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Abstract The homotopy continuation methods are useful tools for finding multiple solutions
of nonlinear problems. An important issue of this kind of method is the correct implementation
of the path-following techniques used to trace the homotopy trajectory. Therefore, in this
work we propose a modification of the spherical algorithm to successfully trace the closed
paths of a DBH homotopy. The proposed methodology is depicted with three examples.
Finally, a comparison of the results with a standard path-following technique is presented
and discussed.
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1 Introduction

The DC analysis is an important task for analyzing electrical circuits. This analysis con-
sists of solving a system of nonlinear algebraic equations (NAEs) formulated using the
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148 D. Torres-Munoz et al.

Kirchhoff laws (Vazquez-Leal et al. 2011; Melville et al. 1993; Vazquez-Leal et al. 2013).
Newton–Raphson (NR) is the most employed method to solve the NAEs due to the quadratic
convergence rate (Ogrodzki 1994). Nonetheless, NR may fail to converge to a solution unless
the initial estimation point is close enough to the solution. Therefore, homotopy continua-
tion methods (HCM) are proposed as an alternative to the NR method. What is more, HCM
methods are capable of locating multiple operating points, which have applications in the
analysis of multistable circuits.

The basic idea of the HCM methods is to embed a homotopy parameter λ into the NAES,
yielding to a continuous deformation from a trivial state to the nonlinear state (Melville et al.
1993; Watson et al. 1997; Dyes et al. 1999; Vazquez-Leal et al. 2013, 2012). Such procedure
can be represented by

H : Rn+1 −→ Rn, x ∈ Rn and λ ∈ [0, 1], (1)

where n is the number of variables in the system and x represents circuit electrical variables.
The last equation satisfies the following conditions:

(1) If λ = 0, then H(x, 0) = 0 has a trivial or known solution.
(2) If λ = 1, then H(x, 1) = F(x) has the solution of the original NAEs.

Several homotopy formulations have been reported as the Newton homotopy (NH) (Wu
2006), the fixed point homotopy (FPH) (Yamamura et al. 1999), multiparameter homotopy
(Wolf and Sanders 1996; Vazquez-Leal et al. 2011) and double-bounded homotopy (DBH)
(Vazquez-Leal et al. 2005). Among them, the DBH homotopy is highlighted by its stop
criterion.

In general, the success of homotopy simulation depends on factors such as:

• Several homotopy formulations are reported in the literature with different characteristics.
Therefore, the proper selection of a homotopy is a key factor to the success of finding
multiple operating points.

• A suitable path-following technique is required for an accurate path tracking of the
homotopy trajectories. Otherwise, the homotopy simulation can suffer from ill conditions
for tracing, such as curve jumping among others.

In this work, we propose a modified spherical algorithm (MSA) to path tracking of closed
trajectories of the DBH method. There are several algorithms for path tracking homotopy
curves, among them are the algorithms based on predictor and corrector steps, in which is
situated the MSA algorithm. This algorithm proposes the use of hyperspheres to enclose
homotopy trajectory combined with predictor and corrector steps, to allow the algorithm to
follow the curve.

This paper is organized as follows. In Sect. 2 we explain the double-bounded homotopy
method. In Sect. 3, the spherical method is explained. In Sect. 4, the strategy for avoiding
the reversion phenomenon is proposed. Further, numerical examples are treated in Sect. 5.
In Sect. 6, the results are discussed and finally the conclusions are given in Sect. 7.

2 Double-bounded homotopy

The DBH homotopy was proposed (Vazquez-Leal et al. 2005) as a homotopy that exhibits
closed paths with the following formulation

H( f (x), λ) = C(λ − a)(λ − b) + exp(λ−a)(λ−b) ln(D(F(x))2 + 1), (2)
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Fig. 1 DBH homotopy
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where F(x) is the original equation system, λ is the continuation parameter, and C and D
are arbitrary positive constants. This homotopy contain two solution lines a and b; when
both lines are applied to the homotopy, as a result the trajectory is forced to cross the double
solution lines.

Figure 1 shows a trajectory with symmetrical branches and two solution lines. In Vazquez-
Leal et al. (2005, 2013), how these characteristics can be used to establish a stop criterion
for the homotopy simulation is explained. Different path-following techniques have been
proposed for tracing the trajectories (Allgower and Georg 1994). Recently, Yamamura (1993)
reported the spherical algorithm, which is easier to learn and implement than traditional
methods (Allgower and Georg 1993, 1994; Watson et al. 1987; Vazquez-Leal et al. 2005,
2011; Bates et al. 2009, 2000, 2011).

