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Abstract. We present a review on the mathematical methods used to theoretically

study classical propagation and quantum transport in arrays of coupled photonic

waveguides. We focus on analysing two types of binary photonic lattices where self-

energies or couplings are alternated. For didactic reasons, we split the analysis in

classical propagation and quantum transport but all methods can be implemented,

mutatis mutandis, in any given case. On the classical side, we use coupled mode

theory and present an operator approach to Floquet-Bloch theory in order to study

the propagation of a classical electromagnetic field in two particular infinite binary

lattices. On the quantum side, we study the transport of photons in equivalent finite

and infinite binary lattices by couple mode theory and linear algebra methods involving

orthogonal polynomials. Curiously the dynamics of finite size binary lattices can be

expressed as roots and functions of Fibonacci polynomials.
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1. Introduction

The analogy between linear lattices and the atom-field interaction [1] or ion-laser

interactions [2, 3] has been a fundamental step for the emulation, via classical

interactions, of quantum mechanical systems. This is important due to both pure

scientific interest and possible applications to quantum computing. In the latter,

the properties of classical systems have been used to realize quantum computational

operations by quantum-like systems and, in particular, it has been show how a

controlled-NOT gate may be generated in nonhomogeneous optical fibers [4]. At the

fundamental level, e.g., it has been possible to the emulate the most basic atom-field

interaction, the Jaynes-Cummings model, theoretically [5] and experimentally [6] with

arrays of photonic waveguides and, just to give another example, it has been proposed

to model non-linear coherent states [7] in waveguide arrays [8]; linear coherent states

have also been modelled in linear arrays of photonic waveguides [9].

In what follows we will take advantage of the simplest composite array of

waveguides, i.e., binary arrays, to introduce the most basic mathematical methods used
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to study photonic lattices. Section 2 gives an introduction to the two kinds of binary

photonic lattices considered; those with either alternating self-energy or coupling. Then,

we proceed to study the propagation of classical electromagnetic fields through binary

lattices of infinite size by use of coupled mode theory for lattices with alternating self-

energy and by an operator approach to Floquet-Bloch theory in the case of an array

with alternating couplings. In section 4 we use coupled mode theory (with a twist

given by the use of orthogonal polynomials) to solve a finite binary self-energies lattice

in order to exemplify how the presented methods are valid, changing what needs to

be changed, in all cases. In this section we also find the dynamics of a finite binary

couplings array by basic matrix theory methods. Curiously, we find that the dynamics

for both finite size binary lattices can be written in terms of Fibonacci polynomials

evaluated at the roots of a Fibonacci polynomial which order is related to the size of

the system. In section 5 we introduce some quantities of interest when studying photon

transport in arrays of photonic waveguides. We show that initial states with a Gaussian

distribution of amplitudes and linear coherent states, that is, initial states with Poisson-

like distributions, reconstruct in binary lattices. Finally, we present our conclusions.

2. Binary photonic lattices

Figure 1. (Color online) (a) Photonic binary super-lattice where identical waveguides

alternate different nearest neighbor coupling. (b) Photonic binary super-lattice where

homogeneously coupled waveguides alternate diffraction index.

A binary photonic super-lattice is composed by the repetition of a primitive unit

cell where two different elements are characterized by one parameter. One type of such

binary waveguide arrays, shown in figure 1(a), is composed by identical waveguides

where nearest neighbour coupling between them alternates between two values; hereby,

we will refer to this type as binary coupling (BC) lattice. In the other type, shown

in figure 1(b), waveguides with two different refraction indexes alternate position and

are homogeneously coupled; which we will call binary index (BI) lattice from here on.

The propagation of a classical light field in an infinite BC lattice is ruled by the scalar

differential equation set for the field amplitude at the jth waveguide,

− i∂zEj = nEj + g0 (Ej+1 + Ej−1) + (−1)jδ (Ej+1 − Ej−1) , j = −∞, . . . ,∞, (1)

where the constant n is the refraction index of each waveguide and a total coupling has

been defined as g0 = (g1 + g2) with the difference as δ = (g1 − g2) /2. We have used the
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shorthand notation ∂x to express the partial derivative with respect to x. An infinite

BI lattice it is given by,

− i∂zEj =
[
n0 + (−1)jε

]
Ej + g (Ej+1 + Ej−1) , j = −∞, . . . ,∞, (2)

where a base refraction index has been defined as n0 = (n1 + n2)/2 such that it is

halfway between the refraction index at each waveguide, n1 and n2, i.e., ε = |n1−n2|/2,

and the tight binding coupling is given by the real constant g. Infinite [10, 11, 12, 13]

and semi-infinite [14] BC and BI lattices, with the addition of a non-linearity to each

waveguide, are well known in the non-linear optics community where the existence and

stability of diverse types of solitons have been studied along the years.

