
A reconfigurable and
interoperable hardware

architecture for elliptic curve
cryptography

por

Miguel Morales-Sandoval

Tesis sometida como requisito parcial para
obtener el grado de

DOCTOR EN CIENCIAS EN LA
ESPECIALIDAD DE CIENCIAS

COMPUTACIONALES

en el

Instituto Nacional de Astrofı́sica,Óptica y
Electrónica

DICIEMBRE, 2008
Tonantzintla, Puebla

Supervisada por:

Dra. Claudia Feregrino-Uribe, INAOE

c©INAOE 2008
El autor otorga al INAOE el permiso de

reproducir y distribuir copias en su totalidad o en
partes de esta tesis

Instituto Nacional de Astrof́ısica, Óptica y Electrónica Consejo Nacional de Ciencia y Tecnoloǵıa

A reconfigurable and interoperable hardware

architecture for elliptic curve cryptography

a

THESIS
by

MSc. Miguel Morales Sandoval

Presented and defended on December 15, 2008, in the

National Institute for Astrophysics, Optics and Electronics, Puebla

to obtain the degree of

Doctor of Philosophy

in

Computer Science

INAOE, Tonantzintla, Pue. December 11, 2008

To my family, my son Miguel Alejandro and wife Heidy Marisol,

for their endless love.

To my mother, to my sisters and brothers who always have

supported me.

In memoriam of my father† José Melitón Morales Ramos

ii

Acknowledgment

To the Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT) for finan-

cial support through scholarship number 171577. To the Instituto Nacional

de Atrof́ısica, Óptica y Electrónica (INAOE) for the services and sup-

port provided to accomplish this research.

To my advisor Dra. Claudia Feregrino-Uribe for her reviews, help,

guidance and encouragement in conducting this research. I count myself as being

the most fortunate to be able to work under her supervision. To my graduate

committee, Dr. René Cumplido Parra, Dr. Miguel Arias Estrada,

Dr. Luis Villaseñor Pineda, Dr. Gustavo Rodŕıguez Gómez and Dr.

Paskevas Kitsos, for their valuable input to improve this research. To Prof.

Christof Paar for allowing me to visit the COSY group in Ruhr University, in

Bochum Germany.

To my wife Heidy Marisol, for her encouragement and inspiration provided

during these years to conclude this research. My son Miguel Alejandro has

made my life much more cheerful and colorful. To my family for their love and

support. To my sisters Lucila and Esperanza, and my brothers Victor and

Alfredo. My mother Anastacia for her love, I can never thank her enough.

Many more persons participated in various ways to ensure my research suc-

ceeded and I am thankful to them all.

iii

iv

Abstract

Elliptic curve cryptography (ECC) is a kind of Public Key Cryptography founded

in the theory of groups. ECC’s main advantage is the short length of the keys

used compared to the key used by traditional public key cryptosystems like RSA

(163bits vs 1024bits) without decreasing the security level. The use of shorter

length keys implies less space for key storage, time saving when keys are trans-

mitted and less costly arithmetic computations.

An ECC cryptosystem is defined as the tuple T = (GF (q), a, b, G, n, h), where

GF (q) is a finite field, a and b define an elliptic curve on GF (q), G is a generator

point of the elliptic curve, n is the order of G, that is, the smaller integer such

that nG = O (identity point in the additive group). h is called the co-factor and

it is equal to the total number of points in the curve divided by n. Two entities

that implement security services like confidentiality, integrity or authentication

must agree previously the same set of parameters T in order to interoperate.

ECC-based cryptographic algorithms such as encryption or digital signatures

are computationally expensive because several finite field and elliptic curve oper-

ation with long number must be carried out. Although a software implementation

of ECC could provide interoperability, the resulting processing time will be unac-

ceptable. Proposed work in the literature is for efficient implementation of ECC in

hardware, however, most of those works are custom implementations for specific

tuples T .

This thesis deals with the interoperability problems of ECC and presents the

results of the development of a hardware architecture that allows to adapt dynam-

ically its organization to operate with different parameters T . The development of

such architecture is hard due the diversity of parameters T and the complexity of

the underlaying algorithms. Although some reported works allow some flexibility

in the choice of the ECC parameters, a reconfigurable architecture that provides

v

interoperability with another implementation is not explored at all. An immediate

application of the architecture developed is for IPSec, a security protocol where

the cryptographic algorithms and its parameters are negotiated at run time.

The reconfigurable computing paradigm was used in this thesis work. Due a

general design methodology for reconfigurable system is not available, this thesis

explores and evaluates techniques for developing interoperable ECC hardware ar-

chitectures. This thesis was developed in three stages: i) the first one consisted

on the design of a base hardware architecture for evaluating several cryptographic

algorithms in order to find the best circuits that produce a compact design with-

out compromising performance; ii) the second stage consisted on providing the

architecture with reconfigurability capabilities, that enable the architecture to

adapt itself to different sets of parameters T at run time; iii) finally the third

stage consisted on the architecture validation, which is performed by simulating

the design and applying test vectors. Validation was also carried out in-circuit.

The main contributions of this thesis are: i) a hardware architecture for ECC

that allows interoperability; ii) a reconfiguration strategy for developing interop-

erable ECC architectures; and iii) an study of finite field arithmetic algorithms

performance that allows to establish a trade-off in the architecture.

vi

Resumen

Criptograf́ıa de curvas eĺıpticas (ECC) es un tipo de criptograf́ıa de llave pública

fundada en la teoŕıa de campos finitos y el problema del logaritmo discreto. La

principal ventaja de este tipo de criptograf́ıa frente a otros tipos como RSA, es

el uso de llaves más cortas, con una reducción de hasta 7 veces. El uso de llaves

cortas tiene las ventajas de utilizar menos requerimientos de memoria, de realizar

operaciones aritméticas con operandos más cortos, de utilizar menos recursos de

área si la implementación se realiza en hardware, de requerir menores tiempos de

transferencia, entre otras.

Los parámetros de implementación de ECC son de la forma T = (q, E, G, n, h),

donde q es un campo finito, E es una curva eĺıptica definida en q, G es un gen-

erador de la curva eĺıptica, n es el orden de G y h es el co-factor de la curva E.

ECC es demandante computacionalmente ya que requiere de varias operaciones

aritméticas en campos finitos y curvas eĺıpticas para implementar los esquemas de

seguridad, tales como el cifrado y la firma digital. Aunque una implementación de

ECC en software podŕıa proveer interoperabilidad, el tiempo de procesamiento es

inaceptable. Para acelerar los tiempos de procesamiento de ECC se han propuesto

en la literatura varias implementaciones de ECC en hardware, pero optimizadas

para un conjunto de parámetros T particulares, incrementando aśı los problemas

de interoperabilidad.

Esta investigación aborda el problema de interoperabilidad en ECC desar-

rollando una arquitectura hardware que permita una adaptacin dinámica de su

estructura para poder operar con diferentes parámetros T y que al mismo tiempo

mantenga el alto desempeño de una implementación en hardware. Una imple-

mentación ECC interoperable es dif́ıcil debido a la diversidad de parámetros T

que existen y a la complejidad de los algoritmos subyacentes. Aunque algunos

trabajos reportados permiten cierta flexibilidad en la elección de los parámetros,

vii

una arquitectura hardware reconfigurable que provea interoperabilidad con otras

implementaciones no se ha explorado aún. Una aplicación inmediata de esta nueva

arquitectura es en el protocolo IPSec, donde los algoritmos criptográficos como

ECC y sus parámetros de implementación se negocian en tiempo de ejecución.

Para llevar a cabo el diseño, implementación y evaluación de la arquitec-

tura hardware interoperable, se propone la aplicación del cómputo reconfigurable,

donde el hardware puede modificarse dinámicamente. Dado que no existe una

metodoloǵıa general de diseño para sistemas reconfigurables, en esta tesis se ex-

plora y evalúa una nueva metodoloǵıa de diseño de sistemas ECC interoperables.

El desarrollo de esta investigación se realizó en tres etapas: i) la primera etapa

consistió en el diseño y evaluación de una arquitectura hardware ECC base para

el estudio y evaluación de algoritmos propuestos en la literatura a fin de encontrar

los mejores circuitos que lleven a tener mı́nimos requerimientos de área y altos

desempeños; ii) la segunda etapa consistió en incorporar a la arquitectura ECC

base la capacidad de reconfiguración. Esta capacidad permite que la arquitectura

hardware ECC se adapte en tiempo de ejecución a diferentes parámetros T y por

tanto que pueda proveer interoperabilidad; iii) la tercera etapa consistió en la

validación de la arquitectura, la cual se realiza mediante la aplicación de vectores

de prueba. La validación se realiza mediante simulación funcional del hardware

descrito en VHDL, aśı como también mediante verificación en el circuito.

Las aportaciones de este trabajo de investigación son: i) Una arquitectura

hardware para ECC que permite interoperabilidad; ii) Una estrategia de reconfig-

uración para arquitecturas ECC interoperables; y iii) Un estudio de los algoritmos

aritméticos en campo finito que mejor se desempeñen. Este estudio permite es-

tablecer un compromiso área-desempeño en la arquitectura.

viii

Contents

List of figures xiv

List of tables xvi

1 Introduction 1

1.1 Information security and cryptography 1

1.2 Motivation . 6

1.3 Research question . 8

1.4 Thesis objectives . 11

1.4.1 General objective . 11

1.4.2 Specific objectives . 11

1.5 Thesis outline . 12

2 Elliptic Curve Cryptography 13

2.1 Groups and Finite Fields . 13

2.1.1 Modular arithmetic . 14

2.1.2 Prime and binary finite field 15

2.2 Elliptic Curve Cryptography (ECC) 17

2.2.1 The elliptic curve group 17

2.2.2 The discrete logarithm problem 19

2.2.3 Cryptographic schemes . 19

2.2.4 Scalar multiplication dP 23

2.3 ECC implementations . 32

2.3.1 ECC in software . 33

2.3.2 ECC in hardware . 34

2.3.3 ECC implementations and side channel attacks 39

2.4 Summary . 41

ix

CONTENTS

3 Reconfigurable computing and design methodology 43

3.1 Reconfigurable computing . 43

3.2 Reconfigurable devices . 45

3.3 Design methodology . 48

3.3.1 Design flow for ECC hardware architectures 50

3.3.2 Design flow for reconfigurable ECC hardware architectures 56

3.3.3 Verification and Validation 60

3.4 Summary . 61

4 ECC co-processor design 63

4.1 Requirements . 63

4.2 Hardware for the lower dP layer: GF(2m) arithmetic 65

4.2.1 GF(2m) Multiplication . 66

4.2.2 GF(2m) Squaring . 71

4.2.3 GF(2m) Inversion . 72

4.3 Hardware for the middle dP layer: Coordinate system 75

4.3.1 A new affine formula for point addition 77

4.4 Hardware for the higher dP layer: dP method 79

4.4.1 A co-processor resistant to side channel attacks 80

4.5 The ECC reconfigurable system 83

4.6 Proposed reconfigurable system 85

4.7 Summary . 87

5 Results 89

5.1 Target technology for implementation 89

5.2 Metrics of performance . 90

5.3 Tools . 91

5.4 Results of GF(2m) arithmetic modules 91

5.4.1 Serial GF(2m) multiplication 91

5.4.2 Digit-Serial GF(2m) multiplication 92

5.4.3 GF(2m) squarer . 92

5.4.4 GF(2m) division . 93

5.4.5 Discussion . 94

5.5 Results of the GF(2m) dP co-processor 95

5.5.1 Parallel architecture for ECC 95

x

CONTENTS

5.5.2 Serial architecture for ECC 97

5.5.3 An ECC hardware architecture resistant to Side Channel

Attacks . 100

5.6 ECC reconfigurable system results 104

5.7 Comparison with related work . 105

5.8 Summary . 107

6 Conclusions and directions 109

6.1 Summary of contributions . 109

6.2 Future work . 110

A Guidelines for partial reconfiguration of a GF (2m) ECC co-processor113

A.1 The base design . 113

A.2 Modifying the base design . 114

A.3 Different versions of the peripheral: partial reconfiguration 115

A.4 .ngc files generation . 116

B GF(2m) ECC co-processor test vectors 123

B.1 Test vectors for finite field arithmetic 123

B.2 Test vectors for scalar multiplication dP 124

B.2.1 Test vectors for m = 113 124

B.2.2 Test vectors for m = 131 124

B.2.3 Test vectors for m = 163 124

B.2.4 Test vectors for m = 233 125

B.2.5 Test vectors for m = 277 126

B.2.6 Test vectors for m = 283 126

xi

CONTENTS

xii

List of Figures

1.1 Cryptographic operations . 3

2.1 Point addition in ECC. 18

2.2 Three layers approach for dP implementation 23

3.1 FPGA internal structure . 46

3.2 Flow for developing the ECC co-processor 51

3.3 Design flow for FPGA-based digital circuits. 52

3.4 Design entry and synthesis process. 52

3.5 Design implementation . 55

3.6 Design layout of a reconfigurable fabric with a reconfigurable module 58

3.7 Design flow for partial reconfiguration 58

4.1 Circuit GF2m Mul Serial 1 for GF(2m) serial multiplication . . . 67

4.2 Circuit GF2m Mul Serial 2 for GF(2163) serial multiplication . . . 68

4.3 Hardware architecture GF2m Dserial Mul 1 for GF(2m) digit-serial

multiplication. 69

4.4 Circuit for GF(2m) squaring . 73

4.5 Architecture GF2m Div 1 for GF(2m) division 75

4.6 Architecture GF2m Div 2 for GF(2m) division 76

4.7 Data flow for ECC point addition 76

4.8 Diagram block for the new Point Addition formula 80

4.9 Elliptic curve co-processor for dP 82

4.10 Serial a) and parallel b) implementation for the Coron’s binary

methods for dP . 84

4.11 Extending the dP processor to support different tuples T 85

4.12 Co-processor attached to a microprocessor 85

xiii

LIST OF FIGURES

4.13 Layout of the proposed reconfigurable system 86

5.1 Virtex4 slice . 90

5.2 Timing us for GF (2m) digit serial multiplier 93

5.3 Area resources of the parallel implementation of dP for different

security levels and parallelism grade in the field multiplier. 96

5.4 Timing to compute dP using the parallel architecture for different

security levels and parallelism grade in the field multiplier. 97

5.5 Architecture 1 area resources for different security levels 98

5.6 Timing to compute dP using architecture 1 and different paral-

lelism grade in the field multiplier 98

5.7 Area resources (logic gates) used by the ECC serial architecture for

different security levels. 99

5.8 Timing (ms) to compute dP by the ECC serial architecture for

different security levels. 100

5.9 Comparison of area resources for the parallel and serial implemen-

tation of dP algorithm. 101

xiv

List of Tables

1.1 Cryptographic algorithms . 2

1.2 Key sizes for cryptographic algorithms [1] 2

1.3 Public key cryptosystems and their underlying mathematical prob-

lems . 4

1.4 Complexity of mathematical problems in public key cryptography 4

1.5 Elliptic curve cryptographic schemes approved 5

1.6 Tuples T for GF(2m) recommended in standards [2]. 9

1.7 Tuples T for GF(p) recommended in standards [2]. 10

2.1 Scalar multiplication methods . 24

2.2 Count of finite field arithmetic in Elliptic Curve Cryptography

point addition . 31

2.3 ECC implementation on general purpose processors 33

2.4 Approaches taken in ECC co-processors in GF(2m) 36

2.5 Approaches taken in ECC processors in GF(2m) 36

2.6 Devices used, area consumption and execution time in ECC imple-

mentations in GF(2m) . 38

2.7 Hardware organization in reported ECC implementations in GF(2m) 38

5.1 Synthesis results of the GF (2m) multiplication algorithm on the

Virtex4 FPGA. 92

5.2 Synthesis results for the GF(2m) digit serial multiplier on the Vir-

tex4 FPGA. 93

5.3 Synthesis results for the GF (2m) division algorithm on the Virtex4

FPGA. 94

5.4 Synthesis results for three implementations of the dP co-processor

on the Virtex4 FPGA (Optimized by area). 102

xv

LIST OF TABLES

5.5 Synthesis results for three implementations of the dP co-processor

on the Virtex4 FPGA (Optimized by speed). 103

5.6 Area results for the reconfigurable system. 105

5.7 Time results for the reconfigurable dP co-processor. 105

5.8 Comparison results. 106

xvi

Chapter 1

Introduction

This chapter introduces concepts related to this dissertation and states the tracked

problem. It presents the motivation for this work and lists the main and specific

objectives pursed in this thesis. The next section introduces cryptography and

terms related to it. The introductory material presented in this chapter could be

extended in [3, 4, 5, 6].

1.1 Information security and cryptography

Security mechanisms to protect sensitive information have been required since

ancient times. Digital form of information has made more complicated the way

to keep it secure due it is more easy to access and handle. Information security

services are provided by cryptography, a discipline of mathematics and, in mod-

ern times, of computer science [3]. Cryptography is an interdisciplinary subject

that makes extensive use of mathematics, including aspects of information the-

ory, computational complexity, statistics, combinatorics, and especially number

theory. Cryptography is used in many applications that touch everyday life; the

security of ATM cards and electronic commerce depend on cryptography.