3 The spherical algorithm

As aforementioned, the HCM methods require suitable path-tracking techniques to accu-
rately trace the homotopy curves; otherwise, the homotopy simulation can miss solutions
or not find any solution at all. On one side, the implementation of standard path-tracking
techniques is a difficult task. On the order side, the spherical algorithm (SA) was pro-
posed with a geometrically clear interpretation that eases the programming (Yamamura
1993).

The SA algorithm relies on the use of spheres for path tracking the homotopy curves. Such
spheres are allocated over the homotopy trajectory, if the radius r of the spheres is where the
sphere has two intersections above the curve (points o2 y o4) as shown in Fig. 2.

The homotopy formulation contains n equations and n + 1 variables, where xi (i =
1, . . . , n) represent the variables of the system and xn+1 is the homotopy parameter λ.

The equation that describes the sphere (Yamamura 1993; Vazquez-Leal et al. 2011) with
center at c (initial point of the trajectory) and radius r is expressed by

S(X) = (x1 − c1)
2 + (x2 − c2)

2 + · · · + (xn+1 − cn+1)
2 − r2 = 0. (3)
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Fig. 2 Sphere intersecting with
the curve at two points

3o

2
o

4o

r

Fig. 3 Solution curves with
spheres

1S

2S

3S

nS

4S

1o

2o

no

Now, using (2) and (3), we formulated the augmented system as

H1(F1(x), λ) = 0,

H2(F2(x), λ) = 0,
...

Hn(Fn(x), λ) = 0,

S(x1, x2, . . . , xn, λ) = 0.

(4)

The solution curve can be traced solving (4) for each sphere, updating the center of the
hypersphere in each iteration step. The spheres (S1, S2, . . .) are allocated successively as
shown in Fig. 3, and at each step the solution obtained is used as the center of the new sphere.

The proposed MSA scheme is described as follows:

• Predictor: The solving (4) point is located o2 using the NR method setting o1 as an initial
point. The next predictor point is given using Fig. 4. Using the point o1 as the center of
the first sphere and o2 as the center of the second sphere, prediction point is calculated by
obtaining k1. The last point will be used as initial point for the NR method until finding
the point o3 used as the center of the next sphere.

• Corrector: After calculating the point predictor, a point corrector is calculated by solving
(4). It has at least two solutions: one lies in the forward direction (o2) and the other in
the backward direction (o4) (see Fig. 2). If the radius of the sphere is small enough, then
the task of distinguishing between the forward and backward solution is an issue due to
numerical similarity. In Fig. 5, we can observe that the point predictor k2 is used as an
initial point for the NR; the method can locate the solution o4 in the forward direction or
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Fig. 4 Hyperspheres algorithm
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the solution o2 in the backward direction. The forward solution can be considered as a
success of the algorithm; nonetheless if the backward solution is obtained, the algorithm
fails; such case of failure is known as “reversion” phenomenon of the MSA algorithm.

• Find zero strategy: The finding zero strategy should start after the trajectory bounces
on the bounding line, because the DBH has a characteristic of never crossing λ = 1
(Sosonkina et al. 1996; Vazquez-Leal et al. 2005). A functional way consists of monitoring
the change in sign of �λ after the corrector step. This procedure is realized by multiplying
�λ of two consecutive predictor steps.

sign(�λ j+1�λ j ) (5)

The sign of �λ changes after bouncing from point k1 to point k2 as shown in Fig. 6,
where �λ j = k2 − k1 and �λ j+1 = k2 − k3.

• Interpolate solutions: When the trajectory bounces on the bounding line, the point (k1, k2)

are taken to implement multidimensional interpolation to approximate the solution.
Interpolation is performed using the command “ArrayInterpolation” (Maple program)
as shown in Fig. 6.

123



152 D. Torres-Munoz et al.

Homotopy path

1k

2k
3k

Solution Line

(A)

Homotopy path

1k

2k
3k

Solution Line

(B)
Fig. 6 a Solution bounce detection. b Interpolated solution

Fig. 7 Normal vector into the
sphere

r

)( 2on )( 4on

3o

2o
4o

• Implicit accuracy for final solutions: The interpolated solution S̃ previously obtained has
a low accuracy; therefore, the NR method is applied to obtain a solution with the required
precision.

In the next section, we will propose a strategy to avoid the reversion phenomenon.

