock-in input impedance, with a integration time of 300 ms.
The z axis scan was carried out either by placing the crystal on
an optical rail (1 mm steps) or on a linear translational stage
with a 10 μm resolution. A uniform background intensity was
provided by a second He–Ne laser. The reported experiments
were carried out under regular illumination conditions in the
laboratory; no special care was taken to block the stray light
impinging on the crystal.

Figure 6 shows the photoEMF current generated in the
GaAs crystal as a function of the axial distance z in steps
of 1 mm.

The positions where the minimum contrast (i.e., minimum
photoEMF current) occurs are clearly observed in this depen-
dence; they correspond to the planes z � z0∕2 and z � 3z0∕2.
From the difference between these points, we obtain the value
z0 � �408� 1� mm, which is in very good agreement with the
expected theoretical value (407.8 mm). Half-way between
these positions, there is a relative maximum that coincides
with the first negative Talbot image (i.e., the image of the grat-
ing laterally shifted by a half-period.) The letters a, b, and c
indicate some spikes of minimum photoEMF current corre-
sponding to fractional distances.

To demonstrate the high spatial resolution of the proposed
technique under these conditions, in the Fig. 7 we have plotted
the photoEMF current near the first plane of minimum con-
trast (i.e., in the plane z � z0∕2). Figure 7(a) was taken with
steps of 0.5 mm and Fig. 7(b) with steps of 100 μm. The fluc-
tuations in the signal are indicated by the error bars, but the
uncertainty in the axial position z (�5 μm) in Fig. 7(b) cannot
be plotted in this scale. In Fig. 7(a) note the symmetry around
the minimum and that higher spatial-frequency components
can be observed at this axial scale in comparison with Fig. 6.
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5. DISCUSSION AND CONCLUSIONS
Both theoretical (Fig. 5) and experimental dependences
(Fig. 6) show similar behavior: they present a multispike de-
pendence on the propagation distance z, and the positions of
minimal (nominally zero) contrast, corresponding to the
points of low current, are very well defined. As predicted
by the theory, the experimental width of these spikes in-
creases with the propagation distance as well as the signal am-
plitude in a minimum. The position where the first negative
Talbot image occurs (z � z0) is characterized by a relative
maximum in the photoEMF signal; however, the height of this
spike is not as large as for the spikes around it. As expected,
there is an approximate symmetry with respect to this plane,
but there are more high-frequency details for distances closer
to the Ronchi grating.

Some of the minima are related to fractional images. In par-
ticular, in Fig. 6 we have indicated the fractional distances 5∕8,
2∕3, and 3∕4 of z0. Note that, as predicted by the theory, plane
c, with the second lowest value of photoEMF, is the half-way
plane between z0∕2 and z0.

From Fig. 7(b) we can estimate the spatial resolution of the
photoEMF technique. In the region of minimum contrast we
can easily distinguish between positions separated by 100 μm.

In conclusion, the reported experiment represents an inter-
esting manifestation of the fractal structure in the Talbot ef-
fect. More complex deterministic structures are observed
when the detection spatial-frequency bandwidth becomes

larger. The nature of the detection, sensitive to the intensity
derivative, makes these structures especially pronounced in
comparison with direct intensity measurements, and the aver-
aging inherent in the photoEMF effect yields high-quality and
well-reproducible curves not affected by speckle.

The narrow minima are obtained for some characteristic
fractional images. The minima for the planes z � z0∕2 and z �
3z0∕2 are especially pronounced and easily identified, and its
small width permits the determination of Talbot distance with
an exactitude of about z0∕104; this figure is much better than
for traditional methods [25,26] based on the averaged pattern
contrast, and it can be further improved by optimizing the ex-
perimental geometry (in particular by using wider beams) and
by diminishing the detector diffusion length. The high accu-
racy obtained can be useful for optical testing, spectrometry
[27], and metrology.

ACKNOWLEDGMENTS
This work was supported by project no. 84353 from CONACyT
(Mexico).

REFERENCES
1. H. F. Talbot, “Facts relating to optical science. No. IV,” Philos.

Mag. 9, 401–407 (1836).
2. Lord Rayleigh, “On copying diffraction gratings, and on some

phenomena connected therewith,” Philos. Mag. 11, 196–201
(1881).

3. K. Patorsky, “The self-imaging phenomenon and its applica-
tions,” in Vol. 27 of Progress in Optics, E. Wolf, ed., (North
Holland, 1989), pp. 1–108.

4. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot
effects,” J. Mod. Opt. 43, 2139–2164 (1996).

5. W. B. Case, M. T. Tomandl, S. Deachapunya, and M. Arndt,
“Realization of optical carpets in the Talbot and Talbot–Lau
configurations,” Opt. Express 17, 20966–20974 (2009).

6. M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation
of fractional revivals of a molecular wavepackets,” Phys. Rev. A
54, R3740 (1996).