In linear optics, it is possible to borrow from condensed matter theory a Floquet-

Bloch result for quasiparticle motion on a chain in order to solve the evolution of a

classical field, or a single photon, through these lattices [15]; e.g., the dispersion relation

for a BC lattice, shown in figure 2(a),

Ω2
φ = 4

[
δ2 + (g2

0 − δ2) cos2 φ
]
, (3)

results of the infinite BC lattice has been used to discuss the existence of two propagation

modes with opposite transverse velocities [16]. For a BI lattice the dispersion relation

is,

Ω2
φ = β2 + 4 cos2 φ, β = ε/g (4)

The band gap structure of this dispersion relation, shown in figure 2(b), near the edge

of the Brillouin zone, φB = π/2, suggests the use of Bloch waves close to φB to simulate

one-dimensional Dirac equations [17]. Under such a condition, a photonic analogue of

zitterbewegung has been theoretically proposed [18] and experimentally realized [19];

more complex approaches of such a classical simulation include atoms in bichromatic

optical lattices [20, 21].

Figure 2. (Color online) Dispersion relation for infinite (a) BC with g0 = 3δ and (b)

BI lattices.

3. Classical electromagnetic field propagation

3.1. Coupled mode theory

We are going to implement a coupled mode theory method on the infinite BC lattice

described by (1). For starters, let us define the field amplitudes with a rotation
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proportional to the refractive index function, n0, i.e., Ej → ein0zEj; in this way, we

can get rid of the term involving the refractive index function,

− i∂zEj = g0 (Ej+1 + Ej−1) + (−1)jδ (Ej+1 − Ej−1) , j = −∞, . . . ,∞. (5)

Now, we can define two auxiliary proper modes, say Ak = eiΩqzE2k and Bk = eiΩqzE2k−1,

such that our differential set is now given by a coupled modes set

(g0 + δ)Ak + (g0 − δ)Ak+1 = ΩqBk, (6)

(g0 + δ)Bk + (g0 − δ)Bk−1 = ΩqAk. (7)

It is trivial to find a three term recurrence relation for the mode B from this coupled

set of equations,

Ak−1 + Ak+1

Ak
=

Ω2
φ − 2(g2

0 + δ2)

g2
0 − δ2

, (8)

solved by

Ak = ei2kφ, (9)

Bk =
2ei(2k+1)φ

Ωφ

[g cosφ+ iδ sinφ, ] (10)

under the restriction

2 cos 2φ =
Ω2
φ − (g2

0 + δ2)

g2
0 − δ2

. (11)

From the expression above, we straightforwardly recover the dispersion relation

Ω2
φ = 4

[
δ2 +

(
g2

0 − δ2
)

cos2 φ
]
. (12)

Notice that we can also write the normal mode components and dispersion relation as,

E
(φ)
j = eijφ

 1 j even,(
g0 cosφ+iδ sinφ
g cosφ−iδ sinφ

) 1
2

j odd,
(13)

Ω2
φ = |g cosφ+ iδ sinφ|2. (14)

Under this treatment we can recover the field amplitude propagation at the jth

waveguide for a field entering the lattice at the mth waveguide,

E
(m)
j =

1

2π

∫ π

−π
dφ ei(m−j)φE (m)

j , (15)

E (m)
j = e−ıΩφz ×


1 m− j even,(
g0 cosφ−iδ sinφ
g cosφ+iδ sinφ

) 1
2

j even,m odd,(
g0 cosφ+iδ sinφ
g cosφ−iδ sinφ

) 1
2

j odd,m even,

(16)

and we have found all the necessary information to study the propagation of any given

initial classical field impinging a BC lattice.
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3.2. An operator approach to Floquet-Bloch theory