4 Strategy to avoid the reversion phenomenon

In Yamamura (1993), it was reported that using fixed radius for the spheres could aid in
detecting the reversion phenomenon. Nonetheless, if the radius is small, the backward and
forward solutions are really close numerically, making it difficult to differentiate between
them. Therefore, we propose a strategy to compare the backward and forward solutions,
avoiding the reversion problem.

As aforementioned, determining the difference between the forward direction o4 and the
backward direction o2 is a difficult task. Therefore, calculating normal vector angles for
the solution (o2, o4) of the sphere o2 and o4 as depicted in Fig. 7. Firstly, we calculate the
gradient of the sphere equation (3), resulting in

∇S = S′
x1

x̂1 + S′
x2

x̂2 + · · · + S′
λλ̂ (6)
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Fig. 8 Angle to normal vector
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then the normal vector �n is given by

�n = ∇S

‖∇S‖ (7)

The notation ‖∇S‖ represents the Euclidean norm of ∇S. Then the angle of �n is obtained by
calculating

θxi = cos−1 S′
xi

‖∇S‖ , i = 1, 2, . . . , n + 1 (8)

where θxi is the angle with respect to the coordinate axis, i corresponds to the number of
system variables and n + 1 = λ. Figure 8 shows the normal vector to the sphere �n with
corresponding angles for each axis (θx1 , θx2 , . . . , θλ).

Now, instead of comparing o2 and o4 directly, we use the angles of their normal vectors
for an efficient comparison.

After detecting the reversion phenomenon, we have to modify the corrector step by increas-
ing the radius a δr, inducing the corrector step to converge to the forward solution. Then,
we propose the point k2 + δr that results in k′

2 as the initial point for NR (see Fig. 9). This
technique creates a perturbation in the corrector step that can induce the convergence to the
forward solution. For this work, the step size takes values of δr which coincide with the
sphere radius r .

123



154 D. Torres-Munoz et al.

Fig. 10 Graphical solution of (9)

5 Numerical examples

To illustrate the reversion phenomenon and the proposed modifications for the spherical
algorithm, two examples are presented.

5.1 Mathematical example

To show the proposed path-tracking algorithm, we will solve the following problem (Lee and
Chiang 2001)

F1(x1, x2) = 4(x2
1 + x2

2 − 1)x1 + 16((2x2
1 − 1)2

+(2x2
2 − 1)2 − 2/3)(2x2

1 − 1)x1 = 0,

F2(x1, x2) = 4(x2
1 + x2

2 − 1)x2 + 16((2x2
1 − 1)2

+(2x2
2 − 1)2 − 2/3)(2x2

2 − 1)x2 = 0. (9)

Applying the DBH homotopy to (9), we obtain 7 solutions from a total of 25. Figure 10
shows a plot of the equations and location of the solutions (where Si , i = 1, 2, . . . , 25).

Applying the DBH homotopy, we obtain

H1( f1, λ) = λ(λ − 1) + exp(λ(λ − 1)) ln(0.09((4v2
1 + 4v2

2 − 4)v1

+16(2v2
1 − 1)2 + 16(2v2

2 − 1)2 − 32/3)(2v2
1 − 1)v1)2 + 1 = 0,

H2( f2, λ) = λ(λ − 1) + exp(λ(λ − 1)) ln(0.09((4v2
1 + 4v2

2 − 4)v2

+16(2v2
1 − 1)2 + 16(2v2

2 − 1)2 − 32/3)(2v2
2 − 1)v2)2 + 1) = 0,

(v1 − c1)
2 + (v2 − c2)

2 + (λ − c3)
2) = 0.0009. (10)

where the last equation corresponds to the sphere algorithm. The parameter homotopy a =
0, b = 1, C = 3, D = 0.03 and the ratio size is r = 0.03. Without a methodology for
avoiding the reversion, the results are shown in Table 1, where in the first iteration λ = 0.5
and the second iteration λ goes back to λ = 0.47.
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Table 1 Numerical results of path tracking in the backward direction

Iter. x1 x2 λ Angle(x1) Angle(x2) Angle(λ)

1 0.931862833 −0.931862833 0.5 90.2/90.2 89.7/89.7 179.5/179.5
2 0.931707573 −0.931707573 0.470000000 89.7/90.8 90.2/89.1 0.41/178
3 0.931242105 −0.931242105 0.440004014 89.1/91.4 90.8/88. 1.25/177.9

Table 2 Numerical results of path tracking in the forward direction

Iter. x1 x2 λ Angle(x1) Angle(x2) Angle(λ)

1 0.931862833 −0.931862833 0.5 90.2/90.2 89.7/89.7 179.5/179.5
2 0.931707573 −0.931707573 0.530000000 89.7/90.8 90.2/89.1 179.5/1.25
3 0.931242105 −0.931242105 0.559995985 91.4/89.1 90.8/88.5 178.7/2.09

Fig. 11 Homotopy path for (10)

Table 2 shows the results after applying the reversion strategy proposed in this paper. The
numerical solutions are shown in Table 2, where λ = 0.5 in the first iteration at the second
iteration λ = 0.53 tracing the trajectory circumvent the reversion phenomenon.

