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Abstract. We present the engineered collision of two curvilinear propagating optical

vortices each embedded in the main lobe of an Airy beam. Two cases are analyzed:

same and opposite unitary topological vortex charge. We observed experimentally

that in the first case the main vortices repel each other and remain separated after

the collision. On the contrary, in the second case an annihilation of the main vortices

occurs. Our experimental observations are reinforced by numerical simulations showing

that the conservation of topological charge dictates the vortex dynamics.
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1. Introduction

Phase singularities are established as generic features of wave physics and denote regions

of zero wave intensity where the phase is not defined. Their generation and evolution

dictates the dynamics of many physical phenomena. In the domain of optics, following

the seminal paper by Nye and Berry [1], the field of singular optics is devoted to this topic

and continues to attract considerable attention. Optical beams with phase singularities

are characterized by intensity zeros (due to destructive interference) where the phase

is undetermined. The phase circulation around such points defines a vortex which is

typically quantised in multiple of 2πq, where q is the topological charge of the vortex.

Optical vortices can be observed in the interference of three or more waves [2, 3] as well

as in a speckle pattern [4]. The most common vortex beams possess topological charges

attributed to the helicoidal spatial structure of the wavefront. Beams possessing such

topological charges are often referred to as vortex beams. Phase singularities can also

be seen as topological objects embedded in wave-front surfaces, possessing topological

charges that behave very much as charged particles [5]. Topological interactions of

vortices can lead to creation, annihilation or even nucleation of vortices in various

systems. As an example interesting effects such as attraction followed by annihilation of

a pair of vortices with opposite topological charge, or repulsion after a creation of a pair

of vortices with identical topological charge have been reported widely in the literature

[6, 7, 8, 9, 10, 11]. Intriguingly, vortices can be embedded in propagation invariant light

beams such as Mathieu and Bessel beams [12] where they typically propagate in straight

lines.

The Airy beam was first discovered in quantum mechanical systems [13]. In this

context, the Airy wavepacket describes a rather surprising dispersion free solution to

the Schrödinger equation where the particle exhibits a constant transverse acceleration.

Using the paraxial approximation it is straight forward to transfer this solution into an

optical field [14] and show its fundamental properties [15] making an important link

between quantum mechanics and paraxial wave optics. An Airy beam may also have a

phase singularity embedded into its main lobe, also known as Vortex Airy (VoAi) beam

[16]. Such vortex experiences, within a certain range, the same transversal quadratic

acceleration as the Airy beam. More importantly, different topologically charged VoAi

beams form an orthogonal base similar to the Laguerre-Gaussian beams replacing

the Gaussian carrier beam by an Airy beam. This allows, via superpositions, the

construction of more complex beams that are also laterally accelerating. A subsequent

study has explored the propagation dynamics of a single vortex in such a case [17].

However to date the evolution and interaction of vortices embedded in Airy beams has

never been explored.

In this article, we report the first experimental observation of the controlled

interaction and collision of two vortex Airy beams. Both are generated simultaneously

in the same transverse plane, each with an opposite inwards transverse acceleration.

Initially, a separation between the vortices exist, but as the VoAi beams propagate, they
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are forced to collide. We report the collision for two specific cases: identical (q = +1)

and opposite (q = ±1) topological charges. In the former, a repulsion of vortices was

observed contrary to the second case where an annihilation of vortices occurred. Our

experimental observations are supported by theoretical simulations performed using

analytical expressions for the VoAi.

2. Airy-vortex beams

The approach we used to derive an analytical expression of the VoAi beam comprises

the use of an Airy phase mask endowed with a phase singularity, implemented using a

spatial light modulator (SLM). This is illuminated by a Gaussian beam. We consider

the VoAi to be created in the Fourier plane of a lens positioned at a distance equal to

the focal length f away from the phase mask. Within the paraxial approximation, the

plane defined by the phase mask, corresponds to the Fourier transform of the VoAi field.

