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ABSTRACT

The impact of radiation pressure on the dynamics of the gas in the vicinity

of young stellar clusters is thoroughly discussed. The radiation over the ther-

mal/ram pressure ratio time evolution is calculated explicitely and the crucial

role of the cluster mechanical power and of the strong time evolution of the

ionizing photon flux and of the bolometric luminosity of the exciting cluster is

stressed. It is shown that radiation has only a narrow window of opportunity to

dominate the wind-driven shell dynamics. This may occur only at early stages

of the bubble evolution and if the shell expands into a dusty and/or a very dense

proto-cluster medium. The impact of radiation pressure on the wind-driven shell

becomes always negligible after about 3 Myr. Finally, the wind-driven model

results allow one to compare the model predictions with the distribution of ther-

mal pressure derived from X-ray observations. The shape of the thermal pressure

profile allows then to distinguish between the energy and the momentum domi-

nated regimes of expansion and thus conclude whether radiative losses of energy

or the leakage of hot gas from the bubble interior have been significant during

the bubble evolution.

Subject headings: galaxies: star clusters: general – HII regions – hydrodynamics

– ISM: bubbles – ISM: kinematics and dynamics

1. Introduction

Several driving mechanisms have been proposed to explain the origin and evolution

of large expanding structures discovered in deep Halpha images and HI surveys of the
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Milky Way and other local group galaxies. The most thoroughly discussed model involves

the thermalization of the kinetic energy released by stellar winds and supernovae explo-

sions inside a compact star cluster (McCray & Kafatos 1987; Mac Low & McCray 1988).

While this model is broadly consistent with observations of many bubbles in the visi-

ble and X-ray emission, several others driving forces, such as radiation pressure from the

field stars (Elmegreen & Chiang 1982) or the encounter of a high velocity cloud with the

galactic disk (Tenorio-Tagle 1981), were also discussed in the literature (see for a review

Tenorio-Tagle & Bodenheimer 1988). The impact of radiation pressure on the dynamics of

giant HII regions has been discussed recently by several authors who claimed that radiation

pressure may play a crucial role in shaping the interstellar medium (ISM) around young

massive clusters. For example, Lopez et al. (2011) compared the thermal pressure in the

X-ray emitting plasma with the flux of radiation energy in the 30 Dor region and claimed

that the hot gas pressure is generally weak and not dynamically important. Yeh & Matzner

(2012) reached the same conclusion by making use the ionization parameter technique and

claimed that in many individual and averaged over the galactic scale targets the shocked

wind pressure cannot be large compared to radiation pressure. However Pellegrini et al.

(2011) measured the ionization parameter across the 30 Dor region and concluded that ra-

diation pressure does not currently play a major role in star forming regions such as 30 Dor,

although it may have been an important factor during the early evolution. The revision of

the classical model is thus required for better understanding of such controversial results.

The development of HII regions begins right from the formation of the stellar cluster,

when the ample supply of ionizing photons leads to a supersonic weak R ionization front

(Kahn 1954; Tenorio-Tagle 1976), supersonic with respect to the neutral gas ahead and also

supersonic with respect to the ionized gas behind it. The ionization front rushes then through

the surrounding gas leaving it warm (T ∼ 104 K) and ionized but dynamically unperturbed.

This situation prevails throughout the formation phase, until the ionization front reaches

the Strömgreen radius. The ionization front becomes then of D type with a strong shock

progressing ahead of it into the surrounding gas. From then onwards and through the whole

of the expansion phase, only a small fraction (less than 1%) of the ionizing photon flux will

impinge on the ionization front and exert a pressure on the surrounding shell of swept up

matter. For such a reason, in the classic HII region model one cannot use the full bolometric

luminosity of the central cluster to estimate the strength of radiative pressure during the

expansion of an HII region. Krumholz & Matzner (2009) assumed that radiation pressure

causes the ionized gas to pile up into a thin outer shell and then concluded that while

radiation pressure is generally not important for HII regions around a single or a handful of

massive stars, it dominates the dynamics of giant HII regions driven by massive star clusters.

Draine (2011) calculated the density distribution in dusty HII regions with radiation pressure
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in the isothermal static approximation and showed that radiation pressure indeed produces

a density gradient. However, the deviation from the homogeneous distribution is moderately

small unless the parameter λ0 = Q49nHII , where Q49 is the number of ionizing photons in

units of 1049 s−1 and nHII is the mean density in the HII region, is large (λ0 ≥ 104 cm−3).

A more realistic and also very different situation arises if one considers also the mechan-

ical power of the exciting cluster and the strong evolution that the ionizing photon flux, the

bolometric and the mechanical luminosities suffer after the first supernova explosion. Soon

after the cluster wind interacts with the ionized surrounding gas, a strong shock wave begins

to form a secondary wind-driven shell with the surrounding swept up matter. As the situ-

ation evolves, the pressure in the inner shell becomes larger than that of the free wind and

thus a second, reverse shock is established in order to equalize and maintain an even pressure

between the shocked wind and the swept up ionized gas. The wind-driven shell sooner or

latter cools down and begins to recombine, depending on the value of the background den-

sity. Such recombinations deplete photons from the outer HII region and cause the ionization

front to supersonically recede towards the cluster to finally become trapped within the inner

wind-driven shell. The contribution of the star cluster UV radiation to the expansion of the

original HII region becomes then insignificant. From then onwards the wind-driven shock

travels through a warm neutral or molecular gas whose sound speed is much smaller than

that in the ionized interstellar medium. This permits the wind-driven bubble to survive for

a much longer time and leads to the regime which Capriotti & Kozminski (2001) named the