It is possible to use an operator approach to find Floquet-Bloch waves. In order to

demonstrate it, let us write the differential equation set for an infinite BI lattice (2) in

matrix form as

− i∂zE = ĤE, (17)

Ĥ = (−1)n̂ β + V̂ + V̂ †, (18)

with solution

E(z) = eiĤzE(0), E(z) =
∞∑

j=−∞

Ej(t)Ej. (19)

The expression (17) is identical to the whole differential set (2) up to a unitary

transformation equivalent to a change into a frame rotating at a frequency proportional

to the refractive index function n0 and a change of units in terms of the homogeneous

coupling g. We used the unitary ladder operators, V̂ †V̂ = V̂ V̂ † = 1, defined as

V̂ |k〉 = |k − 1〉, V̂ †|k〉 = |k + 1〉, n̂|k〉 = k|k〉. (20)

Where we substituted Ek → |k〉, i.e., the state |k〉 represents the field localized at the

kth waveguide. These ladder operators fulfil the commutation relations[
n̂, V̂

]
= −V̂ ,

[
n̂, V̂ †

]
= V̂ †,

[
V̂ †, V̂

]
= 0. (21)

By using this operator representation, we can define a phase state as

|φ〉 =
∞∑

k=−∞

eikφ|k〉, (22)

which is the Fourier transform of the localized field. In other words, these operators

allow us to do Floquet-Bloch theory,

|j〉 =
1

2π

∫ π

−π
dφ e−ijφ|φ〉. (23)

In this phase state basis, the action of the operator ĤBI over some useful phase states

reduces to:

Ĥ|φ〉 = β|φ+ π〉+ 2 cosφ|φ〉, (24)

Ĥ2|φ〉 =
(
β2 + 4 cos2 φ

)
|φ〉, (25)

Ĥ2|φ+ π〉 =
(
β2 + 4 cos2 φ

)
|φ+ π〉, (26)

From the last two equations it is possible to infer the dispersion relation,

Ω2
φ = β2 + 4 cos2 φ. (27)

In order to recover the rest of the information given by Floquet-Bloch theory, let us

calculate the evolution of our phase state,

eiĤz|φ〉 =
∞∑

k=−∞

[
(iz)2k

(2k)!

(
Ĥ2
)k

+
(iz)2k+1

(2k + 1)!

(
Ĥ2
)k
Ĥ

]
|φ〉, (28)

= cos Ωφz|φ〉+ i

(
sin Ωφz

Ωφ

)
(β|φ+ π〉+ 2 cosφ|φ〉) . (29)
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Now, if the field started at the mth waveguide, |Ψ(0)〉 = |m〉, one can write the field

amplitude at the jth waveguide as E
(m)
j = 〈j|m(t)〉 and, by use of 〈m|φ〉 = eimφ, recover

the field amplitude evolution from standard Floquet-Bloch theory

E
(m)
j =

1

2π

∫ π

−π
dφ ei(j−m)φE (m)

j , (30)

E (m)
j = cos Ωφz + i

(
2 cosφ+ βei(m−j)π

Ωφ

)
sin Ωφz. (31)

4. Photon transport

In some cases one has to consider the evolution of a quantum field in an array of

coupled photonic waveguides; in a general case, it could be arrays of coupled microring

resonators, coupled cavities, or capacitively coupled strip-line resonators. When such a

system is presented it is usually described by a Hamiltonian which, in the case of finite

BC and BI lattices of size N , is given by

ĤBC =
N−1∑
j=0

[
g0 − (−1)jδ

] (
âj â
†
j+1 + â†j âj+1

)
, (32)

ĤBI =
N∑
j=0

(−1)j β â†j âj +
N−1∑
j=0

(
âj â
†
j+1 + â†j âj+1

)
, (33)

where we have moved into an adequate reference frame rotating at a frequency defined

by the refractive index function n0 and set units in terms of ~ and ~g, respectively. The

operator â†k (âk) creates (annihilates) a photon in the kth waveguide.

In the Heisenberg picture, the equations of motion for these systems are

BC : i∂taj = g0 (âj+1 + âj−1) + (−1)j (âj+1 − âj−1) , (34)

BI : i∂taj = (−1)j βâj + âj−1 + âj+1, (35)

these sets with j = 0, 1, . . . , N, are the finite equivalent, by making the substitutions

âj → −Ej alongside t→ z , of the differential sets ruling the propagation of a classical

field through the corresponding binary photonic lattice in (5) and (17), respectively.