Cryptography provides the information security services of confidentiality, au-

thentication, integrity, and no-repudiation. Confidentiality is provided by private

key cryptography (also known as Symmetric Key Cryptography or SKC) by the

encryption and decryption operations [3]. The four security services can be pro-

vided by Public Key Cryptography (PKC), but this kind of cryptography is mainly

used to provide the authentication and no-repudiation services by implementing

1

CHAPTER 1. INTRODUCTION

Table 1.1: Cryptographic algorithms

Kind of cryptography Examples
Hash Functions MD4-5, SHA-0-1-2, RIPDEM
Symmetric Key Cryptography DES, AES, 3DES, RC4
Public Key Cryptography ECC, RSA, DSA, ElGammal

Table 1.2: Key sizes for cryptographic algorithms [1]

Private key size Public key size (bits) MIPS Protection
(bits) ECC RSA/DH/DSA to attack lifetime

80 160 1024 1012 until 2010
112 224 2048 1024 until 2030
128 256 3072 1028 beyond 2031
192 384 7680 1047

256 512 15360 1066

the concept of digital signatures. The hash functions are cryptographic primitives

often used along with public or private key algorithms to provide the integrity

service. Examples of hash functions, public key and private key algorithms are

given in table 1.1.

SKC and PKC algorithms rely on the use of a key or a pair of keys. A key

is a n-bit string that is used to transform data. The size in bits of the key is an

important security parameter in the cryptographic algorithms. Table 1.2 shows

the key sizes for different SKC and PKC cryptographic algorithms with equivalent

security level.

SKC algorithms use the same key to encrypt and decrypt data while PKC

uses two different keys, one for encryption (public key) and other for decryption

(private key). The use of two different but related keys eliminates the problem

in SKC of managing N2 keys for a network of N nodes. It is well known in

the literature that PKC algorithms provide stronger security but they are more

complex and slower than the symmetric ones. Symmetric algorithms are faster

to encrypt and decrypt but cannot offer the authentication and no-repudiation

services, so a combination of SKC and PKC is used in practice; PKC to derive a

shared secret key and SKC to provide faster encryption and decryption.

Different to symmetric key cryptography, where encryption and decryption

operations are carried out by permutations and transpositions, in public key cryp-

2

1.1. INFORMATION SECURITY AND CRYPTOGRAPHY

Message

Encryption

operation

Public key

Encrypted

Message

Encrypted Message

Decryption

operation

Private key

Public Key cryptography

Decrypted

Message

Message

Encryption

operation

Encrypted

Message

Encrypted Message

Decryption

operation

Private key

Decrypted

Message
Private key

Private Key cryptography

Message
 HASH

Function

Message

digest

SIGN

operation

Private key

Digital

Signature

Verify

operation

Public

key

Digital

Signature

Valid/Invalid

Message

HASH

Function

Message

digest

Digital signature

Figure 1.1: Cryptographic operations

tography almost all methods transform data by executing arithmetic operations

in mathematical structures like finite fields or elliptic curves. In public key cryp-

tosystems confidentiality is achieved by encrypting data with the public key of the

receiver. Then, the receiver, which is the unique posesor of the associated private

key, can decrypt data and recover the original information. The integrity, authen-

tication and non-repudiation services are provided by implementing the concept

of digital signature. A digital signature is the analog to the handwritten signa-

ture. An user signs a piece of information using his private key, and any other

user can verify the authenticity of the signature, and hence of information, using

the signer’s public key. Private key, public key and digital signature operations

are showed in figure 1.1.

In PKC, private and public keys have a mathematical relation f , but the

private key can not be obtained from the public one. In order to recover the

private key to decrypt data or to sign documents, a mathematical problem P

related to f must be solved. The security of public key cryptosystems depends

on the difficulty to solve P . In practice, three problems have been considered to

3

CHAPTER 1. INTRODUCTION

Table 1.3: Public key cryptosystems and their underlying mathematical problems
Mathematical Problem Description Cryptosystems

Integer factorization Given a number n, RSA,
find its prime factors Rabin-Williams

Discrete logarithm Given a prime n, and numbers g and h, ElGamal, DSA
find x such that h = gx mod n Hellman-Diffie

Elliptic curve discrete Given an elliptic curve E and points ECDSA,
logarithm P and Q on E, EC-Diffie-Hellman

find x such that Q = xP

Table 1.4: Complexity of mathematical problems in public key cryptography

Public-key system
Best known methods for Running times
solving mathematical problem

Integer factorization Number field sieve: Sub-exponential
e1.923(log n)

1
3 (log log n)

2
3

Discrete logarithm Number field sieve: Sub-exponential
e1.923(log n)

1
3 (log log n)

2
3

Elliptic curve discrete Pollard-rho algorithm: Fully exponential
logarithm

√
n

be difficult to solve and are used for cryptographic applications. Table 1.3 lists

these problems and the cryptosystems that rely their security on such problems.

Table 1.4 shows the computational complexities for each of these problems.

In table 1.4, n is the size of the keys used. The sub-exponential complexity

of the problem on which RSA and other public key methods base their secu-

rity means that the problem can be considered hard to solve but not as hard as

problems that only allow fully exponential solutions, as elliptic curve cryptogra-

phy. Because of this, ECC can offer a similar security level than other public

key cryptosystems but using shorter length keys, which implies less space for key

storage, time saving when keys are transmitted and less costly modular computa-

tions. These characteristics make ECC the best choice for securing devices with

constrained resources, like the mobile ones.

ECC bases its security in the difficulty to solve the discrete logarithm problem.

In general, the discrete logarithm problem is defined on a finite group Γ = {S, ¦}.
A group is a closed set of elements S under the binary operator ¦ that satisfies

axioms (closure, associativity, commutativity, neutral element, inverse) [6]. For a

group element e ∈ S and a number k, ek denote the element obtained by applying

operation ¦, k − 1 times to e (e2 = e ¦ e, e3 = e ¦ e ¦ e, and so on). Under

4

1.1. INFORMATION SECURITY AND CRYPTOGRAPHY

Table 1.5: Elliptic curve cryptographic schemes approved
Crypto scheme NIST [7] ANSI [8] IEEE [9]
Key agreement ECDH, ECMQV ECDH, ECMQV ECDH, ECMQV

Digital Signature ECDSA ECDSA ECDSA
Encryption ECIES

these conditions, the discrete logarithm problem is defined as follows: given an

element e1 ∈ S and another element e2 ∈ S, find an integer k such that ek
1 = e2.

The difficulty to solve this problem increases as the number of elements in S gets

larger. In Γ, a generator element g in S always exists, that is, each element e in

S is equal to gk for some positive integer k.

In elliptic curve cryptography, the discrete logarithm problem is defined on

the group Γ = {S, ¦}, where S is the set of points of an elliptic curve and the

group operation ¦ is the sum of points. In this case, Γ is denominated an additive

group. The operation ek is now interpreted as e + e + e + ... + e = ke. Here, e is

a point P = (x, y) that satisfies an elliptic curve equation f(x, y) = 0 defined on

a finite field. The discrete logarithm problem is now defined as: given the points

P, Q ∈ S, find the integer d such that Q = dP . The operation dP is called scalar

multiplication. Again, the difficulty to solve this conjectured difficult problem

increases as the number of elliptic curve points also increases.

Elliptic curve cryptography provides the security services of confidentiality,

authentication, integrity and no-repudiation throughout cryptographic schemes

for key agreement, digital signatures and bulk encryption. Some of these schemes

are recommended in standards and classified accordingly, as shown in table 1.5.

An elliptic curve cryptosystem is defined as a set of parameters T = (K, E(K),

G, n, h), where:

K is a finite field, either the binary field GF(2m) or the prime field

GF(p).

E(K) is an elliptic curve on K.

G is a generator point of the elliptic curve.

n is the order of G, that is, the smaller integer such that nG = O

(identity point in the additive group Γ).

h is called the co-factor, the total number of points in the curve

divided by n.

The public key in ECC schemes is an elliptic curve point P = (x, y) while

5

CHAPTER 1. INTRODUCTION

the private key is an integer in the range [1, n-1]. More details about the tuple

T and each one of its elements are presented in section 2.2.3. ECC schemes for

encryption, decryption and digital signature generation and verification are also

presented in section 2.2.3.

1.2 Motivation

Future communications systems are expected to enable interaction between an

increasingly diverse range of devices, both mobile and fixed [10]. This will al-

low users to construct their own personal distributed environments using a com-

bination of different communications technologies. Depending on the services

availability, the communication configuration could be, for instance, via a cellular

system; a wireless ad hoc network; a digital broadcast system; or a fixed telephone

network. Interoperability and security are two main requirements in this hetero-

geneous inter-networked environment. To achieve interoperability, it is necessary

that all participants in a communication network have the standardized versions

of common security protocols. Often, interoperability is reduced considerably to

increase performance and security.

ECC has the important feature of using shorter keys while keeping the same

security level compared to traditional public key cryptosystems, like RSA. Be-

ing ECC the most efficient public key cryptosystem for constrained devices, it

has the inconvenience of presenting interoperability problems. That is, there are

several tuples T that can be used to implement ECC, two parties performing

cryptographic operations must accord the same tuple to interoperate.

An ECC implementation imposes several challenges, specifically if perfor-

mance, security and flexibility are compromised. Software ECC implementation

offers moderate speed, high power consumption compared to custom hardware,

and only limited physical security, especially with respect to key storage. If secu-

rity algorithms are implemented in hardware, a gain in performance is obtained

at cost of flexibility. Dedicated hardware implementations of cryptographic algo-

rithms with low power consumption are expected to outperform the software ones

because the available instruction set of a processor does not implement directly

the cryptographic functions. Also, hardware implementations of cryptographic

algorithms are more secure because they cannot be easily read or modified by an

6

1.2. MOTIVATION

outside attacker as software implementations. ASIC (Application Specific Inte-

grated Circuit) implementations show lower price per unit, reach high speeds and

have low power dissipation. However, the lack of flexibility of ASIC implementa-

tions with respect to the algorithms and parameters, leads to higher development

costs and switching.

ECC interoperability would be better achieved by software implementations

than custom hardware due to the software flexibility to switch among different

ECC schemes implementations with several security levels. However, the perfor-

mance of software implementations is lower. An approach studied in recent years

combines the advantages of software (flexibility) and hardware (performance) in

a new paradigm of computation named Reconfigurable Computing RC [11]. RC

is a discipline that covers the computer science and electronic engineering areas.

RC involves the use of reconfigurable devices for computing purposes.

Reconfigurable devices are ideal for cryptographic algorithms implementation

because of the following criteria [12]:

• Algorithm Agility: Switching of cryptographic algorithms during opera-

tion of the targeted application. Whereas algorithm agility is costly with

traditional hardware, reconfigurable devices can be reprogrammed on the

fly.

• Algorithm Upload: Devices are upgraded with a new encryption algo-

rithm because of different reasons, for example, algorithm was broken or a

new standard was created.

• Architecture Efficiency: A hardware architecture can be much more effi-

cient if it is designed for an specific set of parameters, for example the key or

the underlying finite field. The more specific an algorithm is implemented

the more efficient it can become. Reconfigurable devices allow this type of

design and optimization with an specific parameter set. Due to the design of

reconfigurable devices, the application can be changed totally or partially.

• Resource Efficiency: Since a cryptographic algorithm can offer different

security services at different times, the same reconfigurable device can be

used to implement the algorithms for different services through runtime

reconfiguration.

7

CHAPTER 1. INTRODUCTION

• Throughput: General-purpose processors are not optimized for fast execu-

tion especially in the case of public-key algorithms. This is because they do

not have instructions for modular arithmetic operations on long operands,

which is necessary in that kind of algorithms. Although typically slower than

ASIC implementations, implementations on reconfigurable devices have the

potential of running substantially faster than software implementations.

New academic proposals suggest the use of security protocols based on both

public and private cryptography in order to ensure the security services of authen-

tication, confidentiality and integrity. Strong cryptography like ECC is currently

being considered to provide these security services and some protocols including it

have been proposed [13, 14]. But at this moment ECC presents interoperability

problems. An interoperable security solution based on ECC is difficult due to var-

ious implementation choices and the underlying algorithms complexity. Although

ECC is considered to be the best choice to provide security services to constrained

devices [15], there is much work to be done in order to achieve it.

Although software and hardware implementations of ECC have been reported

in the literature (related work is discussed in section 2.3.1), they are optimized

for an specific security level, leading to low flexibility and interoperability prob-

lems [16]. In the case of software implementations, although some flexibility is

achieved, implementations result in low performance. In the case of hardware im-

plementations, optimized versions have been preferred for high performance which

has increased the interoperability problems.

1.3 Research question

Elliptic curve cryptography is considered one of the best choice for public key

cryptography [15], specially for constrained devices. It uses shorter keys without

decreasing the security level which implies less space for storage and better use of

the bandwidth if keys are transmitted using a communication network.

An ECC cryptosystem is necessarily associated with a set of parameters like

the finite field, elliptic curve, finite field representation, etc. For two parties using

ECC to interoperate, they must agree to use the same ECC parameters and to

have the implementation of ECC schemes using that parameters.

8

1.3. RESEARCH QUESTION

To improve efficiency and reduce code-size, many implementations are re-

stricted to use an specific parameter set. Typically, a particular set of curves

is chosen because of certain algebraic properties that allow for an efficient imple-

mentation. For example, some environments choose solely Koblitz curves because

they lead to particularly efficient implementations. Given this, there is the poten-

tial for widespread interoperability problems among ECC implementations that

have chosen disparate curves.

Several standards have published parameters for ECC implementations [2].

These curves represent various security levels included in table of equivalent key

strengths (see table 1.2 in section 1.1). With the publication of these recommen-

dations, the implementation parameters of ECC have been converging on these

standard curves. In order to improve the chances of interoperability, systems de-

ploying ECC should use these curves and be able to process all of the curves in the

list. Tables 1.6 and 1.7 show some of the different recommendations of param-

eters for different security levels using elliptic curves on the finite fields GF(2m)

and GF(p) respectively. Each one of the recommendations indicates the elliptic

curve, security parameters G, n and h (see section 2.2.3).

The elliptic curves for GF(p) are known as odd curves and the ones for GF(2m)

are known as even characteristic curves. In the column Name of both tables

1.6 and 1.7, the number indicates the size of the keys in bits (the size in bits

of the elements in the finite field), r stands for random curve and k stands for

Koblitz curve. Different random and Koblitz curves are specified in the standards

and identified by a number (r1, k1, r2, k2, etc). The ‘-’ denotes parameters

non-conformant with the standard, a C denotes parameters conformant with the

standard, and an R denotes parameters explicitly recommended in the standard.

Table 1.6: Tuples T for GF(2m) recommended in standards [2].
Name ANSI X9.62 ANSI X9.63 IEEE P1363 IPSec NIST WAP
113r1 - - C C - R
131r1 - - C C - C
163k1 C R C R R R
193r1 C R C C - C
239k1 C C C C - C
283r1 C R C R R C
409r1 C R C C R C
521r1 C R C C R C

9

CHAPTER 1. INTRODUCTION

Table 1.7: Tuples T for GF(p) recommended in standards [2].
Name ANSI X9.62 ANSI X9.63 IEEE P1363 IPSec NIST WAP
112r1 - - C C - R
128r1 - - C C - C
160r1 C C C C - R
192k1 C R C C - C
224k1 C R C C - C
256r1 R R C C R C
384r1 C R C C R C
521r1 C R C C R C

Although some reported works allow some flexibility in choosing the ECC

parameters, a reconfigurable architecture enabling interoperability with other de-

signs has not been explored at all. Although in some works the design of the

arithmetic units is parameterizable in the order field, the architecture needs to be

reconfigured out of line for other finite fields orders. It would be desired a real

time adaptation of the architecture to different security levels.

Only [17] proposes to manage different elliptic curves without reconfiguring

the hardware by implementing wired reduction for three of the NIST curves and

implements the technique called partial reduction for arbitrary curves. Other

works like [18, 19, 20] manage different elliptic curves but need to reconfigure the

hardware out of line. Other works like [21] propose a HW/SW partition and use

reconfigurable logic only for arithmetic instructions. An example of customized

implementation for an specific elliptic curve is [22]. Other efforts to achieve ECC

interoperability propose an unified arithmetic unit for both prime and binary fields

arithmetic [23, 24].

The research questions on which this thesis deals with are:

1. How to design an efficient and interoperable hardware architecture for elliptic

curve cryptography?.

2. Which is the cost of interoperability in terms of area and performance?

3. How to achieve architecture reconfigurability to allow the adaptation for dif-

ferent security levels?

10

1.4. THESIS OBJECTIVES

1.4 Thesis objectives

The main interest to propose hardware architectures for elliptic curve cryptog-

raphy has been the computation, as fast as possible, of the most computational

expensive operation in elliptic curve cryptography, the scalar multiplication dP .

The approach in this dissertation is different. This PhD project aims to provide

a flexible architecture that can adapt to several security levels while achieving

high performance. This implies a careful design that performs well in several el-

liptic curves and finite fields and at the same time, that allows to establish an

area/performance trade off.

1.4.1 General objective

The objective of this thesis is to design and implement a reconfigurable hardware

architecture that allows interoperability for different security levels and implemen-

tation parameters of elliptic curve cryptography while achieving high performance.

This proposal aims to solve the interoperability problem of current elliptic

curve cryptography. For an ECC co-processor to be interoperable, it must be

flexible to manage different elliptic curves in an specific finite field. In the case

of curves defined in GF(p), the co-processor should support any or most of the

curves in table 1.7. In the case of curves defined on GF(2m), the co-processor

must support any or most of the curve in table 1.6.

Reconfiguration will be necessary to manage different elliptic curves and finite

fields and maximizing the performance and minimizing the resources for each

security level. Dynamic adaptation of the architecture to those security levels is

desired.