“best case for wind” model. Capriotti & Kozminski (2001) concluded that in this case the

dynamical evolution of the nebula is dictated by the stellar wind, but noted that the “best

case for wind” scenario requires the product L912nISM , where L912 is the luminosity of the

ionizing source in the Lyman continuum and nISM is the density of the ambient medium,

to be large. In the case of a single massive star, this requires a very high density ambient

medium as the bolometric luminosities are rather small even in the case of the most mas-

sive O-stars. Arthur (2012) took into consideration the effects of mass loading and thermal

conduction and developed a detailed numerical model for the stellar wind bubble around

Θ′Ori C, the main exiting star of the Orion nebula. The calculations confirmed the “best

case for wind” scenario and demonstrated that radiative heating makes the ionized part of

the wind-driven shell thick. However, neither the ionizing source time evolution nor the

radiation pressure effects have been taken into consideration in these calculations.

Here we consider the impact that radiation pressure provides on bubbles inflated by

winds driven by massive star clusters. In such a case, the ionizing (L912) and the bolometric

luminosity of a typical coeval cluster fall down rapidly after the first supernova explosion,

whereas the mechanical luminosity of the cluster is maintained at a nearly constant level. One

can notice this in Figure 1 which presents the results from the Starburst99 synthetic model
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(Leitherer et al. 1999) for a 106M⊙ coeval stellar cluster with stellar metallicity Z = 0.4Z⊙

and standard Kroupa initial mass function. We also display on the right-hand panel of this

figure the Lbol over Lmech and the L912 over Lmech ratios as these quantities are central to

our further discussion and lead us to conclude that radiation pressure has a poor impact on

the expansion of the wind-driven shell and thus on the global dynamics of giant HII regions.

Fig. 1.— The star cluster luminosities time evolution. The bolometric, Lyman continuum

and mechanical luminosities of a 106M⊙ coeval stellar cluster with stellar metallicity Z =

0.4Z⊙ and standard Kroupa initial mass function as predicted by the Starburst99, v6.0.3.

The solid and dashed lines on the right-hand panel display the ratio of Lbol over Lmech and

L912 over Lmech also plotted as a function of time.

The paper is organized as follows: the inner structure, the impact from radiative cooling

and the time evolution of star cluster driven bubbles in the two possible (energy-dominated

and momentum-dominated) hydrodynamic regimes are discussed in section 2. The impact

of radiation pressure on the wind-driven shell is thoroughly discussed in section 3, where we

calculate the radiation over the dynamical pressure ratio and discuss how this ratio evolves

with time. Section 4 presents the distribution of thermal pressure obtained from the wind-

driven model and derives its appearance when projected onto the plane of the sky. We

also show in this section that the shape of the projected thermal pressure profile allows

one to distinguish between bubbles evolving in the energy and in the momentum-dominated

regimes. Our results are compared with observations and other theoretical models in section

5 and a summary of our major conclusions is given in section 6.
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2. The inner structure and evolution of star cluster driven bubbles

The thermalization of the kinetic energy supplied by stellar winds and supernovae ex-

plosions within the exciting cluster leads to a large central pressure that causes the exit

of the reinserted matter as a star cluster wind (Chevalier & Clegg 1985; Cantó et al. 2000;

Tenorio-Tagle et al. 2007; Silich et al. 2011). Several physically distinct regions are then

formed in the recently ionized gas (Weaver et al. 1977). The innermost (free wind) zone is

occupied by the high temperature reinserted plasma whose density, temperature and pressure

asymptotically fall as r−2, r−4/3 and r−10/3 while the wind velocity monotonically increases

to reach its terminal value, V∞ ≈ 31/2c0, where c0 is the sound speed at the star cluster center

(e.g. Cantó et al. 2000; Silich et al. 2011). The encounter of such high velocity outflow with

the ambient, uniform density ionized medium, leads to the formation of the leading and re-

verse shocks. The leading shock sweeps up the ionized gas and compresses it into a secondary

inner dense shell. The reverse shock decelerates and re-heats the free wind matter what re-

sults in a high thermal pressure in the shocked wind region. The thermal pressure in this zone

is almost homogeneous as the temperature and the sound speed in the shocked wind plasma

are large (Weaver et al. 1977). Note that both, the free wind and the shocked wind regions

are bright in the X-ray regime (e.g. Chu et al. 1995; Cantó et al. 2000; Stevens & Hartwell

2003; Silich et al. 2005) due to the large temperature in these zones (T ∼ 106K - 107K).

Thus the interior of the secondary, wind-driven shell is usually transparent to the ionizing

radiation from the central cluster.

