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Abstract

In clustering, providing an explanation of the results is an important task.
Pattern-based clustering algorithms provide, in addition to the list of objects
belonging to each cluster, an explanation of the results in terms of a set of
patterns that describe the objects grouped in each cluster. It makes these
algorithms very attractive from the practical point of view; however, pattern-
based clustering algorithms commonly have a high computational cost in the
clustering stage. Moreover, the most recent algorithms proposed within this
approach, extract patterns from numerical datasets by applying an a priori
discretization process, which may cause information loss. In this thesis, we
propose new algorithms for extracting only a subset of patterns useful for
clustering, from a collection of diverse unsupervised decision trees induced
from a dataset. Additionally, we propose a new clustering algorithm based
on these patterns. Experimental results show that our pattern-based clus-
tering algorithm obtains better clustering results, and extracts significantly
less patterns in a significantly less time, than state-of-the-art pattern-based
clustering algorithms. Moreover, the proposed pattern-based clustering al-
gorithm achieves clustering results similar, in quality, to those obtained by
traditional clustering algorithms.
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Resumen

En problemas de agrupamiento, proporcionar una explicación de los resul-
tados es una tarea importante. Los algoritmos de agrupamiento basado en
patrones proveen, además de la lista de objetos que pertenecen a cada grupo,
una explicación de los resultados en términos de un conjunto de patrones que
describen a los objetos de cada grupo. Esto hace que estos algoritmos sean
muy atractivos desde un punto de vista práctico; sin embargo, los agru-
padores basados en patrones tienen un alto costo computacional en la etapa
de agrupamiento. Por otra parte, los algoritmos más recientes propuestos en
este enfoque extraen patrones de conjuntos de datos numéricos realizando una
discretización a priori de las variables numéricas, la cual puede causar pérdida
de información. En esta tesis se proponen nuevos algoritmos que, a partir de
una colección de árboles de decisión no supervisados inducidos a partir de un
conjunto de datos, extraen un subconjunto de patrones útiles para agrupar.
Adicionalmente, se propone un nuevo algoritmo de agrupamiento basado en
estos patrones. Los resultados experimentales muestran que nuestro algo-
ritmo de agrupamiento basado en patrones obtiene mejores resultados, ex-
trayendo significativamente menos patrones en un tiempo significativamente
menor, que los algoritmos de agrupamiento basado en patrones reportados
en el estado del arte. Por otra parte, el algoritmo de agrupamiento basado en
patrones propuesto obtiene agrupamientos con calidad similar a los obtenidos
por algoritmos de agrupamiento tradicionales.
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Chapter 1

Introduction

Cluster analysis is one of the most important techniques in pattern recogni-
tion. It has been widely studied and applied in many areas like computer
vision, information retrieval, marketing, and bioinformatics (Jain, 2010). In
this thesis, only non-overlapping clustering is considered, which consists in
partitioning a set of unlabeled objects into disjoints clusters, according to a
certain criterion (Duda et al., 2012). This type of clustering is the most used
in cluster analysis.

Several works for solving non-overlapping clustering have been proposed,
including: K-means (MacQueen, 1967), EM (Moon, 1996), DBSCAN (Es-
ter et al., 1996), Pairwise Clustering (Hofmann and Buhmann, 1997), Ker-
nel K-means (Schölkopf et al., 1998), DENCLUE (Hinneburg and Keim,
1998), X-means (Pelleg et al., 2000), Minimum-entropy Clustering (Roberts
et al., 2001), Normalized Cut (Shi and Malik, 2000), K-medoids (Kaufman
and Rousseeuw, 2005), SVM Clustering (Winters-Hilt and Merat, 2007), and
ABC Clustering (Karaboga and Ozturk, 2011).

As it has been argued in the literature (Färber et al., 2010), several clus-
tering results can be obtained from the same dataset and many of them can
be considered as correct. This is because there is a great diversity of cluster-
ing algorithms and the quality of their results is measured in many different
ways (Aggarwal and Reddy, 2013). Therefore, validating clustering results
is a subjective process. In addition, the lack of comprehensibility of the
results is a common issue of traditional clustering algorithms like K-means
and EM, because these algorithms only return a list of objects belonging to
each cluster. All these issues make difficult the process of validating and
understanding clustering results.

1



CHAPTER 1. INTRODUCTION 2

In different application areas such as agriculture, bioinformatics, text pro-
cessing and web mining, users need some explanation about clustering results
more than just a list of objects for each cluster (Michalski et al., 2006; Bari-
dam and Owolabi, 2010; Hotho et al., 2003; Tiddi et al., 2014). For example,
in text processing, common text clustering techniques do not provide an ex-
planation in terms of the features (terms) of the resulting clusters, which is
an important information to understand the topics associated to each cluster
(Hotho et al., 2003). Another example, in web mining, applying traditional
clustering algorithms becomes a laborious and time-consuming process, in-
volving expertise in possibly different domains for getting an explanation of
the results. However, pattern-based clustering (Michalski and Stepp, 1983)
aims to provide an explanation of the clustering results in terms of the fea-
tures used to describe the data.

Several works have been reported within the pattern-based clustering
approach (Michalski and Stepp, 1983; Fisher, 1987; Ralambondrainy, 1995;
Mishra et al., 2004; Wong and Li, 2008; Fore and Dong, 2012). Algorithms
under this approach, in addition to the list of objects belonging to each
cluster, return a set of patterns1 that describe each cluster. These patterns
provide information, in terms of feature values, about the characteristics of
the objects in each cluster. This description is very important because it
allows an easier explanation of the results.

1.1 Description of the problem

Some pattern-based clustering algorithms (Michalski and Stepp, 1983; Fisher,
1987) extract few patterns for clustering, making insufficient the explanation
of their results. On the other hand, other pattern-based clustering algorithms
(Mishra et al., 2004; Wong and Li, 2008; Fore and Dong, 2012) mines all
patterns in a categorical dataset, but computing all patterns makes these
algorithms non suitable for medium-large datasets, due to the huge amount of
patterns that can be computed. Moreover, using too many patterns produces
a high computational cost at the clustering stage. As we will show in our
experimental results, not all patterns are useful for clustering, since many
of them are redundant, which may negatively affect the clustering quality.
In addition, several pattern-based clustering algorithms have been proposed
for clustering exclusively categorical datasets. For applying these algorithms

1A pattern is a conjunction of feature-value items (Michalski and Stepp, 1983).
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over numerical datasets, all numerical features must be discretized a priori.
Data discretization is the process of transforming numerical features into a
finite set of intervals, causing loss of information (Garcia et al., 2013).

In pattern-based clustering, since extracting all patterns from a dataset
is too expensive and may produce too many patterns, it is desirable that
mining algorithms return a subset of comprehensible patterns for describing
the clusters. One of the problems to solve in this thesis, is how to extract
this subset of suitable patterns for clustering, without extracting redundant
patterns that negatively affect the quality of the result. In general, obtaining
clusters and patterns from data has a high computational cost. Thus, a
good algorithm for mining patterns for clustering should extract a subset of
patterns in a short time, instead of extracting all patterns, which would allow
reducing the computational cost of the clustering phase. Another issue that
should be addressed is clustering numerical datasets without applying an a
priori discretization on numerical features, aiming to avoid information loss
that may affect the clustering quality.

Additionally, a pattern filtering algorithm is necessary to remove dupli-
cate patterns, and, at the same time, simplifying each pattern by joining
redundant items of the same feature. Thus, a shorter explanation of the
clustering results can be obtained. Finally, a clustering algorithm based on
the extracted patterns is required to build clusters of objects. We consider
that the idea of first defining a relationship between patterns to cluster the
set of patterns, and then clustering the objects of a dataset based on the
clusters of patterns, is promissory but the algorithm proposed by Fore and
Dong (2012) is too expensive for large datasets. Therefore, another problem
to solve is defining a relationship between patterns which allows clustering
objects, based on clusters of patterns, more efficiently and effectively than
the state-of-the-art pattern-based clustering algorithms.

1.2 Objectives

1.2.1 General objective

To develop a pattern-based clustering algorithm by extracting only a small
subset of patterns suitable for clustering, instead of mining all patterns; which
allows working with mixed data without an a priori discretization of numer-
ical features. The proposed algorithm should be more efficient and effective
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than the state-of-the-art pattern-based clustering algorithms.

1.2.2 Specific objectives

• To develop an algorithm to extract subsets of frequent patterns from
mixed and incomplete unsupervised datasets, without an a priori dis-
cretization of numerical features.

• To select a filtering algorithm to select only those patterns that are
suitable for clustering.

• To develop a clustering algorithm more efficient and effective than the
state-of-the-art pattern-based clustering algorithms, based on the pat-
terns selected by the proposed filtering algorithm.

1.3 Main contribution

The main contribution of this thesis is a new pattern-based clustering algori-
thm for mixed datasets. Our proposal mines only a subset of useful patterns
for clustering (instead of mining all patterns) and without applying an a
priori discretization on numerical features, from a collection of unsupervised
decision trees. The proposed algorithm is more efficient and effective than
state-of-the-art pattern-based clustering algorithms. Moreover, the proposed
algorithm is competitive, in terms of F-measure, with traditional clustering
algorithms.

1.4 Thesis organization

The remaining chapters of this thesis are organized as follows:
Chapter 2 presents the background necessary to understand the remaining

chapters.
Chapter 3 contains a review of the related work about pattern-based

clustering. This chapter includes some works that are considered to be related
to pattern-based clustering, but, in fact, follow a different approach.

Chapter 4 presents the three new pattern mining algorithms developed
in this research. For each algorithm, the split evaluation criteria and the
strategies to obtain diverse patterns are defined. Additionally, this chapter
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introduces a filtering algorithm to select suitable patterns for clustering. Fi-
nally, based on the mined patterns, a new pattern-based clustering algorithm
is proposed.

Chapter 5 contains the experimental results. It includes a comparison
among the proposed algorithms and state-of-the-art pattern-based clustering
algorithms, as well as a comparison against traditional clustering algorithms.

Chapter 6 enunciates the conclusions and contributions of this thesis and
provides some future research directions.



Chapter 2

Background

In this chapter, the necessary background of the main topics required to un-
derstand the contents of this research is presented. First, we provide an in-
troduction to clustering, and a brief description of two well-known traditional
clustering algorithms. The problem of clustering validation is also explained.
Then, some basic definitions related to patterns are presented. Finally, since
we propose new algorithms for inducing unsupervised decision trees with the
objective of mining useful patterns for clustering, some concepts related to
the induction of unsupervised decision trees are introduced.

2.1 Traditional clustering algorithms

Pattern recognition is about assigning labels to objects, which is known as
classification (Kuncheva, 2004). If there is no previous knowledge about the
labels of any object in the dataset, the process of grouping objects in clusters
according to some predefined criterion is named clustering. In this thesis, we
will refer only to non-overlapping clustering, which consists in partitioning a
set of unlabeled objects into disjoints clusters.

In general, clustering algorithms differ in the specific clustering criterion
or how this criterion is measured. One of the most used clustering criterion
assumes that objects of the same cluster should be more similar than objects
from different clusters (Karaboga and Ozturk, 2011). The similarities among
objects are determined using a comparison function (Bandyopadhyay and
Saha, 2013), which is usually a distance function.

A distance is a function that, for every pair x, y in the function domain,

6
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fulfills (Webb, 2003):

• d(x, y) ≥ 0, for every x and y,

• d(x, y) = 0 ↔ x = y, for every x and y,

• d(x, y) = d(y, x), for every x and y, and

• d(x, z) + d(z, y) ≥ d(x, y), for every x, y and z.

2.1.1 K-means

K-means (MacQueen, 1967) is one of the most commonly used clustering alg-
orithms. K-means finds a partition of objects such that the squared distance
between the center of a cluster (the mean) and the objects in the cluster is
minimized. This algorithm is defined for numerical data, and it is typically
used together with the Euclidean distance. Let µi be the center of the cluster
Ki ∈ K (K is the set of clusters), the goal of K-means is to minimize the
function defined in Eq. (2.1):

E(K) =
k∑

i=1

∑
x∈Ki

d(x, µi)
2. (2.1)

The main steps of K-means are as follows:

1. Select an initial set of k cluster centers;

2. Generate a new partition by assigning each object to its closest cluster
center;

3. Compute new cluster centers by averaging the feature values of the
objects belonging to the same cluster;

4. Repeat steps 2 and 3 until few change in the centers occurs.

Different initializations of K-means can lead to different final clustering
because K-means converges to local minima. One way to overcome the local
minima is to run the K-means algorithm, for a given k, with multiple different
initial cluster centers, and choosing the partition that minimizes Eq. (2.1).
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2.1.2 EM

Another well-known clustering algorithm is EM (Moon, 1996). This clus-
tering algorithm defines a cluster as a high density region of objects. EM
models a density function by a mixture of a Gaussian probability distribu-
tions (Scott, 2009).

The EM clustering algorithm is defined for both numerical and categorical
data. It uses a mixture model to represent k clusters and performs iterative
refinements to fit the model to the dataset. The mixture model probability
density function is defined as in Eq. (2.2):

Pr(x) =
k∑

ℓ=1

WℓPr(x|ℓ), (2.2)

where the coefficients Wℓ (mixture weights) represent the fraction of the
dataset D in the corresponding cluster, and x is an object of the dataset.

EM begins with an initial estimate of the parameter vector (Wℓ, µℓ, Σℓ) for
the density function; where µ represents the cluster centers, and Σ represents
the covariance matrix. Then, EM iteratively re-scores objects based on the
mixture density and refines the parameters based on the re-scored objects.

The main steps of EM are as follows:

1. Set j = 0;

2. Choose an initial mixture model parameters: W j
ℓ , µj

ℓ and Σj
ℓ, for ℓ =

1, . . . , k;

3. Compute the membership probability of all objects in each cluster by:
Pr(ℓ|x) = W j

ℓ Prj(x|ℓ)/Prj(x);

4. Update the mixture model parameters:

• W j+1
ℓ = 1

n

∑
x∈D Pr(ℓ|x),

• µj+1
ℓ =

∑
x∈D x · Pr(ℓ|x)/

∑
x∈D Pr(ℓ|x), and

• Σj+1
ℓ =

∑
x∈D Pr(ℓ|x)

(
x− µj+1

ℓ

) (
x− µj+1

ℓ

)T
/
∑

x∈D Pr(ℓ|x);

5. If |Ej − Ej+1| ≤ ϵ, stop. Else set j = j + 1 and repeat steps 3, 4
and 5. Ej is the log-likelihood of the mixture model at iteration j:

Ej =
∑

x∈D log
(∑k

ℓ=1W
j
ℓ Prj(x|ℓ)

)
.
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2.2 Cluster validation

Validating clustering results is a subjective process, since different results
can be considered as correct independently of the criterion used for validat-
ing. There are two kinds of clustering quality indices: internal and external
(Aggarwal and Reddy, 2013). The selection of the appropriate index is still
a challenge (Färber et al., 2010).