7. J. A. Yeazell and C. R. Stroud, Jr., “Observation of fractional re-
vivals in the evolution of a Rydberg atomic wave packet,” Phys.
Rev A 43, 5153–5156 (1991).

8. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov,
“Non-steady-state photo-electromotive force induced by
dynamic gratings in partially compensated photoconductors,”
J. Appl. Phys. 68, 2216–2225 (1990).

9. S. Stepanov, “Photo-electromotive force in semiconductors,”
In Handbook of Advanced Electronic and Photonic Materials

and Devices, H. S. Nalwa, ed., (Academic, 2001), Vol. 2,
pp. 205–272.

10. S. Stepanov, P. Rodriguez, S. Mansurova, M. L. Arroyo, S.
Trivedi, and C. C. Wang, “Wavelength dependence of the
photo-electromotive-force effect in CdTe:V crystal with bipolar
photoconductivity,” Opt. Mater. 29, 623–630 (2007).

11. S. Stepanov, P. Rodriguez, S. Trivedi, and C. C. Wang, “Effective
broadband detection of nanometer laser-induced ultrasonic sur-
face displacements by CdTe:V adaptive photoelectromotive
force detector,” Appl. Phys. Lett. 84, 446–448 (2004).

12. N. Korneev, P. Rodriguez, and S. Stepanov, “2D pattern match-
ing with adaptive photodetectors,” Opt. Commun. 134, 514–520
(1997).

13. Y. Ding, I. Lahiri, D. Nolte, G. J. Dunning, and D. M. Pepper,
“Electric-field correlation of femtosecond pulses by use of a
photoelectromotive force detector,” J. Opt. Soc. Am. B 15,
2013–2017 (1998).

14. M. L. Arroyo-Carrasco, P. Rodriguez-Montero, and S. Stepanov,
“Measurement of the coherence length of diffusely scattered la-
ser beams with adaptive photodetectors,” Opt. Commun. 157,
105–110 (1998).

180 190 200 210 220 230
0

50

100

150

200

250

(a)

P
ho

to
E

M
F

 s
ig

na
l (

µV
)

Axial position z (mm)

203.0 203.5 204.0 204.5 205.0
0

20

40

60

(b)

P
ho

to
E

M
F

 s
ig

na
l (

µV
)

Axial position z (mm)

Fig. 7. PhotoEMF current as a function of the axial position around
the first position of minimum contrast at two scanning steps: (a) steps
of 0.5 mm and (b) 100 μm. The data were taken with 1 s time constant.

734 J. Opt. Soc. Am. B / Vol. 30, No. 3 / March 2013 Korneev et al.



15. P. Rodríguez-Montero, C. M. Gómez-Sarabia, and J.
Ojeda-Castañeda, “Adaptive photodetector for assisted Talbot
effect,” Appl. Opt. 47, 3778–3783 (2008).

16. A. W. Lohmann and D. Silva, “An interferometer based on the
Talbot effect,” Opt. Commun. 2, 413–415 (1971).

17. Y. Nakano and K. Murata, “Talbot interferometry for measuring
the focal length of a lens,” Appl. Opt. 24, 3162–3166 (1985).

18. M. P. Kothiyal and R. S. Sirohi, “Improved collimation testing
using Talbot interferometry,” Appl. Opt. 26, 4056–4057 (1987).

19. M. Tebaldi, G. Forte, R. Torroba, N. Bolognini, and A. Tagliaferri,
“Self-imaging pitch variation applied to focal length digital mea-
surements,” Opt. Commun. 250, 10–15 (2005).

20. P. Chavel and T. C. Strand, “Range measurement using Talbot
diffraction imaging of gratings,” Appl. Opt. 23, 862–871
(1984).

21. G. Schirripa Spagnolo, D. Ambrosini, and D. Paoleti, “Displace-
ment measurement using the Talbot effect with a Ronchi grat-
ing,” J. Opt. A. 4, S376–S380 (2002).

22. S. Prakash, S. Upadhyay, and C. Shakher, “Real time out-
of-plane vibration measurement/monitoring using Talbot inter-
ferometry,” Opt. Lasers Eng. 34, 251–259 (2000).

23. C.-F. Kao and M.-H. Lu, “Optical encoder based on the fractional
Talbot effect,” Opt. Commun. 250, 16–23 (2005).

24. W. Gautschi, Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables, M. Abramowitz
and I. A. Stegun, eds., (National Bureau of Standards, 1972),
Chap. 7.3.

25. R. Torroba, N. Bolognini, M. Tebaldi, and A. Tagliaferri, “Posi-
tioning method based on digital Moiré,” Opt. Commun. 209, 1–6
(2002).

26. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method
of fringe-pattern analysis for computer-based topography and
interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).

27. H. L. Kung, A. Bhatnagar, and D. A. B. Miller, “Transform spec-
trometer based on measuring the periodicity of Talbot self-
images,” Opt. Lett. 26, 1645–1647 (2001).

N. Korneev et al. Vol. 30, No. 3 / March 2013 / J. Opt. Soc. Am. B 735


	XML ID ack1