4.1. Coupled mode theory

Let us start with the finite BC lattice and introduce the transformation

T̂ = eig0
∑N−1
j=0 (âj â†j+1+â†j âj+1), (36)

such that a general states is defined by |ψ〉 = T̂ |φ〉 and leads to the Schrr̈odinger equation

in units of ~δ

i∂t|φ〉 = H̃|φ〉, (37)

H̃ =
N−1∑
j=0

−(−1)j
(
âj â
†
j+1 + â†j âj+1

)
, (38)
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with equations of motion in the Heisenberg picture

i∂taj = (−1)j (âj+1 − âj−1) , j = 0, 1, . . . , N. (39)

Now, let us define the coupled modes as â2k(t) = −ieΩtb̂2k+1 and â2k+1(t) = eΩtb̂2k+2.

Notice that we have used Ωt in the argument of the exponential instead of iΩt, thus we

are looking for a purely imaginary Ω. This allows us to write an eigenequation in the

form,

Mb = Ωb, Mi,j = δi,j−1 + δi−1,j, b =
N−1∑
j=0

cj b̂j+1, (40)

where it is possible to recover a recurrence relation for the coefficients of the normal

modes,

c2 = Ωc1, (41)

c3 = Ωc2 + c1, (42)
... (43)

ΩcN + ΩcN−1 = 0, (44)

that is solved by Fibonacci polynomials,

cj = Fj(Ω). (45)

The last of the recurrence relations gives a boundary condition that translates into the

expression FN+1(Ω) = 0 that is solved by [22]

Ω(k) =

{
±2i sin (2k+1)π

N+1
even N,

±2i sin kπ
N+1

odd N,
(46)

and we recover the purely imaginary eigenvalue that we were looking for. So, the normal

modes ĉk =
∑(N+1)/2

j=0 iF2j+1(iλk)â2j + F2j+2(iλk)â2j+1 (up to a normalization constant)

with eigenvalues λk = −iΩ(k), diagonalize the Hamiltonian H̃ =
∑N−1

j=0 λkĉkĉ
†
k and we

have found the dynamics of the system. It is trivial to go back into the original frame.

4.2. A linear algebra approach

Now, let us consider a finite BC lattice. Heisenberg equations of motion for this system

may be written as the matrix differential equation,

∂ta = −iMa, Mij = (−1)iβδi,j + δi,j−1 + δi,j+1, a(t) = e−iMta(0), (47)

The solution to this system may be found in a number of ways [23] and we do it by

finding the system, {V,Λ}, of the matrix M = V ΛV † [24]; where the eigenvalues matrix

Λ is a matrix which diagonal elements are the N eigenvalues of the matrix M , {λj},
and the eigenvector matrix V is a matrix which rows, ~vj, are the N eigenvectors of M.

The characteristic polynomial, pN , of tridiagonal matrix M is found via the method

of minors [25] as

pN(λ) =

{
(−1)N/2FN+1(

√
β2 − λ2) N even,

(−1)(N−1)/2 β−λ√
β2−λ2

FN+1(
√
β2 − λ2) N odd, (48)
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=

{
(−1)N/2 bN/2(β2 − λ2) N even,

(−1)(N−1)/2 (β − λ) B(N−1)/2(β2 − λ2) N odd,
(49)

where Fn(x) is the nth Fibonacci polynomial [26], bn(x) and Bn(x) are nth Morgan-

Voyce polynomials [27]. The roots of FN+1(x) = 0 are well known [22] and yield the

eigenvalues,

λj =

 −
√
β2 + 4 cos2

(
jπ
N+1

)
j ≤ N/2,√

β2 + 4 cos2
(

jπ
N+1

)
j > N/2.

(50)

These proper values, alongside (M − λjI)~vj = 0, deliver recurrence relations fulfilled by

eigenvector components,

Vj,k =
uj,k√∑N−1
k=0 u

2
j,k

, j, k = 0, . . . , N − 1, (51)

where orthogonal polynomials, uj,k, are defined as:

uj,k =

{
(−1)k/2Fk+1

(
2i
∣∣cos jπ

N+1

∣∣) k even,

−i(−1)(k+1)/2 β−λj
2|cos jπ

N+1 |
Fk+1

(
2i
∣∣cos jπ

N+1

∣∣) k odd,
(52)

=

{
(−1)k/2 bk/2

(
−4 cos2 jπ

N+1

)
k even,

(−1)(k+1)/2 (β − λj) B(k−1)/2

(
−4 cos2 jπ

N+1

)
k odd.