2.1. Energy dominated wind-driven bubbles

The theory of interstellar wind-driven bubbles with a constant energy input rate was

developed by Weaver et al. (1977), Mac Low & McCray (1988), Koo & McKee (1992) (see

for a review Bisnovatyi-Kogan & Silich 1995). In this case the radius, Rb, the expansion

velocity of the wind-driven shell, Vb, and the thermal pressure inside the bubble volume, Pb,

are:

Rb =

[

375(γ − 1)Lmech

28(9γ − 4)πρISM

]1/5

t3/5, (1)

Vb =
3

5

Rb

t
, (2)

Pb = 7ρ
1/3
ISM

[

3(γ − 1)Lmech

28(9γ − 4)πR2

b

]2/3

, (3)
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where t is the dynamical time, ρISM is the ambient gas density and Lmech is the mechanical

luminosity of the central cluster. One can find the location of the reverse shock from the

relation Pb = Pram, where Pram = ρwV
2

∞
is the free wind ram pressure and the density

in the wind, ρw, is calculated at the reverse shock position: ρw = Lmech/2πR
2

RSV
3

∞
(e.g.

Weaver et al. 1977):

RRS =

(

Lmech

2πV∞Pb

)1/2

. (4)

The wind-driven shell of swept up interstellar matter is initially adiabatic and hot and

thus transparent to the ionizing radiation. However, it cools down in a short time scale

(Mac Low & McCray 1988):

τ1 = (2.3× 104)Z−0.42
ISM n−0.71

ISM L0.29
38

yr, (5)

where nISM and ZISM are the atomic number density and metallicity in the surrounding

medium, L38 is the star cluster mechanical luminosity in units of 1038 erg s−1 and γ = 5/3.

As soon as the wind-driven shell cools down, it recombines and begins to absorb ionizing

photons emerging from the central cluster. This reduces the number of Lyman continuum

photons in the outer HII region. From then onwards, the ionization front detaches from

the outer shell and moves back towards the wind-driven shell reaching it when this grows

thick enough as to absorb all ionizing photons from the central cluster. One can obtain the

characteristic trapping time, τtrap, from the condition (Comeron 1997):

N912 = 4πR2

b∆Rβn2

s. (6)

where N912 is the number of Lyman continuum photons, β = 2.59 × 10−13 cm3 s−1 is the

recombination coefficient to all but the ground level. We assume that thermal pressure in

the ionized shell is uniform and equal to that in the shocked wind region (see Arthur, 2012).

The density of the ionized shell then is ns = Pb/µic
2

HII , where µi = 14mH/11 is the mean

mass per ion, cHII = (kTHII/µt)
1/2 is the isothermal speed of sound in the ionized gas and

µt = 14/23mH is the mean mass per particle in the completely ionized plasma with one

helium atom per every ten hydrogen atoms. The shell thickness, ∆R, is calculated from

mass conservation:

∆R =
nISM

ns

Rb

3
. (7)

Equations (1), (2), (6) and (7) then yield:

τtrap =
(9γ − 4)

5(γ − 1)

µic
2

HIIN912

βnISMLmech
. (8)

During the forthcoming evolution the HII region is bounded by the wind-driven shell. The

leading shock then remains strong even when the shell velocity drops below cHII as the
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leading shock Mach number must be calculated with respect to the sound speed in the

neutral ambient medium. Note, that the ionizing radiation may be trapped within the shell

at much earlier times if the shell is dusty (see Murray et al. 2011).

Similarly, one can find the relative thickness of the ionized shell ∆R/Rb before and after

the trapping time τtrap. For t ≤ τtrap the shell is completely photoionized and the value of

∆R/Rb is restricted by the swept up mass Mshell = 4πR3

bρISM/3 while for t > τtrap the shell

is partially ionized and the thickness of the ionized layer depends on the number of incident

ionizing photons N912:

∆R/Rb =
µic

2

HIInISM

3Pb
t ≤ τtrap, (9)

∆R/Rb =
µ2

i c
4

HIIN912

4πP 2

b R
3

b

t > τtrap. (10)

Figure 2 shows the wind-driven shell evolution onto an ambient medium with densities

nISM = 1 cm−3 and nISM = 1000 cm−3 (solid and dashed lines, respectively). The selected

mechanical luminosity of the driving cluster is Lmech = 1040 erg s−1 in both cases, which is the

average value for a young 106M⊙ cluster with a standard Kroupa initial mass function and

0.4Z⊙ metallicity (Leitherer et al. 1999) whereas the number of ionizing photons changes with

time as is predicted by the evolutionary synthetic models (see Figure 1). It will be shown

below that this approximation does not affect our major results significantly because the

radiative over dynamical pressure ratio depends mainly on the bolometric over mechanical

luminosity ratio and only weakly on the star cluster mechanical luminosity itself (see section

3). In the lower density case the wind-driven shell cools after τ1 ≈ 105 yr and grows thick

enough to absorb all ionizing photons (∼ 1053 s−1) at about τtrap ≈ 3.4 Myr (see Figure

2). At that time the radius of the shell reaches about 360 pc and its expansion velocity has

dropped to about 60 km s−1. Also, the number of Lyman continuum photons emerging from

the central cluster begins to decrease due to the explosion of the most massive stars (see

Figure 1).

2.2. Momentum dominated wind-driven bubbles

It is likely that young stellar clusters are embedded initially into dense parental clouds.