Internal indices (Liu and Dong, 2012; Zhao and Fränti, 2014) evaluate the
results of clustering algorithms using only quantities and features inherent
to the dataset. These indices evaluate whether a clustering result meets
certain criterion or not. In our experiments, we avoid using internal indices
because internal measures usually reflect the objective function of specific
clustering algorithms benefiting these types of algorithms at the validation
stage (Färber et al., 2010).

On the other hand, external indices (Rosenberg and Hirschberg, 2007;
Amigó et al., 2009) evaluate the results of clustering algorithms based on a
pre-specified structure, i.e. the correlation between two partitions. The usual
approach using external indices for cluster validation, is selecting labeled
datasets based on the assumption that the correct clustering of the dataset
is reflected by the class labels (Färber et al., 2010). The external quality
index F-measure (Makhoul et al., 1999) is one of the most used indices for
clustering validation (Breaban and Luchian, 2011; Fore and Dong, 2012), and
CPC uses F-measure to evaluate their clustering results. For this reason, in
this thesis we use F-measure to evaluate all algorithms.

F-measure evaluates the dependence between the dataset classes C and
a clustering result K; if they are independent, F-measure takes values close
to 0. The maximum value of F-measure is 1, which is achieved for identical
partitions. F-measure is defined as in Eq. (2.3):

F -measure(C,K) =
∑
Ci∈C

|Ci|
n

max
Kj∈K

{F (Ci, Kj)}, (2.3)

where

F (Ci, Kj) =
2 ·Recall(Ci, Kj) · Precision(Ci, Kj)

Recall(Ci, Kj) + Precision(Ci, Kj)
, (2.4)

n is the number of objects in the dataset, C is the set of classes, K is the set
of clusters built by the clustering algorithm, Recall(Ci, Kj) = nij/|Ci|, and
Precision(Ci, Kj) = nij/|Kj|, where nij is the number of objects of the class
Ci ∈ C belonging to the cluster Kj ∈ K.
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2.3 Patterns

In different application areas, an explanation about clustering results is
needed. The pattern-based clustering approach provides an explanation of
the clustering results in terms of a set of patterns that describe each cluster.
In pattern-based clustering, the definition of pattern, and how the patterns
are extracted from a dataset, are two key issues. In this thesis, a pattern is
defined as a conjunction of relational items Xi#Ri that describes an object
subset, where Ri is a value in the domain of the feature Xi, and # is one of
the relational operators “=”, “≤” and “>” (Michalski and Stepp, 1983).

Traditional pattern mining algorithms, like FP-growth (Han et al., 2004),
only use “=” as relational operator because they are defined for categorical
data. For example, the Zoo dataset (Frank and Asuncion, 2010) has 101
objects (animals); an example of a pattern for this dataset could be P =
([Legs = 2] ∧ [Eggs = true]). In this example, there are twenty objects
into the Zoo dataset that fulfill this pattern; therefore, this pattern covers
twenty objects in the dataset. Alternatively, these objects are covered by the
pattern. Given a pattern P , |P | denotes the length of the pattern, and it is
defined as the number of items in P , in our example |P | = 2; cov(P ) denotes
the set of objects covered by P ; and |cov(P )| denotes the number of these
objects, twenty objects in our example. The support of a pattern is expressed
as a fraction of objects in the dataset that are covered by the pattern; for
the pattern P in the example, sup(P ) = |cov(P )|/|dataset| = 20

101
≈ 0.2. A

pattern P is a superset of another pattern Q if all the items in Q appear in
P and |P | > |Q|. For example, the pattern P = ([Legs = 2]∧ [Eggs = true])
is a superset of the pattern Q = ([Legs = 2]).

2.4 Unsupervised decision tree induction

An unsupervised decision tree (Basak and Krishnapuram, 2005) represents a
hierarchical clustering. The internal nodes of these trees, including the root
node, are decision nodes which contain a feature-value item assigned to each
child node, while leaf nodes only represent clusters of objects.

The main purpose of an unsupervised decision tree induction algorithm
is to build a tree structure where each node represents a good cluster ac-
cording to a certain criterion. Algorithms like C4.5 (Quinlan, 1993), which
build supervised decision trees, can be modified to induce unsupervised trees,
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but split evaluations must be modified according to an unsupervised quality
criterion, i.e., a criterion that does not use class information.

For example, the splits in a tree can be evaluated by using an unsupervised
criterion for categorical features, which is based on entropy, defined in Eq.
(2.5) (Basak and Krishnapuram, 2005),

H = −
∑
i

ni log ni, (2.5)

where ni is the frequency of each value in a categorical feature. To induce an
unsupervised decision tree, at every decision node, the data is split based on
a single feature. The feature that reaches the maximum value in Eq. (2.5)
is selected for splitting. Then, the objects in the node are partitioned into
subsets, based on the selected feature, and each subset is allocated into a
child node. The induction process ends when, for every feature, the value of
(2.5) is less than an user predefined threshold.



Chapter 3

Related work

This chapter presents a review of the most relevant works on pattern-based
clustering. The content of the chapter is split in five sections. In the first
section, relevant pattern-based clustering algorithms in the state-of-the-art
are reviewed. In sections 3.2, 3.3 and 3.4, those pattern-based clustering
algorithms that are used in our experiments are explained in detail. Finally,
the last section presents a brief discussion of the related work.

3.1 Related pattern-based clustering algorit-

hms

Pattern-based clustering (or conceptual clustering) has been an active area
of research since 1980. Although several works have been reported (Michal-
ski and Stepp, 1983; Fisher, 1987; Hanson and Bauer, 1989; Bisson, 1992;
Mineau and Godin, 1995; Ralambondrainy, 1995; Carpineto and Romano,
1996; Perkowitz and Etzioni, 1999; Robardet and Feschet, 2001; Jonyer et al.,
2002; Ozdal and Aykanat, 2004; Mishra et al., 2004; Jänichen and Perner,
2005; Yang and Padmanabhan, 2005; Romero-Zaliz et al., 2006; Lisi, 2006;
Ayaquica-Mart́ınez et al., 2007; Xia and Xi, 2007; Wong and Li, 2008; Funes
et al., 2009; Baridam and Owolabi, 2010; Perner and Attig, 2010; Schmidt
et al., 2012; Fore and Dong, 2012; Liang and Forbus, 2014), it is important
to separate those works that, at first sight, could be considered as related to
pattern-based clustering, but indeed they follow a different approach.

Some works use the term pattern-based clustering for subspace clustering
(Wang et al., 2002; Pei et al., 2003; Agrawal et al., 2005; Kriegel et al., 2009;

12
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Günnemann et al., 2011; Boongoen et al., 2011; Voggenreiter et al., 2012;
Adler et al., 2013; Patel et al., 2013; Soltanolkotabi et al., 2014); however,
subspace clustering is about clustering objects using subsets of features. In
(Kriegel et al., 2009), a distinction has been made between different subprob-
lems such as projected clustering and biclustering, however both are out of
the scope of this doctoral research.

Text clustering, is another field where patterns are used for building clus-
ters (Beil et al., 2002; Fung et al., 2003; Yu et al., 2004; Malik and Kender,
2006; Kryszkiewicz and Skonieczny, 2006; Malik and Kender, 2008; Li et al.,
2008; Zhang et al., 2010; Morik et al., 2012; Zheng et al., 2014; Peng and Liu,
2015). Nevertheless, in these works, a pattern is a sequence of words that
appears frequently in a text. Following the idea that frequent sequences are
more useful for representing documents than only using frequent words, in
these works the patterns are commonly used for representing the documents
following the bag-of-words model. Once the documents are represented un-
der this model, a comparison function is used to build the clusters applying
a traditional clustering algorithm. Therefore, these works are also out of the
scope of this doctoral research.

Hereinafter, some relevant pattern-based clustering algorithms are de-
scribed. CLUSTER/2 was proposed by Michalski and Stepp (1983). This
algorithm groups a dataset in k predefined clusters in such a way the descrip-
tions (patterns) of the clusters are simple and describe well the dataset. In a
first step, CLUSTER/2 randomly selects k objects as seeds. Then, for each
seed, a pattern is built by using the feature-value items in the seed such that
these items are different from those items in the patterns built from the other
seeds. Based on these patterns, an optimized clustering is built by selecting
those patterns that contain intersecting feature-value items and modifying
these patterns to make them disjoint. Each pattern, and the objects covered
by it, represents a cluster. A quality criterion, based on the sparseness of
the clustering and the inter-cluster differences, is finally evaluated. If the
obtained partition is not better than the last partition, the algorithm stops;
otherwise, new object seeds are selected and a new iteration of the algorithm
begins.

Fisher (1987) developed the COBWEB clustering algorithm. This algor-
ithm incrementally builds a pattern tree where each node is a probabilistic
(instead of support) pattern that represents an object class. The tree is in-
crementally built by traversing the pattern tree trough the nodes that cover
the new object until reaching a leaf node where the new object is stored. All
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the probabilistic patterns associated to nodes, in the path followed to reach
a leaf, are updated with the information provided by the description of the
new object. During the traversal, if at same level there is no node covering
the new object, a new leaf node is built at the same level and the object
is stored into it. The traversal for building the pattern tree is guided by a
measure that evaluates the clustering at a certain level of the tree, which
allows to decide the path to follow during the construction of the pattern
tree. COBWEB is an incremental algorithm for hierarchical clustering and
it cannot partition the dataset into a predefined number of clusters.

Ralambondrainy (1995) proposed a pattern-based K-means algorithm
called CKM. This algorithm groups a dataset using the traditional K-means
clustering algorithm. Then, a characterization phase builds patterns for each
cluster. In this phase, a generalization for each feature must be defined. For
categorical features, the generalization must be previously provided by the
user. In each cluster, numerical features are discretized into three qualitative
values, for automatically building a generalization. These qualitative val-
ues define the lower, typical and upper intervals based on the mean and the
variance of the feature values. Then, a set of patterns is computed for each
cluster by finding conjuntions of features that cover at least β objects in a
cluster, and do not cover more than α objects in other clusters. In CKM the
patterns are extracted in a post clustering step, and they are not taken into
account for building the clusters, which is out of the main idea of the pattern-
based clustering approach. This work was extended by Ayaquica-Mart́ınez
et al. (2007) for mixed data using a general function, but still extracting the
patterns in a post clustering step.

Mishra et al. (2004) introduced a graph formulation for pattern-based
clustering with the objective of identifying a collection of patterns that des-
cribe the objects. The authors connect the pattern-based clustering problem
with the maximum edge biclique problem (Peeters, 2003) by defining a bi-
partite graph G = (U,W,E), where U is the set of objects, W is the set of
all feature-value combinations, and E is the set of edges between u ∈ U and
w ∈ W such that u has the w feature-value combination. A biclique is a
subgraph B = (UB,WB, EB) where each vertex in UB is connected to every
vertex of WB. A biclique naturally corresponds to a pattern-based cluster
since each object u ∈ UB satisfies the conjunction of features in WB. A max-
imum edge biclique corresponds to the best conjunctive cluster, where |WB|
is precisely the length of the conjunction and |UB| is the number of objects
that satisfy the conjunction. This algorithm follows an heuristic to discover
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the k best conjunctive clusters looking for the k largest clusters that do not
overlap too much. However, the clusters discovered by this approach may
overlap and they also may not cover all the objects in U .

The Greedy Hierarchical Itemset-based Clustering (GHIC) algorithm was
proposed by Yang and Padmanabhan (2005). This algorithm extracts patt-
erns from a dataset with the Apriori (Agrawal et al., 1996) pattern mining
algorithm. Then, a new dataset is generated, where the rows represent the
objects and the columns represent the presence or abscence of the extracted
patterns. The GHIC clustering algorithm creates a hierarchical structure
that, at each step, split the dataset in two clusters by maximizing an ob-
jective function that sum the difference between clusters and the similarity
inside each cluster. The difference between clusters follows the intuition that
the support of any pattern to a cluster should be greater than the support to
the other cluster. For each pattern, the difference between clusters is com-
puted based on the difference of the support values of the two clusters and
the sum of the support values in these clusters. The total difference between
clusters is computed as the sum of the differences of all patterns. On the
other hand, the similarity inside each cluster Ki is measured as the number
of patterns in Ki. A balancing factor is included into the objective function
to create clusters with approximately the same number of objects. A greedy
heuristic is proposed to select, at each step, the partition of objects covered
by a pattern and its complement, such that it maximizes the objective func-
tion. It is important to comment that this algorithm does not partition the
dataset into a predefined number of clusters.

Wong and Li (2008) proposed a pattern-based clustering algorithm to si-
multaneously cluster patterns and objects. Unlike traditional pattern mining
algorithms, which extract patterns based on feature-value frequencies, this
algorithm extracts patterns from categorical data using correlation among
objects. The idea is to evaluate if the occurrence of a feature-value item in
an object is random or not, by evaluating the difference between the real
number of occurrences and the expected number of occurrences. If a priori
knowledge about the domain is not available, the authors propose to compute
the expected number of occurrences for a feature-value item as the number
of objects in the dataset divided by the number of different values in this
feature. Each pattern is an itemset, represented as conjunctions of items
with the form [feature = value], in which the occurrence of each item is not
random. In order to cluster the extracted patterns and their associated ob-
jects, this algorithm defines some distance measures between patterns, which
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consider both the matched objects and the matched features. Then, a hi-
erarchical K-means is applied by iteratively reducing the number of clusters
(starting at n: number of objects, until k: number of desired clusters), and
merging the nearest clusters at each level of the hierarchy.

Fore and Dong (2012) reported the CPC algorithm. In the first step, CPC
mines all frequent patterns in a dataset using the FP-growth algorithm (Han
et al., 2004). Then, the extracted patterns are grouped into equivalence
classes. The algorithm has the particular idea of defining a relationship
between patterns, which is used to cluster the set of patterns in k clusters. In
order to cluster the patterns, CPC computes k initial pattern seeds through a
greedy algorithm. The selected seeds are those patterns that are less similar
among them. Thus, each pattern seed corresponds to a cluster, and each
remaining pattern is associated to the cluster where it reaches the greatest
similarity. After building clusters of patterns, the objects in the dataset are
assigned to the clusters based on pattern matching.