The solutions S1, S2, S3, S4, S5, S6, S7 found are shown in Fig. 11 traced with 119 itera-
tions.

Table 3 shows solutions, accuracy and the number of iterations related to the path tracking
of (10).

The projection of variable x1 and x2 over λ is shown in Fig. 12.
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Table 3 Numerical solutions to the equation (10)

Solution Iteration v1 v2 Error =
√

f 2
1 + f 2

2

S1 19 0.853356743 −.853356743 3E−15
S2 26 0.707106781 −0.707106781 8.61E−14
S3 34 0.521327409 −0.521327409 3.29E−11
S4 61 −1.71E−16 1.70E−16 2.4E−11
S5 87 −0.521327409 0.521327409 2E−15
S6 96 −0.707106785 0.707106785 2E−15
S7 103 −0.853356744 0.853356744 9.6E−11

(A) (B)
Fig. 12 a Homotopy path projected over x1-λ. b Homotopy path projected over x2-λ.

5.2 Circuit with two tunnel diodes

The following study case shows a circuit with two tunnel diodes, one voltage source and a
resistor in series (see Fig. 13). The expression for the tunnel diode model is shown below

g1(v1) = 2.5v3
1 − 10.5v2

1 + 11.8v1,

g2(v2) = 0.43v3
2 − 2.69v2

2 + 4.56v2. (11)

Using Kirchoff laws, we obtain

F1(v1, v2) = E − Rg1(v1) − (v1 + v2) = 0,

F2(v1, v2) = g1(v1) − g2(v2) = 0. (12)

Applying the DBH homotopy to (12) results in

H1( f1, λ) = 40λ(λ − 1) + exp(λ(λ − 1)) ln(0.01(30 − 33.25v3
1

+139.65v2
1 − 157.94v1 − v2)

2 + 1) = 0,
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Fig. 13 Two tunnel diode circuit
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H2( f2, λ) = 40λ(λ − 1) + exp(λ(λ − 1)) ln(0.01(2.5v3
1 + 10.5v2

1

+11.8v1 − 0.43v2
2 + 2.69v2

2 − 4.56v2)
2 + 1) = 0,

(v1 − c1)
2 + (v2 − c2)

2 + (λ − c3)
2) − 0.36 = 0. (13)

As a result of tracing the homotopy path, the nine operation points of the circuit have been
located (see Fig. 14).

Table 4 shows the solutions found, iteration number for each solution and the error using
mean squares.

5.3 Circuit with two-tunnel exponential diodes

For the diode circuit in Fig. 13, the polynomial expression is replaced by exponential terms

i1,2 = Ip

(
V

Vp

)
e

1− V
Vp + I0e

q
K T V (14)

where E = 1, R = 20�, Ip = 100E−03, Vp = 50E−03, I0 = 1E−09 and q
K T = 40.

123



158 D. Torres-Munoz et al.

Table 4 Numerical solutions to
the Eq. (13) Solution Iteration v1 v2 Error =

√
f 2
1 + f 2

2

S1 106 2.305222063 0.705560377 1.3E−10
S2 143 2.277597006 1.857491731 3.3E−10
S3 205 2.224729753 3.693043974 6.5E−10
S4 249 1.775503561 3.707177714 8.8E−11
S5 316 1.702657758 1.809029946 1.4E−10
S6 349 1.666377840 0.739343469 5.8E−11
S7 533 0.228266851 0.828626137 1.2E−11
S8 558 0.219854573 1.672951409 1.03E−10
S9 628 0.199790592 3.754217099 1.10E−11

Table 5 Numerical solutions for the circuit Fig. 13 with exponential terms

Solution Iteration Iv1 v2 v3 Error =
√

f 2
1 + f 2

2

S1 45 −0.048873941 0.022521177 0.011260588 1.1E−13
S2 52 −0.042175710 0.156485795 0.147132103 6.5−10
S3 70 −0.018919917 0.621601653 0.418182617 1.5−11
S4 77 −0.028280221 0.434395575 0.428548398 2.4−11
S5 80 −0.009914377 0.801712456 0.400856225 2.3−09

As a result, the path tracking shows the projection of Iv1 , v2, v3 over λ Table 5.
Figure 15 shows the projection Iv1 , v2, v3 over λ.
A standard path-tracking algorithm (Euler predictor and Newton corrector) will be used

to solve the same problems and a comparison will be discussed. Table 6 concentrates on the
results of all the cases studied.