In this plane, the field profile is given by

u(kx, ky, z0) = (kx + iky)
q exp

(
−a0x20

[
k2x + k2y

])
exp

(
i

3
[x30(k

3
x + k3y)− 3a20x0(kx + ky)− 2ia30]

)
, (1)

with x0 and a0 the two characteristic parameters of the Airy beam, kx and ky the

cartesian position coordinates in the SLM plane. The first term corresponds to the

phase singularity, responsible for the creation of the vortex of order q. The second term

is the incident Gaussian beam. And the third term is the cubic phase that generates

the Airy beam.

The VoAi will be reconstructed at a distance f away from the lens. In order

to reconstruct the field u(x, y, z) we need to propagate the beam through a paraxial

optical system defined by the general ABCD matrix. Hence, by taking into account the

propagation from the phase mask to the lens (P1), the transmission through the same

(T) and the propagation after the lens (P2), we obtain(
A B

C D

)
= P2 · T · P1 =

(
−z
f

f
−1
f

0

)
. (2)

The total propagation through a paraxial optical system, defined by its ABCD

matrix, can be described by the generalized Huygens-Fresnel [18] integral that will give

us the analytical expression for the VoAi beam

u(r) = α exp

(
−ikD

2B
ρ2
) q∑

n=0

(i)q−nq!

n!(q − n)!
Pn(q−n), (3)

where α = ik
2πB

exp
(

2a30
3

)
, ρ2 = x2 + y2 and k is the wavevector. Coefficients Pij can be

obtained from the recurrence relations:

Pij =
∂P(i−1)j

∂cx
, Pij =

∂Pi(j−1)

∂cy
(4)
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with the first term P00 defined by

P00 =
4π2

axay
exp

(
− 2b3x

3a6x
− ibxcx

a3x
−

2b3y
3a6y
− ibycy

a3y

)
Ai

(
b2x − ia3xcx

a4x

)
Ai

(
b2y − ia3ycy

a4y

)
(5)

where Ai(x) is the Airy function. The coefficients in this expression are given by

ax = ay = x0, bx = by = −a0x20 − i
kA

2B

cx = − ia20x0 − i
kx

B
, cy = −ia20x0 − i

ky

B
. (6)

These expressions describe the propagation of an Airy beam of arbitrary vortex order

through any paraxial optical system.

3. Experimental details

3.1. Phase reconstruction method

Since the information of the location of the vortex is contained in the beam’s phase,

it is necessary to reconstruct its phasefront. This was performed by an in-situ

interferometric technique [19, 20]. This technique enables us to reconstruct the electric

field, amplitude and phase, of the VoAi beam simultaneously. Other methods have

recently been proposed for the accurate detection of optical vortices using a Shack-

Hartmann wavefront sensor [21]. The method we employed for the reconstruction is the

lock-in amplifier technique applied to the optical domain, in which the field of interest

Eu = Au exp (iφu) is interfered with a reference field ER = AR exp (iφR), where Au, AR,

φu and φR are the amplitude and phase of each field respectively. In addition, a time

varying global phase φt = ψt is added to the beam of interest being ψ a constant. As a

result of the interference, the photodetector will detect a total intensity

I(t) ∝ |Au exp [i(φu + ψt)] + AR exp (iφR)|, (7)

whose temporal Fourier transform is

F{I} =

∫ T

0

I(τ) exp (−iψτ)]dτ ∝ AuAR exp [i(φu − φR)] = EuE
∗
R. (8)

In the experiment T is chosen in such a way the temporal phase φ = 2π/T is an integer

multiple of 2π. The attractiveness of this technique relies on the fact that computation

of the Fourier transform depends only on the product of Eu and ER. Therefore, Eu
can be determined provided we have previous knowledge of ER. For this, AR can be

computed by taking the square root of a recorded intensity image of the reference beam

(for simplicity we used a Gaussian beam), i.e., AR ∝
√
IR. The estimation of φR is

performed with knowledge of the gradient ∇φR = (∂xφR, ∂yφR). Each component is

computed using an approximation technique based on the numerical standard 5-point

stencil method of the first derivative of a function f(x). In practice this method can be

realized by splitting the reference beam into two beams using SLM random encoding [22].