Given that the pattern-based clustering algorithm proposed in this the-
sis uses unsupervised decision trees, those clustering algorithms based on
unsupervised decision trees (Blockeel H., 1998; Liu et al., 2000; Basak and
Krishnapuram, 2005; Basak, 2008; Dimitrovski et al., 2012) are also included
as related work. Particularly, from this type of algorithms, the CLUS algo-
rithm proposed by Blockeel H. (1998) is the closest to our work because it
generates an unsupervised decision tree. In this tree, each leaf corresponds
to a cluster, which is directly interpretable in the form of feature-value items.
CLUS induces a binary tree by selecting, at each step, the split that max-
imizes the distances among the prototypes of the object sets belonging to
the two new nodes. This algorithm does not partition the dataset into a
predefined number of clusters.

Since in our experiments the algorithms COBWEB, CPC and CLUS are
used, in the next sections these clustering algorithms are described in more
detail.

3.2 COBWEB

The COBWEB pattern-based clustering algorithm was developed by Fisher
(1987). COBWEB is an incremental algorithm for hierarchical clustering.
This algorithm incrementally builds clusters using a classification tree where
each node is an object class. These nodes are associated to a list of feature-
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value items and their respective probabilities, computed in terms of the ob-
jects classified under the nodes. The classification of a new object is per-
formed by descending the tree along the appropriate path of nodes, testing
the different feature-value items.

COBWEB uses a heuristic evaluation measure, called category utility, to
guide the search. This measure is a trade-off between intra-cluster similar-
ity and inter-cluster dissimilarity for objects described in terms of nominal
feature-value items. The intra-cluster similarity is computed using Pr(Ai =
Vij|Kl), where Ai = Vij is a feature-value item and Kl is a cluster. The
larger this probability, the greater the proportion of cluster members sharing
the value Vij and the more predictable this value is for cluster members. The
inter-cluster similarity is a function of Pr(Kl|Ai = Vij). The larger this prob-
ability, the fewer objects in other clusters that share this value and the more
predictive this value is for the cluster. These probabilities can be combined
to give an overall measure of partition quality, as it is defined in Eq. (3.1):

H =

∑n
l=1 Pr(Kl)[

∑
i

∑
j (Pr(Ai = Vij|Kl)

2 − Pr(Ai = Vij))
2]

|Kl|
, (3.1)

where the probability Pr(Ai = Vij) weights the importance of individual
values, and the denominator allows comparing clusters of different sizes.

COBWEB represents patterns as a list of feature-values and their associ-
ated probabilities, i.e., a probabilistic pattern. In this algorithm, each node
in the tree is labeled by a probabilistic pattern which summarizes the objects
classified under the node.

COBWEB includes operators for merging and splitting nodes. When an
object is incorporated into the classification tree, only the two best leaf nodes
(clusters) of the same level are considered for merging. Merging takes these
nodes and combines them if the resultant partition has better quality, a new
node is created and the probabilities of the feature-value pairs in the new
node are updated. The two original nodes are made children of the newly
created node.

Splitting is considered only for the children of the best node among the
existing leaf nodes. As in merging, splitting should increase the partition
quality. A leaf node (of a partition of n nodes) may be deleted and its
children promoted, resulting in a partition of n + m − 1 nodes, where m is
the number of children of the deleted node.

In COBWEB, the induction of the tree starts with a root node and for
each object in the dataset the best of the four operators of the algorithm is
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applied (incorporating the object to an existing node, creating a new cluster,
merging two nodes, or splitting one node). At the end, the resulting tree
corresponds to a hierarchical structure of patterns and objects, where the
leaf nodes correspond to the desired partition of the dataset. It is important
to remark that in COBWEB the resultant number of clusters cannot be set
by the user.

In our experiments, the implementation of COBWEB distributed in Weka
(Hall et al., 2009) is used. This implementation includes aspects of CLAS-
SIT (Gennari et al., 1989), which is an extension of COBWEB to handle
numerical data.

3.3 CPC

Fore and Dong (2012) reported the CPC algorithm. As a first step, CPC
mines all patterns in a dataset using the well-known FP-growth algorithm
(Han et al., 2004). Then, to reduce the number of patterns, CPC applies a
filtering process based on equivalence classes.

Let W be the set of all the patterns computed by FP-growth, each pattern
P ∈ W , is associated with an equivalence class (EC ) defined as EC(P ) =
{Q ∈ W |cov(Q) = cov(P )}. A minimal generator (MG) pattern in an EC is
a pattern that is not a superset1 of any other pattern in the same EC (there
could be more than one MG pattern in an EC). A closed pattern (CP) is the
longest pattern in an EC. Given an EC, mgLen(EC) denotes the average
length of the MG patterns in EC, and Pmax denotes the length of the closed
pattern of EC. Given a pattern P from an equivalence class EC, the length
ratio of P is defined as |Pmax|/|P |. In the rest of the document we treat
equivalence classes as patterns.

For efficiency, the CPC algorithm works with equivalence classes, rather
than patterns. Given a pattern set PS, cov(PS) denotes

∪
P∈PS cov(P ). We

say that the pattern P overlaps a set of objects OS if cov(P ) ∩ OS ̸= ∅. A
pattern X ∈ W different from P1 and P2 is a mutual pattern of P1 and P2 if
cov(X) intersects both cov(P1) and cov(P2).

In order to determine if two patterns should belong to the same cluster,
CPC defines a function to evaluate the relationship between patterns. The
key idea is that two patterns must be in the same cluster if they have many

1A pattern P1 is a superset of another pattern P2 if all the items of P2 appear in P1.
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mutual patterns, even though they support different objects. This function
is named Mutual Pattern Quality, and it is defined in Eq. (3.2).

MPQ(P1, P2) =

∑
X∈W

(
|cov(P1)∩cov(X)|·|cov(P2)∩cov(X)|

cov(X)
·
(

|Xmax|
|X|

)2)
PQ(cov(P1)) · PQ(cov(P2))

(3.2)

Where PQ is defined in Eq. (3.3).

PQ(OS) =
∑
P

(
|OS ∩ cov(P )| ·

(
|Pmax|
|P |

)2
)

(3.3)

Once the patterns have been mined and filtered, CPC randomly selects
m different sets having each one k pattern seeds. Each pattern pair P and
Q, in each one of the sets, must hold the overlap constraint defined as in Eq.
(3.4).

|cov(P ) ∩ cov(Q)| ≤ threshold/(k − 1) ·min(|cov(P )|, |cov(Q)|) (3.4)

Eq. (3.4) means that the intersection between the sets of objects sup-
ported by the patterns P and Q must not exceed a previously determined
percent of the minimum support of those patterns. The authors of CPC sug-
gest to use threshold = 0.05. From the m pattern sets, the one with lowest
maximum MPQ value between any pair of patterns in the set, is chosen as
the initial seed. To refine the initial seed set, the pair of seed patterns having
the maximum MPQ value is modified by changing one pattern of the pair by
another pattern R ∈ W such that the MPQ value decreases. This refinement
is repeated until no improvement can be found.

For each pattern seed S, which represents the cluster Ki, 1 ≤ i ≤ k, all
patterns Q having high MPQ(S,Q) values and fulfilling the overlap con-
straint are added to the cluster Ki. In practice, it is important to highlight
that most of the patterns do not meet the overlap constraint, therefore it is
necessary to add the remaining patterns by object overlapping through the
Pattern-Cluster Membership measure (PMCM), defined in Eq. (3.5). The
pattern P will be assigned to the pattern cluster Ki where PMCM takes the
maximum value. This step creates a pattern set for each cluster Ki.
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PMCM(P,Ki) =
|cov(P ) ∩ cov(Ki)| ·

(
|Pmax|
|P |

)2
PQ(cov(Ki))

(3.5)

Once pattern clusters have been built, the objects in the dataset are
grouped into the clusters using the vote (defined in Eq. (3.6)) that each
pattern P gives to those objects that P supports (matches).

vote(P ) =
PMCM(P,K1st) − PMCM(P,K2nd)∑k

i=1 PMCM(P,Ki)
·
(
|Pmax|
|P |

)2

, (3.6)

where K1st and K2nd respectively denote the two clusters associated with the
highest and second-highest PMCM values for the pattern P .

In this way, each pattern cluster Ki gives a vote to an object O by adding
the votes of those patterns in Ki that support O. Thus, each object is
assigned to the cluster where it reaches its maximum Object Cluster Mem-
bership value (OCM), defined in Eq. (3.7).

OCM(O,Ki) =
∑

P∈Ki,O∈cov(P )

vote(P ) (3.7)

At the end, CPC obtains a set of clusters, each one associated to a set of
patterns that describes the objects in the cluster.

3.3.1 Complexity analysis of CPC

In this subsection, the time and space complexity of CPC is analyzed. CPC
has two main steps, first it extracts patterns using FP-growth, and then it
build the clusters based on the extracted patterns. Therefore, the complexity
of CPC is the sum of the complexity of FP-growth and the complexity of the
clustering process.

In (Kosters et al., 2003), a complete analysis of the time and space com-
plexity of FP-growth is provided. Eq. (3.8), provided in (Kosters et al.,
2003), shows the number of operations that FP-growth does for extracting
the patterns.

∑
P∈AP

m∑
|P |

|cov(P )| (3.8)
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In Eq. (3.8), AP is the set of all patterns in a dataset, |P | denotes the
number of features involved in a pattern P , |cov(P )| is the number of objects
covered by P , and m is the number of features in the dataset. Since the
value of Eq. (3.8) is related to the number of patterns in the dataset, the
time complexity of FP-growth is, in the worse case, related to the maximum
number of patterns that can be extracted from a dataset. In a dataset with
n objects and m features, considering the minimum support value as 1/n
(any feature-value combination is frequent), for each object there could be
2m − 1 patterns. Then, the maximum number of patterns for a dataset is
n(2m− 1). In addition, the time complexity of

∑m
|P | |cov(P )| is O(mn), since

the complexity of computing |cov(P )| is O(nm) because all objects must
be verified in all the features involved in a pattern, which are at most m.
Therefore, the time complexity of FP-growth is O(m2n22m).

The space complexity of FP-growth is related to the total number of
nodes in the FP tree. This number of nodes is also determined through Eq.
(3.8) (Kosters et al., 2003). Thus, the space complexity of FP-growth is
O(m2n22m).

On the other hand, the complexity analysis of the clustering step of CPC
is reported in (Fore and Dong, 2012). The time complexity of clustering with
CPC is O(p2n), while the space complexity of CPC is O(p2+pn), being p the
number of patterns. Thus, since the maximum number of patterns is n(2m−
1), these complexities are O(n3(2m − 1)2) and O(n2(2m − 1)2 + n2(2m − 1))
respectively.

3.4 CLUS

The CLUS algorithm (Blockeel H., 1998) induces an unsupervised decision
tree for partitioning a dataset in a hierarchy of clusters. CLUS defines a
distance between different clusters of objects based on a given distance d
between objects (any distance can be used). The algorithm assumes the
existence of a prototype function p that computes the prototype p(Ki) of
a cluster Ki as an object in the same feature space of the dataset objects
(for example, the prototype can be the mean). Then, the distance between
two clusters Ki and Kj is defined in Eq. (3.9) as the distance between the
prototypes of the clusters.

d(Ki, Kj) = d(p(Ki), p(Kj)) (3.9)
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During the induction of the tree, CLUS splits a node (cluster) K into
two disjoint nodes (subclusters) K1 and K2, if the distance between the two
new nodes, computed by using Eq. (3.9), is the maximum among all the
candidate splits. A candidate split is any feature-value pair that appears in
the node that is divided.

The induction process continues over child nodes until the stopping cri-
terion defined in Eq. (3.10) reaches less values than a predefined threshold.

F =
SS/(n− 1)

(SSL + SSR)/(n− 2)
(3.10)

In Eq. (3.10), SS is the sum of squared differences from the mean inside
the parent node, SSL and SSR are the sums (SS) for the two children, and
n is the total number of objects in the parent node.

This algorithm does not partition the dataset into k predefined number
of clusters, since the final number of clusters corresponds to the number of
leaf nodes in the induced tree.

3.5 Concluding remarks

In pattern-based clustering, it is desirable that algorithms return accurate
results in a short time, with just a few patterns for describing the clusters.
This is very important, from the user’s point of view, in situations when
an explanation of the results is needed. In general, obtaining clusters and
patterns from data has a high computational cost (Michalski and Stepp, 1983;
Wong and Li, 2008; Fore and Dong, 2012). To avoid this, some algorithms
follow an approach for sequentially adjusting clusters and patterns (Michalski
and Stepp, 1983; Fisher, 1987; Blockeel H., 1998). However, these algorithms
select a single pattern per cluster, discarding several patterns that could
be useful to obtain better clustering results. In contrast, other algorithms
(Mishra et al., 2004; Yang and Padmanabhan, 2005; Wong and Li, 2008; Fore
and Dong, 2012) use traditional pattern mining algorithms like FP-growth,
but it produces a huge amount of patterns, which leads to a high cost at the
clustering stage.

On the other hand, in most of the pattern-based clustering algorithms
(Fisher, 1987; Mishra et al., 2004; Yang and Padmanabhan, 2005; Wong
and Li, 2008; Fore and Dong, 2012) numerical features must be a priori
discretized to extract patterns. This may cause information loss, reducing
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the application areas of these algorithms. For this reason, in this thesis, we
propose a pattern-based clustering algorithm that extracts a small subset of
patterns useful for clustering, instead of mining all patterns, without applying
an a priori discretization on numerical data. This aims to obtain better
clustering results than those obtained by other state-of-the-art pattern-based
clustering algorithms.



Chapter 4

Pattern-based clustering
algorithms

This chapter presents four novel results. First, Section 4.1 introduces three
new pattern mining algorithms that, instead of extracting all patterns, mine
a subset of all patterns, useful for clustering categorical, numerical and mixed
datasets, respectively. Second, Section 4.2, presents a new pattern-based clu-
stering algorithm that uses the patterns extracted to build a high quality set
of clusters. Third, Section 4.3 introduces the analysis of the computational
complexity of the proposed algorithms. Finally, the last section presents our
concluding remarks about the algorithms introduced in this chapter.

4.1 New pattern mining algorithms for clus-

tering

Extracting patterns for clustering by using traditional pattern mining alg-
orithms produces a huge amount of patterns, which considerably increases
the cost of the clustering process. These algorithms require to apply data
discretization over all the numerical features before mining the patterns. Mo-
tivated by these drawbacks, we propose three new pattern mining algorithms,
aiming at overcoming these limitations.

24
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4.1.1 Mining patterns for clustering categorical data-
sets

This subsection introduces a new pattern mining algorithm that mines a sub-
set of all patterns useful for clustering exclusively categorical data (PMCC).
This algorithm is based on building a collection of diverse unsupervised deci-
sion trees and extracting a subset of patterns from them, instead of extracting
all patterns.