Therefore Figure 2 also presents the wind-driven bubble evolution into a dense ambient

medium with nISM = 1000 cm−3 (dashed lines). In this case the shell absorbs all ionizing

photons as soon as it grows enough to encompass all the cluster. Thus, in the high density

environment the shell cools down and traps the ionizing radiation from the driving cluster
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Fig. 2.— The wind-driven bubble evolution. Panels a and b present the radius and the

velocity of the shell when it expands into an ambient medium with densities: nISM = 1 cm−3

and nISM = 1000 cm−3 (solid and dashed lines) respectively. The mechanical luminosity of

the driving cluster is the same in both cases: Lmech = 1040 erg s−1. The metallicity of the

ambient gas is ZISM = 0.4Z⊙, the rate of ionizzing photons was calculated by making use of

Starburst99 synthesis model. The arrows mark the characteristic trapping time, τtrap, in the

lower density case and the characteristic time scale for the shocked wind gas to cool down,

τ2, (see sections 2.1 and 2.2 for more details) in the larger density case, respectively.

very rapidly, much faster than when it expands into a typical ISM with nISM = 1 cm−3.

Besides this, in the denser environment the shocked wind region may lose a significant fraction

of the deposited energy in a short time scale due to strong radiative cooling in the conduction

zone dominated by mass evaporated from the wind-driven shell (Mac Low & McCray 1988):

τ2 = (1.6× 107)Z
−35/22
ISM n

−8/11
ISM L

3/11
38

yr. (11)

In the case under consideration this occurs at τ2 ≈ 1.6 Myr, when the shell radius reaches

about 60 pc and the expansion velocity is ∼ 20 km s−1. Without a pressure support, the

reverse shock moves rapidly towards the shell and the further expansion is then due to the

direct impact of the free wind momentum. This may also be the case if a collisionless reverse

shock at RRS < Rb is not formed (see the discussion of the reverse shock conditions in

Capriotti & Kozminski 2001). One can neglect this transition phase and compute the shell

dynamics in the momentum dominated regime by writing down the momentum equation,

assuming that the transition to the momentum dominated regime occurs at t = τ2:

Msh(t)
dRb

dt
= Msh(τ2)Vb(τ2) +

∫ t

τ2

ṀwV∞dt′, (12)

where Msh(t) = 4πR3

b(t)ρISM/3 is the mass of the shell at time t and Ṁw = 2Lmech/V
2

∞
is

the rate of mass deposition due to the wind.
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The integration of equation (12) yields:

Rb = Rc

[

3Lmech(t
2 + τ 2

2
)

πV∞ρISMR4
c

+

(

12

5
−

6Lmechτ
2

2

πV∞ρISMR4
c

)

t

τ2
−

7

5

]1/4

, (13)

Vb =
3Lmech

2πV∞ρISMR3

b

t+

(

3

5

R4

c

τ2
−

3

2

Lmechτ2
πV∞ρISM

)

R−3

b (14)

Pram =
Lmech

2πV∞R2

b

, (15)

where Rc is the radius of the shell at the time when the transition to the momentum domi-

nated regime occurs: Rc = Rb(τ2) and Rb(τ2) is calculated by means of equation (1). Note,

that if Rc → 0 and τ2 → 0, equation (13) is reduced to a well known relation Rb ∼ t1/2 (e.g.

equation 3.1 in Koo & McKee 1992).

Note that in the momentum-dominated regime the value of the thermal pressure in the

wind-driven shell is equal to the wind ram pressure at the shell inner edge. The relative

thickness of the ionized layer then is:

∆R/Rb =
πµ2

iV
2

∞
c4HIIRbN912

βL2

mech

. (16)

If thermal conduction and mass evaporation from the cold shell are inhibited by magnetic

fields (Spitzer 1962), the radiative losses of energy from the shocked wind region are much

smaller. In this case the ion number density and temperature in the shocked wind region

are:

nb =
3Ṁt

4πµiR
3

b

=
3Lmecht

2πµiV 2
∞
R3

b

, (17)

Tb =
µt

µi

Pb

knb

=
5(γ − 1)µtV

2

∞

2(9γ − 4)k
, (18)

Thus temperature in the shocked wind region in this case depends only on the wind terminal

speed and does not change with time. If V∞ = 1000 km s−1, Tb ≈ 1.1× 107 K.

Radiative cooling begins to reduce the thermal pressure in the shocked wind zone and

affect the bubble dynamics only when radiative losses of energy from the bubble interior

Q = 4πn2

bΛ(Tb, Zb)R
3

b/3 exceed the energy input rate from the central cluster: Q > Lmech.

This occurs if the evolutionary time t grows larger than

τ3 =

(

µ2

iV
4

∞

3Λ(Tb, Zb)

)5(

π

Lmech

)2 [

375(γ − 1)

28(9γ − 4)ρISM

]3

, (19)



– 10 –

where Zb is the gas metallicity in the shocked wind region and Λ(Tb, Zb) is the cooling

function. One can obtain from equation (19) that τ3 is much longer than the characteristic

life-time of giant HII regions (∼ 10 Myr). This implies that the radiative losses of energy from

the shocked wind region in this case are insignificant and the wind-driven bubble expands

in the energy dominated regime during the whole evolution of the HII region.

The reverse shock may also be closer to the wind-driven shell than one would expect from

equation (4), if the hot, shocked wind plasma escapes from the bubble into the surrounding

low density medium, as suggested in Lopez et al. (2011). In this case the expansion velocity

of the wind-driven shell differs from that predicted by the energy dominated model (equations

1 - 3) and may be more similar to what the momentum dominated model predicts.