1.4.2 Specific objectives

Specific objectives of this project are:

1. To implement architectures of ECC algorithms with different sets of param-

eters for the arithmetic and security levels.

2. To select the most promising ECC arithmetic algorithms that may lead to

the best area/performance trade-off.

11

CHAPTER 1. INTRODUCTION

3. To identify key modules in the ECC scheme that can be suitable for recon-

figuration.

4. To define a reconfiguration strategy for architecture adaption to different

security levels.

The ECC co-processor designed in this work is for elliptic curves in GF(2m).

The arithmetic in GF(2m) fields is well suited to be implemented in hardware

because it is binary arithmetic.

1.5 Thesis outline

This thesis describes proposed research to develop an interoperable hardware ar-

chitecture for elliptic curve cryptography making use of the reconfigurable com-

puting concept. The overall goal of this research is to design, implement and

evaluate a reconfigurable architecture that facilitates the interoperability of ellip-

tic curve cryptography to adapt dynamically to the security levels recommended

by various standards and emerging proposal.

This thesis is organized as follows. The mathematical background and the

implementation issues of ECC are presented in the next chapter. This chapter

also describes related works about implementations of elliptic curve cryptography.

Chapter 3 presents the concepts related to reconfigurable computing used in this

thesis and the design flow for implementing reconfigurable systems for elliptic

curve cryptography. Chapter 4 describes the design and implementation of a

hardware ECC co-processor for scalar multiplication dP . The reconfiguration

strategy for implementing the reconfigurable system for interoperable ECC is

described at the end of chapter 4. Chapter 5 shows and analyzes the results of

this research and chapter 6 gives the conclusions of this work and directions for

future work.

12

Chapter 2

Elliptic Curve Cryptography

This chapter presents the mathematical background of elliptic curve cryptogra-

phy (ECC) and ECC-based cryptographic schemes such as encryption and digital

signature. Related work about software and hardware implementations of ECC

are also presented and discussed.

2.1 Groups and Finite Fields

Groups and fields are part of abstract algebra, a branch of mathematics. Fi-

nite fields are increasingly important in several areas of mathematics, including

linear and abstract algebra, number theory and algebraic geometry, as well as

in computer science, statistics, information theory, and engineering. Also, many

cryptographic algorithms perform arithmetic operations over these fields [3].

A group Γ is an algebraic system {S, ¦} consisting of a set S and a binary

operation ¦ defined on S that satisfies the following axioms:

1. Closure: ∀ x, y ∈ G, x ¦ y ∈ G.

2. Associativity: ∀ x, y, z ∈ G, (x ¦ y) ¦ z = x ¦ (y ¦ z).

3. Identity: ∃ I ∈ G such as x ¦ I = x.

4. Inverse: ∀ x ∈ G, exist only one y ∈ G such as x ¦ y = y ¦ x = I.

If ∀ x, y ∈ G, x ¦ y = y ¦ x, Γ is called an abelian group.

13

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

A finite field is an algebraic system {F,⊕,¯} consisting of a set F containing

a fixed number of elements and two binary operations, ⊕ (plus) and ¯ (dot) on

F , satisfying the following axioms:

1. Elements 0 and 1 ∈ F .

2. F is an abelian group respect to operation ⊕.

3. F - {0} is an abelian group respect to operation ¯.

4. ∀ x, y ,z ∈ F , x ¯ (y ⊕ z) = (x ¯ y) ⊕ (x ¯ z) and x ⊕ (y ¯ z) = (x ⊕
y) ¯ (x ⊕ z).

The order of a finite field is the number of elements in that field. It has been

showed [25] that exists a finite field of order q if and only if q is a prime power.

In addition, if q is a prime power, the finite field of order q is unique. A finite

field, also known as Galois Field, is denoted as Fq or GF(q).

2.1.1 Modular arithmetic

The operation,

a mod n = z (2.1)

means that z is the remainder when a is divided by n, the remainder is an integer

in the range [0, n−1]. This operation is called modular reduction, and it is used in

cryptographic schemes mainly for two reasons: 1) operations like logarithms and

square roots module n are hard problems and 2) the space of values is restricted

to a fixed group of numbers. In cryptography applications, a, z and n are large

integer numbers. Another common notation for equation 2.1 is to say that a and

z are equivalent or a is congruent to z mod n, which is written as

a ≡ z (mod n) (2.2)

Modular arithmetic is commutative, associative and distributive. The common

integer operations +, *, and - in modular arithmetic are defined as follows:

1. (a + b) mod n = ((a mod n) + (b mod n)) mod n

2. (a− b) mod n = ((a mod n)− (b mod n)) mod n

14

2.1. GROUPS AND FINITE FIELDS

3. (a ∗ b) mod n = ((a mod n) ∗ (b mod n)) mod n

4. a ∗ (b + c) mod n = (((a ∗ b) mod n) + ((a ∗ c) mod n)) mod n

Another important modular operation is the inversion. a−1 is the inverse mod n

of a number a if equivalence in equation 2.3 is true.

a ∗ a−1 ≡ 1 (mod n) (2.3)

For a given number a, a−1 is the unique solution only if a and n are relative primes

[5]. If n is a prime number, every number in the range [1, n − 1] is relatively

prime to n and has exactly one inverse (mod n). To calculate a module inverse,

two algorithms are commonly used: The Extended Euclidean Algorithm and the

Fermat’s Little Theorem. These algorithms are described in chapter 4.

2.1.2 Prime and binary finite field

The prime finite field has been long used in cryptography. It is denoted as GF(p),

where p is a prime number. GF(p) consists of the elements {0, 1, 2, . . . , p− 1}.
The operations ⊕ and ¯ are performed as the ordinary integer operations sum

and multiplication respectively applying reduction (mod p). These operations

are defined as follows:

1. ⊕: (a + b) mod p, a,b ∈ GF(p),

2. ¯: (a * b) mod p, a,b ∈ GF(p),

3. ∀ a 6= 0 ∈ GF(p), a−1 is the inverse of a if a ∗ a−1 = 1 (mod p).

The binary finite field is denoted as GF(2m) (also known as two-characteristic

field or the Galois field) and can be viewed as a m-dimension vectors space on {0,

1}. As a vectorial space, a basis exist in GF(2m). The set {α0, α1, ..., αm−1}, αi

∈ GF(2m), is called a basis of GF(2m) if exist m − 1 elements ai in {0, 1} such

that every element a ∈ GF(2m) can be expressed as in equation 2.4.

a = am−1αm−1 + am−2αm−2 + ... + a1α1 + a0α0 (2.4)

If such basis exist, each element in GF(2m) can be represented as the binary m-

vector (a0, a1, a2, . . . , am−1). There are different basis for GF(2m), the most

15

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

commonly used are: polynomial, normal and dual. The arithmetic for binary

operations ⊕ and ¯ changes slightly according to the basis employed. When

implementing binary field arithmetic, polynomial basis is preferred because of the

sum of two elements is a simple XOR operation and the elements in GF(2m) are

binary strings that are well stored in m-bit registers. Details about normal and

dual basis can be found in [25] and [26] respectively.

In polynomial basis, each m-vector a ∈ GF(2m), is viewed as a polynomial,

am−1x
m−1 + am−2x

m−2 + ... + a1x + a0 (2.5)

The binary field GF(2m) is generated by an irreducible polynomial F (x) of grade

m of the form

xm + fm−1x
m−1 + fm−2x

m−2 + ... + f1x + f0 (2.6)

where fi ∈ {0, 1}. The polynomial is named irreducible because it can not be

expressed as the multiplication of two other polynomials (it is as a prime number

in integer arithmetic). The polynomial needs to be irreducible, otherwise the

math does not work [5].

Let be a, b ∈ GF(2m), a = (am−1, am−2, ..., a1, a0) b = (bm−1, bm−2, ..., b1, b0).

The arithmetic operations ⊕ and ¯ in the finite field GF(2m) are defined as

follows:

1. ⊕: a ⊕ b = c, c = (cm−1, cm−2, ..., c1, c0), where ci = ai XOR bi.

2. ¯: a ¯ b = c, c = (cm−1, cm−2, ..., c1, c0), where c(x) = a(x)b(x) mod F (x).

c(x) = cm−1x
m−1 + cm−2x

m−2 + ... + c1x + c0

a(x) = am−1x
m−1 + am−2x

m−2 + ... + a1x + a0

b(x) = bm−1x
m−1 + bm−2x

m−2 + ... + b1x + b0

For cryptographic applications, the irreducible polynomial F (x) is a trinomial

of the form xm + xi + 1 or it is pentanomial of the form xm + xi + xj + xl + 1,

where i, j and l are positive integers. The use of trinomials or pentanomials leads

to efficient software and hardware implementations.

16

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

2.2 Elliptic Curve Cryptography (ECC)

Elliptic curves, as geometric algebraic entities have been studied since the second

half of the nineteen century, initially, without any cryptographic purpose. In 1985,

the application of elliptic curves in public key cryptography was independently

proposed by Neals Koblitz [27] and Victor Miller [28].

Koblitz and Miller proposed to use an elliptic curve defined on a finite field,

and to define a point addition operation such that the points of the elliptic curve

and the point addition operation formed an abelian group. On this group, the

discrete logarithm problem, called the elliptic curve discrete logarithm problem

(ECLDP), can be defined and so, a cryptosystem could be built on this problem.

The main advantage of this elliptic curve cryptosystem is that the ECLDP is

more difficult to solve than that defined on the multiplicative group GF(p). The

best algorithm known for solving the ECDLP is fully exponential, the Pollar-Rho

method [29].

ECC can offer a similar security level than other public key criptosystems

using shorter length keys, which implies less space for key storage, time saving

when keys are transmitted and modular computations less costly. ECC’s security

has not been proved; its strength is based on the inability to find attacks.

2.2.1 The elliptic curve group

An elliptic curve over a field K is formed by the point O called point at infinity,

and the set of points P = (x, y) ∈ K × K satisfying a non-singular Weierstrass

equation:

E(K) : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 . (2.7)

The elliptic curve E(K) together with the point O form the additive group

{E(K) ∪ O, +}, being O the identity element (P + O = P). For cryptographic

applications, the field K is a finite field. If K is GF(p) the elliptic curve equation

is

E(GF (p)) : y2 = x3 + ax + b . (2.8)

17

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

When the elliptic curve is defined on the binary field GF(2m), the equation is

E(GF (2m)) : y2 + xy = x3 + ax2 + b . (2.9)

Since K is finite, E(K) is also a finite set. The group operation + is the sum

of points in the elliptic curve and its definition has a geometrical interpretation.

In order to satisfy the closure axiom in the group {E(K) ∪ O, +}, three kinds of

operation + are defined. The operation ECC-Dbl is defined as the addition of a

point P to itself while the operation ECC-Add is the sum of two different points P ,

Q. The geometric interpretation of point addition in elliptic curve cryptography is

shown in figure 2.1. The geometric interpretation of point addition is as follows:

Given the points P and Q (figure 2.1 a)), a line is traced from P to Q. Such

line will cut the elliptic curve in a unique point R′. The symmetric point R will

be the sum of points P and Q. There is a possibility that the line that joins P

and Q does not cut the elliptic curve (figure 2.1 b)). In this case, it is considered

that the line cuts the elliptic curve at infinity. This is the imaginary point O that

belongs to the elliptic curve and acts as the neutral element, that is, P + O = P

for every point P in the elliptic curve. In the case of the ECC-Dbl operation

(figure 2.1 c)) the line traced is the one that is tangent to the point P .

 a) Point Addition (ECC-Add)
 b) Point at infinity
 c) Point Doubling (ECC-Dbl)

y

P=
(
x
1
, y
1
)

Q=
(
x
2
, y
2
)

x

R=
(
x
3
, y
3
)

y

P=
(
x
1
, y
1
)

Q=
(
x
2
, y
2
)

x

Point at

infinity

y

P=
(
x
1
, y
1
)

x

R=
(
x
3
, y
3
)

R'

R'

Figure 2.1: Point addition in ECC.

ECC-Add and ECC-Dbl are carried out in different way depending on the

coordinate system used to represent the elliptic curve points (see section 2.2.4 for

details). Anyway, several finite field operations are always required to implement

the + operation in E(K).

18

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

2.2.2 The discrete logarithm problem

The discrete logarithm problem DLP is defined on groups, like the multiplicative

group GF(p) or the one formed by elliptic curve points. Given the group Γ =

{S, ¦} and a, b ∈ S, the discrete logarithm of a is z if a = bz. In this case, bz does

not necessary mean exponentiation but the application of operation ¦ to b z − 1

times. The elliptic curve discrete logarithm problem ECDLP is the DLP defined

on the group formed by the point of the elliptic curve E(K) (being K a finite

field). As the group operation is +, the ECDLP is defined as: given two points

P , Q ∈ E(K), to find the positive integer d such as Q = dP . As commented

previously in chapter 1, the best algorithm known to solve the ECDLP is of

exponential complexity. This is why ECC is considered more secure than other

kind of public key cryptography. On the contrary, knowing the scalar d and the

point P , the operation dP is relative easy to compute. The operation dP is called

scalar multiplication. It is the most time consuming operation in all cryptographic

schemes built on elliptic curves. The operation dP is computed as accumulative

sum operation of point P with itself. These sum operations are either ECC-Add

or ECC-Dbl operations.

There exist curves on which the ECDLP is easy to solve [25], the so-called

supersingular curves have to be avoided. These curves have an equal number of

points that the finite field on which they are defined. The National Institute of

Standards and Technology (NIST) has emitted several recommendations and has

proposed several elliptic curves over both GF(p) and GF(2m) for cryptographic

applications. Different to other cryptosystems, the security of ECC not only

depends on the length of the key but also on other parameters like the elliptic

curve being used.

2.2.3 Cryptographic schemes

An elliptic curve cryptosystem consist on a tuple. If the elliptic curve is de-

fined on GF(p), the cryptosystem domain parameters are the six-tuple TGF (p) =

(p, a, b, G, n, h), where:

19

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

p is the a big prime number.

a, b define the elliptic curve E on GF(p).

G is a generator point of the elliptic curve E(GF(p).

n is the order of G, that is, the smaller integer such that nG = O

(identity point in the additive group Γ).

h is called the co-factor, the total number of points in the curve

divided by n. This value is optional

If the curve is defined on the binary field GF(2m), the domain parameters

consist on a seven-tuple TGF (2m) = (m,F (x), a, b, G, n, h), where m defines the

order of the finite field, F (x) is the irreducible polynomial required in the field

arithmetic. All other values have similar definition that in the case of GF(p).

In both cases, the domain parameters specify an elliptic curve, a generator

point and the order of this point. How to generate such domain parameters is not

concern of this thesis neither their validation. There are proposed methods for

this that can be reviewed in [8, 2, 25].

ECDSA is the elliptic curve analogue of DSA for digital signatures. It has been

standardized by several international organizations like ISO, IEEE and ANSI. In

this thesis, the specification of ECDSA in the ANSI X9.62 document [8] is referred.

The ECIES scheme, for public-key bulk encryption is the most promising scheme

to be standardized. It has been considered in some drafts and it is currently

recommended by the Standards for Efficient Cryptography Group (SECG) [2].

In both ECDSA and ECIES, it is supposed that two entities A and B share

either the domain parameters TGF (2m) or TGF (p). It is also supposed that {dA,

QA} are the private and public keys for entity A and that {dB,B} are the ones

for entity B. Private keys are elements of the underlying finite field while public

keys are points in the elliptic curve.

ECIES scheme

The ECIES scheme employs two algorithms: a symmetric cipher E and a MAC

(Message Authentication Code) algorithm. The keys for the symmetrical and the

MAC algorithms are generated from a secret shared value between A and B by

a key derivation function (KDF). Assume that kSlength is the key’s length for the

symmetrical algorithm and kMAClength is the one for the MAC algorithm. A sends

an encrypted message D to B executing the following steps:

20

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

1. Select a random number d from [1, n− 1]

2. Compute (x, y) = dQB and R = dG

3. Derive a (S + M)-bit key kKDF from x according to [2].

4. Derive a S-bit key kS from KKDF and encrypt the message. C = E(m, kS)

5. Derive a M -bit key kM from KKDF and compute the m’s MAC value.

V = MAC(m, kM)

6. Send (R,C, V) to B

To recover the original message, B does the following:

1. If R is not a valid elliptic curve point, fail and return.

2. Compute (x′, y′) = dBR

3. Derive a (S + M)-bit key kKDF from x′ according to [2].

4. Derive a S-bit key kS from KKDF and decrypt the message C. m1 = E(C, ks)

5. Derive a M -bit key kM from KKDF and compute the m1’s MAC value.

V1 = MAC(m1, kM)

6. Accept message m1 as valid if and only if V = V1

SEC-1 [2] recommends two MAC algorithms, HMAC-SHA-1-160 and HMAC-

SHA-1-80. In the first case the key used is 160-bits long and produces an 80-bit

or 160-bit output. The second case is different only in that the key is 80-bits long.