In order to induce an unsupervised decision tree from a categorical dat-
aset, we define a new split evaluation criterion for building internal nodes in
an unsupervised decision tree. Unlike traditional algorithms for building un-
supervised decision trees, PMCC introduces a new heuristic to generate more
candidate splits than those generated by conventional methods. It returns,
as result, a collection of diverse unsupervised decision trees, which allows to
get good patterns for clustering.

Inducing an unsupervised decision tree

For building internal nodes of an unsupervised decision tree, the candidate
splits must contain appropriate feature-value items to build good patterns.
In an unsupervised context, pattern cover is a good quality measure to select
patterns (Fore and Dong, 2012), but using only pattern cover creates a bias
toward features with fewer values.

For example, suppose that a feature has only two different values in a
collection of 100 objects, covering 51 and 49 objects respectively. On the
other hand, suppose there is another feature which has seven different values,
six items cover 10 objects each one and the seventh item covers 40 objects.
In the second feature, the cover of the seventh item is four times greater than
the other ones, while the cover values in the first feature are almost the same.
This example shows that a feature with few values favors higher cover values,
whereas many feature values favors lower cover values. For this reason, the
cover of an item, jointly with the number of different values in each feature,
are used in order to select appropriate feature-value items as splits.

Following this idea, a split evaluation criterion Qcat for a decision node
N is defined in Eq. (4.1). This quality measure reduces the bias towards
features with fewer values. It is important to mention that a node N is split,
with the feature fj, by building one child node for each different value of fj
that fulfills the support threshold constraint, imposed by the user.
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Qcat (fj) = (max
vi∈Vj

{|cov(“fj = vi”)|})|Vj| (4.1)

In Eq. (4.1), Vj is the set of values of feature fj in the objects of the node
N ; |cov(“fj = vi”)| is the number of objects, in node N , with value vi for
feature fj. Greater values for Qcat(fj) correspond to feature-value items with
better quality. Thus, the best candidate split will have at least one child node
with many objects having the same value vi in feature fj, in comparison to
the number of objects in other child nodes of the same split. In the example
described in the previous page, the first feature has Qcat(f1) = 102 while the
second feature has Qcat(f2) = 280.

Another example: Table 4.1 shows six animals from the Zoo dataset,
where 3 animals are mammals and 3 are invertebrates. Only two features
are selected for our example, Aquatic and Legs. For this example, the Aquatic
feature has two values: true and false, while the Legs feature has three values:
0, 2 and 4.

Animal name Aquatic Legs Class
sealion true 2 mammal
elephant false 4 mammal
leopard false 4 mammal
crab true 4 invertebrate
seawasp true 0 invertebrate
worm false 0 invertebrate

Table 4.1: Six animals from the Zoo dataset.

To illustrate the effect of Eq. (4.1), the results of spliting the data in Table
4.1, with both features Aquatic and Legs, are shown in Fig. 4.1. This figure
shows unsupervised decision trees where the number of objects is represented
with m for mammals and i for invertebrate.

For the Aquatic feature, both items (patterns) [Aquatic = false] and
[Aquatic = true] have a cover of 3. For the Legs feature, [Legs = 2] has
a cover of 1, [Legs = 0] has a cover of 2, and [Legs = 4] has a cover of 3.
Applying the quality measure (4.1), Aquatic has a quality of 6, while Legs
has a quality of 9. Therefore, Legs is better than Aquatic, according to Eq.
(4.1), for splitting the data in Table 4.1, as shown in Fig. 4.1.

For inducing an unsupervised decision tree, PMCC splits the data by
selecting the best split at each step, using the proposed split quality measure



CHAPTER 4. PATTERN-BASED CLUSTERING ALGORITHMS 27

m:3, i:3

m:2, i:1

Aquatic=false

m:1, i:2

Aquatic=true

m:3, i:3

m:1

Legs=2

m:2, i:1

Legs=4

i:2

Legs=0

Figure 4.1: Candidate splits using the Aquatic feature (left) and the Legs
feature (right).

(4.1), until meeting the stop criterion. The stop criterion is met when: 1) the
number of objects in a new child node is less than µ · |T | (µ is the minimum
support threshold, |T | is the number of objects in the entire dataset), it
means that the node does not fulfill the support constraint; or 2) the number
of new child nodes is less than two, because each parent node should have at
least two child nodes.

The tree induced by this algorithm, using the data in Table 4.1 with
µ = 0.15, is shown in Fig. 4.2.

m:3, i:3

m:1

Legs=2

m:2, i:1

Legs=4

m:2

Aquatic=false

i:1

Aquatic=true

i:2

Legs=0

Figure 4.2: Unsupervised decision tree built by Alg. 1, using the data in
Table 4.1 with µ = 0.15.

Extracting patterns

Once an unsupervised decision tree has been built, any conjunction of feature-
value items in any path from the root node to any other node in the tree is
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considered as a pattern. It is important to notice that these patterns have
support values greater than the minimum support threshold fixed by the
user; otherwise, according to our induction algorithm, the nodes in the path
would not have been created. Therefore, once an unsupervised decision tree
has been built, we extract all possible patterns from this tree by a depth-first
traversal (in order to maintain the feature order in the extracted patterns)
by starting at the root of the tree. When a node is visited, the conjunction
of items in the path from the root to this node generates a new pattern.
Recursively, all the nodes of the tree are visited.

Using this algorithm, the patterns extracted from the tree in Fig. 4.2 are:

• [Legs = 2]

• [Legs = 4]

• [Legs = 0]

• [Legs = 4 ∧ Aquatic = false]

• [Legs = 4 ∧ Aquatic = true]

Generating several diverse unsupervised decision trees

Extracting the patterns from only one unsupervised decision tree produces
few patterns as result. Therefore, we propose to build several different trees
(the amount of trees is a parameter). We select a trade-off between the best
tree (the one with the highest Qcat value in all splits) and the generation of
all possible trees, because the former is unique, and the latter is unfeasible
in practice given its time complexity.

Once the user specifies the amount of trees to build, the generation of
diverse trees is performed by randomly selecting a subset of features as
RandomForest (Breiman, 2001) does. For each single tree, first a subset
of m = log2(|F |) (Breiman, 2001) features is randomly selected, where F is
the set of features in the dataset. Then, it is selected as the best split in
the first level of the tree the one with the highest Qcat among all possible
splits for these m features. The induction continues in the same way for
the next levels of the tree while the stop condition is not met. Following
this process, all the generated trees should be different due to the random
component of the feature subset selection at every level. Finally, after the
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patterns have been extracted from the collection of trees, duplicated patterns
are eliminated.

The pseudocode of the induction algorithm appears in Alg. 1; while the
pseudocode of the pattern extraction algorithm appears in Alg. 2.

Algorithm 1: UD3cat - Induction of an unsupervised decision tree for
categorical datasets.

Data: T - dataset,

µ - minimum support threshold.

Result: UDT - an unsupervised decision tree.

Build the root node N, with all the objects in T ;

Select randomly a subset F ′ of m = log2(|F |) features, where F is the
set of features in T ;

foreach feature fj in F ′ with two or more values that fulfill the
support constraint do

Compute Qcat(fj) as defined in 4.1;

foreach value vi of fj that fulfills the support constraint do
Create the item “fj = vi”;

if Qcat values were computed then
Select the candidate split fj with the highest Qcat value;

foreach item “fj = vi” created do
Assign New child of N = UD3cat(cov(“fj = vi”,T), µ);

return UDT ;

4.1.2 Mining patterns for clustering numerical datas-
ets

In this subsection, we introduce a new pattern mining algorithm that extracts
only a subset of all patterns, useful for clustering exclusively numerical da-
tasets (PMCN), without applying an a priori discretization on numerical
features.

Traditional pattern mining algorithms require to discretize numerical fea-
ture. Thus, for example, in a dataset the feature Age could be split in
the ranges (0,10], (10,20], (20,30], (30,40], etc. If we need a pattern that
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Algorithm 2: RPE - Recursive Pattern Extraction.

Data: node - current node (initially is the root node of the
unsupervised decision tree),

path - list of items in the current path (initially is null),

patterns - list of patterns (initially is empty).

Result: patterns - list of patterns.

foreach child in node.children do
path.Add(child.item);

pattern = new Pattern();

foreach item in path do
// Create a pattern from the items of the current path

pattern.Add(item);

patterns.Add(pattern);

// Depth search of new items

RPE(child, path, patterns);

path.RemoveLastElement();

return patterns ;
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covers all the persons with an age in the range (0,25], a pattern might be
Age = (0, 10] ∨ Age = (10, 20] ∨ Age = (20, 30], which also covers those per-
sons with age between 26 and 30. On the contrary, PMCN avoids an a priori
discretization step using the relational operators ”≤” and ”>” for numerical
features, which allows to build the pattern [Age ≤ 25].

For mining patterns, we use a collection of binary unsupervised decision
trees generated through a new induction procedure. The proposed induc-
tion procedure includes a new split evaluation criterion involving numerical
features to build internal nodes of the tree.

Inducing an unsupervised decision tree

We propose to induce a binary unsupervised decision tree by creating splits
that maximize the difference between the feature-value means (centroids)
of the child nodes. This reflects the criterion that the objects in different
clusters should be as dissimilar as possible, which is a widely used clustering
criterion.

For each feature fj, let Vj be the set of all values that feature fj takes
in the objects of a node N . The induction algorithm creates, for each value
vi ∈ Vj, two new child nodes (one candidate split) with the items fj ≤ vi and
fj > vi, respectively. We associate to each child node those objects in the
parent node that fulfill the corresponding item. Then, for each new node, we
compute the mean of the values of feature fj as in Eq. (4.2).

M =

∑
vi∈Vj

vi

|Vj|
. (4.2)

Eq. (4.3) defines the split evaluation criterion Qnum, for a decision node
N split with feature fj and value vi, as the difference between the means of
the left and right child nodes; normalized by the range of values of feature
fj in the node N .

Qnum(fj, vi) =
|ML −MR|

max {Vj} − min {Vj}
, (4.3)

In Eq. (4.3), ML and MR are the means of the left and right child nodes
respectively, that would be produced by the candidate split (fj, vi), while
max {Vj} and min {Vj} are the maximum and minimum values that feature
fj takes in the parent node, respectively. The denominator in Eq. (4.3)
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Figure 4.3: A) Synthetic dataset with 30 objects and 3 clusters. B) The best
two splits according to Eq. (4.3).

normalizes Qnum(fj, vi). High values of the quality means that objects from
different clusters are dissimilar in feature fj.

For example, Fig. 4.3A) shows a synthetic dataset with 30 objects gro-
uped in 3 well defined clusters. Some candidate splits for partitioning the
dataset are (X, 2.2), (X, 6.2) and (Y, 3.1). In order to select the best split
among these three candidates, we compute, for each candidate, the means for
the corresponding feature. For the first candidate split (X, 2.2), the means
of the values that feature X takes in the child nodes are 1.67 and 6.52; while
for the second candidate split (X, 6.2) the means for feature X in the child
nodes are 3.21 and 8.29. After applying the split evaluation criterion, the
values of Qnum(X, 2.2) and Qnum(X, 6.2) are 0.54 and 0.57 respectively. For
the candidate split (Y, 3.1), the means for feature Y in the child nodes are
2.16 and 7.18. After normalization, the value of Qnum(Y, 3.1) is 0.7, which
is the highest. For this reason, in this example, the best candidate split for
partitioning the dataset, according Qnum, is (Y, 3.1). In the next step, the
best candidate split is (X, 2.2), like Fig. 4.3B) shows.

For inducing an unsupervised decision tree, each node of the tree is split
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C1:10, C2:10, C3:10

C1:10, C3:10

Y ≤ 3.1

C1:10

X ≤ 2.2

C1:5

Y ≤ 2.3

C1:5

Y > 2.3

C3:10

X > 2.2

C3:5

Y ≤ 1.8

C3:5

Y > 1.8

C2:10

Y > 3.1

C2:5

X ≤ 4.5

C2:5

X > 4.5

Figure 4.4: Tree induced by Alg. 3, using the data in Fig. 4.3A) with a
minimum support threshold µ = 0.15.

by selecting the best candidate split according to (4.3) (i.e. the one with the
highest Qnum value). The process stops when one of the new child nodes (or
both) does not fulfill the support defined by the user, as PMCC does.

The tree induced by Alg. 3, using the data in Fig. 4.3A) with a minimum
support threshold equal to 0.15, is shown in Fig. 4.4. The number of objects
in each node is represented by C1, C2 and C3 for the three clusters. Note
that the number of levels in the tree depends on the support threshold, which
is the stopping criterion of the induction process.

Simplifying patterns

Once the patterns have been extracted by applying Alg. 2, each pattern
is simplified by joining redundant items of the same feature, in order to
obtain more compact patterns. For patterns built from numerical features,
two items of the same feature are redundant if one item is more general
than the other one. An item I1 is more general than another item I2 if all
objects in the universe that fulfill I1 also fulfill I2, but not vice versa. If there
are redundant items in a pattern, the more general item is eliminated. An
example of redundant items is:

• [Y ≤ 2.3 ∧ Y ≤ 3.1], which is simplified as [Y ≤ 2.3].
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The patterns extracted from the tree in Fig. 4.4, after simplifying redun-
dant items, are:

• [Y ≤ 3.1]

• [X ≤ 2.2 ∧ Y ≤ 3.1]

• [X ≤ 2.2 ∧ Y ≤ 2.3]

• [X ≤ 2.2 ∧ Y > 2.3 ∧ Y ≤ 3.1]

• [X > 2.2 ∧ Y ≤ 3.1]

• [X > 2.2 ∧ Y ≤ 1.8]

• [X > 2.2 ∧ Y > 1.8 ∧ Y ≤ 3.1]

• [Y > 3.1]

• [X ≤ 4.5 ∧ Y > 3.1]

• [X > 4.5 ∧ Y > 3.1]

Generating several diverse unsupervised decision trees

Since a single tree generates too few patterns, in our proposed miner alg-
orithm we propose to build several different trees (the number of trees is
specified by the user). To guarantee diversity among trees, we use the same
diversity generation strategy previously explained in Subsection 4.1.1; but
evaluating the splits with Qnum. Again, after extracting the patterns from
the trees, PMCN eliminates duplicate patterns.

The pseudocode of the induction algorithm appears in Alg. 3.

4.1.3 Mining patterns for clustering mixed datasets

In this subsection, a new pattern mining algorithm, that extracts patterns
for clustering mixed datasets (PMCM), is proposed. The proposed pattern
mining algorithm takes the advantages of the split evaluation criteria previ-
ously proposed for PMCC and PMCN. Since the proposed split evaluation
criteria are not directly comparable, we introduce a new strategy for selecting
the best split.
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Algorithm 3: UD3num - Induction of an unsupervised decision tree
for numerical datasets.