(53)

Thus the Hamiltonian is diagonalized, Ĥ =
∑N−1

j=0 λj ĉ
†
j ĉj, in terms of delocalized normal

modes c = V †a, giving a time evolution a(t) = e−iMta(0) = V e−iΛtV †a(0).

5. Quantities of interest

For the sake of space and simplicity we will only discuss typical quantities of interest

when studying the propagation of a quantum electromagnetic field in an array of

photonic waveguide lattices. It is trivial to show that the time evolution of an arbitrary

initial state can be obtained from the evolution of the annihilation operator found in

the last section. In order to generalize, let us write such an evolution as

âj =
N−1∑
k=0

Uj,k(t)âk(0), (54)

where it is trivial to construct the matrix U(t) from the methods given in the last

section.

The most basic and visually appealing quantity of interest is the transport of m

photons impinging a single-waveguide at time zero,

|ψp(0)〉 =
1√
m!
â†mp (0)|0〉, p = 0, . . . , N − 1. (55)

The mean photon number at the qth waveguide for such an initial state after propagation

is given by

〈n̂q〉p = 〈ψp(0)|â(t)†qâ(t)q|ψp(0)〉 = m|Up,q(t)|2. (56)
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In the case of single photon input, m = 1, the expression for the mean photon number

is identical to the normalized intensity at the qth waveguide for a propagating classical

electromagnetic field.

Superposition states of single photons are also interesting,

|ψs(0)〉 =
N−1∑
j=0

αj â
†
j(0)|0〉,

N−1∑
j=0

|αj|2 = 1, (57)

and we can easily calculate the probabilities of finding the photon in the qth waveguide,

〈n̂q〉s =

∣∣∣∣∣
N−1∑
j=0

αjUp,q(t)

∣∣∣∣∣
2

. (58)

Here, we are interested in two peculiar single-photon distributions. One that we will

call a Gaussian-like input distribution,

|ψ(0)〉 =
N−1∑
j=0

e−k
2
j /(2w

2
0)+ıqkj/2â†j|0〉, kj = j − dN/2e, (59)

which could be thought as the result of a Gaussian beam whose intensity peak is aligned

with the center of the lattice impinging parallel, q = 0, or at an angle, q 6= 0, with the

propagation axis [18, 19]. The other is similar to a quantum coherent state and is

produced by a single-photon entering a Glauber-Fock lattice at the zeroth waveguide

[28, 24], we will call this a Poisson-like input distribution,

|α〉 = e−|α|
2/2

N−1∑
j=0

αj√
j!
â†j|0〉. (60)

In these Gaussian- and Poisson-like distributions, the maximum probability to find the

single-photon is given at the dN/2eth and d|α|2eth waveguides (where dxe has been used

to express x rounded up), in that order, and the variance is given by w0 and dN/2e,
respectively. Both initial states have a momentum in the direction perpendicular to

propagation given by q and Im(α) in the sense that the center of mass for an input with

q 6= 0 or Im(α) 6= 0 will drift to the right or left side of the lattice depending on the

sign of q or Im(α). Notice that a Gaussian-like distribution will always be symmetric

with respect to the center of the lattice, which is not the case for the coherent-like

distribution. Propagation of Gaussian-like input distributions have been studied in

infinite BC and BI lattices. In the former, the lattice splits the q = 0 input in two

components propagating in opposite directions [16]. In the latter, BI lattices allow the

clasical simulation of the Dirac equation when the parameter q is close to the edge of

the Brillouin zone [18, 19]. To our knowledge there exist no record in the literature of

propagation of Poisson-like input distributions through finite binary lattices. Figure 3

shows the mean photon probability for two kinds of superposition states impinging a BI

and BC lattice, respectively. It is possible to see that the states reconstruct periodically

in both cases through the fidelity function

F(t) = |〈ψs(0)|ψs(t)〉|2. (61)
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Figure 3. (Color online). Time evolution of (a,c,e,f) the mean photon number

for (a,e) Gaussian- and (c,g) Poisson-like input distributions with parameters

{ω0 = 7, q = 0.55π} and α =
√

50, in that order, and (b,d,f,h) their respective fidelities

in a (a-d) BC and (e-h) BI with β = 0.5 lattice of size N = 101. Time in units of δ for

BC and g for BI lattice.