Both MAC schemes are described in ANSI X9.71 based on the hash function SHA-

1 described in FIPS 180-1 [30]. For symmetrical encryption, SEC recommends

two symmetrical algorithms that can be used: 3-Key TDES in CBC [8] mode and

XOR encryption. The XOR encryption scheme is the simplest encryption scheme

in which encryption consists of XORing the key and the message, and decryption

consists of XORing the key and the ciphertext to recover the message. The XOR

scheme is commonly used either with truly random keys when it is known as the

’one-time pad’, or with pseudorandom keys as a component in the construction

of stream ciphers. The XOR encryption scheme uses keys which are of the same

length as the message to be encrypted or the ciphertext to be decrypted. 3-key

21

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

TDES in CBC mode is designed to provide semantic security in the presence of

adversaries launching chosen-plaintext and chosen-ciphertext attacks. The XOR

encryption scheme is designed to provide semantic security when used to encrypt

a single message in the presence of adversaries capable of launching only passive

attacks. The KDF key derivation function only supported at this moment in

ECIES is defined in ANSI X9.63.

ECDSA scheme

To sign a message D, entity A does the following:

1. Select a random number d from [1, n− 1]

2. Compute R = dG = (x, y) and r = x mod n. If r = 0 go to step 1.

3. Compute s = k−1(H(D) + dAr) mod n, H is the hash value of the message.

4. The digital signature on message D is the pair (r, s)

Entity B can verify the digital signature (r, s) on D performing the following

steps:

1. Verify r and s are integers in [1, n−1], if not, the digital signature is wrong.

Finish and reject the message.

2. Compute w = s−1 mod n and H(D), H is the hash value of the message.

3. Compute u1 = H(D)w mod n and u2 = rw mod n

4. Calculate R′ = u1G + u2QA = (x′, y′)

5. Compute v′ = x′ mod n, accept the digital signature if and only if v′ = r

The ECDSA scheme requires an elliptic point addition, scalar multiplications,

modular arithmetic and the hash value of the message. The hash function recom-

mended in ANSI X9.62 is SHA-1.

22

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

Middle
Layer
:

 The elliptic curve

and the

coordinates

system

Upper Layer
:

The
kP

algorithm

Lower Layer
:

The finite field

arithmetic

Method for scalar multiplication

(Binary, Montgomery, Add-Sub chains,...)

and

Representation of scalar
 k

(binary, ternary, NAF, bit-grouping)

Method for scalar multiplication

(Binary, Montgomery, Add-Sub chains,...)

and

Representation of scalar
 k

(binary, ternary, NAF, bit-grouping)

Coordinates representation

(affine, projective, jacobian,...)

ECC-ADD and ECC-Double operations

definition

Coordinates representation

(affine, projective, jacobian,...)

ECC-ADD and ECC-Double operations

definition

Finite Field selection

(prime, binary)

Finite Field Arithmetic

(addition, multiplication,...)

Finite Field selection

(prime, binary)

Finite Field Arithmetic

(addition, multiplication,...)

Figure 2.2: Three layers approach for dP implementation

2.2.4 Scalar multiplication dP

By far, the most time consuming operation in ECC cryptographic schemes is

the scalar multiplication dP . Efficient hardware/software implementations of this

operation have been the main research topic on ECC in recent years (see related

work in section 2.3.1). This costly elliptic curve operation is performed according

to the three layers shown in figure 2.2. These layers are described in detail in the

following sections.

Scalar multiplication top layer

At the top layer of figure 2.2 there are different methods for computing the scalar

multiplication, independently of the other layers. An scalar multiplication dP

where d is an scalar and P is an elliptic curve point, is the result of adding the

point P to itself d− 1 times. That is,

dP = P + P + P + · · ·+ P︸ ︷︷ ︸
d−1 times

This operation is performed by applying a sequence of ECC-Add and ECC-Dbl

operations. Some of the reported methods in the literature for dP and their com-

23

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

Table 2.1: Scalar multiplication methods

Method # ECC-Add (A) and ECC-Dbl (D)
Binary method (left to rigth) (m

2)A + mD
NAF Binary method (rigth to left) (m

3)A + mD
Montgomery (mA + mD)
Windowing NAF Binary method (rigth to left) (D + (2w−2 − 1)A) + (m/(w + 1)A + mD)
Montgomery (Digit) ((d(2w − 1)/2w − 1) + (2w − 2)A)
Comb method (Digit) ((d− 1)(2w − 1)/2w)A + (d− 1)D
TNAF (Frobenius map) (m/3)A
Window TNAF (m/(w + 1))A

plexity expressed in ECC-Add and ECC-Dbl operations, are given in table 2.1

[31].

All reported methods for computing dP parse the scalar d and depending on

the bit value, they perform either an ECC-Add or an ECC-Dbl operation. In

table 2.1, m is the size in bits of scalar d (m = dlog2 de). Some methods consider

D bits of scalar d at a time and then parse d in w = dm
D
e iterations.

The basic technique for scalar multiplication is the double and add method

(D&A), also known as the binary method, which is the additive version of the

repeated-square-and-multiply method for exponentiation. It performs an ECC-

Dbl operation in each iteration independently of the current bit value of d. A

ECC-Add operation is performed only if the current value of d is ’1’. On average,

d has log2 d
2

’1’s. For the second method in table 2.1, NAF refers to the Non

Adjacent Form transformation of scalar d. In such representation, the resulting

d has the minimum number of ’1’s, so the number of additions is reduced but

the point subtraction operation is introduced. The NAF version of the binary

method is faster than the standard one. The Montgomery method performs both

the ECC-Add and the ECC-Dbl operation independently of each bit value of scalar

d. This fact makes the Montgomery method resistant to the power analysis attack,

which tries to guess the secret key d from analyzing the power consumption of

operations ECC-Add or ECC-Dbl. The windowing based methods are commonly

implemented in software using pre-computed values and demand more memory

for processing than the methods previously commented.

24

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

Scalar multiplication middle layer

The middle layer corresponds to the coordinate system in which elliptic points

are represented. This layer defines how the group operation, ECC-Add or ECC-

Dbl, is performed. The point addition in elliptic curves is not as the traditional

point addition in the known coordinate system XY, where (x1, x2) + (y1, y2) =

(x1 + y1, x2 + y2).

Due the group is closed under the + group operation, the group law for point

addition is such that for any two point in the elliptic curve P, Q, P + Q is also in

the elliptic curve. In the literature there are various coordinate systems that can

be used which lead to different definitions for point addition.

The most popular coordinate system is the affine one where each elliptic curve

point is represented by the pair (x, y) satisfying equation 2.7. In the case of the

curve E(GF (p)), ECC-Add and ECC-Dbl are defined as follows:

Let a, b ∈ GF(p) satisfying 4a3 + 27b2 6= 0. Let P,Q, R ∈ E(GF (p), P =

(x1, y1) Q = (x2, y2) R = (x3, y3).

1. P + Q = O, if P = O or Q = O

2. ECC-Add (P 6= ±Q).

R = P + Q, where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

λ =
(y2 − y1)

(x2 − x1)

3. ECC-Dbl (P = Q).

R = P + Q = 2P , where

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

λ =
3x1

2 + a

2y1

When the curve E(GF (2m)) is represented in affine coordinates, the + oper-

ation is defined as:

25

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

Given the points P = (x1, y1), Q = (x2, y2), R = (x3, y3) ∈ E(GF (2m)), the

group law is:

1. P + Q = O, if P = O or Q = O

2. ECC-Add (P 6= ±Q).

R = P + Q, where

x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

λ =
(y2 + y1)

(x2 + x1)

3. ECC-Dbl (P = Q).

R = P + Q = 2P , where

x3 = λ2 + λ + a

y3 = x2
1 + λx3 + x3

λ = x1 +
y1

x1

López and Dahab [32] propose a new definition for the group operation chang-

ing from affine to projective coordinates. The projective version of equation 2.9

is given in equation 2.10.

Ep(GF (2m)) : Y 2 + XY Z = X3Z + aX2Z2 + bZ4 (2.10)

The conversion between affine and projective coordinates is given by

(x, y) 7→ (x, y, 1) (affine to projective) and

(X, Y, Z) 7→ (X/Z, Y/Z2) (projective to affine)

Authors named this kind of coordinates López-Dahab coordinates. Supposing

the points P = (X1, Y1, Z1), Q = (X2, Y2, Z2), R = (X3, Y3, Z3) ∈ Ep(F2m), the

new definition for the group operation is:

1. P + O = O + P = P .

26

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

2. ECC-Add (P 6= ±Q).

X3 = C2 + H + G

C = A1 + A2

H = CF

G = D2(F + aE2)

D = B1 + B2

E = Z0Z1

F = DE

A1 = Y2Z
2
1

A2 = Y1Z
2
2

B1 = X2Z1

B2 = X1Z2

Z3 = F 2

Y3 = HI + Z3J

I = D2B1E + X3

J = D2A1 + X3

3. ECC-Dbl (P = Q).

Z3 = Z2
1X

2
1

X3 = X4
1 + bZ4

1

Y3 = bZ4
1Z3 + X3(aZ3 + Y 2

1 + bZ4
1)

This new representation does not require finite field inversion when computing

ECC-Add or ECC-Dbl. Inversion is the most time consuming field operation,

which is eliminated at the cost of more field multiplication. The same authors

propose to use mixed coordinates, a point in affine coordinates (Z = 1) and

the other in projective. That is, if P = (X1, Y1, Z1), Q = (X2, Y2, 1), then, the

ECC-Add operation can be computed as follows:

ECC-ADD redefinition

X3 = A2 + D + E

A = Y2Z
2
1 + Y1

B = X2Z1 + X1

C = Z1B

D = B2(C + aZ2
1)

27

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

E = AC

Y3 = EF + Z3G

F = X3 + X2Z3

G = X3 + Y2Z3

Z3 = C2

The Montgomery method for dP computation was proposed in [33]. In this

method, adding and doubling are achieved by using only the x and z coordinates.

This method can be implemented using affine or projective coordinates, but the

point addition rules change. The original formulas are simplified and less opera-

tions are performed although the conversion from projective to affine coordinates

is more complex. The Montgomery algorithm in affine coordinates is lised in

algorithm 2.1:

Algorithm 2.1 Montgomery dP algorithm in affine coordinates

Input: An integer d > 0 in the binary form (kl−1kl−2 . . . k1k0) and a point P =
(x, y)

Output: Q = dP
1: if k = 0 or x = 0 then
2: output (0, 0) and stop
3: end if
4: x1 ← x, x2 ← x2 + b

x2

5: for i = l − 2 downto 0 do
6: t ← x1

x1+x2

7: if ki = 1 then
8: x1 ← x + t2 + t (ECC-ADD)
9: x2 ← x2

2 + b
x2
2

(ECC-Double)

10: else
11: x1 ← x2

1 + b
x2
1

(ECC-Double)

12: x2 ← x + t2 + t (ECC-ADD)
13: end if
14: end for
15: r1 ← x1 + x, r2 ← x2 + x

16: y1 ← r1(r1r2+x2+y)
x

+ y
17: return Q = (x1, y1)

28

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

Algorithm 2.2 Montgomery dP algorithm in projective coordinates

Input: An integer d > 0 in the binary form (kl−1kl−2 . . . k1k0) and a point P =
(x, y)

Output: Q = dP
1: if k = 0 or x = 0 then
2: output (0, 0) and stop
3: end if
4: X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

5: for i = l − 2 downto 0 do
6: t ← x1/(x1 + x2)
7: if ki = 1 then
8: Madd(X1, Z1, X2, Z2), Mdouble(X2, Z2)
9: else

10: Madd(X2, Z2, X1, Z1), Mdouble(X1, Z1)
11: end if
12: end for
13: return Q = Mxy(X1, Z1, X2, Z2)

The Montgomery method using projective coordinates is listed in algorithm

2.2. Madd and Mdouble are the ECC-Add and ECC-Dbl operation using only

the x and z coordinates. The Mxy function converts the resulting point back to

affine coordinates. These functions are defined as:

Mdouble

X ← X2

Z ← Z2

T1 ← Z2

Z ← ZX

T1 ← T1b

X ← X2

X ← X + T1

Madd

T1 ← x

X1 ← X1xZ2

Z1 ← Z1xX2

T2 ← X1xZ1

29

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

Z1 ← Z1 + X1

Z1 ← Z2
1

X1 ← Z1xT1

X1 ← X1 + T2

Mxy

if Z1 = 0 output (0, 0) and stop

if (Z2 = 0) output (x, x + y) and stop

T1 ← x

T2 ← y

T3 ← Z1xZ2

Z1 ← Z1xT1

Z1 ← Z1 + X1

Z2 ← Z2xT1

X1 ← Z2xX1

Z2 ← Z2 + X2

Z2 ← Z2xZ1

T4 ← T 2
1

T4 ← T4 + T2

T4 ← T4xT3

T4 ← T4 + Z2

T3 ← T3xT1

T3 ← inverse(T3)

T4 ← T3xT4

X2 ← X1xT3

Z2 ← X2 + T1

Z2 ← Z2xT4

Z2 ← Z2 + T2

Table 2.2 shows the total number of field operations required for performing

point addition in elliptic curves using each one of the above mentioned coordinate

systems. In this table, M, S and D stand for multiplication, squaring and division

in the finite field GF(2m). The affine representation requires two field multipli-

cations and one field inversion. In the projective representation inversions are

30

2.2. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

Table 2.2: Count of finite field arithmetic in Elliptic Curve Cryptography point
addition

Name Coordinates ECC-Add ECC-Dbl Conversion
System Projective 7→ Affine

Affine (x, y) 1M+ 1S+ 1D 1M+ 1S+ 1D -
López-Dahab (x/z, y/z2) 8M+ 5S 4M+ 5S 11M+ 163S

Jacobian (x/z2, y/z3) 10M+ 4S 5M+ 5S 12M+ 163S

avoided at the cost of more field multiplications and a conversion from projective

to affine coordinates. This extra cost is accepted only if the time for computing

one field inversion is the equivalent to the time required for computing six or more

field multiplications.

Scalar multiplication lower layer

Finally, in the lowest layer is the finite field arithmetic. The efficient implementa-

tion of these arithmetic operations impacts the overall performance of the scalar

multiplication. Binary fields GF(2m) are better preferred for hardware implemen-

tations because some arithmetic operations are easier to compute, like addition

which is an XOR operation. Another advantage of using binary fields for hard-

ware implementations of finite field arithmetic is that the elements in GF(2m) are

binary strings that are well represented in m-bit registers.

The prime field GF(p) is preferred for software implementations because of

elements can be organized in machine words and arithmetic instructions of gen-

eral purpose processors like integer multiplication and division can be used for

implementing modular arithmetic.

Four finite field operations are required in elliptic curve point addition, these

are: addition A, multiplication M, inversion I (can be substituted by direct divi-

sion D) and squaring S. Field inversion has been the most time consuming finite

field operation.

For GF(2m), finite field operations implementation depends on a basis, which

can be polynomial, normal or dual. In polynomial basis, the elements of GF(2m)

are viewed as m− 1 grade polynomials A(x) with coefficients in GF(2) = {0, 1}.
A basis of GF(2m) is one of the form {1, t, t1, t2, · · · , tm−1}, where t is an square of

an irreducible m grade polynomial F (x) (cannot be factored as two polynomials).

Arithmetic in GF(2m) with polynomial basis is arithmetic of polynomials modulo

31

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

F (x).

There is always a trade-off using different basis for both software and hardware

implementations. Squaring is easier in normal basis but inversion is slower than

inversion in polynomial basis [21].

Field multiplication can be implemented either in parallel (hardware) or seri-

ally (hardware and software). In the former, field multiplication is performed in

one clock cycle but implies more hardware to be implemented. Serial multipliers

requires smaller area but generates the result in several clocks cycles. In recent

works, a combination of these two approaches is used: the digit-serial multiplier,

which allows a trade-off speed/area analysis when implemented in hardware. For

GF(p), the arithmetic is implemented as the arithmetic of integers modulo p. Gura

[17] states that the Karatsuba algorithm, for binary field multiplication used in

practical implementations, cause some irregularities that increase the delay in

the architecture path. Comments like these must be taken into consideration if

efficient finite field arithmetic and ECC implementations have to be achieved.

Orlando and Paar [18] state that multipliers for normal basis finite fields

are prohibitively expensive in terms of area when that order is high (400, 500).

Optimal normal basis (ONB) shows some improvements in efficiency but there

are few fields for which there exist this kind of basis, so this kind of basis is not

suitable for an iteroperable solution.

Two methods for inversion are often used: the Fermat Theorem and some

variant of the Extended Euclidean Algorithm (EEA). The first one computes the

inversion operation by exponentiation. EEA is faster but costly to implement.

A survey of methods to compute the finite field arithmetic for both GF(2m)

and GF(p) is found in [25] and [31].

2.3 ECC implementations

This section surveys previous work related to implementation of elliptic curve

cryptography either in hardware or software. The main objective in the reported

works of ECC implementation has been the efficient implementation of the dP

operation, specially the implementation of dP as fast as possible. The strategies

adopted for reducing the dP computation time have been in general the following:

1. Reducing the number of ECC-Add and ECC-Dbl operations using special

32

2.3. ECC IMPLEMENTATIONS

Table 2.3: ECC implementation on general purpose processors

Ref. ECC scheme Operation Time (ms)) Processor

[34] ECDSA-p160
Sign 46

ARM7TDMI
Verify 94

[35] ECDSA-r191 Sign 650 16-bit RISC processor 5MHz

[36] ECDSA-p256
Sign 7

ARMSA1110 206 MHz
Verify 18

[37]

- dP 163 3.6

Intel 1 GHz
- dP 233 6.4
- dP 283 9.7
- dP 409 19.8
- dP 571 44.9

representations of the scalar d, as the NAF (Non Adjacent Form) represen-

tation.

2. Processing more than one bit (digit) of d at time (the window-based meth-

ods).

3. Parallelizing the execution of ECC-Add and ECC-Dbl operations, as in the

left to right version of the binary method or using the Montgomery one.