3. The impact of radiation pressure on the wind-driven shell

The radiation pressure on the wind-driven shell is:

Prad = ftrapLbol/4πcR
2

b , (20)

where ftrap is the fraction of the bolometric luminosity absorbed within the shell, c is the

speed of light and Rb is the radius of the shell. In the energy dominated regime equations

(4) and (20) yield:

ǫ =
Prad

Pb

=
ftrap
2

(

Lbol

Lmech

)(

V∞

c

)(

RRS

Rb

)2

. (21)

One can note from relation (21) that the small V∞ over c ratio and the fact that RRS is

usually much smaller than Rb, decrease significantly ǫ from what one would expect during

the early bubble evolution when the bolometric luminosity of the driving cluster exceeds the

mechanical energy input rate by a factor of ∼ 1000 (see Figure 1). Hereafter we assume in

our calculations that V∞ = 1000 km s−1.

The Prad over Pb ratio may be presented in a different form which shows explicitely how

it evolves with time, if one makes use of equation (3) instead of equation (4):

ǫ =
Prad

Pb
=

ftrap
28πc

[

28(9γ − 4)π

3(γ − 1)

]4/5 (
Lmech

25ρISM

)1/5
Lbol

Lmech
t−2/5. (22)

Equation (22) shows that the ratio of the bolometric over mechanical luminosity is the

major factor which decides which of the two driving forces, radiation or thermal pressure,

dominates the shell dynamics and that the Prad over Pb ratio has only a weak dependence

on the ambient gas density and on the star cluster mechanical luminosity.
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The relation between Prad and Pb will be different if the shell expands in the momentum

dominated regime. In this case, one has to compare the radiation and the free wind ram

pressure at the inner edge of the shell:

ǫ =
Prad

Pram
=

ftrap
2

V∞

c

Lbol

Lmech
. (23)

Note, that relationship (23) is universal as it does not depend on the ambient gas density

and the Lbol over Lmech ratio is a universal function of time for all clusters with a given initial

mass function and metallicity.

Figure 3 presents the Prad over Pb ratio time evolution for the two cases here considered.

As mentioned above, it was assumed that the Lbol over Lmech changes with time as predicted

by the evolutionary synthesis model Starburst99 but a constant value of the mechanical

luminosity, Lmech = 1040 erg s−1, was used in the calculations as ǫ depends on the value of

Lmech itself only in the energy dominated regime and even then this dependence is weak (see

equations 22 and 23). Numerical solutions with Starburst99-generated input mechanical

luminosity were used by Dopita et al. (2005) in their discussion of the synthetic spectral

energy distribution in starbursts.

Note that Pb in Figure 3 is the thermal pressure in the shocked wind region in the energy

dominated case and Pb = Pram in the momentum dominated regime, respectively. In the

low density case (solid line) the Prad over Pb ratio is larger than unity only at very early

times (t ≤ 2 × 105 yr) and only if the shell is dusty and optically thick to the bolometric

luminosity of the central cluster (ftrap = 1). Otherwise it should grow thick enough to absorb

all ionizing photons only after τtrap = 3.4 Myr, when the contribution of radiation pressure

to the shell dynamics is already negligible. The Prad over Pb ratio is small during the initial

shell evolution if the driving cluster is embedded into a high density medium (see dashed line

in Figure 3 and equation 22). It then suddenly grows to a value of 1.4 (see equation 23) as

the gas in the bubble interior cools down, the reverse shock reaches the shell and the further

bubble evolution proceeds in the momentum dominated regime. However, even in this case

the Prad over Pb ratio becomes smaller than one after ∼ 2 Myrs and thus radiation has only

a narrow window of opportunity to dominate the shell dynamics. Note also that the true

value of ftrap is set by the SED of the incident spectrum and by the optical depth of the shell

and may be smaller than unity. In this respect Figure 3 presents an upper limit for the Prad

over Pb ratio. For example, if the shell is thick to the Lyman continuum only, the Prad over

Pb ratio would be smaller than what is shown in Figure 3 within a factor of 2 - 4, depending

on the star cluster age (compare the bolometric and the Lyman continuum luminosities in

Figure 1). On the other hand, the adiabatic wind terminal speed V∞ also changes with time

and may be different within a factor of 3 from the selected value (see Wünsch et al. 2011).
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Fig. 3.— The contribution of radiation pressure to the star cluster wind-driven shell dynam-

ics. Vertical arrows mark the time when the transition to the momentum dominated regime

occurs (τ2) and the trapping time for the ionizing radiation (τtrap) in the high and low density

models, respectively. Note that in the low density case (solid line) the wind-driven shell does

not even trap all ionizing radiation during the early evolution (τtrap ≈ 3.4 Myr) if it is not

dusty. The dashed line shows the Prad over Pb ratio in the case when nISM = 1000 cm−3.
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4. Thermal pressure as an indicator of the hydrodynamic regime

Here we calculate the distribution of thermal pressure inside a wind-driven bubble vol-

ume and compare it to its projection onto the plane of the sky as it is done in high resolution

studies of X-ray emission (e.g. Lopez et al. 2011).

In order to calculate the distributions of physical quantities (density, temperature, ther-

mal pressure, velocity) in the free wind region and localize the reverse shock position, we make

use of Silich et al. (2011) star cluster wind driven model, which assumes that stars are expo-

nentially distributed within the star cluster volume. The model input parameters are: the

starburst mechanical luminosity, Lmech = 1040 erg s−1, the characteristic scale length of the

stellar density distribution, Rcore = 1 pc, the adiabatic wind terminal speed, VA∞ = 1000 km

s−1, and the metallicity in the free wind region, which we set to be ZX = 0.4Z⊙. The position

of the reverse shock at different times was calculated by means of equation (4) which relates

the thermal pressure in the shocked wind zone and the ram pressure in the free wind region.