One beam is deflected in the detector plane by a distance h in both the x− and the
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y− direction. According to equation (8) the Fourier transform of the total intensity

detected by the CCD camera is

Iαβ = F{Iαβ} = ER(x+ αh, y + βh)E∗
R(x, y) (9)

with α, β = −2,−1, 0, 1, 2. Explicitly the phase gradient of the reference beam is

∇φR =
1

12hI00

(
I−20 − 8I−10 + 8I10 − I20
I0−2 − 8I0−1 + 8I01 − I02

)
. (10)

To obtain the phase profile φR(x, y) at the detector plane, data in the above equation

are fitted to the gradient of a polynomial of order n (typicaly n = 6). The phase φu can

be obtained in a similar way as described above i.e., using equation (10). Finally, the

amplitude of the field of interest Au can now be determined using equation (8).

3.2. Experimental setup

The experimental setup implemented to produce the collisions is schematically shown

in figure 1. Two spatially offset co-propagating VoAi beams with opposite transverse

accelerations are generated. A 10 mW He-Ne laser beam (λ = 633nm) is expanded by

a lens system L1 and L2 and directed towards a spatial light modulator (SLM, Holoeye

with a resolution of 1920 X 1080 pixels). Both VoAi beams were created simultaneously

by the same SLM using random encoding [22]. The topological charge of the beams

as well as their initial separation were controlled by the hologram. The collisions were

observed in the far-field using the first diffracted order of the beam after reflection from

the SLM. The resultant intensity pattern could be observed in real time by means of

a CCD camera. This was mounted on a computer programmable servo-controlled rail,

aligned along the propagation axis of the beam.

In order to track the collisions, we carried out the reconstruction of the field Eu in

several parallel planes by moving the CCD camera along the rail. An example of such

Figure 1: Schematic of the implemented experimental setup. Lenses system L1 and L2

expand the laser beam to fit the SLM screen size. Two VoAi holograms are displayed

in the SLM using random encoding. The collision is tracked along the propagation axis

with a CCD camera mounted in a computer controlled railway.
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field reconstruction is shown in figure 2, where a VoAi beam with q = −1 accelerating

to the right is shown. The first row corresponds to the experimentally measured

data, whereas the second raw to the theoretical predictions. Both, experimental and

theoretical amplitudes (figures 2(a) and 2(d) respectively) feature the typical Airy

pattern, outstanding the presence of a dark spot in their main lobes. In the phase

plots (figures 2(b) and 2(e)) we can observe several vortices. These are easily identified

noticing that around them the phase increases monotonically from 0 (blue) to 2π (red).

The handedness in which the phase increases (clockwise or counterclockwise) determines

the sign of the topological charge. In order to visualize the vortices we highlighted in

the phase image the phase discontinuity lines connecting pairs of oppositely charged

vortices. We refer to such curves as phase-cuts and note that these curves rotate around

each vortex during one optical cycle [21]. The speed and sense of rotation depends

on the topological charge. Figures 2(c) and 2(f) show respectively experimental and

theoretical plots of such phase-cuts. In these figures the main vortex, this is, the

vortex in the beam’s main lobe, is encircled in red. In the inner part of the beam,

the vortices connected by a phase-cut do not contribute to its net charge. This is not

the case in the outer part of the beam, where the lines extent to infinity. However,

they do not contribute to the total charge because their charges are compensated by

the corresponding vortex in the opposite border. Inevitably, in the experimentally

reconstructed phase (figure 2(b)) such lines were truncated by the reconstruction

method. Nevertheless, the absence of this information is not important as we are only

Figure 2: (color online) Experimental reconstruction (top row) and theoretical

prediction (bottom row) of the electric field of a VoAi beam with topological charge

q = −1. In (b) and (e) the phase varies from 0 (blue) to 2π (red). The phase-cuts in (c)

and (f) are the discontinuity curves in the phase of (b) and (e) respectively. A vortex is

found in each end(s) of a phase-cut .
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interested in the evolution of the main vortex. The phase-cut line rising from the main

vortex is neither connected to another single vortex, nor compensated by another, giving

the beam its topological charge.