Data: T - dataset,

µ - minimum support threshold.

Result: UDT - an unsupervised decision tree.

Build N the root node of UDT, with all the objects in T ;

Select randomly a subset F ′ of m = log2(|F |) features, where F is the
set of features in T ;

foreach feature fj in F ′ do
foreach value vi of fj in N do

Create two items: “fj ≤ vi” and “fj > vi”;

if the two items fulfill the support constraint then
Compute Qnum(fj, vi) as defined in Eq. (4.3);

if Qnum values were computed then
Select the candidate split with the highest Qnum value;

Assign Left child of N = UD3num(cov(“fj ≤ vi”,T), µ);

Assign Right child of N = UD3num(cov(“fj > vi”,T), µ);

return UDT ;
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Inducing an unsupervised decision tree

A new strategy is introduced to select the best split between categorical and
numerical features for mixed datasets. The split evaluation criteria Qcat
and Qnum, introduced in Eq. (4.1) and Eq. (4.3) respectively, are defined in
different ranges of values; making them non comparable. This is a problem
when we want to select the best split in datasets containing both mixed cate-
gorical and numerical features. In order to take into account the advantages
of both measures, a modification to RandomForest is proposed to select the
best split.

For a single tree in RandomForest, we propose to select the best categori-
cal split and the best numerical split from a subset of m = log2(|F |) features,
according to the Qcat and Qnum split criteria. Then, one of these two splits
is randomly selected, taking into account the proportion of categorical and
numerical features in the subset of m features. The probability of selecting
the best numerical split is num

num+cat
, while the probability of selecting the best

categorical split is cat
num+cat

1. Thus, we randomly generate a number between
0 and num + cat − 1; if the random number is less than num, we select
as split for node N the best numerical split. Otherwise, we select the best
categorical split.

For example, the Zoo dataset has 17 features. The number of features
that are evaluated at each step is m = log2(17) ≈ 4. If one of the four
features is numerical and the other three features are categorical, the best
numerical split and the best categorical split are taken into account to deter-
mine which one of them will be used as split for the node. Then, one split is
randomly selected among the two candidate splits, but the categorical split
has the priority, since there are more categorical features in m than numerical
features. To do that, a number between one and four is randomly selected.
In this example, if the random number is one, then the numerical split will
be selected for the node. Otherwise, the categorical split will be selected.

A possible tree induced by PMCM, using the data in Table 4.1 with
minimum support µ = 0.15, is shown in Fig. 4.5.

Extracting patterns

In order to extract the patterns from a single tree, we apply the same Alg.
2. Additionally, numerical features are simplified to obtain more compact

1num and cat are, respectively, the amount of numerical and categorical features in m.
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m:3, i:3

m:1, i:2

Legs ≤ 2

i:1

Aquatic=false

m:1, i:1

Aquatic=true

m:2, i:1

Legs > 2

m:2

Aquatic=false

i:1

Aquatic=true

Figure 4.5: Tree induced by Alg. 4, using the data in Table 4.1 with µ = 0.15.

patterns by joining redundant numerical items, as it is done in PMCN.
The patterns extracted from the tree in Fig. 4.5 are:

• [Legs ≤ 2]

• [Legs ≤ 2 ∧ Aquatic = false]

• [Legs ≤ 2 ∧ Aquatic = true]

• [Legs > 2]

• [Legs > 2 ∧ Aquatic = false]

• [Legs > 2 ∧ Aquatic = true]

Generating several diverse unsupervised decision trees

As we have already commented, the number of extracted patterns from a
single tree is very small, thus we propose to build several different trees.
To guarantee diversity among trees, it is used the same diversity genera-
tion strategy employed in the previously proposed algorithms. Again, the
amount of trees to generate is specified by the user, and duplicate patterns
are eliminated after extracting the patterns from the collection of trees.

The pseudocode of the induction algorithm for building an unsupervised
decision tree for mixed datasets appears in Alg. 4. The stopping criterion is
the same used for PMCC an PMCN.
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Algorithm 4: UD3mix - Induction of an unsupervised decision tree for
mixed datasets.

Data: T - dataset,

µ - minimum support threshold.

Result: UDT - an unsupervised decision tree.

Build N the root node of UDT, with all the objects in T ;

Select randomly a subset F ′ of m = log2(|F |) features, where F is the
set of features in N ’s objects;

Set cat = 0 and num = 0;

foreach feature fj in F ′ do
if fj is categorical then

cat + +;

foreach value vi of fj that fulfill the support constraint in N do
Create the item “fj = vi”;

if at least two items were created then
Compute Qcat(fj) as defined in 4.1;

else
num + +;

foreach value vi of fj in N do
if the two items fulfill the support constraint then

Compute Qnum(fj, vi) as defined in Eq. (4.3);

if Qcat or Qnum values were computed then
Select the two candidate splits with the highest Qcat and Qnum

values;

if random(0, cat + num - 1) < num then
Select the candidate split fj corresponding to the highest
Qnum value;

Assign Left child of N = UD3mix(cov(“fj ≤ vi”,T), µ);

Assign Right child of N = UD3mix(cov(“fj > vi”,T)), µ);

else
Select the candidate split fj corresponding to the highest Qcat

value;

foreach item “fj = vi” created do
Assign New child of N = UD3mix(cov(“fj = vi”,T)), µ);

return UDT ;
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4.2 A new pattern-based clustering algorithm

This section introduces a new pattern-based clustering algorithm (PbCA),
with the purpose of obtaining better clustering results than those obtained by
the pattern-based clustering algorithms reported in the state-of-the-art, and
that allows clustering any dataset2. The idea of firstly find out a relationship
between the patterns extracted from the dataset is followed. Then, based
on this relationship to build clusters of patterns, the objects of a dataset are
finally grouped into the clusters of patterns.

4.2.1 Clustering patterns

In this stage, PbCA has two steps. First, based on the idea proposed by Liu
and Dong (2012) that a good pattern clustering must have small high-quality
pattern subgroups, these subgroups are built from the extracted patterns.
Second, the pattern subgroups are clustered to get the final clusters.

In order to find the pattern subgroups, the patterns are filtered using
equivalence classes, in the same way as CPC does (see Section 3.3). Then,
for each equivalence class, a closed pattern is created as the conjunction of
all the items of the patterns in the equivalence class. Each closed pattern
can be seen as the representative (or the description) of its equivalence class.
PbCA works with closed patterns because it allows reducing the redundancy
among patterns and, consequently, the computational cost of the proposed
pattern-based clustering algorithm. In the following two subsections, we will
use the term “pattern” to refer to a “closed pattern”.

Finding small pattern subgroups

The pattern subgroups are found by clustering the patterns using a strategy
similar to K-means, using a custom algorithm for computing the centroids
and the Jaccard similarity (Pandit et al., 2011) to evaluate the similarity
between patterns. The Jaccard similarity between patterns Pi and Pj is
computed using the sets of objects covered by Pi and Pj, as defined in Eq.
(4.4).

J (Pi, Pj) =
|cov(Pi) ∩ cov(Pj)|
|cov(Pi) ∪ cov(Pj)|

. (4.4)

2Since some algorithms cannot cluster several datasets.
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If cov(Pi) = cov(Pj), the similarity takes value 1; and if cov(Pi)∩cov(Pj) =
∅, the similarity takes value 0. Based on Eq. (4.4), a similarity matrix SM
that contains the similarity values between all pairs of patterns is constructed.

Once the matrix of similarities between patterns has been computed, the
modified K-means is run to obtain small pattern subgroups. The number of
pattern subgroups must be larger than the number of clusters k predefined
by the user. The number of pattern subgroups is k′ = g · k, where g is a
parameter. At first, k′ patterns are randomly selected as the initial centroids
for the k′ pattern subgroups. Then, the remaining patterns are assigned to
the pattern subgroup with the most similar centroid. Later, the new centroids
for the k′ pattern subgroups are re-computed: for each subgroup the new
centroid is the pattern that is the most similar to the other patterns in the
same subgroup. The process of assigning the patterns and re-computing the
centroids of the pattern subgroups is repeated until there is no change in the
centroids from one iteration to the next one, or until a predefined number of
iterations is reached. Finally, the k′ pattern subgroups are those computed
in the last iteration of K-means.

For all the datasets, to overcome the local minima of K-means, this algo-
rithm is ran 10 times3 with different randomly selected initial centers. Then,
the partition that maximizes Eq. (4.5), among the 10 results, is selected.

B(K) = min
i,j

J(µi, µj),∀i ̸= j, (4.5)

In Eq. (4.5), K is the set of clusters; µi and µj are the patterns selected
as the centers of the clusters Ki and Kj respectively; and J(µi, µj) is the
Jaccard similarity (see Eq. (4.4)) between µi and µj.

Computing the final pattern subgroups

For clustering the k′ pattern subgroups into k pattern clusters, the same mod-
ified K-means algorithm is ran, but now the pattern subgroups are clustered
rather than the patterns. Thus, a new similarity matrix SM ′ is computed
to evaluate the similarity between the k′ pattern subgroups. The similarity
between two pattern subgroups Gi and Gj is defined, in Eq. (4.6), as the
average similarity between all pairs of patterns P ∈ Gi and Q ∈ Gj.

3We run K-means more than 10 times but it significantly increases its runtime, while
running the algorithm less than 10 times causes a decrease in the F-measure values.
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S (Gi, Gj) =

∑
P∈Gi

∑
Q∈Gj

J (P,Q)

|Gi| · |Gj|
, (4.6)

In Eq. (4.6), P and Q are patterns belonging to Gi and Gj respectively,
while |Gi| and |Gj| are, respectively, the number of patterns belonging to Gi

and Gj. Based on the new similarity matrix SM ′, the modified K-means is
runned in the same way as in the previous stage to compute k clusters of
pattern subgroups.

4.2.2 Clustering objects

Once the clusters of patterns have been built, each object in the dataset is
assigned to the cluster with the highest fraction of patterns covering it, as in
Eq. (4.7):

A(Oi) = arg max
Kj∈K

∑
P∈Kj

|cov(P ) ∩ {Oi} |
|Kj|

, (4.7)

where K represents the pattern clustering and the object Oi is assigned to
the cluster Kj that maximizes the argument of Eq. (4.7). If there is a tie
in Eq. (4.7) among several pattern clusters, the object is randomly assigned
to one of them. In this way, the proposed algorithm returns a clustering of
objects where each cluster has associated a pattern set that describes the
objects belonging to it. The pseudocode of PbCA is shown in Alg. 5.

4.3 Complexity analysis

The analysis of the computational complexity of the proposed algorithms is
divided in two parts. First, the time and space complexities of the algorit-
hms proposed for mining frequent patterns is analyzed. Then, the time and
space complexities of the proposed pattern-based clustering algorithm is also
analyzed.

4.3.1 Time complexity analysis

In this section, it is assumed that n is the number of objects in a dataset,
each one described through m features. In PMCC, for selecting the best cat-
egorical split for a single feature, evaluating Eq. (4.1), has a cost of n because
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Algorithm 5: PbCA - Pattern-based clustering algorithm.

Data: T - dataset,

PS - set of patterns,

k - number of clusters to build,

g - average number of pattern subgroups in each pattern cluster.

Result: A clustering where each cluster of objects has associated a
pattern set.

Compute a similarity matrix SM between all the pair of patterns in
PS using the similarity measure of Eq. (4.4);

Set k′ = k · g;

Run the modified K-means for clustering the patterns into k′ groups;

Compute a similarity matrix SM ′, using the similarity measure in
Eq. (4.6), between all the pairs of the k′ pattern subgroups;

Run the modified K-means for clustering the k′ pattern subgroups
into k clusters;

Assigning each object in T to the cluster that maximizes the
argument in Eq. (4.7);

return The set of clusters of objects and their patterns ;
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we need to compute the number of different values in each feature. Thus, se-
lecting the best categorical split for a single feature is O(n). Therefore, if the
dataset has m features, the computational complexity of selecting the best
split is O(log2(m)n) for the first level, because log2(m) features are selected
according to the diversity generation strategy. Hence, the time complexity
for constructing a tree with PMCC is O(log2(m)nl), where l is the depth
of the tree, because at each level the sum of the number of objects in each
node is n. However, for further levels, since the features cannot be chosen
again, the number of candidate features to be evaluated at level i decreases
to log2(m− i). Thus, if we do not consider the stop criterion, the maximum
number of levels is m; then, the total number of selected (evaluated) features
is
∑m−1

i=0 log2(m− i) = log2(m!). Therefore, the time complexity for inducing
a single unsupervised decision tree with PMCC is at most O(log2(m!)n). If
the number of trees to generate by PMCC is t, then the time complexity for
PMCC is O(t log2(m!)n).

In PMCN, for selecting the best numerical split for a single feature, Eq.
(4.3) is evaluated at most n times, because each different feature value is
considered as a candidate split. However, computing Eq. (4.3) has a constant
time complexity if the numerical values are sorted and the means of the child
nodes are dynamically updated. Therefore, if the dataset has m features,
the time complexity of selecting the best numerical split is O(log2(m)n) for
the first level, due to the diversity generation strategy. For further levels,
since the features can be repeated, the number of candidate features to be
evaluated is always log2(m). Thus, the time complexity for inducing a tree
with PMCN is O(log2(m)nl), where l is the depth of the tree. If we do
not consider the stopping criterion, in the worst case (skewed binary tree)
l = n − 1, and in the best case (balanced tree) l = log2(n). Given that the
time complexity of sorting the values of a numerical feature is O(n log2(n)),
for the m features the time complexity is O(mn log2(n)). Then, assuming
that n ≥ m, the overall time complexity T of inducing a single tree with
PMCN is O(mn log2(n)) ≤ T ≤ O(log2(m)n2), and for inducing t trees we
have a time complexity O(tmn log2(n)) ≤ T ′ ≤ O(t log2(m)n2).

In PMCM, log2(m) features are only evaluated at each level. In the best
case, if all the features of the dataset are categorical, for constructing a single
tree, log2(m!)n operations are needed. Otherwise, in the worst case, if all
the features of the dataset are numerical, we need log2(m)n2 operations.
Therefore, the time complexity T for inducing a single tree with PMCM is
O(log2(m!)n) ≤ T ≤ O(log2(m)n2). For inducing t trees, the time complexity
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of PMCM is O(t log2(m!)n) ≤ T ′ ≤ O(t log2(m)n2)
Finally, it is important to comment that extracting the patterns from the

induced trees, built by any of the three pattern mining algorithms, does not
increase the complexity because the patterns can be directly extracted from
the trees during the induction process.