4. Improving the computation time of finite field operations, either parallelizing

the field operations or using more than one unit for each field operation.

Representative implementations of ECC in software and hardware are dis-

cussed in the next sections.

2.3.1 ECC in software

Research on efficient ECC software implementations has been carried out because

of elliptic curve arithmetic is not supported by conventional microprocessors. Ta-

ble 2.3 shows representative implementations of ECC in software.

These works show the complexity of elliptic curve cryptography implemented

in RISC (Reduced Instruction Set Complex) constrained devices and workstation

processors like Intel or Sparc. Aydos [34] implemented the digital signature

scheme ECDSA on the prime finite field GF(p) with p of 160 bits while Krasner

33

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

[35] used the prime finite field with p of 256 bits. Grobschald [36] reported the

ECDSA implementation for the binary finite field GF(2191). In ECDSA, the most

time consuming operation for signing is one scalar multiplication dP while the

time for the verification operation is almost the same for computing two scalar

multiplications. This implies that the time for dP in [34] is around 46 ms and the

one in [36] is 7 ms. The time for dP in [35] is higher, 650 ms. Weimerskirch [37]

reported better implementation results for computing one scalar multiplication

dP in GF(2m) for the security levels 163, 233, 283, 409 and 591 recommended by

NIST [7]. The code was executed on three different processors: SPARC 32-bit 900

MHz, SPARC 64-bit 900 MHz and Intel 1 GHz. The windowed NAF algorithm

for point multiplication and López-Dahab projective coordinates were used. The

arithmetic algorithms for field multiplication were Karatsuba and Comb. The

best results were obtained for the Intel platform using the Comb method for field

multiplication, the results are shown in table 2.3 only for comparison purposes

against the results obtained using RISC processors.

ECC implementations in general purpose processors and embedded systems

can meet some security requirements in some applications but in other, hard-

ware implementations are needed due to the requirements of throughput, power

consumption, area constrains and physical security. ECC implementations in

hardware have been another research subject. Representative hardware imple-

mentations of ECC are presented and discussed in the next section.

2.3.2 ECC in hardware

ECC hardware implementations are aimed to optimize each stage of scalar mul-

tiplication dP in figure 2.2:

1. Field-Stage optimizations. Choose fields with fast multiplication and

inversion.

2. Coordinates and Scalar multiplication-Stage optimizations. Reduce

the number of field inversions (projective coordinates). Reduce the num-

ber of point additions (windowing). Replace point doubles (endomorphism

methods).

Works reported in the literature have used reconfigurable devices, FPGAs, to

implement ECC algorithms. Computing the scalar multiplication dP as fast as

34

2.3. ECC IMPLEMENTATIONS

possible is the main objective of these works. Hardware architectures for dP re-

ported in the literature can be divided into processor or co-processor approaches.

In the former, there exist a number of specialized instructions the processor de-

codes and executes, most of them are for elliptic curve and finite field arithmetic.

In the latter, there are no such instructions because the algorithms are imple-

mented directly on specialized hardware. In general, both kinds of implementa-

tions are based in a regular structure. They often include:

• A processing unit that performs arithmetic operations. The main arith-

metic modules are finite field multiplication, squaring and inversion. The

organization of this module varies depending on the implemented arithmetic

algorithms and the coordinates being used. An efficient design of this mod-

ule impacts the efficiency of dP computation.

• A control unit that commands the data flow and the execution of the dP

algorithm. This module has been implemented as a finite state machine or

by using microcode.

• A storage unit for intermediate results and input operands or output re-

sults. Often, this is a register file where each register has the same width as

the size in bits of the finite field elements (greater than 113 bits).

• An interface unit that provide the interface between the ECC processor

or co-processor with a host processor.

Many considerations must be taken into account when these blocks are im-

plemented in hardware, mainly for applications where an area/performance trade

off is important. While a custom implementation can perform the operation dP

faster, it is difficult to change to another algorithm parameters, which is desirable

for a flexible solution.

A survey of reported processors and co-processors is shown in tables 2.4 and

2.5. Both tables show the selection at each layer of dP and the timing to perform

this operation in ms.

From these results, some questions arise, for example:

How much the dP method affects the timing and area of the architecture?

How much the coordinated affect the organization of the arithmetic units?

35

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

Table 2.4: Approaches taken in ECC co-processors in GF(2m)

Ref. m dP method Coordinates Basis Multiplier
Time
ms

[38]
270

Binary Projective ONB
3 Massey-Omura 6.8

191 5 Massey-Omura 2.3
155 7 Massey-Omura 1.2

[20] 191 Binary Jacobian Polynomial 4 LFSR 3.7
[39] 113 Montgomery Projective Polynomial Karatsuba 10.9

[19]

151

Binary Affine Polynomial

5.1
176 ABC 6.9
191 coprocessor 8.2
239 12.8

[22] 163

Binary

López-Dahab Polynomial

0.26
Binary NAF Digit-Serial 0.23

Binary digit=41 0.07
τ -adic NAF

[40] 191 Montgomery López-Dahab Polynomial Karatsuba 0.05
[21] 113 Montgomery López-Dahab ONB 2 Bit-serial 0.27

[41]
113

Binary Affine ONB Bit-Serial
3.7

155 6.8
281 14.4

Table 2.5: Approaches taken in ECC processors in GF(2m)

Ref. m dP method Coordinates Basis Multiplier
Time
ms

[18] 167

Binary Jacobians

Polynomial

Digit-Serial (digit = 4) 0.96
Digit-Serial (digit = 8) 0.61
Digit-Serial (digit = 16) 0.36

Montgomery López-Dahab
Digit-Serial (digit = 4) 0.55
Digit-Serial (digit = 8) 0.35
Digit-Serial (digit = 16) 0.21

[17]

k163

Montgomery López-Dahab Polynomial

0.14
k193 0.18
k233 Digit-Serial 0.22
163 digit = 64 1.5
193 1.83
233 2.21

[23] 160 Addition-Sub Jacobians Polynomial 64-bit 0.19chain NAF dual Montgomery
[42] 160 Binary López-Dahab Polynomial Systolic Montgomery 3.810

36

2.3. ECC IMPLEMENTATIONS

How the arithmetic unit organization will affect the performance of the com-

putation?

Although it is well known that the arithmetic unit has a big impact in the

timing and area of the dP core, it is not clear if the architecture is fast because

of the parallelism in the multipliers, the number of multipliers, or the kind of

multipliers. A flexible architecture that allows to change the implementation

parameters and analyze the impact in performance and computational cost is

necessary and this thesis aims to provide such architecture.

Table 2.6 shows the diversity of technology used to implement elliptic curve

cryptography in hardware. It shows the differences in area resources and timing

achieved for different selections of the ECC parameters. From the results shown

in this table it is not clear why such different results are achieved:

Are they due to the arithmetic modules or to the ALU organization?, if they were,

How much simpler arithmetic algorithms will impact the overall performance?.

Table 2.7 shows the different approaches to implement the three layers of dP

computation. The control unit often implements the dP method using a finite

state machine (FSM), microcode, or it is implemented as a set of software instruc-

tions executed by the arithmetic unit. The storage unit has been implemented

using the memory blocks of the FPGA or as a file register of width m, using

the logic of the FPGA. The arithmetic unit has been implemented using several

algorithms for multiplication and different number of such multipliers. It is not

clear how these choices will impact the area resources of the ECC co-processor

and what are the advantages of using one of the reported multipliers: Karatsuba,

LFSR (Linear Feedback Shift Register), Massey Omura or digit-serial. The same

is for the inversion and squaring algorithms. The last column of table 2.7 in-

dicates if the ECC hardware module provides (A) or not (NA) a host interface

for interacting with a master module that commands the execution of dP . The

information missing for any of the columns of table 2.7 is represented as (’-’).

Although some reported works allow a kind of flexibility in the ECC parame-

ters, a reconfigurable architecture enabling interoperability with other designs for

mobile wireless devices is not explored at all. Also, although in some works the

37

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

Table 2.6: Devices used, area consumption and execution time in ECC implemen-
tations in GF(2m)

Ref. m Device Area Freq.
Time
(ms)

Co-processors

[38]
155

XC4085XLA
1976 slices 37 MHz 1.2

191 2164 slices 36 MHz 2.3
270 2572 slices 34 MHz 6.8

[20] 191 XCV1000 - 50 MHz 3.72
[39] 113 AT94K40 Amtel 38.4 Kgates 12 MHz 10.9
[19] <255 XCV2000E 4048 slices 40MHz 5.1
[22] k163 XCV2000E 5,008 slices 66 MHz 0.07
[40] 191 VirtexE 3200 18314 slices 9.9 MHz 0.05
[21] 113 XC2V6000 6961 Slices 56 MHz 0.27

[41]
113

XCV300-4
1290 slices 45 MHz 3.7

155 1567 slices 36 MHz 6.8
281 2622 slices 33 MHz 14.4

Processors
[18] 167 XCV400E-8 1501 slices 76.7 MHz 0.55
[17] <255 XCV2000E - 66.4 MHz -
[23] 160 ASIC 118 Kgates 510 MHz 0.19
[42] 160 XCV800 138 - 150 Kgates 47 MHz 3.81

Table 2.7: Hardware organization in reported ECC implementations in GF(2m)

Ref. Control Unit Storage Unit Arithmetic unit
Host

Interface
Co-processors

[38] Binary FSM 16 m-bit registers 7 Massey-Omura Mult. NA
[20] Binary FSM Dual-port RAM 4 LFSR Mult. 2 Squarers A
[39] Montgomery Sw 5 23-bit Karatsuba Mult. A
[19] Binary (Sw) RAMs in FPGA ABC processor A
[22] Binary FSM 11 m-bit registers Digit-serial Mult. A
[40] Montgomery FSM 16 m-bit registers 2 Karatsuba Mult. NA
[21] Montgomery Sw 4 registers 4 ONB Mult. A
[41] Binary Microcode 16 m-bit registers ONB Mult. A

Processors
[18] Binary, Mont. Sw File register Digit-Serial Mult. A
[17] Montgomery Sw 10 256-bit registers Digit-Serial Mult. A
[23] - - Dual field Mult. -
[42] Binary FSM - Systolic Montgomery Mult. -

38

2.3. ECC IMPLEMENTATIONS

design of the arithmetic units is parameterizable in the order field, the architec-

ture needs to be reconfigured out of line for other finite fields orders. It would be

desired a real time adaptation of the hardware architecture to different security

levels.

In the proposed ECC hardware cores, the main objective is to perform dP

as fast as possible. Parallelization at the three layers of dP hierarchy have been

performed. Different arithmetic modules and datapath organizations have been

used. For control, some works have used finite state machines or micro-programed

modules.

Only [17] proposes to manage different elliptic curves without reconfiguring

the hardware by implementing wired reduction for three of the NIST curves and

implements the technique called partial reduction for arbitrary curves. Other

works like [18], [19] and [20] manage different elliptic curves but need to recon-

figure the hardware out of line. Other works like [21] propose a HW/SW partition

and use reconfigurable logic only for arithmetic instructions. An example of cus-

tomized implementation for an specific elliptic curve is [22]. Other efforts to

achieve ECC interoperability propose an unified arithmetic unit for both prime

and binary fields arithmetic [23, 24].

Also, from tables 2.6 and 2.7 it can be seen that different ways of implementing

ECC leads to different performances. When there are no problems of area we can

choose the best algorithms considered in the literature in each stage of figure

2.2.4 and implement them. But it is not always required, for example when

implementing ECC for constrained devices. In order to achieve interoperability

of ECC it is necessary a solution that gives support to different finite fields and

elliptic curves.

2.3.3 ECC implementations and side channel attacks

Side channel attacks were introduced by Paul C. Kocher in 1996 [43]. A side

channel attack (SCA) is any attack based on information gained from the physi-

cal implementation of a cryptosystem, rather than theoretical weaknesses in the

algorithms [44]. That is, SCA attacks look at the way cryptographic algorithms

are implemented, rather than looking at the algorithm itself.

In SCA, extra source information such as timing, power consumption, elec-

tromagnetic leaks or even sound can be exploited to break the system. The

39

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

assumption of timing attacks is that the duration of the execution of an algorithm

depends on the secret key, and analyzing these durations provides some informa-

tion about the secret key. Timings only require a simple chronometer as sensor,

therefore, this category of attacks has a very wide application range. Principles

of side channel attacks are based on the observation of the power consumption.

There are two different classes of power consumption-based attacks: simple power

analysis or SPA, where the attacker analyzes one single power trace for revealing

the secret key, and differential power analysis or DPA, where a statistical tool

allows to extract the smallest details in power traces from intermediate values

collected from multiple cryptographic operations. Sometimes the dependence on

the secret key induces tiny differences in the power trace, and these differences

are embedded in the noise. To extract such information, attackers may use the

averaging technique, where the noise level is decreased by averaging the power

traces with different inputs to the cryptosystem. The principle of DPA is to guess

the value of some bit of the secret key and verify the validity of the assumption

with the collected power traces.

Timing and simple power analysis attacks are the most common for any hard-

ware implementation of the dP operation. Timing attacks on a implementation

of the algorithms for computing dP is possible due the time to perform this op-

eration depends on the bit values of d. If the scalar d has
dlog de

2
’1’s on average,

then the binary algorithm performs (dlog de·ECC-Dbl+
dlog de

2
·ECC-Add) opera-

tions. The formulas for ECC-Dbl and ECC-Add on a Weierstrass elliptic curve

are in essence different. Therefore, a simple power analysis will produce different

power traces that may reveal the value of scalar d in the binary method from the

distinction between the two operations. Also this distinction can allow timing

attacks.

One of the proposed countermeasures to thwart SCA attacks on ECC hardware

implementations consists in ultimately having an algorithm that behaves consis-

tently and regularly whatever the processed data, for example the Montgomery

algorithm for dP (see algorithms 2.1 and 2.2 in section 2.2.4 of this chapter).

The algorithms for ECC-Add and ECC-Dbl can be transformed into a regular

algorithm [45, 46] in a such way that doubling and addition be indistinguishable.

This last approach is used in this work for developing an interoperable hardware

architecture for ECC resistant to side channel attacks.

40

2.4. SUMMARY

2.4 Summary

This chapter presented the mathematic background of elliptic curve cryptogra-

phy and its implementation issues. It presented and discussed the cryptographic

schemes and reported works in the literature about software and hardware imple-

mentation of these cryptographic schemes and the scalar multiplication dP . This

chapter showed the importance of having not only an efficient but also a resistant

ECC hardware architecture to side channel attacks.

The next chapter gives an introduction to reconfigurable computing and presents

the design methodology used in this thesis for the development and implementa-

tion of the reconfigurable system for interoperable elliptic curve cryptography.

41

CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

42

Chapter 3

Reconfigurable computing and

design methodology

This chapter presents the background on reconfigurable computing and the design

flow for developing reconfigurable systems. It also describes the design method-

ology to design and implement the reconfigurable and interoperable hardware

architecture discussed in this thesis.

3.1 Reconfigurable computing

There are two primary methods in conventional computing for the execution of

algorithms [47]. The first one is to use hardwired technology, either an Appli-

cation Specific Integrated Circuit (ASIC) or a group of individual components

forming a board-level solution, to perform the operations in hardware. ASICs are

designed specifically to perform a given computation, and thus they are very fast

and efficient when executing the exact computation for which they were designed.

However, the circuit cannot be altered after fabrication. This forces a redesign

and re-fabrication of the chip if any part of its circuit requires modification. This

is an expensive process, especially when one considers the difficulties of replac-

ing ASICs in a large number of deployed systems. Board-level circuits are also

somewhat inflexible, frequently requiring a board redesign and replacement in the

event of changes to the application.

The second method is to use software-programmed microprocessors, a far more

flexible solution. Processors execute a set of instructions to perform a computa-

43

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

tion. By changing the software instructions, the functionality of the system is

altered without changing the hardware. However, the downside of this flexibil-

ity is that the performance can suffer, if not in clock speed then in work rate,

and is far below that of an ASIC. The processor must read each instruction from

memory, decode its meaning, and only then execute it. This results in a high exe-

cution overhead for each individual operation. Additionally, the set of instructions

that may be used by a program is determined at the processor fabrication time.

Any other operations that are to be implemented must be built out of existing

instructions.

Reconfigurable devices are intended to fill the gap between hardware and soft-

ware, achieving potentially much higher performance than software, while main-

taining a higher level of flexibility than hardware.

Reconfigurable computing is a computing paradigm combining some of the

flexibility of software with the high performance of hardware by processing with

very flexible high speed computing fabrics like FPGAs. The main differences when

compared to using ordinary microprocessors are:

1. The use of spatial computation instead of temporal computation.

2. The ability to make substantial changes to the datapath itself in addition

to the control flow.

On the other hand, the main difference with custom hardware (ASICs) is the

possibility to adapt the hardware during runtime by “loading” a new circuit on

the reconfigurable fabric. So, reconfigurable hardware in reconfigurable comput-

ing acts as a “general” hardware accelerator, implementing a variety of different

computations within or across applications. Compute intensive sections of appli-

cations can be swapped into the hardware when needed, and later swapped out

to make room for other computations.