4. Results

We present results showing the collision for two cases: two beams with same topological

charges (q = −1) and two with opposite topological charges (q = ±1). Our analysis of

them is restricted to the vortex embedded in the main lobe of each VoAi beam. Our

experimental results are summarized in two videos (figure 3: media 1 and figure 4:

media 3) showing the collision in the phase-cuts domain. These are reinforced by their

corresponding theoretical counterpart (figure. 3(j): media 2 and figure. 4(j): media 4).

4.1. Equal charges

Figure 3 consists of a representative subset of images showing the collision of two

equally charged VoAi beams in the phase domain. The first image corresponds to

the reconstruction of the phase at the focal plane (z = 0 mm) and the last one at a

distance of 59 mm away from it. For the sake of clarity, in these images only the region

where the interaction takes place is shown. Phase-cuts are emphasized as white lines

Figure 3: (color online) Collision of two VoAi beams carrying same topological charges

q = −1 (counterclockwise). (a) to (i) Reconstructed phases of selected positions along

the propagation axis. Phase-cuts are highlighted as white lines and the main vortices

enclosed within black circles (in (a) their signs are represented by arrows). Media 1

shows the collision in the phase-cuts domain from z = 0 mm to z = 59 mm in steps of 1

mm. (j) Image from the simulation of the collision in the phase-cuts domain (Media 2).



8

and the main vortices are enclosed within black circles. In the sequence, 3(a) to 3(c),

the main phase-cuts (the ones linked to the main vortices) bend towards each other.

In frames 3(d) and 3(e) a change in orientation of the phase-cuts occurs, after which

the phase-cuts bend away from each other (frames 3(f) to 3(i)). It is very important

to note that during this process the vortices never approach each other despite the fact

that phase-cuts indicates the Airy beams are moving towards each other. We attribute

this to the fact they have the same topological charge and therefore repel each other,

preventing them from coming closer. We would like to stress out that neither of the

two main vortices disappear during the collision. Our experimental results agree well

with the theoretical predictions as can be seen in media 2 (figure 3(j)). For the sake of

brevity, we do not present the case of same topological charges q = +1, as it behaves in

the same manner.

4.2. Opposite Charges

The case of opposite topological charges (q = ±1) is presented in figure 4 in an analogous

way to the previous one. The first image was taken at the focal plane (z = 0 mm) and

the last one at z = 59 mm. In this case, as the VoAi beams propagate accelerating

towards each other, the vortices come closer (figures 4(a) to 4(c)). At a distance of 29

mm the main phase-cuts merge into only one (figure 4(d)) evincing the annihilation of

Figure 4: (color online) Collision of two VoAi beams carrying opposite topological

charges q = ±1. (a) to (i) Reconstructed phases of selected positions along the

propagation axis. Phase-cuts are highlighted as white lines and the main vortices

enclosed within black circles (in (a) their signs are represented by arrows). Media 3

shows the collision in the phase-cuts domain from z = 0 mm to z = 59 mm in steps of 1

mm. (j) Image from the simulation of the collision in the phase-cuts domain (Media 4).
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the main vortices. After this, the remaining phase-cut line infolds forming a closed loop

(figures 4(e) to 4(g)). This loop shrinks as the collision goes forward until it finally

disappears at a distance of 52 mm (figure 4(i)). We highlight that, contrary to the

previous case, the main vortices disappear during the collision. This is not surprising

since the vortices are oppositely charged. Our experimental findings are in agreement

with the theoretical predictions as can be seen in media 4 (figure 4(j)).

5. Conclusion

In this work we synthesized experimentally vortex Airy beams and engineered controlled

collisions between two of them. The implemented technique allowed us to induce

reproducible collisions. We presented two examples: one between two VoAi beams with

positive unitary charges and another with opposite. We emphasize the crucial role of

the electric field (amplitude and phase) reconstruction method that enables to analyze

the collisions. On one hand, for vortices of equal charges, a repulsion was observed. On

the other, vortices of opposite charges attract each other and annihilate. This behavior

is confirmed analytically as generic for VoAi and distinct from vortices embedded in

Mathieu beams or the non trivial addition of topological charges [23], for example. Our

results show the conservation of topological charge in VoAi beam collisions.
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