In order to analyze the time complexity of PbCA, the analysis is split in
five parts. First, for computing the similarity matrix SM , if each pattern cov-
ers all the objects in the dataset, for comparing two patterns n operations are
needed. Thus, computing SM is O(p2n), where p is the number of patterns
to cluster. Second, since in order to find the k′ pattern subgroups, the modi-
fied K-means algorithm is applied, this part of the algorithm is O(p2). Third,
assuming that each pattern subgroup has approximately p/k′ patterns and
the similarities between them are already stored in SM , (k′)2 · (p/k′)2 = p2

operations are needed for computing the similarity matrix SM ′ between the
pattern subgroups. Then, computing SM ′ is O(p2). Fourth, clustering the k′

pattern subgroups by applying the modified K-means algorithm has a com-
putational complexity of O((k′)2). Fifth, assigning the objects to clusters
has a complexity of O(npk), because for each object we count the patterns
that cover the object in each cluster. Therefore, because the highest time
complexity of the five parts is computing SM , the time complexity of PbCA
is O(p2n).

4.3.2 Space complexity analysis

Since the number of induced trees is t, the maximum number of nodes that
a single tree has, multiplied by t, determines the space complexity of the
mining process. For a single binary tree induced by PMCN, in the worse case
(skewed binary tree) the number of levels is l = n− 1, each level containing
two nodes. Thus, the total number of nodes in the worse case is 2(n − 1).
In the best case (balanced tree) the number of levels is l = log2(n), and
the total number of nodes is 2l+1 − 1; then, the total number of nodes is
2log2(n)+1 − 1 = 2n− 1. Therefore, the space complexity for PMCN is O(tn).

In the case of PMCC and PMCM, these miners generate n-ary trees. In
(Cha, 2012), a complete analysis of the space complexity of balanced n-ary
trees is provided. In a single balanced n-ary tree, the total number of nodes
is kl+1−1

k−1
, where l is the number of levels and k is the number of children

for each node. Since the maximum number of leaf nodes is n, the number
of levels is l = logk(n) (Basak and Krishnapuram, 2005). Thus, the total
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number of nodes is kn−1
k−1

, 2 ≤ k ≤ n. If k = n the total number of nodes
is n + 1, while if k = 2 the total number of nodes is 2n − 1. Therefore, for
inducing t trees, the space complexity of PMCC and PMCM is O(tn).

The space complexity of the clustering process depends on the number of
patterns (p), objects (n) and of features (m). Storing the extracted patterns
has a space complexity of O(pm); while storing the extracted patterns and
the index of the objects that each pattern covers has a space complexity
O(pn). In addition, storing SM has a space complexity O(p2). Therefore,
the space complexity of the clustering process is O(p2 + pn + pm). Since, in
our trees, we consider as a pattern any path from the root node to any other
node, the maximum number of patterns that can be extracted from a single
tree is the same as its maximum number of nodes. Thus, in a collection
of t trees the maximum number of patterns is O(tn). Finally, the space
complexity of PbCA is O(t2n2 + tn2 + tnm); while the time complexity of
PbCA, analyzed in the previous subsection, is O(t2n3).

4.4 Concluding remarks

In this chapter, three pattern mining algorithms for clustering categorical,
numerical and mixed datasets are proposed. The algorithms PMCN and
PMCM extract only a subset of patterns useful for clustering, instead of
mining all patterns, without applying any a priori discretization of numer-
ical features. Our algorithms mine a subset of patterns by inducing a col-
lection of unsupervised decision trees using RandomForest. In addition, we
also proposed a new pattern-based clustering algorithm that first groups the
patterns extracted by the proposed mining algorithms, and then the objects
of the dataset are clustered into the pattern subgroups. Our proposed miners
have a computational and space complexity less than FP-growth. Addition-
ally, PbCA has the same time and space complexity as the clustering step
of CPC. In both cases, the complexity depends on the number of patterns
(p). However, our proposed miners extract significantly less patterns than
FP-growth, since our miners extract 2tn patterns in the worse case, while
FP-growth extracts n(2m − 1) patterns. As we will show later in our experi-
ments, our proposed pattern mining algorithms are able to extract just a few
patterns in a suitable time for all the tested datasets.



Chapter 5

Experimental results

This chapter shows some experiments designed to evaluate the performance
of the proposed algorithms. In the first experiment, we evaluate different
number of trees to be generated for our proposed miner algorithms. The sec-
ond experiment evaluates how good the patterns extracted by PMCC, PMCN
and PMCM are for clustering. Third, a comparison between our proposed
pattern-based clustering algorithm, PbCA, against CPC (Fore and Dong,
2012), the closest pattern-based clustering algorithm to our proposal, is per-
formed. This comparison is made in terms of F-measure, runtime and num-
ber of extracted patterns. The fourth experiment compares PbCA against
other state-of-the-art pattern-based clustering algorithms, and some tradi-
tional (non pattern-based) clustering algorithms.

For our experiments, well-known datasets taken from the UCI Reposi-
tory (Bache and Lichman, 2013) are used. For replacing missing values, the
algorithm ReplaceMissingValues, implemented in the Weka framework (Hall
et al., 2009), is employed. For all the experiments, the datasets are divided
into categorical, numerical and mixed. Each section presents a description
of the datasets used for each experiment.

For comparing the clustering results obtained by our proposed pattern-
based clustering algorithm, five clustering algorithms are selected. Three
of them are pattern-based clustering algorithms: COBWEB (Fisher, 1987),
CPC (Fore and Dong, 2012) and CLUS (Blockeel H., 1998). The COBWEB
algorithm is selected because it is a well-known pattern-based clustering al-
gorithm available in the Weka framework. The implementation provided by
the authors of CPC is used. CLUS is also included since it is an algorithm for
clustering based on unsupervised decision trees (see implementation details

46
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about CLUS in (Struyf, 2015)). Two traditional clustering algorithms, K-
means (MacQueen, 1967) and EM (Moon, 1996), which are also available in
the Weka framework, were included in our comparison. For those algorithms
taken from Weka, we used the default values for their parameters. In the
case of CPC, K-Means, EM and our proposed algorithms, we set the number
of groups as the number of classes reported for each dataset in the repository.
For CLUS, we fixed the predictive attribute equal to the class attribute in
each dataset, and the remaining attributes were used for clustering.

In our experiments, 0.05, 0.06, 0.07, 0.08 and 0.09 are used as support
threshold values. Lower values increase the computational cost due to the
huge amount of patterns that are computed by FP-growth1. Higher val-
ues produce only a small amount of patterns. For each miner and for each
dataset, the support threshold value, that allow obtaining the best result,
is selected. However, since there are many values, these values are not re-
ported. For PbCA, in all the experiments, the average number of pattern
subgroups in each pattern cluster is fixed as g = 5. This value is selected
because values between 2 and 9 were tested in a small number of datasets,
and g = 5 obtained the best results. Since CPC was designed for categorical
features, for using CPC in datasets with numerical features, these features
are a priori discretized using the Weka implementation of the Equal Width
Binning (Dash et al., 2011) discretization algorithm (with 10 bins), which is
the same algorithm used in (Fore and Dong, 2012).

The clustering results are evaluated with the external quality index F-
measure (Amigó et al., 2009). To determine the statistical significance of
differences among the clustering results, the Friedman test is performed to
compare multiple algorithms (Demsar, 2006). For this test, a significance
level of 0.05 is fixed. The Friedman test makes a pairwise comparison between
all the results and generates a ranking of the compared clustering algorithms.
When there were significant differences according to the Friedman test, the
Bergmann-Hommel test, with a significance level of 0.1, is performed, in
order to determine which clustering results are significantly different. Both
significance level values were fixed according to Garćıa and Herrera (2008)
for this type of experiments.

All the experiments were performed on a desktop PC with an Intel-Core
i7 processor at 3.4 GHz and 32 GB of RAM, running Microsoft Windows 7.

1FP-growth is the pattern mining algorithm used by CPC
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5.1 Evaluating different number of trees to

be generated for our miners

This section evaluates different number of induced trees for our proposed
miners. To evaluate the quality of the extracted patterns by our miners, the
quality (F-measure) of clustering using PbCA is measured.

5.1.1 Evaluating different number of trees for PMCC

For this experiment, 10 categorical datasets, which are shown in Table 5.1,
are selected.

Dataset #Obj #CatF #Class
Audiology 226 69 24
Balloons 20 4 2
Hiv-1 6590 8 2
Lenses 24 4 3
Lung-cancer 26 56 3
Post-operative 90 8 3
Primary-tumor 339 17 21
Solar-flare 323 12 6
Spect 267 22 2
Sponge 76 45 3

Table 5.1: Description of the categorical datasets used to evaluate different
number of trees for PMCC.

This experiment compares the results of clustering the datasets in Table
5.1 using PbCA with the patterns extracted by inducing 20, 40, 60, 80, and
100 trees. Generating less than 20 trees highly decrease the quality of the
clusters, in terms of F-measure. On the other hand, values larger than 100
do not improve the quality of the clusters, but increase the runtime.

Fig. 5.1 shows the best clustering results, according to F-measure, for
each number of trees. In this figure, we can see that there are small differences
among the different number of trees; even in some datasets the F-measure
values are the same. Thus, we compute the Friedman test to compare these
results.

Table 5.2 shows the average ranking of the F-measure results according
to the Friedman test. The P-value computed by the test is 0.736, this value
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Figure 5.1: Results of F-measure for PbCA with the patterns extracted from
PMCC inducing different number of trees.

is not less than, or equal to, 0.05. It means that the differences between the
results are not statistically significant. However, from Table 5.2 we can see
that the best ranking of F-measure is obtained with 40 trees. Therefore, the
number of trees is fixed to 40 for PMCC in the further experiments.

#Trees Ranking
40 2.7
60 2.8
20 3.0

100 3.2
80 3.3

Table 5.2: Average rankings of PbCA with different number of induced trees
for PMCC.

5.1.2 Evaluating different number of trees for PMCN

We perform a similar experiment to evaluate different number of induced
trees for PMCN, but in the 10 numerical datasets shown in Table 5.3. Fig.
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5.2 shows the best F-measure results for each number of trees. Notice that
there are not relevant differences among the different number of trees.

Dataset #Obj #NumF #Class
Biodeg 1055 41 2
Breast-tissue 106 9 6
Cloud 108 4 4
Diabetes 768 8 2
Parkinsons 195 22 2
Segment 2310 19 7
Spectrometer 531 100 4
Vertebral-2 310 6 2
Wholesale 440 7 2
Yeast 1484 8 10

Table 5.3: Description of the categorical datasets used to evaluate different
number of trees for PMCC.

Table 5.4 shows the average ranking of the F-measure results according
to the Friedman test. The P-value computed by the test is 0.620, this value
is not less than, or equal to, 0.05. Thus, the differences between the results
are not statistically significant. In Table 5.4, the best ranking of F-measure
is also obtained with 40 trees; therefore, we fix the number of trees to 40 for
PMCN in the further experiments.

#Trees Ranking
40 2.6

100 2.7
60 2.9
80 3.2
20 3.6

Table 5.4: Average rankings of PbCA with different number of induced trees
for PMCN.

5.1.3 Evaluating different number of trees for PMCM

For evaluating different number of trees for PMCM, the 10 mixed datasets
shown in Table 5.5 are selected. Fig. 5.3 shows the best clustering results
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Figure 5.2: Results of F-measure for PbCA with the patterns extracted from
PMCN inducing different number of trees.

according to F-measure. In Fig. 5.3, there are not important differences in
the results.

Table 5.6 shows the average ranking of the clustering results according
to the Friedman test. The P-value computed by the test is 0.592, this value
is not less than, or equal to, 0.05. Therefore, the differences of the PMCM
results by inducing different number of trees are not statistically significant.
However, the best ranking of F-measure is also obtained with 40 trees, and
for this reason, we fix the number of trees to 40 for PMCM in further exper-
iments.

Based on the previous experiments, we can fix to 40 the number of trees
for all the proposed pattern mining algorithms. It is important to remark
that for categorical datasets, PMCC and PMCM extract exactly the same
patterns, since for categorical data PMCC and PMCM works in the same
way. Also, for the same reason, for numerical datasets PMCN and PMCM
extract the same patterns. The only difference in both cases is that PMCM
checks the type of feature before evaluating the candidate splits.
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Dataset #Obj #CatF #NumF #Class
Abalone 4177 1 7 28
Anneal 898 32 6 5
Cylinder-bands 540 21 18 2
Dermatology 366 33 1 6
Fertility 100 5 4 2
Horse-colic 368 15 7 2
Hypothyroid 3772 22 7 4
Seismic-bumps 2584 4 14 2
Tae 151 2 3 3
Zoo 101 16 1 7

Table 5.5: Description of the categorical datasets used to evaluate different
number of trees for PMCM.
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Figure 5.3: Results of F-measure for PbCA with the patterns extracted from
PMCM inducing different number of trees.
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#Trees Ranking
40 2.5
60 2.8

100 2.9
80 3.2
20 3.6

Table 5.6: Average rankings of PbCA with different number of induced trees
for PMCM.

5.2 Comparing the miners

This section evaluates the suitability for clustering of the patterns extracted
by our proposed miners using 40 trees, which is the best amount of trees
to be induced, according to the experiments shown in Section 5.1. For this
experiment, 15 datasets for each type of data, different from those datasets
used for tuning the number of trees parameter, are selected.

In order to use PMCC in datasets with numerical features, the numeri-
cal features are a priori discretized using the Equal Width Binning (EWB)
discretization algorithm (Dash et al., 2011). EWB is the discretization alg-
orithm that CPC uses. Using EWB allows us to maintain uniformity in the
comparisons of the experimental results, since Section 5.3 will compare our
proposal against CPC. For using PMCN in categorical datasets, the categori-
cal feature values are transformed replacing them by numerical values. To do
that, the categorical values are replaced with non-negative integer numbers
(starting at 0), by assigning numbers to categorical values in the order they
appeared in the dataset.

5.2.1 Comparison over categorical datasets

For comparing the miners in the 15 categorical datasets shown in Table 5.7,
PbCA is used with the patterns obtained by the proposed mining algorithms.
Although the results with PMCC and PMCM are the same, both are included
in this experiment.