We then compute the density and the temperature in the shocked wind region by means of

equations (17) and (18) and calculate the distribution of thermal pressure in the same way,

as in Lopez et al. (2011). Specifically, we calculate the emission measure and the waited

temperature of the hot X-ray plasma along lines of sight with different impact parameters

X by integrating the model predicted density and temperature distributions. The emission

measure and the waited temperature then are:

EM(X) = 2

∫ Lmax

0

n2(r)dl, (24)

T (X) = 2EM−1(X)

∫ Lmax

0

T (r)n2(r)dl , (25)

where l and Lmax = (R2

b − X2)1/2 are the distance and the path length along the line of

sight, n(r) and T (r) are calculated at r = (X2 + l2)1/2. One can obtain then the plasma

density and the thermal pressure along lines of sight with an impact parameter X from the

relations:

n(X) = [EM(X)/2Lmax]
1/2, P (X) = µikn(X)T (X)/µt. (26)

Note, that the procedure takes into account that lines of sight cross the free wind region if

the impact parameter X is smaller than the reverse shock radius RRS. We also take care

to omit segments along lines of sight where the temperature drops below the X-ray cut-off

temperature, Tcut = 5× 105 K (see Figure 4).

In the momentum-dominated regime the shocked wind region collapses and the star

cluster wind impacts directly on the shell. Strong radiative cooling reduces then the temper-

ature immediately behind the reverse shock leaving the shocked wind matter photoionized



– 14 –

and at 104K. Thus, in the momentum-dominated regime the contribution of the shocked

wind gas to the X-ray emission is negligible.

The distributions of thermal pressure obtained from the wind-driven bubble model and

those, obtained by integration along different lines of sight are compared in Figure 4 (upper

and bottom panels, respectively). The middle panels present the temperature distribu-

tions, which one can obtain from the wind-driven bubble model. Panels on the left-hand

and the right-hand sides compare profiles obtained in the low (nISM = 1 cm−3) and high

(nISM = 1000 cm−3) density cases. Solid and dashed lines show the distributions of ther-

mal pressure and temperature at different evolutionary times: t = 2 Myr and t = 5 Myr,

respectively. Figure 4 shows that the physical properties of the X-ray plasma derived from

observations must be taken with care as the distribution of thermal pressure may be sig-

nificantly distorted and the true central pressure significantly underestimated due to the

inhomogeneous distribution of plasma inside the wind-driven bubble volume. For example,

in the energy dominated regime the value of central pressure obtained by integration along

lines of sight is within a factor of ten smaller than the actual value of the thermal pressure

at the star cluster center. The integrated profile is significantly shallower and does not show

a deep gap, which one can notice in the model predicted distribution of thermal pressure.

The minimum in the integrated distribution of thermal pressure is shifted from the model

predicted position towards the center and therefore it does not mark the position of the

reverse shock (compare the top and the bottom panels in the left-hand column of Figure 4).

One can also note in Figure 4 that the shape of the integrated profiles is very different

in the energy (low density) and momentum (high density) dominated cases. In the energy

dominated regime the distribution of thermal pressure has a strong maximum in the center

and a uniform plateau at larger radii. In the momentum dominated case the integrated profile

is more similar to what the free wind model predicts (compare the top and the bottom panels

in the right-hand side of Figure 4). In this case the major difference between the model and

the integrated profiles occurs in the center, where the model predicted pressure is about ten

times larger than that obtained by integration, as it also occurs in the energy-dominated

case.

Thus, the shape of the thermal pressure profile allows one to distinguish between the

two possible hydrodynamic regimes. The thermal pressure profile with a narrow central spike

and a uniform plateau implies that the wind-driven bubble evolves in the energy dominated

regime and that the reverse shock stands within the explored volume. A thermal pressure

that drops continuously with distance from the star cluster center indicates that the shocked

wind zone has collapsed due to strong radiative cooling and the wind-driven bubble evolves

in the momentum dominated regime. The reverse shock accelerates then out from its energy-
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Fig. 4.— The model predicted vs integrated thermal pressure profiles. The upper and

middle panels display the model predicted distributions of thermal pressure and temperature,

respectively. The thermal pressure profiles obtained by integration of the model predicted

quantities along different lines of sight (which one might expect to obtain from the observed

X-ray emission) are shown in the bottom panels. The left-hand and right-hand side columns

present the results for the low and high density (nISM = 1 cm−3 and nISM = 1000 cm−3)

models, respectively. The solid and dashed lines display profiles at different evolutionary

times: t = 2 Myr and t = 5 Myr. The horizontal solid lines in the middle panels display the

X-ray cut-off temperature.
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dominated position and finally the star cluster wind ends up impacting directly on the outer

shell.

5. Comparison to other results

The impact from radiation pressure on the dynamics of giant HII regions has recently

been discussed by Krumholz & Matzner (2009) who claimed that radiation pressure might

dominate the dynamics of HII regions around massive star clusters, whereas we found that

radiation has only a narrow window of opportunity to dominate the giant HII regions global

dynamics.