6 Discussion

The obtained numerical results show that the MSA algorithm is useful to solve different
problems containing polynomial and exponential terms. In the first case study, we obtained 7
from 25 possible solutions and for the second we found all the operating points of the circuit.
However for the last case study, we only found five solutions, though it is the same circuit as
for case study 2. This is mainly because of the highly nonlinear behavior of the exponential
terms which causes numerical noise. The MSA algorithm is a suitable tool for following
the homotopy trajectories. Additionally, we showed that the reversion phenomenon was
successfully circumvented. The angles of the normal vector show that the reversion problem
can be detected using the proposed methodology. The angles calculated for the normal vector
Fig. 8 are the same for the first iteration as shown in Table 1, indicating that the backward
solution has been found. For the second iteration, the trajectory carries a backward direction.
The same results are shown in Table 2 for the first iteration; however the strategy proposed
in this work has been applied achieving a difference between the angles of even 180 ◦ for
the second iteration. The above allows a tracing of the curve in the forward direction. The
strategy to circumvent reversion was successful in the case studies presented in this work;
nonetheless, other case studies might need other radius values to cause perturbation.
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(a) (b)

(c) (d)

Fig. 15 The projection Iv1 , v2, v3 over λ

The results in Table 6 show that the path tracking is similar for both methods because the
initial point and the final points are numerically similar. As a future work, the MSA algorithm
will be tested for the simulation of VLSI circuits. Such test will show the behavior of the
proposed algorithm when large NAEs are solved. Radio size must be variable following
the behavior of the curve in each step in the path. The CPU time between the standard
algorithm (based on an Euler predictor and a Newton corrector) and the proposed method
shows good agreement with slightly shorter CPU time for the standard algorithm; however,
the programming for MSA method is easier to implement. Finally, the reversion strategy used
for all examples was successful for all case studies. Nevertheless, to decrease the simulation
time, the corrector step should be optimized.
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Table 6 Comparative results for all study cases

Spherical method Euler method

Case study 1 Initial point x1 = 0.93186283, x1 = 0.93186283,
x2 = −0.93186283 x2 = −0.93186283

Step size 0.03 0.03
Iteration number 119 119
Solutions 7 7
CPU time 1.1 0.98
C, D 3,0.03 3,0.03
Reversion strategy 1 –
Final point x1 = −0.931803691, x1 = −0.931862024,

x2 = 0.931803691 x2 = 0.931862024
Case study 2 Initial point x1 = −0.00160602, x1 = −0.00160602

x2 =6.04189368, x2 =6.04189368
Step size 0.03 0.03
Iteration number 722 722
Solutions 9 9
CPU time 5.7 4.1
C, D 6,0.01 6,0.01
Reversion strategy 1 –
Final point x1 = −0.065939784, x1 = −0.0659397464,
Final point x2 = 6.4852273 x2 = 6.48522706

Case study 3 Initial point x1 = −1.18026447, x1 = −1.18026447,
x2 = −0.14007670, x2 = −0.14007670,
x3 = −0.08050098 x3 = −0.08050098

Step size 0.03 0.03
Iteration number 123 123
Solutions 5 5
CPU time 2.6 1.1
C, D 1,0.3 1,0.3
Reversion strategy 1 –
Final point x1 = 1.117427493, x1 = 1.11215323
Final point x2 = 0.900653843, x2 = 0.900567747,
Final point x3 = 0.379577056 x3 = 0.379608015

7 Conclusions

The MSA algorithm was adapted to the tracing of DBH homotopy. Using three examples
of different nature (including exponential or polynomial terms), we showed how the MSA
algorithm was able to trace the closed paths and locate multiple solutions. In addition, the
strategy for circumventing the reversion phenomenon was tested, reaching good results. What
is more, we compared the proposed algorithm with a standard one reaching a good agreement
between the results of both techniques. Finally, further work should be developed to test the
MSA algorithm by applying it to larger circuits.
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