Fig. 5.4 shows that the clustering results of PbCA using PMCC and
PMCM as miners are the same, as it was expected since they follow the
same induction strategy for categorical datasets. Those results are better
than the results of PbCA using PMCN as miner.
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Dataset #Obj #CatF #Class
Balance-scale 625 4 3
Breast-cancer 286 9 2
Car 1728 6 4
Chess 3196 36 2
Hayes-roth 160 4 3
Lymphography 148 18 4
Molecular 106 58 2
Monks-1 556 6 2
Mushroom 8124 22 2
Soybean-l 683 35 19
Soybean-s 47 35 4
Splice 3190 61 3
Tic-tac-toe 958 9 2
Trains 10 32 2
Vote 435 16 2

Table 5.7: Description of the categorical datasets used to compare PMCC,
PMCN and PMCM.
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Figure 5.4: Results of F-measure for PbCA with the patterns extracted from
PMCC, PMCN and PMCM on categorical datasets.
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Table 5.8 shows the average ranking of the clustering results according to
the Friedman test. The P-value computed by the test is 0.951, this value is
not less than, or equal to, 0.05. Although the difference in the results is not
statistically significant, PbCA with the patterns extracted by PMCC and
PMCM gets the best ranking of F-measure according to the Friedman test.

Algorithm Ranking
PMCC&PbCA 1.97
PMCM&PbCA 1.97
PMCN&PbCA 2.06

Table 5.8: Average rankings of PbCA with the patterns extracted from
PMCC, PMCN and PMCM on categorical datasets.

These results suggest that clustering categorical data using PMCC is
better than transforming categorical data into numerical data in order to
apply a clustering algorithm designed for numerical features.

5.2.2 Comparison over numerical datasets

For comparing the proposed pattern mining algorithms on the 15 numerical
datasets shown in Table 5.9, PbCA is used with each of the proposed miners.
In this experiment, although the results with PMCN and PMCM are the
same, we included both results.

Fig. 5.5 shows the clustering results of PbCA using the patterns extracted
from the numerical datasets, shown in Table 5.9, by using the miners PMCC,
PMCN and PMCM. In Fig. 5.5, we can see that the results of PbCA using
PMCN and PMCM as miners are the same since they both use the same
strategy for inducing decision trees on numerical datasets. These results are
better than the results of PbCA using PMCC as miner.

Table 5.10 shows the average ranking of the clustering results according
to the Friedman test. The P-value computed by the test is 0.086, this value
is not less than, or equal to, 0.05. Then, the difference in the results is not
statistically significant, but PbCA with the patterns extracted by PMCN and
PMCM gets the best ranking of clustering results, in terms of the Friedman
test.

From these results, we can conclude that clustering numerical data using
the patterns mined by PMCN is better than transforming numerical data
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Dataset #Obj #NumF #Class
Breast-w 699 9 2
Ecoli 336 7 8
Faults 1941 27 7
Glass 214 10 6
Ilpd 583 11 2
Ionosphere 351 34 2
Iris 150 4 3
Knowledge 403 5 4
Liver-disorders 345 6 2
Mammographic 961 6 2
Sensor-readings 5456 24 4
Sonar 208 60 2
Transfusion 748 4 2
Vehicle 846 18 4
Wine 178 13 3

Table 5.9: Description of the numerical datasets used to compare PMCC,
PMCN and PMCM.
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Figure 5.5: Results of F-measure for PbCA with the patterns extracted from
PMCC, PMCN and PMCM on numerical datasets.



CHAPTER 5. EXPERIMENTAL RESULTS 57

Algorithm Ranking
PMCN&PbCA 1.77
PMCM&PbCA 1.77
PMCC&PbCA 2.46

Table 5.10: Average rankings of PbCA with the patterns extracted from
PMCC, PMCN and PMCM on numerical datasets.

into categorical data by applying an a priori discretization process (which
may cause information loss).

5.2.3 Comparison over mixed datasets

For comparing the proposed pattern mining algorithms over mixed datasets,
the 15 mixed datasets shown in Table 5.7 are used. Fig. 5.6 shows the
clustering results of PbCA by using the extracted patterns by PMCC, PMCN
and PMCM as miners.

Dataset #Obj #CatF #NumF #Class
Autos 205 10 15 6
Bridges 108 7 4 7
Credit-a 690 9 6 2
Credit-g 1000 13 7 2
Diagnosis 120 6 1 2
Echocardiogram 132 2 7 3
Flags 194 26 2 8
Haberman 306 1 2 2
Heart-c 303 7 6 2
Heart-h 294 7 6 2
Heart-statlog 270 8 5 2
Hepatitis 155 13 6 2
Labor 57 8 8 2
Post-operative 90 7 1 4
Thoracic 470 13 3 2

Table 5.11: Description of the mixed datasets used to compare PMCC,
PMCN and PMCM.
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Figure 5.6: Results of F-measure for PbCA with the patterns extracted from
PMCC, PMCN and PMCM on mixed datasets.

Table 5.12 shows the average ranking of the clustering results according to
the Friedman test. The P-value is 0.296, this value is not less than, or equal
to, 0.05. Although the difference in the results is not statistically significant,
PbCA with the patterns extracted by using PMCM obtains the best ranking
of F-measure according to the Friedman test.

Algorithm Ranking
PMCM&PbCA 1.70
PMCN&PbCA 2.03
PMCC&PbCA 2.27

Table 5.12: Average rankings of PbCA with the patterns extracted from
PMCC, PMCN and PMCM on mixed datasets.

From the previous experiments, we can see that for the three types of
datasets, PMCM&PbCA obtained the best results; sometimes tied with
PMCC&PbCA (for categorical datasets) or with PMCN&PbCA (for nume-
rical datasets). Therefore, in further experiments, we will use only PMCM
as pattern mining algorithm for PbCA.
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5.3 Comparing PbCA against CPC

This section compares the results of PbCA and CPC in terms of F-measure,
runtime and number of patterns. This section is divided in three subsections,
for showing experiments by using categorical, numerical and mixed datasets
respectively. In our experiments, the results of PbCA using PMCM as patt-
ern miner, the results of CPC using PMCM as pattern miner, and the results
of CPC using FP-growth as pattern miner, as it was originally proposed by
Fore and Dong (2012), are included. In our experiments, CPC did not get
results for some datasets due to two main reasons: CPC could not handle a
huge amount of patterns (more than 100000); and in some other datasets,
the CPC overlap constrain was not fulfilled for any subset of k patterns (k
is the number of clusters to find) (see Section 3.3).

5.3.1 Comparison over categorical datasets

In order to compare the results of PbCA against CPC over categorical dat-
asets, the 15 datasets shown Table 5.7 are used. The F-measure results are
shown in Fig. 5.7. Notice that, in Fig. 5.7, PMCM&CPC could not cluster
the Soybean-l dataset, while CPC could not cluster Chess and Soybean-l.
For those datasets where an algorithm could not cluster them, we do not
show their corresponding bars in the chart.

Table 5.13 shows the average ranking of the clustering results according
to the Friedman test. The P-value computed by the test is 0.259, this value
is not less than, or equal to, 0.05. The differences of the results are not
statistically significant, but using the patterns extracted for PMCM allows
obtaining better clustering results than using the patterns extracted by FP-
growth. For categorical datasets, PMCM&CPC obtains better results than
PMCM&PbCA, and both are better than CPC.

Algorithm Ranking
PMCM&CPC 1.80

PMCM&PbCA 1.83
CPC 2.37

Table 5.13: Average rankings of PMCM&PbCA, PMCM&CPC and CPC on
categorical datasets.

In addition, we also compare the runtime and the number of patterns for
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Figure 5.7: Results of F-measure for PMCM&PbCA, PMCM&CPC and CPC
on categorical datasets.

the three algorithms. For clarity, in all the comparisons, the datasets are
arranged in ascending order according to the number of patterns extracted
by FP-growth.

Fig. 5.8 shows the runtime (in seconds) in logarithmic scale for PMCM&
CPC, PMCM&PbCA and CPC. Since the clustering algorithm of CPC could
not build the clusters in Soybean-l and Chess datasets, the runtime of PMCM
&CPC and CPC for these datasets are not shown in Fig 5.8. In the Trains da-
taset, PMCM&PbCA has a runtime shorter than a tenth of second; therefore,
the corresponding bar is too small to be noticed. In average, PMCM&PbCA
is 105 times faster than CPC for these categorical datasets, because the av-
erage runtime of PMCM&PbCA is 15 seconds while the average runtime of
CPC is 1582 seconds. Fig. 5.8 shows that PMCM&PbCA is faster than
PMCM&CPC and CPC in 9 of the 15 datasets. PMCM&PbCA was up to
10000 times faster than CPC in the Molecular dataset.

The number of patterns (in logarithmic scale) extracted by PMCM and
FP-growth in categorical datasets are shown in Fig. 5.9. In all the datas-
ets, PMCM extracted a less number of patterns than FP-growth, which is
desirable in applications that need an explanation of the results, since a less
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Figure 5.8: Runtime (in seconds) in logarithmic scale for PMCM&PbCA,
PMCM&CPC and CPC on categorical datasets.

amount of patterns makes easier the explanation of the results than by using
a lot of patterns. In average, PMCM extracts 332 patterns while FP-growth
extracts 1150983.

5.3.2 Comparison over numerical datasets

For comparing the results of CPC and PbCA over numerical datasets, the 15
datasets in Table 5.9 are used. The F-measure results for PMCM&PbCA,
PMCM&CPC and CPC are shown in Fig. 5.10. Notice that, in this figure,
PMCM&CPC y CPC could not cluster the Ecoli dataset.

Table 5.14 shows the average ranking of clustering results according to
the Friedman test. The P-value computed by the test is 0.522, this value
is not less than, or equal to, 0.05. The differences in the results are not
statistically significant, but the patterns extracted with PMCM allow PbCA
to obtain the best ranking of F-measure.

Fig. 5.11 shows the runtime (in seconds) in logarithmic scale for PMCM&
PbCA, PMCM&CPC and CPC. In Iris, Mammographic and Transfusion, the
runtime of CPC are shorter than a tenth of second, thus the corresponding
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Figure 5.9: Number of patterns in logarithmic scale for PMCM and FP-
growth on categorical datasets.
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Figure 5.10: Results of F-measure for PMCM&PbCA, PMCM&CPC and
CPC on numerical datasets.
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Algorithm Ranking
PMCM&PbCA 1.7
PMCM&CPC 2.1

CPC 2.2

Table 5.14: Average rankings of PMCM&PbCA, PMCM&CPC and CPC on
numerical datasets.

bars are not visible in Fig. 5.11. As we have already mentioned, Ecoli could
not be clustered by CPC. Since the average runtime of PMCM&PbCA is 75
second and the average runtime of CPC is 1015 seconds, PMCM&PbCA is 13
times faster than CPC for these numerical datasets. Although the runtime
of CPC is the shortest in most of the datasets, in Ionosphere the runtime of
CPC is close to 10000 seconds, while the runtime of PMCM&PbCA never
reach 1000 seconds. In numerical datasets, since CPC uses the FP-growth
algorithm for mining patterns, the datasets must be discretized. This dis-
cretization usually produces discretized features with fewer different values
than the original numerical features, and consequently less patterns are ex-
tracted. Therefore, in this experiment, CPC is faster than PMCM&PbCA.
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Figure 5.11: Runtime (in seconds) in logarithmic scale for PMCM&PbCA,
PMCM&CPC and CPC on numerical datasets.

The number of patterns (in logarithmic scale) extracted by PMCM and
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FP-growth on numerical datasets is shown in Fig. 5.12. In these datasets,
FP-growth extracted a smaller number of patterns Than PMCM in 6 of the
15 datasets; this happened because of the a priori discretization, used by
FP-Growth, highly reduces the number of different values for each numer-
ical feature. Thus, CPC is faster than PbCA for some numerical datasets.
On the other hand, in this experiment, in some numerical datasets (Faults,
Sonar, Sensor-readings and Ionosphere) FP-growth extracts more than 10000
patterns, while PMCM only extracts around 1000.
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Figure 5.12: Number of patterns in logarithmic scale for PMCM&PbCA,
PMCM&CPC and CPC on numerical datasets.

5.3.3 Comparison over mixed datasets

This experiment compares the results of PbCA and CPC over mixed datasets,
using the 15 datasets shown in Table 5.11. Fig. 5.13 shows the F-measure
results for PMCM&PbCA, PMCM&CPC and CPC. Notice that, in Fig. 5.13,
PMCM&CPC could not cluster the datasets Bridges and Flags, while CPC
could not cluster Flags.

The average ranking of the clustering results according to the Friedman
test are shown in Table 5.15. The P-value computed by the test is 0.012, this
value is less than 0.05. It means that the differences among the results are
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Figure 5.13: Results of F-measure for PMCM&PbCA, PMCM&CPC and
CPC on mixed datasets.

statistically significant. Therefore, the Bergmann-Hommel test is performed
with significance level of 0.1, to determine which clustering results are sig-
nificantly different. The results of the Bergmann-Hommel test are shown
in Table 5.16. As we can see in Table 5.16, PMCM&PbCA is statistical
significantly better than PMCM&CPC and CPC in mixed datasets.

Algorithm Ranking
PMCM&PbCA 1.4

CPC 2.2
PMCM&CPC 2.4

Table 5.15: Average rankings of PMCM&PbCA, PMCM&CPC and CPC on
mixed datasets.

Fig. 5.14 shows the runtime (in seconds) in logarithmic scale for PMCM&
PbCA, PMCM&CPC and CPC. In this experiment, as already we men-
tioned, CPC cannot cluster the Flags dataset. Due to the average runtime of
PMC&PbCA is 11 seconds while the average runtime of CPC is 1100 seconds,
PMCM&PbCA is, in average, 100 times faster than CPC. PMCM&PbCA is
faster than PMCM&CPC and CPC in 11 of the 15 datasets, and sometimes
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Algorithms Adjusted P-value
PMCM&PbCA vs PMCM&CPC 0.014
PMCM&PbCA vs CPC 0.027
PMCM&CPC vs CPC 0.536

Table 5.16: Adjusted P-values of the Bergmann-Hommel test for
PMCM&PbCA, PMCM&CPC and CPC on mixed datasets.

(Thoracic, Hepatitis and Credit-g) PMCM&PbCA is up to 1000 times faster
than CPC.
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Figure 5.14: Runtime (in seconds) in logarithmic scale for PMCM&PbCA,
PMCM&CPC and CPC on mixed datasets.

Fig. 5.15 shows the number of patterns in logarithmic scale extracted
by PMCM and FP-growth from mixed datasets. In these datasets, PMCM
extracts a higher number of patterns than FP-growth on Diagnosis, Echocar-
diogram and Haberman. In the remaining datasets, PMCM extracts less pat-
terns than FP-growth with 634 patterns in average, while FP-growth extracts
70076 patterns in average.

From these experiments, we can conclude that our proposed pattern-
based clustering algorithm obtains better clustering results than CPC in a
shorter time. In addition, PbCA returns a small set of patterns than CPC,
which is desirable in situations when an explanation of the results is needed.
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Figure 5.15: Number of patterns in logarithmic scale for PMCM&PbCA,
PMCM&CPC and CPC on mixed datasets.