Reconfigurable devices have been used to develop reconfigurable systems, which

are based in the combination of microprocessors and reconfigurable logic. Custom

hardware specifically handle compute-intensive highly-parallel sections of applica-

tion code. The processor controls the hardware, and executes the parts of appli-

cations not well-suited to hardware. The coupling methods are best differentiated

by how and how often the RH and host processors(s) interact. Reconfigurable

systems are classified in three types, these are [48]:

44

3.2. RECONFIGURABLE DEVICES

1. Attached Processors. In this type, the reconfigurable logic is connected

to the I/O bus or to the main memory of the microprocessor and it does not

extend the instruction set of the microprocessor. Examples of this type of

systems are Splash, Splash2 [49], DECPeRLE-1 [50], and PRISM-I [51].

2. Co-processors. In this type, the reconfigurable logic is part of the micro-

processors and it is located near to it. Examples of these systems are HARP

[52], Garp [53], Spyder [54] and RENCO [54].

3. Reconfigurable Functional Unities (RFUs). In these types of systems,

the reconfigurable logic is “inside the microprocessor” and the micropro-

cessor treats the reconfigurable logic as one of the standard units in the

datapath. The instruction decoder addresses instructions to the reconfig-

urable logic. Examples of these systems are Nano [55], DISC (Dynamic

Instruction Set Computer) [56], MorphoSys [57], OneChip [58], Chimaera

[59] and Proteus [60].

3.2 Reconfigurable devices

A field-programmable gate array, or FPGA, is a semiconductor device containing

programmable logic components called logic blocks, and programmable intercon-

nects [61]. Logic blocks can be programmed to perform the function of basic

logic gates such as AND, and XOR, or more complex combinational functions

such as decoders or mathematical functions. In most FPGAs, the logic blocks

also include memory elements, which may be simple flip-flops or more complete

blocks of memory. A hierarchy of programmable interconnects allows logic blocks

to be interconnected as required by the system designer, somewhat like a one-chip

programmable breadboard. Figure 3.1 shows the general FPGA layout and the

architecture of a single logic block. As shown in figure 3.1, the logic block consists

of a 4-input function generator that allows to implement any 4-input combina-

torial boolean function. The result of this generator can be stored in a one bit

register or it can be delivered to another logic block for further processing. The

function generator or LUT (Look Up Table) can also be used to implement a 16x1

memory block.

Logic blocks and interconnects can be programmed by the designer, after the

45

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

FPGA

Configuration Memory

Function

Generator

or LUT

FF

Interconection matrix

Logic block

FPGA

structure

Figure 3.1: FPGA internal structure

FPGA is manufactured, to implement any logical function, hence the name “field-

programmable”. FPGAs are usually slower than their application-specific inte-

grated circuit (ASIC) counterparts, they cannot handle a complex design and

draw more power (for any given semiconductor process). But their advantages

include a shorter time to market, ability to re-program in the field to fix bugs,

and lower non-recurring engineering costs.

Through the years, FPGAs features have been improved and their density

has grow. Current FPGAs have embedded processors, giga-bit serial transceivers,

clock managers, analog-to-digital converters, dedicated digital signal processing

blocks, Ethernet controllers, substantial memory capacity, and other dedicated

functional blocks beyond the basic arrays of simple logic elements they started

out with in the mid 1980s. The current high density of FPGAs allows to implement

complete systems (System-on-Chip or SoC) on them.

In addition, the capacity of reconfiguration of FPGAs has increased. The

best advantage and the opportunities to design using these devices resides in the

way the reconfiguration is performed. The FPGA reconfiguration is based on the

SRAM (Static Random Access Memory) technology. The configuration of the

device is guided by data stored in the configuration memory. This content deter-

mines the interconnection among the configurable blocks and the function these

blocks perform. Usually, the configuration memory stores just one configuration

(one-context) but some devices can store more than one (multi-context). SRAM

memory is volatile so the FPGA must be configured normally by an external

memory non volatile each time the FPGA is powered up.

FPGAs as reconfigurable hardware, provide a flexible medium to implement

hardware circuits [61, 62]. To implement a needed circuit in reconfigurable hard-

46

3.2. RECONFIGURABLE DEVICES

ware, a CAD flow transforms its descriptions into an reconfigurable hardware

configuration. First, the circuit is synthesized, converting the circuit schematic or

hardware design language (HDL) description into a structural circuit netlist. Then

a technology mapper further decomposes that netlist into components matching

the capabilities of the basic blocks (LUTs, ALUs, etc.) in the reconfigurable hard-

ware. Next, the placer determines which netlist components should be assigned to

which physical hardware blocks, and a router decides how to best use the routing

resources to connect those blocks to form the needed circuit. Finally, the CAD

flow determines the specific binary values to load into the configuration memory

for the determined implementation.

The bitstream or configuration data are loaded into the FPGA SRAM memory

through special configuration pins. These configuration pins serve as the interface

for a number of different configuration modes [61, 62]:

• Master-serial. The bitstream is loaded serially and the clock signal for

loading is generated by the FPGA itself.

• Slave-serial. The bitstream is loaded serially but the clock signal for load-

ing is generated by an external device.

• Master SelectMAP (parallel). The bitstream is loaded in parallel (8

bits) and the clock signal for loading is generated by the FPGA itself.

• Slave SelectMAP (parallel). The bitstream is loaded in parallel (8 bits)

but the clock signal for loading is generated by an external device.

FPGA technology allows several ways to change the configuration of the logic

blocks and interconnections. These are named as:

• Total or static reconfiguration. Every element in the FPGA is recon-

figured.

• Partial or dynamic reconfiguration. Specific parts of the FPGA are

reconfigured while the rest of the device keeps its configuration.

• Self reconfiguration: Extends the concept of dynamic reconfiguration.

The FPGA uses part of itself to control the reconfiguration of other parts of

it. Both the dynamic reconfiguration and the self reconfiguration need an

47

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

external mechanism for configuring the FPGA when this is powered up by

first time or when the device is restarted.

FPGAs have become mainstream already years ago in all kinds of embedded

systems. FPGAs are rapidly moving into practically every application area, such

as automotive, aerospace, defense, medical, chemistry, molecular biology, physics,

astrophysics, high performance computing, supercomputing, and many other ar-

eas.

3.3 Design methodology

Implementing ECC in hardware is a complex task. Complexity arises from the

almost endless number of possibilities how elliptic-curve operations can be cal-

culated in hardware. A straight-forward approach will not be able to produce

hardware that optimizes and balances silicon area, performance, and power con-

sumption as excellent as a structured approach is able to. As it was shown in

chapter 2, there are many options for implementing elliptic-curve operations.

Beginning with a multitude of different algorithms for implementing the scalar

multiplication and ending up at multiple possible representations of finite-field

elements. Every option will have an impact on the desired design goal. It is the

task of a considered hardware design-methodology to evaluate different options

and to compare them to find out which option (or even more complicated which

combination of different options) is the best for implementing a fully-functional

ECC hardware at lowest cost in area or at the highest performance.

Neil Weste [63] describe four techniques that should be applied during the

development of any digital circuit: hierarchy, regularity, modularity, and locality.

• By enforcing hierarchy, it is possible to bring in abstraction into the de-

sign. Abstraction is necessary to handle complexity by hiding distracting

details. Hierarchy is obtained by subdividing hardware modules into a set of

smaller submodules, which are more comprehensible than larger modules.

Hierarchy helps to lower the complexity of (sub-) modules and improves

their reusability.

• Regularity means that the hierarchical decomposition of a large system

should result in not only simple, but also similar blocks, as much as possible.

48

3.3. DESIGN METHODOLOGY

Regularity usually reduces the number of different modules that need to be

designed and verified, at all levels of abstraction.

• Modularity demands well-defined interfaces for sub-modules. Well defined

interfaces facilitate assembling larger modules from submodule instances.

• Locality is a design strategy that hides details of modules. Internal con-

struction details should be hidden inside a cell to abstract its functionality

and other characteristics.

In order to develop a complex digital system that offers a well-balanced mixture

of the quality aspects mentioned before, it is necessary to apply a structured design

methodology that is capable to detect potential flaws and weaknesses as early as

possible to shorten the design time.

A top-down approach that subdivides the problem of developing efficient dig-

ital circuits into several layers of abstraction is recommended [64]. The highest

level of abstraction will define the intended functionality and some boundary con-

ditions under which the circuit should work. The lowest level will represent the

physical implementation of the circuit in silicon. A top-down design methodology

creates hardware by defining the highest level of abstraction first and refines it

using some intermediate abstraction levels until the physical implementation is

obtained. The top-down methodology with its different abstraction levels keeps

the complexity of each abstraction level within limits. Abstraction hides details

of lower levels. Levels of abstraction in digital circuit design comprise the system

level, the algorithmic level, the architectural level, the register-transfer level, and

the circuit level.

The usage of a top-down approach to design a complex digital system will

automatically subdivide the overall problem into a number of smaller problems.

The decomposed problems are smaller and their solution will add up to solve the

overall problem. The smaller problems can be classified into several layers. The

design flow discussed in the next sections was used to develop the reconfigurable

system that allows interoperability for elliptic curve cryptography. It applies a top-

down methodology, which obeys the design principles discussed previously. The

design flow is divided in three stages. In the first stage, the design flow models

an elliptic curve co-processor on various abstraction levels and obtains a physical

realization of it by refining the abstraction levels down to the circuit level and

49

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

the physical level. This design flow emphasizes early design evaluation on high

abstraction levels to yield highly optimized circuits and to prevent re-iterating

design stages. Basic elements of the design flow are a C-based high-level model

for evaluating different algorithms, a cycle-accurate VHDL model for simulation

and synthesis, and backend (background) methods for mapping the circuit on

FPGA technology. Continuous verification plays an important role to ensure

correct functionality and conformance to defined constraints. In the second stage,

the design flow implements a dynamically reconfigurable system that provides

interoperability for elliptic curve cryptography at the ECC arithmetic level. The

third stage comprises the verification and validations of the proposed system by

applying testbeds.

During the whole design flow several high level tools are used. Scripts are well

suited for the integration of these different tools and for the connection of various

CAD programs. They help to automate the design flow.

3.3.1 Design flow for ECC hardware architectures

Figure 3.2 shows the block diagram for the development of the ECC co-processor

in the first stage of the desing flow. The high-level model (software model) of a

circuit helps to understand the circuits functionality and the algorithms that are

required to implement the functionality. After exploring these high-level mod-

els, the next step in the hardware design flow is to find a hardware architecture

that implements the algorithms efficiently. There are no sophisticated tools that

support this task, which is carried out relying on the experience and the creative

ideas of the hardware designer. More than one hardware architecture will result

and a selection of the best one will be done. Criteria for this selection are: i)

the area resources occupied, expressed as the number of logic gates or elemental

elements in the targeted device; ii) the performance, which consist in counting

the number of clock cycles that are necessary to complete a computation and the

delay of the critical path, which determines the maximum clock frequency of the

hardware architecture, and iii) the power consumption.

Hardware description

The hardware architecture of the elliptic curve crypto co-processor addressed in

this thesis is described in the hardware description language VHDL [65] and

50

3.3. DESIGN METHODOLOGY

Software-based

model

Testbeds

Hardware

designs

Functional

simulation

Implementation

ECC algorithms:

Finite field arithmetic

Ellipticurve arithmetic

Circuit 1

Circuit 2

Circuit 3

. . .

Circuit selection

ECC co-processor

Implementation

Validation

Figure 3.2: Flow for developing the ECC co-processor

physically implemented on FPGA technology according to the Xilinx flow shown

in figure 3.3.

Design entry begins with a design concept, expressed as a drawing or func-

tional description. The design is created using a schematic editor, a Hardware

Description Language (HDL) for text-based entry, or both. From the original

design, a netlist is created, then synthesized and translated into a Native Generic

Object (NGO) file. This file is fed into a program called NGDBuild, which pro-

duces a logical Native Generic Database (NGD) file. Figure 3.4 shows the design

entry and synthesis process. The design may be constrained within certain timing

or placement parameters. Mapping, block placement, and timing specifications

may be specified. Constraints can be given by hand or using a Constraints Editor,

Floorplanner, or FPGA Editor. Block placement can be constrained to a specific

location in the FPGA, to one of multiple locations, or to a location range. Loca-

tions can be specified in a User Constraint File (UCF). Poor block placement can

adversely affect both the placement and the routing of a design. Typically, only

I/O blocks require placement to meet external pin requirements.

The VHDL description does not contain any specific target-technology so the

synthesis can map the VHDL description on FPGAs as well as on other technolo-

gies as the standard-cell one. The VHDL code can be also optimized to yield

the best synthesis results. The VHDL model is hierarchically decomposed into

51

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

Design

Entry

Design

Synthesis

Design

Implementation

Download to a

FPGA device

Design verification

Functional

simulation

Static timing

simulation

Timing simulation

In-circuit

verification

Back

Annotation

Figure 3.3: Design flow for FPGA-based digital circuits.

Synthesis

HDL

Design
 Libraries

NGC

Netlist

NGDBuild

UCF

Figure 3.4: Design entry and synthesis process.

52

3.3. DESIGN METHODOLOGY

modules for facilitating functional verification and improving reusability of com-

ponents. Modeling hierarchical (or regular) structures in HDLs is called structural

description. The structural description style for modeling hardware can have ad-

vantages for backend tasks like floorplanning and placement. By composing a

circuit as a set of relatively small modules and sub-modules, floorplanning activ-

ities, which allocate regions of the silicon area for certain circuit parts, are facil-

itated. The same applies for FPGAs, where configurable blocks are reserved for

certain circuit functionality. Floorplanning and placement is especially of interest

for regular structures like datapaths. Placing neighboring modules on silicon will

shorten the interconnect. In modern process technologies, shortened interconnect

improves the circuits performance and lowers power consumption as much as op-

timizing combinational logic. This consideration is also true for FPGAs, where

interconnect contributes predominantly to delay and power consumption. Bit-

slice architectures for datapaths are also of interest for writing parameterizable

models.

Parameterization allows hardware models to be configured for different hard-

ware sizes. Parameters can determine for instance the width of a datapath. Pa-

rameterization improves the reusability of hardware models because the same

model can be easily adapted for different purposes. Parameterization of VHDL

models uses the generic statement, which extends the interface of modules. VHDL

strictly separates interfaces from functionality: Entities define interfaces of mod-

ules, and architectures define the functionality of that module.

Simulation

Before mapping the VHDL model onto the target technology by means of syn-

thesis, simulation has to assure the correctness of the model’s functionality. Sim-

ulation is a method of dynamic circuit verification, which excites the circuit or

models of it by applying test patterns and by analyzing the circuits response.

There are numerous simulators for VHDL, one of them is Active-VHDL, which

was used to verify the ECC VHDL models described in this thesis.

There are several options for verifying a VHDL model by simulation. The op-

tions emerge from different possibilities for applying test patterns and for checking

the response of the circuit. Prevalent methods are using testbeds or controlling

the simulator by scripts. Testbeds, which are sometimes called testbench, are

53

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

written in the same HDL as the tested hardware, which is called unit-under-test

(UUT). The testbed instantiates the UUT and stimulates its inputs. Input stimuli

are generated by assigning outputs of the UUT in each clock cycle accordingly.

The testbed may also check the responses of the UUT by monitoring the UUTs

outputs and by comparing the values with expected values. In case the testbed

includes no verification, the designer has to analyze the simulator output manu-

ally. An advantage of testbeds is that they use the same language for verification

as for modeling.

Synthesis

The synthesizer translates the HDL code written on register-transfer level into a

netlist which comprises only gates of the target library. The synthesis process has

two stages: Firstly, a technology independent synthesis step produces a descrip-

tion on logic level; a second step maps this description onto the target technology.

The mapping step optimizes its output by considering cell characteristics stored

in the synthesis library. Such synthesizers are able to adhere to performance con-

straints and limitations regarding power consumption. In particular, synthesizers

perform a static timing analysis to extract the critical path. This ensures that

the maximum clock frequency is high enough. Advanced synthesizers are even

able to apply measures for lowering the power consumption. For instance, they

can insert clock-gating techniques to reduce signal activity that consumes power

unnecessarily. In this thesis, the synthesizer included in the framework ISE from

Xilinx was used. The synthesis task can also be controlled by scripts. Simple

scripts are sufficient to turn VHDL code into standard-cell circuits.

After synthesizing the design the next step is the design implementation. De-

sign implementation begins with the mapping (MAP) or fitting of a logical design

file to a specific device and is complete when the physical design is successfully

routed and a bitstream is generated. Constraints can be altered during imple-

mentation just as during the Design Entry step. The overall view of the design

implementation process for FPGAs is shown in figure 3.5.

The input to MAP is an NGD file, which contains a logical description of the

design in terms of both the hierarchical components used to develop the design

and the lower-level Xilinx primitives, and any number of NMC (hard placed-and-

routed macro) files, each of them contains the definition of a physical macro.

54

3.3. DESIGN METHODOLOGY

Floorplanner

NGDBuild
UCF

Constrints

editor

MAP

NCD

PAR

NCD

BitGen

Bit

IMPACT

Timing

Simulation

NGD

Figure 3.5: Design implementation

MAP then maps the logic to the components (logic cells, I/O cells, and other

components) in the target FPGA. The output design is an Native Circuit De-

scription (NCD) file, which is a physical representation of the design mapped to

the components in the Xilinx FPGA.

Place-and-Route (PAR)

Floorplanning has to precede placement. Floorplanning is an early activity that

locates basic blocks of a circuit on the chip area. This determines the global

routing concept and the shape and the size of standard-cell blocks. Moreover, the

desired position of input and output terminals gets predefined. All this informa-

tion has to constrain the placement process. PAR takes an NCD file as input,

places and routes the design, and outputs an NCD file, which is used by the bit-

stream generator, BitGen. Placement arranges standard cells in rows such that

the routing effort is minimized. After placing the cells, a balanced and symmetric

clock tree has to be inserted. This job is automated largely. It suffices to define

constraints for delay, transitions times, and most importantly clock skew. The

placement tools synthesize a clock tree and integrate it into the initial placement.