It is also possible to study the time evolution of the center of mass,

jcm =
N−1∑
k=0

k〈â†kâk〉, (62)

for Gausian- and Poisson-like input distributions with complex parameters. Time

evolution of the Fidelity for Gaussian-like distributions heavily fluctuates with values

below 1/2, see top-right insets in figure 4(b,f), and its center of mass localizes at the

central waveguide after a long time; after t = 7500g in the case shown in figure 4(f).

Only Poisson-like distributions partially reconstruct, see top-right insets in figure 4(d,h).

Of course, well-known results regarding classical simulation of Dirac equation [18] are

reproduced; for instance optical zitterbewegun by using a Gaussian-like distribution,

figure 4(f). Notice that the center of mass of the coherent-like distribution, figure 4(h),

wobbles with an almost negligible amplitude compared to that of the Gaussian-like

distribution, figure 4(f), and it appears to reconstruct with low fidelity after the second

edge reflection; top-right inset in figure 4(h).

Another interesting set of states are product states,

|ψps(0)〉 =
k∏
j=1

â†xk |0〉, (63)
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Figure 4. (Color online). Time evolution of (a,c,e,f) the mean photon number for

(a,e) Gaussian- and (c,g) Poisson-like input distributions with complex parameters

{ω0 = 7, q = 0.55π} and α =
√

50− 0.55π + ı
√

0.55π, in that order, and (b,d,f,h)

their respective center of mass (with top-right insets showing the fidelities and top-

bottom a longer-time evolution of the center of mass) in a (a-d) BC and (e-h) BI with

β = 0.5 lattice of size N = 101. Time in units of δ for BC and g for BI lattice.

where x = (x1, . . . , xk) with xi ∈ [0, N − 1] and xi 6= xj for any i 6= j. The evolution of

the photon number at the qth waveguide for product states is given by

〈n̂q〉ps =
k∑
j=1

|Uxj ,q|2, (64)

An example of these states is the two-photon product state given by

|ψps(0)〉 = â†j â
†
k|0〉, (65)

that gives a mean photon number evolution and two-photon correlation function

〈n̂q〉ps = |Uj,q|2 + |Uk,q|2, (66)

Γ(ps)
p,q = |Up,jUq,k + Up,kUq,j|2. (67)

For the sake of space we will finish this section presenting how to deal with NOON

states. A higher order NOON state, their mean-photon evolution at the qth waveguide,

and two-photon correlation are given by the expression,

|ψ(0)〉 =
1

2
√
m!

(
â†mj + eimφâ†mk

)
|0〉, m = 2, 3, . . . , (68)
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〈nq〉 =
m

2

(
|Uj,q|2 + |Uk,q|2

)
, (69)

Γp,q = |Up,jUq,j|2 + |Up,kUq,k|2 + 2Re
(
eimφU∗p,jU

∗
q,jUp,kUq,k

)
. (70)

6. Conclusion

We presented a review on mathematical methods used to study infinite and finite

photonic lattices and the quantities of interest for quantized electromagnetic fields. Each

method is presented in a particular context but any of the methods can be used in all case

by making the necessary alterations. Alongside this review, we introduced a novel result,

up to our knowledge, in the form of the exact spectra and proper modes for BC and

BI lattices of size N (BI latices include the single-type lattice when the characteristic

parameter is zero) in terms of the roots of the N + 1 Fibonacci polynomial and the

Fibonacci polynomials evaluated at these roots, in that order. In order to illustrate our

results we chose to focus on the evolution of multiple-waveguide single-photon inputs

in the form of what we called Gaussian- and Poisson-like distributions impinging odd

lattices; these distributions are related to Gaussian beams and to the output from

Glauber-Fock lattices, respectively. Due to their spectral decompositions, Gaussian- and

Poisson-like distributions with real parameters partially reconstruct quasi-periodically

when they impinge a binary super-lattice with their intensity peak aligned with the

middle of the lattice.
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