The key difference between our results is that Krumholz & Matzner (2009) did not take

into consideration the mechanical power of the exciting cluster and the time evolution of

the star cluster bolometric luminosity. Thus, the radiation force in their and our models

is compared with different pressures: with thermal pressure in the ionized gas behind the

ionization front in the Krumholz & Matzner model and with thermal/ram pressure in the

shocked/free wind zone in the wind-driven bubble model. Another significant difference

is that we consider the time evolution of the exciting cluster explicitely that restricts the

radiative feedback as the bolometric luminosity and the flux of ionizing radiation drop rapidly

in massive coeval clusters with a normal IMF and ages larger than 3 Myrs.

The impact of radiative heating on the bubble dynamics has been discussed by Capriotti & Kozminski

(2001) and Arthur (2012) who have considered bubbles driven by a single massive star. As

it was stressed by Capriotti & Kozminski (2001), the real distinction between the ionizing

radiation and the star cluster wind feedback to the ambient medium is that the character-

istic lifetime of the star is much longer than the wind-blown bubble stalling time, the time

when the bubble expansion velocity drops to the sound speed value in the ambient medium

and the wind-induced shock dissipates. This is, however, not true in the case when bub-

bles are driven by massive star clusters as the characteristic stalling time increases with the

mechanical luminosity of the driving cluster:

τstall,ED = 2.7c
−5/2
ISM

[

(γ − 1)Lmech

7(9γ − 4)πρISM

]1/2

, (27)

τstall,MD = 0.25c−2

ISM

[

3Lmech

πV∞ρISM

]1/2

, (28)

where τstall,ED and τstall,MD are stalling times in the energy and momentum-dominated

regimes, respectively, cISM is the sound speed in the ambient medium and we have used

an asymptotic (Rb >> Rc) relation for a momentum-dominated bubble expansion velocity
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(see equation 14). In the case of massive star clusters the characteristic trapping time τtrap
is short compared with both, the wind-driven bubble stalling time, τstall, and the charac-

teristic lifetime of the HII region, τHII ≈ 10 Myr (e.g. in our models τstall,MD ≈ 13 Myr

and τstall,ED > 40 Myr if TISM = 1000K). This implies that in this case wind-blown bubbles

expand for a rather long time in the “best case for wind” regime, when the wind-driven shell

traps all ionizing photons from the central source and the leading shock Mach number must

be calculated with respect to a low sound speed in the neutral ambient medium.

In the calculations by Arthur (2012) the ionized shell grows thick due to radiative heating

what affects the wind-driven bubble dynamics because it reduces the volume occupied by

the shocked wind gas and thus enhances the thermal pressure in the shocked wind zone and

behind the leading shock front. This effect, however, strongly depends on the mechanical

luminosity of the driving cluster because the thickness of the ionized shell is smaller in systems

with a higher internal pressure (compare Figures 2 - 3 and 4 - 5 in Arthur 2012). Figure 5

shows the relative thickness of the photoionized shell calculated by means of equations (9) -

(10) and (16). As one can see, in the case of a 106M⊙ coeval cluster, the thickness of the

ionized shell does not exceed ≈ 10% of the wind-blown bubble radius what implies that in

this case radiative heating does not affect significantly the bubble dynamics. Equations (9)

- (10) and (16) predict that the ∆R/Rb ratio grows larger for low mass/energetic clusters.

Thus, it is expected that the HII gas filling factor, fHII , has to be larger in the HII regions

developed by the less massive clusters as it is the case in the Carina nebula, where fHII ≈ 1

(Harper-Clark & Murray 2009) and in the 30 Dor region, where the filling factor of the

ionized gas is very small: fHII ≈ 0.03 (Mills et al. 1978). The effects of radiative heating

must be also reduced if the wind-driven shells are dusty as the dust competes with the gas

for ionizing photons what reduces the number of the incident photons heating the shell.

Harper-Clark & Murray (2009) discussed the dynamics and the X-ray emission from the

Carina Nebula bubble and claimed that the leakage of the shocked wind gas through the holes

in the expanding shell may solve a long time standing problem of the shell growth descipancy

what implies that Weaver et al. (1977) model often overpredicts the sizes and expansion

velocities of the wind-driven shells (see Oey 1996). The leakage gas model, however, does

not work in this case as the reverse shock radius calculated by means of equation (4) with

the values of thermal pressure, Tr 16 cluster mechanical luminosity and mass-loss rate taken

from Harper-Clark & Murray (2009): Pb = 2 × 10−10 dynes cm−2, Lmech = 3.5 × 1038 erg

s−1 and Ṁtot = 1.1 × 10−3 M⊙ yr−1 is comparable or even exceeds the observed size of

the Carina bubble (RRS ≈ 17 pc while the observed values of the Carina bubble radius

range from 10 pc to 20 pc). The leakage bubble model then cannot be used in order to

evaluate the X-ray luminosity and brightness profile from the Carina Nebula as it does

not account for the free wind zone (it is assumed that RRS << Rb) and thus neglects the
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Fig. 5.— The relative thickness of the ionized shell. Solid and dashed lines present the

∆R/Rb ratio evolution in the case when the driving cluster is embedded into a low (1 cm−3)

and high (1000 cm−3) density ambient medium, respectively.
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contribution of the free wind region to the X-ray emission. Note also that the apparent

discrepancy between the Weaver et al. (1977) model predictions and the observed bubble

radii and expansion velocities may be understood if bubbles evolve from flattened parental

clouds and are observed face-on (see Silich & Franco 1999).