The place and route utility included in the framework ISE from Xilinx was used

55

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

as placer and router in this thesis. Routing is the remaining task to complete

the layout generation of standard-cell circuits. This process performs precisely

the interconnections planned by the placement process. After placing and rout-

ing the design, the configuration file (bitstream) for the FPGA is generated and

downloaded using for example, the IMPACT program provided by Xilinx.

BitGen produces a bitstream for Xilinx device configuration. BitGen takes

a fully routed NCD file as its input and produces a configuration bitstream, a

binary file with a .bit extension. The BIT file contains all of the configuration

information from the NCD file defining the internal logic and interconnections of

the FPGA, plus device-specific information from other files associated with the

target device.

Backend Verification

Once a layout of the circuit is obtained, it has to be checked intensively to ensure

manufacturability. One may assume that the layout of standard-cell circuits,

which was generated by automated tools, is manufacturable. This is not true in

general. Thus, full-custom circuits as well as semi-custom circuits need intensive

verification of their layout data. Assuring that the layout data are correct gives

confidence that manufactured chips will have the desired functionality and meet

the specified constraints. Extensive backend verification pays off because detecting

faults on produced chips is much more complicated, causes higher costs, and is

more time consuming.

3.3.2 Design flow for reconfigurable ECC hardware archi-

tectures

Partial reconfiguration involves defining distinct portions of an FPGA design to

be reconfigured while the rest of the device remains in active operation. These

portions are referred to as reconfigurable modules. A reconfigurable module’s

boundary cannot be changed. The position and region occupied by any single

reconfigurable module is always fixed. Reconfigurable modules communicate with

other modules, both fixed and reconfigurable, by using a special bus macro. The

implementation must be designed so that the static portions of the design do

not rely on the state of the module under reconfiguration while reconfiguration is

56

3.3. DESIGN METHODOLOGY

taking place. The implementation should ensure proper operation of the design

during the reconfiguration process. Explicit handshaking (e.g., module ready/not-

ready) logic may be required. The state of the storage elements inside the recon-

figurable module are preserved during and after the reconfiguration process. It is

not possible to utilize the FPGA devices global set/reset (GSR) logic to indepen-

dently initialize the state of the reconfigurable module. If set/reset initialization

is required for the reconfigurable module, user-defined set/reset signals should be

defined in the source HDL.

In order to implement partial reconfiguration on an FPGA, the FPGA must

inherently support the dynamic reconfiguration of only portions of it, while leaving

the other portions unaffected. Then a set of software development tools are needed

that support the development of applications restricted to boundaries that comply

with the hardware architecture of the FPGA. Finally, some form of basic controller

must be available to dynamically manage the reconfiguration of the FPGA. This

could be an embedded general-purpose processor (GPP), a soft core GPP, or

an external GPP connected to the FPGA. In this shared resources model, the

same embedded GPP that is running the design infrastructure and operating

environment is also managing the partial reconfiguration of the FPGAs.

Successful implementation of a design using a partially reconfigurable flow

requires following a strict design methodology. A reconfigurable design will consist

of partially reconfigurable modules (PRMs) that will be swapped in and out of

the FPGA and the static logic, which will remain in place. The general picture

of the design flow involves the need to insert bus macros between the PRMs and

the rest of the design, the static or fixed logic that remains in place. Bus macros

are the channels or ports through which modules communicate and pass data.

This allows a fixed communication channel for the static logic regardless of the

reconfigurable logic on the other side. A layout of a design with a module that is

reconfigurable (shaded) is shown in figure 3.6.

Creating a partial reconfiguration design requires the creation and implemen-

tation of the design within a set of specific guidelines. The block diagram of such

guidelines is shown in figure 3.7. For more details on modular design, refer to

[66]. A general description of the flow for partial reconfiguration is:

1. Design Entry - This phase consists on writing and synthesizing HDL code

in conformance with partial reconfiguration guidelines. This usually implies

57

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

Fixed logic

Partial

reconfigurable

module
 Fixed logic

Reconfigurable logic (
FPGA resources
)

B

U

S

 M

A

C

R

O

S

B

U

S

 M

A

C

R

O

S

Figure 3.6: Design layout of a reconfigurable fabric with a reconfigurable module

External

Libraries

ECC library

Busmacro

interconection

Floorplan the design

(area assigment, lock

global signals)

Synthesis

dynamic modules

Synthesis

Static

module

Implement

dynamic

modules

Implement

Static module

Partial

Bitstream

generation

Merge and

initial

Bitstream

generation

FPGA

Update

Partial

bitstream

Initial

bitstream

Designs

partially

implemented

PRM 1

PRM 2

PRM n

No
Yes

Partial

reconfiguration

violations

Top Level System

Static and dynamic

modules partition

UCF

UCF

Figure 3.7: Design flow for partial reconfiguration

58

3.3. DESIGN METHODOLOGY

the partition of the original design in static and reconfigurable parts. Also,

this phase includes the insertion of busmacros in the design for communi-

cating the static and the reconfigurable parts.

2. Initial Budgeting - This phase consists on designing the floorplan, con-

straining the logic, and creating timing constraints for the top-level design

and each single module, either static or reconfigurable. This phase can be

carried out by using CAD tool like Planahead or Floorplaner for example.

All the elements in the design must be correctly placed in the FPGA, oth-

erwise the next phases in the flow will fail.

3. Run Active Implementation (NGDBUILD, MAP, PAR, etc.) -

Each version of the reconfigurable module and each one of the static parts

are implemented.

4. Assembly Phase Implementation- One of the partial reconfigurable

modules is merged with the rest of the fixed logic to get one initial con-

figuration file.

5. Verify design - A functional simulation and a static timing analysis is

applied.

6. Visually inspect design - The FPGA Editor could be used to ensure that

no unexpected routing crosses module boundaries. Though the software

enforces this rule, it is still important to manually check this result.

7. Create bitstream for full design - The initial power-up configuration is

created.

8. Create individual (or partial) bitstreams - One for each reconfigurable

module.

9. Setup - Download device with initial power-up configuration.

10. Reprogramming - Reprogram reconfigurable modules as needed with in-

dividual (or partial) bitstreams.

59

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

3.3.3 Verification and Validation

Verification is one aspect of testing a product’s fitness for purpose. Validation is

the complementary aspect. Often one refers to the overall checking process as V

& V [67]. For validation, designers must answer the question: ‘Are we trying to

make the right thing?’, i.e., does the product do what the user really requires?. In

the case of verification, designers must answer the question: ‘Have we made what

we were trying to make?’, i.e., does the product conform to the specifications?.

In this thesis, all the developed hardware modules are verified and validated.

The desired functionality is verified by simulation. Simulation assigns testdata to

a HDL model and tests whether the response of the model is as expected. The

most striking argument for using HDLs is the possibility to translate descriptions

on register-transfer level by automated tools into structural descriptions on gate-

level. Test data from several standards like ANSI X9.63 [8] could be used for

verification of implementations. The recommended public ECC parameters from

other standards like [2] could also be used for generating more test data using a

software model.

Verification is an aspect that is important for all levels of abstraction. Veri-

fication ensures correct functionality of the circuit. Besides checking the correct

input/output relationship of data, it is also important to ensure that the circuit

meets all constraints. Early detection of violations of constraints lowers the design

effort for doing a redesign. Verification is an essential part of the design process. It

ensures the consistency of circuit models on different layers of abstraction. Con-

sistency can be enforced when models on higher levels of abstraction generate

testdata for a more detailed representation. For instance, a high-level software

model can be extended to record intermediate results. So, testdata for modules

and sub-modules can be generated. Simulation of HDL models and sub-modules

can take this testdata as stimulus and can compare results. Automated test scripts

for all modules and sub-modules will help to detect undesired side effects of design

changes. Hierarchical verification that verifies a module not until all sub-modules

have been verified, helps to track down failures quickly. Hierarchical verification

can avoid cumbersome debugging of large circuits and circumvent long simula-

tion times. Simulation is the standard method for consistency checking. It is a

dynamic verification method. Anyhow, static verification gains ground. Static

verification uses formal methods to prove that two representations of a module

60

3.4. SUMMARY

on different abstraction levels are identical. Identical means that they both have

the same functionality when all defined constraints are considered. Commercial

tools for proving that the circuit level and the gate level are identical are for a

long time on the market: layout-versus-schematic checker. Formal verification

tools that prove that a representation on gate level is identical to a behavioral

description are emerging. Formal verification has the advantage that it scales

better with the complexity of a circuit than simulation does. Larger circuits have

larger netlists and require more excitation data than smaller circuits do. Thus,

simulation scales approximately with the square of the circuits size. Formal ver-

ification roughly scales linearly. Continuous verification and evaluation should

detect flaws of the design as early as possible. But what will happen when no de-

sign alternative yields the desired results? For instance, this can happen when all

variants of a HDL model describing the register-transfer level fail to implement

a hardware architecture such that all constraints are met (e.g. the maximum

clock frequency is always too low). In this case, design re-iterations on higher

abstraction levels become necessary: One has to search for hardware architec-

tures that have the desired functionality and meet the timing constraints on the

target technology. Presumably, exploiting concurrency on the architectural level

will solve the problem. In general, design re-iterations on higher abstraction levels

might be necessary when no design alternative yields the desired properties. De-

sign re-iterations are laborious and thus early and extensive evaluation of higher

abstraction levels will help to circumvent them. Emphasized evaluation will help

to approximate the design of a digital circuit to the ideal of the waterfall model

where each abstraction level is transformed only once into the next lower layer.

3.4 Summary

This chapter introduced concepts about reconfigurable computing, the paradigm

used for implementing a reconfigurable system that allows interoperability for el-

liptic curve cryptography. It presented the structure of reconfigurable devices and

the design flow for developing the ECC reconfigurable system. The reconfigurable

system proposed in this thesis is developed in three stages. The first one is con-

cerned with the development and evaluation of an elliptic curve co-processor for

executing the most time consuming operation in ECC, the scalar multiplication.

61

CHAPTER 3. RECONFIGURABLE COMPUTING AND DESIGN
METHODOLOGY

In the second stage deals with the design and implementation of a reconfigurable

system that uses the ECC co-processor of stage one as a reconfigurable module

that adapts at run time the parameters such as the irreducible polynomial F (x),

the order of the finite field GF(2m) and the elliptic curve E, for supporting a

desired security level. The third stage involves the validation of the system by

applying testbeds in the simulation phase and performing in-circuit verification.

The next chapter describes the development of the first stage of the flow pro-

posed that consists on the design and implementation of a GF(2m) ECC co-

processor. The design is carried out taking into account the design principles and

the flow described in this chapter.

62

Chapter 4

ECC co-processor design

This chapter presents the design and implementation of an ECC co-processor. The

design is based on the three layers of the operation dP presented in chapter 2. The

hardware architecture for each one of these layers is discussed and the integration

of them in a single hardware architecture for dP computation is presented.

This chapter also describes the design of a reconfigurable system based on

a HW/SW approach that allows interoperability for elliptic curve cryptography.

The main modules in the system are a microprocessor that commands the ECC

co-processor for the computation of scalar multiplication dP supporting several

tuples T for binary fields GF(2m). The design of the reconfigurable system is

implemented using the flow described in chapter 3.

4.1 Requirements

A software or hardware implementation of the scalar multiplication implies the

choice of the algorithms to perform finite field arithmetic, to select the coordinate

system to represent the elliptic curve points and to select the algorithm to compute

dP . It is worth to mention that the algorithm choices in each stage for computing

dP does not affect the interoperability of the ECC implementation.

As it was reviewed in the previous chapters, there are several choices for ECC

implementation and there are several combinations of algorithms at each stage of

dP in figure 2.2.4 that have already been explored. Most of the works reported

in the literature argue that the Montgomery method [68] is the best choice for

computing dP while López-Dahab coordinates [32] are the best way to represent

63

CHAPTER 4. ECC CO-PROCESSOR DESIGN

the elliptic curve points. Arithmetic in GF(2m) has been considered the best

choice for hardware implementation of ECC. This is because the arithmetic with

polynomials in GF(2m) is like binary arithmetic well suited to be implemented in

hardware.

The Montgomery method for dP provides more physical security being more

resistant to side channel attacks [44]. However, the Montgomery method requires

more ECC-Add operations than the binary method (aprox. dlog de/2) and if

projective coordinates are used, more finite field operations are required, as it

was shown in table 2.2. Traditionally, projective coordinates have been used

for faster dP implementations instead of affine. This argument is based on the

fact inversions used in affine representation are very time consuming operations.

In projective representation these field inversions are eliminated from the elliptic

curve point addition but more field multiplications are introduced. There is a

benefit in terms of time when using projective instead of affine coordinates only

if field inversion has a computational cost of six or more filed multiplications.

The known methods for computing field inversions are based on the Extended

Euclidean Method and require around 2m clock cycles for computing a single field

inversion. Finite field multiplication in binary field has a cost of m clock cycles if

a serial multiplier is used or dm/de cycles is a digit-serial multiplier is used. Digit-

serial multipliers implementations have increased area consumption if compared

to serial implementations. If implementations with small area requirements are

pursued and serial multipliers are selected, the use of projective coordinates is not

recommended because the latency for field operation will increase about twice

respect to the original affine representation. In addition, affine coordinates are

better preferred because they require less operations and also less intermediate

registers during the computations, see section 2.2.4.

The hardware for ECC can be implemented following a microprocessor or a co-

processor approach. The data flow in the processor approach implies more clock

cycles because the data processing must follows the Fetch-Decode-Execute-Store

cycle. In addition, a bank register is necessary to store temporary data. In the

co-processor approach the data flow requires less registers for intermediate results

and the arithmetic modules can be connected directly, that is, the output of a

module is the direct input of another one. However this last approach implies the

use of buses to connect every module because the hardware implementation is very

similar to the data flow of the algorithm being implemented. On one hand the

64

4.2. HARDWARE FOR THE LOWER DP LAYER: GF(2M) ARITHMETIC

processor approach involves more clock cycles and imposes a more complicated

control unit but it is simpler in the hardware organization of the main modules,

like the register bank and arithmetic units. On the other hand, the co-processor

approach requires less clock cycles because data are used immediately as they

are available from previous modules, reducing the number of registers for storage

but increasing the number of buses in the system. In order to achieve a compact

design and to take advantage of the availability of data in the computations, the

implementation of ECC point addition in this work is based on the co-processor

approach.

Based on the above statements, this chapter discusses the design and im-

plementation of an ECC co-processor for elliptic curves defined over GF(2m)

that provides interoperability for different tuples TGF (2m). The parameters from

TGF (2m) that are intrinsically related to the implementation are: 1) the elliptic

curve E(GF (2m)), expressed by the coefficients a and b in equation 2.9; 2) the ir-

reducible polynomial F (x) that generates GF(2m); and 3) the size of GF(2m), that

is, m. The ECC co-processor discussed in this thesis uses affine representation for

the elliptic curve points and implements the binary method for dP .

According to the methodology presented in chapter 3, the first stage of this

thesis is the development of hardware architectures for ECC. The best one will

be selected and integrated in a reconfigurable system for providing interoperabil-

ity in elliptic curve cryptography. The co-processor for the elliptic curve scalar

multiplication dP discussed in this thesis is organized in three main components:

arithmetic unit, control unit and memory.

4.2 Hardware for the lower dP layer: GF(2m)

arithmetic

The ECC co-processor is built on dedicated GF(2m) arithmetic units so its per-

formance and area requirements are a direct function of those arithmetic units.

Multiplication, division, squaring and addition are finite field operations required

for implementing the group operation in the elliptic curve. The next sections

describe the hardware architectures for the field operations in GF(2m).

65

CHAPTER 4. ECC CO-PROCESSOR DESIGN

4.2.1 GF(2m) Multiplication

Multiplication in GF(2m) in polynomial basis is the operation A(x) ∗ B(x) mod

F (x), that can be computed using a variety of proposed algorithms in the liter-

ature. Serial or bit-serial algorithms consider each individual bit of the operand

B(x) which implies a latency for multiplication of m clock cycles. The serial

implementation can be improved gradually if instead of considering just one bit

of the polynomial B(x), a group of bits is considered at each step of the field

multiplication algorithm. The number of bits considered is called the digit D.

Digit-serial multipliers consider a group of D bits of operand B(x) at time and

perform the multiplication in s = dm/De cycles, but introduces complexity in

each step of the multiplication. Varying the size of the digit allows to explore

the cost in area and performance improvements from a serial implementation up

to a parallel multiplication architecture. At each iteration, the operand A(x) is

multiplied by a group si of D bits of operand B(x) and the result is reduced mod-

ulo F (x). The result is added accumulatively to the result of the next iteration,

considering the following D bits of B(x) until all B(x)’ bits are processed. The

reduction in the operation latency comes with an increment in the complexity at

each step of the multiplication.

Serial GF(2m) multiplication

The serial algorithm for GF(2m) multiplication [31] is shown in algorithm 4.1.

Algorithm 4.1 Serial multiplication in GF(2m)

Input: A(x), B(x) ∈ GF(2m), F (x) the irreducible polynomial of degree m
Output: C(x) = A(x) ∗B(x) mod F (x)
1: C(x) ← 0
2: for i from m− 1 down to 0 do
3: C(x) ← C(x)x + A(x)bi

4: C(x) ← C(x) + cmF (x)
5: end for
6: return C(x)

Hardware implementation of a serial multiplier requires less area resources but

performs the operation slowly compared to the digit-serial multiplier, which allows

to explore area/performance trade-offs.