5.4 Comparing PbCA against other cluster-

ing algorithms

This section compares the results of our proposed pattern-based clustering
algorithms against other state-of-the-art pattern-based clustering algorithms
(including CPC), and against traditional (non pattern-based) clustering alg-
orithms. In our experiments, the results of PbCA using PMCM for extract-
ing patterns, against CPC (Fore and Dong, 2012), COBWEB (Fisher, 1987),
CLUS (Blockeel H., 1998), K-means (MacQueen, 1967) and EM (Moon, 1996)
are compared. This section is divided in three experiments, each one for each
type of datasets (categorical, numerical and mixed). In order to evaluate the
quality of the results, a comparison between all the algorithms in terms of
F-measure is performed.

5.4.1 Comparison over categorical datasets

We compare the clustering results of PbCA against CPC, COBWEB, CLUS,
K-means and EM over the 15 categorical datasets shown in Table 5.7. Fig.
5.16 shows the F-measure results of all algorithms.
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Figure 5.16: Results of F-measure for PbCA, CPC, COBWEB, CLUS, K-
means and EM on categorical datasets.

Table 5.17 shows the average ranking of F-measure according to the Fried-
man test. The P-value computed by the test is 0.000003, this value is less
than 0.05. It means that the differences between the results are statistically
significant. Therefore, the Bergmann-Hommel test is performed; the results
appear in Table 5.18. From this test, we can conclude that COBWEB is sig-
nificantly the worst algorithm in comparison with the remaining clustering
algorithms on categorical datasets, while among the rest of the algorithms
there are not statistical significant differences. In this experiment, PbCA
obtains the best ranking according to the Friedman test.

5.4.2 Comparison over numerical datasets

For comparing PbCA against CPC, COBWEB, CLUS, K-means and EM
over numerical datasets, the 15 numerical datasets shown in Table 5.9 are
selected. Fig. 5.17 shows the F-measure results for all the algorithms.

Table 5.19 shows the average ranking of clustering results according to
the Friedman test. The P-value computed by the test is 0.0000006, this value
is less than 0.05. The differences between the results of the algorithms are
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Algorithm Ranking
PbCA 2.40

EM 2.63
CLUS 3.17
CPC 3.23

K-means 3.70
COBWEB 5.87

Table 5.17: Average rankings of PbCA, CPC, COBWEB, CLUS, K-means
and EM on categorical datasets.

Algorithms Adjusted P-value
PbCA vs COBWEB 0.000006
COBWEB vs EM 0.000022
COBWEB vs CLUS 0.000542
CPC vs COBWEB 0.000811
COBWEB vs K-means 0.010609
PbCA vs K-means 0.570399
K-means vs EM 0.710520
PbCA vs CPC 1.335073
PbCA vs CLUS 1.335073
CPC vs EM 1.335073
CLUS vs EM 1.335073
CLUS vs K-means 1.739869
CPC vs K-means 1.739869
PbCA vs EM 1.739869
CPC vs CLUS 1.739869

Table 5.18: Adjusted P-values of the Bergmann-Hommel test for PbCA,
CPC, COBWEB, CLUS, K-means and EM on categorical datasets.
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Figure 5.17: Results of F-measure for PbCA, CPC, COBWEB, CLUS, K-
means and EM on numerical datasets.

statistically significant. The results of the Bergmann-Hommel test appears
in Table 5.20. From this test, we can conclude that COBWEB and CLUS are
significantly the worst algorithms in numerical datasets; while there are not
statistical significant differences between the remaining algorithms. However,
PbCA and K-means obtained the best ranking value.

Algorithm Ranking
PbCA 2.37

K-means 2.37
EM 2.73
CPC 3.27
CLUS 4.99

COBWEB 5.27

Table 5.19: Average rankings of PbCA, CPC, COBWEB, CLUS, K-means
and EM on numerical datasets.
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Algorithms Adjusted P-value
PbCA vs COBWEB 0.0003
COBWEB vs K-means 0.0003
PbCA vs CLUS 0.0012
CLUS vs K-means 0.0012
COBWEB vs EM 0.0015
CLUS vs EM 0.0036
CPC vs COBWEB 0.0205
CPC vs CLUS 0.0447
PbCA vs CPC 1.3138
CPC vs K-means 1.3138
CPC vs EM 1.3138
PbCA vs EM 2.3658
K-means vs EM 2.3658
COBWEB vs CLUS 2.3658
PbCA vs K-means 2.3658

Table 5.20: Adjusted P-values of the Bergmann-Hommel test for PbCA,
CPC, COBWEB, CLUS, K-means and EM on categorical datasets.

5.4.3 Comparison over mixed datasets

This experiment compares the clustering results of PbCA against CPC, COB-
WEB, CLUS, K-means and EM over the 15 mixed datasets shown in Table
5.11. Fig. 5.18 shows the F-measure results for all the algorithms.

Table 5.21 shows the average ranking of the clustering results according
to the Friedman test. The P-value computed by the test is 0.000000005, this
value is less than 0.05. It means that the differences between the results are
statistically significant. Therefore, the Bergmann-Hommel test is performed;
these results appear in Table 5.22. From this test, we can conclude that
COBWEB and CLUS are significantly the worst algorithms for mixed dat-
asets. Among the rest of the algorithms there are not statistical significant
differences. In this experiment, PbCA obtained the best ranking value.
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Figure 5.18: Results of F-measure for PbCA, CPC, COBWEB, CLUS, K-
means and EM on mixed datasets.

Algorithm Ranking
PbCA 1.93
CPC 2.67
EM 2.73

K-means 3.13
CLUS 4.60

COBWEB 5.93

Table 5.21: Average rankings of PbCA, CPC, COBWEB, CLUS, K-means
and EM on mixed datasets.
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Algorithms Adjusted P-value
PbCA vs COBWEB 0.00000007
CPC vs COBWEB 0.00001736
COBWEB vs EM 0.00001966
COBWEB vs K-means 0.00029073
PbCA vs CLUS 0.00094772
CPC vs CLUS 0.02791918
CLUS vs EM 0.02791918
CLUS vs K-means 0.12717944
COBWEB vs CLUS 0.35673355
PbCA vs K-means 0.47389547
PbCA vs EM 0.72469976
PbCA vs CPC 0.72469976
CPC vs K-means 1.48357400
K-means vs EM 1.48357400
CPC vs EM 1.48357400

Table 5.22: Adjusted P-values of the Bergmann-Hommel test for PbCA,
CPC, COBWEB, CLUS, K-means and EM on mixed datasets.

5.5 Concluding remarks

From our experiments, we can conclude that the proposed miners obtain
good results with 20, 40, 60, 80 or 100 trees, but the best results are ob-
tained with 40 trees. Generating less trees decrease the clustering results (in
terms of F-measure), while more trees do not improve the F-measure values
but increase the runtime. Our proposed pattern-based clustering algorithm,
PbCA, obtains its best results using the patterns extracted by our miner
PMCM. In our experiments, PbCA obtains significantly better clustering re-
sults than other pattern-based clustering algorithms like CPC, COBWEB
and CLUS. Our PbCA, in terms of F-measure, is in average 11% better than
CPC, 76% better than COBWEB, and 34% better than CLUS. In addition,
PbCA is around 100 times faster than CPC, the closest algorithm to our pro-
posal. Moreover, in average, PMCM extracts 640 patterns, while FP-growth
extracts 409922. Thus, the clustering results of PMCM&PbCA uses, in aver-
age, 186 patterns for describing each cluster; while CPC requires, in average,
119010 patterns per cluster. Finally, PbCA obtains competitive results in
comparison to traditional clustering algorithms like K-means and EM.
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Conclusions

Pattern-based clustering algorithms aim to build a set of clusters together
with an explanation of the clustering results in terms of the features used
to describe the data. This is very useful in applications where users need
some explanation about clustering results together with the list of objects
for each cluster. In these applications, it is also desirable that the algori-
thms return accurate results in a short time, with just a few patterns for
describing the clusters. However, most state-of-the-art pattern-based cluste-
ring algorithms have a high computational cost for both extracting patterns
and building clusters. To avoid this, some pattern-based clustering algor-
ithms, like COBWEB, build only one pattern for each cluster, discarding
several patterns that could be useful for obtaining better clustering results.
In contrast, other pattern-based clustering algorithms, as CPC, use pattern
mining algorithms that produces a huge amount of patterns, which leads to a
high computational cost at the clustering stage. Moreover, in most pattern-
based clustering algorithms, numerical features must be a priori discretized,
since they are designed for working with categorical features.

In this thesis, we introduced three pattern mining algorithms for catego-
rical, numerical and mixed datasets respectively. These miners extract patt-
erns from a collection of diverse unsupervised decision trees created through
new induction procedures combined with a diversity generation strategy
based on RandomForest. For the induction procedure, we introduce a new
candidate split quality measure for categorical and numerical features. From
the induced trees, we extract only a small number of patterns. Additionally,
we introduce a new pattern-based clustering algorithm. Our pattern-based
clustering algorithm evaluates the relationship between patterns, extracted
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by the proposed miners, in terms of the objects covered by each pattern.
Then, a clustering of the patterns is built by using a special modification of
the K-means algorithm. Finally, each object is assigned to the pattern cluster
having the highest fraction of patterns covering it. Therefore, in addition to
the list of objects belonging to each cluster, the proposed algorithm returns
a set of patterns that describes each cluster.

6.1 Conclusions

Regarding to our proposed miners, based on our experimental results, we can
conclude that:

• From our experiments, we can conclude that the proposed miners ob-
tain similar (good) results with 20, 40, 60, 80 or 100 trees, but the best
results are obtained with 40 trees. Generating less than 20 trees (for
example 10 or 5) highly decrease the quality of the clusters (evaluated
through F-measure). On the other hand, values larger than 100 do not
improve the quality of the clusters obtained with 40 trees, but increase
the runtime.

• Transforming categorical features into numerical features, to mine pat-
terns and grouping them through pattern-based clustering algorithms
designed for numerical features, obtains worse clustering results than
using pattern-based clustering algorithms designed for categorical data.

• Applying an a priori discretization of the numerical features, in order to
mine patterns and grouping them with pattern-based clustering algori-
thms designed for categorical features, obtains worse clustering results
than using pattern-based clustering algorithms designed for numerical
data.

• The patterns extracted by PMCM allow CPC (the closest pattern-
based clustering algorithm to our proposal) to obtain better clustering
results than using those patterns extracted by FP-growth (the miner
used by CPC).

• PMCM commonly obtains a small subset of patterns useful for cluster-
ing, which produces an easier explanation of the results. The clustering
results of PMCM&PbCA involves, in average, 186 patterns for each
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cluster. On the other hand, CPC provides, in average, 119010 patterns
per cluster.

Regarding to our proposed pattern-based clustering algorithm, we can
conclude that:

• By using the patterns extracted by PMCM, in average PbCA is around
100 times faster than CPC.

• The clustering results obtained by PbCA, in terms of F-measure, are
better than the results obtained by state-of-the-art pattern-based clus-
tering algorithms like CPC, COBWEB and CLUS. Specifically, PbCA
in average is 11% better than CPC, 76% better than COBWEB, and
34% better than CLUS.

• PbCA obtains competitive results, in terms of F-measure, when com-
pared against traditional (non pattern-based) clustering algorithms like
K-means and EM, but our algorithm additionally produces a set of pat-
terns for each cluster as an explanation of the clustering results.

6.2 Contributions

The contributions of this PhD research are:

1. We introduce three pattern mining algorithms which extract patterns
useful for clustering:

• PMCC (Pattern Mining algorithm for Clustering Categorical da-
tasets using unsupervised decision trees), which mines, from cat-
egorical datasets, only a subset of high-quality patterns useful for
clustering; instead of extracting all patterns from the dataset as
FP-growth does.

• PMCN (Pattern Mining algorithm for Clustering Numerical dat-
asets), which extracts a subset of patterns (instead of extracting
all patterns) from numerical datasets without applying an a priori
discretization of numerical features. The extracted patterns are
useful for clustering.
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• PMCM (Pattern Mining algorithm for Clustering Mixed datasets),
which combines the advantages of the first two proposed miners,
in order to extract a subset of patterns useful for clustering mixed
(categorical and numerical) datasets, without transforming a pri-
ori the dataset.

2. We also propose a new Pattern-based Clustering Algorithm (PbCA),
which allows clustering datasets faster and more accurately than other
state-of-the-art pattern-based clustering algorithms, by using the sub-
set of patterns obtained by the proposed miners.

6.3 Future work

As future work, we will focus on adapting the proposed pattern mining al-
gorithms to deal with datasets containing missing values, large datasets, or
noisy datasets, among others. In addition, we will work on using our pro-
posed algorithms on real-world applications like text processing, web mining
and bioinformatics. These applications are a challenge for pattern-based clu-
stering algorithms, since these applications commonly have a lot of features.

On the other hand, for our pattern-based clustering algorithm, we will
focus on building clusters of patterns by using a different clustering algorithm,
not based on K-means, that can build an undetermined number of clusters.
This could be very useful in those problems where the number of clusters is
not known a priori.

Finally, from our experiments, we can notice that there are a lot of objects
partially covered by a great number of patterns, but in our proposal we did
not take this issue into account. By using inexact matching between objects
and patterns, we will explore how the clustering results could be improved.

6.4 Publications

From this research, the following publications were generated:

• A.E. Gutierrez-Rodŕıguez, et. al. Mining Patterns for Clustering using
Unsupervised Decision Trees. Intelligent Data Analysis, Volume 19(6),
2015.
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In this paper, we report the pattern mining algorithm for categori-
cal features presented in Section 4.1.1. The patterns extracted by our
miner were evaluated by building clusters from them through the clu-
stering stage of the CPC algorithm.

• A.E. Gutierrez-Rodŕıguez, et. al. Mining Patterns for Clustering on
Numerical Datasets using Unsupervised Decision Trees. Knowledge-
Based Systems 82 (2015) 70−79.

In this paper, we report the pattern mining algorithm for numerical
features presented in Section 4.1.2. The patterns extracted by our
miner were also evaluated by building clusters through the clustering
stage of the CPC algorithm.

• A.E. Gutierrez-Rodŕıguez, et. al. Mining Patterns for Clustering on
Mixed Datasets using Unsupervised Decision Trees. In preparation.

In this paper, we will report the pattern mining algorithm for mixed
datasets presented in Section 4.1.3. Again, we will evaluate the patt-
erns extracted by our miner by using the clustering stage of the CPC
algorithm.

• A.E. Gutierrez-Rodŕıguez, et. al. A new Pattern-based Clustering
Algorithm for Mixed Datasets. In preparation.

In this paper, we will report the pattern-based clustering algorithm
proposed in Section 4.2.
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