The geometrical ionization parameter U = N912/4πcr
2nHII = N912kµiTi/4πcµtPb, where

c is the speed of light, reaches the maximum value in the momentum-dominated, high density

model: log(Umax) ≈ −1.7. This value is smaller than the maximum value obtained by

Yeh & Matzner (2012), log(Umax) ≈ −1, who used the Draine (2011) static model and

assumed that the density and thus thermal pressure are zero at the inner edge of the strongly

illuminated HII region (see Appendix B in the paper). This may be the case in a static,

pressure confined HII regions (Draine 2011), but is not valid in the case of the wind-driven

shell where the thermal pressure at the inner edge of the shell must be equal to that in the

shocked wind zone even if the density distribution in the ionized shell is not homogeneous

due to strong radiation pressure.

A flat plateau and a steep central spike predicted by the energy-dominated wind-driven

bubble model agree surprisingly well with the shape of the thermal pressure profile of 30 Dor

region obtained by Lopez et al. (2011). This allows one to rule out the momentum domi-

nated regime and conclude that the leakage of the hot gas from the 30 Dor shell is not a

significant factor as suggested in Lopez et al. (2011). This conclusion also agrees with the

detailed analysis of the X-ray emission from the 30 Dor region by Wang & Helfand (1991)

and Townsley et al. (2006) who claimed that the diffuse X-ray emission is enveloped and

probably confined by the cooler gas which outlines the classic picture of 30 Dor and extends

for about 300 pc from north to south.

Radiation pressure is approximately equal to the gas pressure in the highly ionized ridge

in the center of 30 Dor region. Outside of this central zone the Prad/Pgas ratio drops below

1/3 (Pellegrini et al. 2011) and the ionization parameter U does not show much gradient

(Indebetouw et al. 2009). The Prad/Pgas < 1/3 value is roughly consistent with the wind-

driven model predictions (see Figure 3), if one bears in mind the complicated history of star

formation in the 30 Dor starburst with three episodes of star formation of increasing intensity

which took place approximately 5 Myr, 2.5 Myr and about 1.5 Myr ago (Selman et al. 1999).

The radius of the central arc (∼ 10 pc) is comparable to the size of NGC 2070, the major

driving cluster in the 30 Dor starburst, what requires a more realistic than a spherical shell

illuminated by a central source model as was also stressed by Snijders et al. (2007) when

discussing the large values of the ionization parameter (log(U) ≥ −1.53) detected in the HII

regions around two young (ages less than 3 Myr) stellar clusters in the Antenna.

Our calculations thus favor the results by Pellegrini et al. (2011) who obtained a much
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lower radiation over thermal pressure ratio in the 30 Dor region than Lopez et al. (2011).

Note also that Pellegrini et al. results look in better agreement with the spectroscopic virial

mass of the 30 Dor cluster obtained by Bosch et al. (2009) (Mvir ≈ 9×105M⊙) which leads,

in the case of a coeval cluster with a Kroupa IMF and 0.4Z⊙ metallicity, to the maximum

value of bolometric luminosity 4.4 × 1042 erg s−1 what is about two times smaller than the

Lbol obtained by Lopez et al. (2011).

6. Conclusions

Here we have explored the contribution of radiative and dynamical (thermal or ram)

pressure to the dynamics of giant HII regions and found only a narrow window of opportunity

for radiation pressure to be a dominant factor. We stress the importance of the mechani-

cal feedback from the exciting cluster and the radiation power time evolution, and derive

analytic relations which show how the radiation over dynamical pressure ratio evolves with

time. Careful analysis of the two extreme models which cover conditions ranging from the

interstellar medium in normal galaxies to those found in dense giant molecular clouds, led

us to conclude that the dynamical pressure dominates always after about 3 Myr, if one uses

the standard bubble and star cluster synthesis models. By that time the major factor which

defines the relative contribution from the two driving forces, the bolometric over the mechan-

ical luminosity ratio, drops within a factor of ten (see Figure 1) and the impact of radiation

pressure becomes soon negligible even in the most preferable case. We want to stress that

the reduction of thermal pressure in the shocked wind zone due to leakage of the hot shocked

plasma out of a porous shell cannot change this conclusion as may only lead to the displace-

ment of the reverse shock from the Weaver et al. (1977) model predicted position, but does

not affect the distribution of the ram pressure in the free wind zone. In the extreme case this

may lead to the momentum dominated expansion as it is the case if the shocked wind zone

collapses due to strong radiative cooling or if the reverse shock is not formed due to the large

proton mean free path in the shocked wind region (Capriotti & Kozminski 2001). This leads

to the maximum value of the Prad over Pb ratio which is shown in Figure 3 and occurs when

the wind-driven bubble evolves in the momentum-dominated regime. However, even in this

“best case for radiation” regime the contribution from radiation pressure becomes small after

about 3 Myr (see dashed line in Figure 3). We thus conclude that radiation pressure, despite

being significant during the earlier evolution, in general has a poor impact on the expansion

of giant shells powered by massive star clusters unless the Starburst99 synthesis model over-

estimates the star cluster mechanical luminosity significantly or a significant fraction of the

mechanical energy is lost inside the star cluster volume where the stellar mechanical energy

is thermalized in random collisions of nearby stellar winds and supernovae ejecta.
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