66

4.2. HARDWARE FOR THE LOWER DP LAYER: GF(2M) ARITHMETIC

C(x)
= A(x)·
B(x)
mod
 F(x)

A(x)

B(x)

F(x)

0

0

c
m

b
m
-
1

m

m

m

m

M

u

x
 C

M

u

x

Mux

B

<<

SHL

<<

SHL

Figure 4.1: Circuit GF2m Mul Serial 1 for GF(2m) serial multiplication

In this thesis, several designs for the serial GF(2m) multiplication algorithm

were proposed. Each one of these versions is parametrized for different finite

fields GF(2m). Different versions for the multiplier were designed in order to have

that implementation that occupied the fewer area resources while keeping a high

performance.

The first version of the GF(2m) serial multiplier is called GF2m Mul Serial 1

and it is based on the diagram of figure 4.1. This architecture scans each bit

of operand B(x) and performs the operation in exactly m cycles. The HDL

description of this architecture allows to parameterize it for different finite fields

by specifying the size m and the irreducible polynomial P (x).

The second version of the GF(2m) multiplier is based on the serial multi-

plier proposed by Kumar and Paar [69]. The diagram of such multiplier, called

GF2m Mul Serial 2 is shown in figure 4.2. Kumar and Paar implemented a cus-

tomized GF(2163) serial multiplier. In this work, the original architecture was

extended to the the finite fields orders of m = 113, 131, 233, 287, 409 and 571, all

of them recommended in the standards NIST and SECG.

The circuit GF2m Mul Serial 1 in figure 4.1 was implemented in two versions.

The first one uses a finite state machine to implement the control logic. In the

second one, the finite state machine is removed and the control is implemented

only with combinatorial logic.

67

CHAPTER 4. ECC CO-PROCESSOR DESIGN

C
162
 C
161
 C
7
 C
6
 C
3
 C
2
 C
1

C
0

A(x)

163

163

b
i

C(x)
 = A(x) ·
B(x)
mod
 F(x)

Figure 4.2: Circuit GF2m Mul Serial 2 for GF(2163) serial multiplication

The circuit GF2m Mul Serial 2 was implemented in three different versions.

In the first one, the circuit is implemented using a basic cell that models the

combinatorial and sequential logic associated to each register in the circuit. For

this case, the control logic was implemented with combinatorial logic. In the

second version, the control is implemented using a finite state machine instead of

combinatorial logic. This modification was done in order to obtain a higher clock

frequency and hence a faster circuit. In the third version, the finite state machine

was not used and the circuit was HDL designed as a single entity, that is, the

basic cell was not used. This was done to compare the synthesis results of the

structured version against the non-structured one.

Digit-Serial GF(2m) multiplication

The digit-serial algorithm for GF(2m) multiplication is shown in algorithm 4.2.

Algorithm 4.2 Digit-Serial multiplication in GF(2m)

Input: A(x), B(x) ∈ GF(2m), F (x) the irreducible polynomial of degree m
Output: C(x) = A(x) ∗B(x) mod F (x)
1: C(x) ← Bs−1(x)A(x) mod F (x)
2: for k from s− 2 downto 0 do
3: C(x) ← xdC(x)
4: C(x) ← Bk(x) ∗ A(x) + C(x) mod F (x)
5: end for

In this digit-serial algorithm, being B(x) an element in GF(2m) using polyno-

68

4.2. HARDWARE FOR THE LOWER DP LAYER: GF(2M) ARITHMETIC

C(x) = A(x) · B(x) mod F(x)

A(x)

B(x)

m

d

m

d
 m
-
d

m

F(x)

m

m

m

m

m

0
0

A(x)U(x) mod F(x)

S&R
 S&R
 S&R
 S&R

d-bit XOR

u
0

u
d-2

0
 0
0

· ·

·

A(x)

U(x)

m

d

m

m

m

S&R =
 A(x)x mod F(x)

u
d-1
u
1

m
 m
 m
 m

GF(2
m
) digit-serial multiplier architecture
 Combinatorial multiplier

Combinatorial

Multiplier

Combinatorial

Multiplier

u
2

Q
2
(x)
Q
1
(x)

M

u

x

B
Shift Digit

C

M

u

x

M

u

x

M

u

x

M

u

x

M

u

x

Figure 4.3: Hardware architecture GF2m Dserial Mul 1 for GF(2m) digit-serial
multiplication.

mial basis, this is viewed as the polynomial

bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x + b0 .

For a positive digit number D < m, the polynomial B(x) can be grouped so that

it can be expressed as

B(x) = xD(s− 1)Bs−1(x) + xD(s− 2)Bs−2(x) + · · ·+ xDB1(x) + B0(x)

where s = dm/De and each word Bi(x) is defined as

Bi(x) =





D−1∑
j=0

biD+jx
j 0 ≤ x ≤ s− 2

(m mod D)−1∑
j=0

biD+jx
j i = s− 1

The hardware architecture for the GF(2m) digit serial multiplier is shown in

figure 4.3. This is called GF2m Dserial Mul 1.

If xD is factored from the grouped representation of B(x), the resulting ex-

pression is B(x) = xD(xD(· · · (xD(xDBs−1(x) + Bs−2(x)) + · · ·) + B1) + B0 . This

last representation of operand B(x) is used in algorithm 1 to compute the field

multiplication. That is, A(x)∗B(x) mod F (x) = xD(xD(· · · (xD(xDBs−1(x)A(x)+

69

CHAPTER 4. ECC CO-PROCESSOR DESIGN

Bs−2(x)A(x)) + · · ·) + B1A(x)) + B0A(x) mod F (x). At each iteration, the ac-

cumulator C(x) is multiplied by xD and the result is added to the multiplication

of A(x) by each word Bi(x) of B(x). The partial result C(x) is reduced modulo

F (x).

The execution of the digit-serial algorithm is exemplified as

C(x) = Bs−1(x)A(x) mod F (x) Initialization

C(x) = xDBs−1(x)A(x) mod F (x) Iteration1

C(x) = xDBs−1(x)A(x) + Bs−2(x)A(x) mod F (x)

C(x) = xD(xDBs−1(x)A(x) + Bs−2(x)A(x)) mod F (x) Iteration2

C(x) = xD(xDBs−1(x)A(x) + Bs−2(x)A(x)) + Bs−3(x)A(x) mod F (x)

· · · · · ·
The hardware for the digit-serial algorithm in figure 4.3 is controlled by a finite

state machine. In each iteration, a new digit of D bits from B(x) is processed so

the operation is performed in D/m cycles. The operations xDC(x) and Bi(x)A(x)

are computed using parallel combinatorial multipliers, that multiplies a D − 1

grade polynomial with a m − 1 grade polynomial. Being U(x) a D − 1 grade

polynomial uD−1x
D−1 + uD−2x

D−2 + · · · + u1x + u0, and A(x) a m − 1 grade

polynomial, the parallel multiplication is

U(x)A(x) mod F (x) = uD−1x
D−1A(x) mod F (x)

+ uD−2x
D−2A(x) mod F (x)

+ · · ·
+ u1xA(x) mod F (x)

+ u0A(x) mod F (x)

(4.1)

The operation xA(x) mod F (x) is a shift to the left operation of A(x) to-

gether with a reduction of F (x). Thus, the value xiA(x) mod F (x) is the shifted

and reduced version of xi−1A(x) mod F (x). So each value xiA(x) mod F (x) can

be generated sequentially starting with x0A(x). Finally, each xiA(x) mod F (x)

value is added depending on the bit value of ui. These operations are executed

by the parallel multiplier shown in the right side of figure 4.3. The operation

xDC(x) mod F (x) is computed in two steps. Using the polynomial representation

70

4.2. HARDWARE FOR THE LOWER DP LAYER: GF(2M) ARITHMETIC

of C(x),

xDC(x) mod F (x) = xD(cm−1x
m−1 + cm−2x

m−2 + · · ·+ cm−Dxm−D

+ cm−D−1x
m−D−1 + · · ·+ c1x + c0) mod F (x)

= xD(cm−1x
m−1 + cm−2x

m−2 + · · ·+ cm−Dxm−D) mod F (x)

+ xD(cm−D−1x
m−D−1 + · · ·+ c1x + c0) mod F (x)

= (cm−1x
m+D−1 + cm−2x

m+D−2 + · · ·+ cm−Dxm) mod F (x)

+ (cm−D−1x
m−1 + · · ·+ c1x

D+1 + c0x
D) mod F (x)

= Q1(x) mod F (x) + Q2(x) mod F (x)

(4.2)

Q2(x) is a m−1 grade polynomial, corresponding to the m−D least significant

bits of C(x) shifted D positions to the left. Q2(x) does not need to be reduced.

By factoring xm from Q1(x), it is obtained Q1(x) = xm(cm−1x
D−1+cm−2x

D−2+

· · ·+cm−D). In this case, being F (x) a m+1 trinomial or pentanomial of the form

F (x) = xm+g(x), where g(x) is a polynomial with grade g << m, the equivalence

xm = g(x) can be used. In this case, g(x) correspond to all bits of F (x) except

the m-bit. Thus, Q1(x) mod F (x) = g(x)(cm−1x
D−1 + cm−2x

D−2 + · · · + cm−D).

That is, the operation is a multiplication of g(x) of grade g, and a polynomial

of grade D, corresponding to the most significant D bits of C(x). The resulting

polynomial is of grade g + D. It must be verified that for any F (x) and digit D,

g + D << m. The polynomial g(x) is expanded to a m − 1 grade polynomial

so Q1(x) mod F (x) is computed using the parallel combinatorial multiplier. All

these computations are performed by the modules in the architecture for the

multipliers, which includes the parallel multipliers, a shift to the left module of

d-bits, two registers and a 3m-input XOR gate.

4.2.2 GF(2m) Squaring

GF(2m) squaring is the operation A2(x) for any A(x) ∈ GF (2m). This can be

computed using the finite field multiplier or by a special circuit implemented

using pure combinatorial logic. In this last approach the squaring operation can

be performed in just one clock cycle taking advantage of some GF(2m) arithmetic

properties.

71

CHAPTER 4. ECC CO-PROCESSOR DESIGN

The square of an element a represented by A(x) = am−1x
m−1+· · ·+a2x

2+a1x+

a0 involves a polynomial multiplication of A(x) with itself and then the reduction

modulo F (x). A(x)A(x) mod F (x) = A2(x) mod F (x) is given in equation 4.3.

A2(x) = am−1x
2m−2 + · · ·+ a2x

4 + a1x
2 + a0 (4.3)

By factoring xm+1, equation 4.3 can be written as A2(x) = (Ah(x)xm+1 +

Al(x)) mod F (x), where

Ah(x) = am−1x
m−3 + · · ·+ a(m+3)/2)x

2 + a(m+1)/2

Al(x) = a(m−1)/2x
m−1 + · · ·+ a1x

2 + a0

The degree of Al(x) is lower than m and reduction is not necessary. The

product Ah(x)xm+1 may have degree as high as 2m−2. The irreducible polynomial

F (x) usually is a trinomial or pentanomial of the form

F (x) = xm + xd + · · ·+ 1

By multiplying both sides of the field equivalence xm = xd + · · ·+ 1 by x, it is

deduced that xm+1 = xd+1 + · · ·+ x. So

Ah(x)xm+1 = Ah(x)(xd+1 + · · ·+ x)

This operation is performed using the architecture for combinatorial multipli-

cation in the digit-serial multiplier. Here, the size of the digit is d + 2. The

diagram of the squarer is depicted in figure 4.4.

The operation A2(x) results is a polynomial of degree as high as 2m− 2. It is

a polynomial with interleaved insertion of ’0’. Once A2(x) is computed, a combi-

natorial multiplier computes Ah(x)xm+1 mod F (x). The final result is obtained

by adding the polynomial Al(x) to the result of the polynomial multiplication.

Kumar and Paar proposed another implementation of the combinatorial squarer

[69]. The implementation is specialized for the finite field GF(2163) and a partic-

ular irreducible polynomial. This idea can be extended to other finite fields and

irreducible polynomials.

4.2.3 GF(2m) Inversion

Typically, division in GF(2m) u/v is implemented as two consecutive operations,

the inversion v−1 and then the multiplication uv−1. There are well known algo-

72

4.2. HARDWARE FOR THE LOWER DP LAYER: GF(2M) ARITHMETIC

A(x)

X
m+1

m

A (x)
2
 mod F(x)

m

m-2

Mul

a
0

0

a
1

0

.

.

.

a
m
-
1

XOR

d
+2

m

m

Figure 4.4: Circuit for GF(2m) squaring

rithms for field inversion, like The Modified Almost Inversion Algorithm MAIA,

the Fermat’s theorem or the Ito-Tsujii algorithm [31]. The latency of MAIA

is 2m clock cycles so the whole latency of field division would be at worst 3m

using a serial multiplication algorithm. The Fermant theorem requires m−1 field

multiplications and m squarings. Using this theorem, a division will result very

expensive even though the squaring was implemented in just one clock cycle. The

Ito-Tsujii algorithm requires only log m iterations to complete an inversion but at

the cost of more complex control and more squarings.

The algorithm proposed by S. C. Shantz [70] shown in algorithm 4.3 can

perform a direct division u/v mod p in at most 2m− 2 clock cycles. That is, this

algorithm requires almost the same time to compute a single inversion but saves

the additional time for the field multiplication in the operation uv−1.

Algorithm was selected in this thesis for field division and it was implemented

in the next different ways:

1. Version 1. This architecture is called GF2m Div 1 and shown in figure 4.5. In

this implementation four cells were modeled for each register in the diagram

together with the associated combinatorial logic. This was done because

according to the literature [71], such model fits better in the basic cells

of the FPGA and the resources are better used. A cell in the FPGA can

implement any combinatorial function of four inputs and store the result

73

CHAPTER 4. ECC CO-PROCESSOR DESIGN

Algorithm 4.3 Division algorithm: Division in F2m

Input: X1(x), Y1(x) ∈ F2m , X1(x) 6= 0 and F (x) the irreducible polynomial of
degree m

Output: U(x) = Y1(x)/X1(x) mod P (x)
1: A(x) ← X1(x)
2: B(x) ← F (x)
3: U(x) ← Y1(x)
4: V (x) ← 0
5: while A(x) 6= B(x) do do
6: if x divides to A(x) then
7: A(x) ← A(x)x−1

8: U(x) ← U(x)x−1 mod F (x)
9: else if x divides to B(x) then

10: B(x) ← B(x)x−1

11: V (x) ← V (x)x−1 mod F (x)
12: else if grade of A(x) is greater than grade of B(x) then
13: A(x) ← (A(x) + B(x))x−1

14: U(x) ← (U(x) + V (x))x−1 mod F (x)
15: else
16: B(x) ← (A(x) + B(x))x−1

17: V (x) ← (U(x) + V (x))x−1 mod F (x)
18: end if
19: end while

74

4.3. HARDWARE FOR THE MIDDLE DP LAYER: COORDINATE
SYSTEM

A
 B
 V
U

A>>1
c
0
 B>>1
c
1
 U>>1
c
2
 V>>1
c
3
 F>>1
c
4

c
5

c
6

c
5

c
6

F
 2Y
 0
 2X

Figure 4.5: Architecture GF2m Div 1 for GF(2m) division

(binary) in a flip-flop.

2. Version 2. This architecture is called GF2m Div 2, it is based on the diagram

of figure 4.6. In this case the cells for the register A,B, U, V were not

modeled. Instead, the circuit was HDL-described as just one entity. In

this version and also in version 1, the implementation requires of a m-bit

magnitude comparer, which is supposed to be expensive in terms of area

and increases the latency of the operation.

3. Version 3 and Version 4 of the GF(2m) divisor are the same that versions 1

and 2 respectively but using a 8-bit comparer instead of the m-bit one. This

is based on the modification proposed by Gura [17] to the original Shantz’s

algorithm.

4.3 Hardware for the middle dP layer: Coordi-

nate system

The data flow of the group law for point addition presented in section 2.2.4 is

shown in figure 4.7.

In the co-processor approach, parallel operations are identified from the data

flow of ECC point addition to arrange the GF(2m) arithmetic modules in a such

way that the ECC point addition be performed efficiently. Dedicated units for

75

CHAPTER 4. ECC CO-PROCESSOR DESIGN

0

Y
(x)

F(x)

m

U
 F(x)

X
(x)

m

X
(x)/Y
(x)
mod
 F(x)

M

u

x

M

u

x

M

u

x
 M

u

x

U

V

M

u

x

>>

SHR

m

A

M

u

x

M

u

x

M

u

x
 M

u

x

A

B

>>

SHR

Figure 4.6: Architecture GF2m Div 2 for GF(2m) division

x
P
y
P
 x
Q
y
Q

+
 +

Div

SQR

+

+

x
R

MUL

y
R

+

a

+

x
P

x
R

+

+

y
P

x
P
y
P

Div

SQR

+

+

x
R

MUL

y
R

+

a

+

x
P

x
R

+

+

y
P

ECC-Add
 ECC-Dbl

Figure 4.7: Data flow for ECC point addition

76

4.3. HARDWARE FOR THE MIDDLE DP LAYER: COORDINATE
SYSTEM

ECC-Add and ECC-Dbl operations could be implemented for parallel execution

of the operation dP . Regardless of the parallel execution would perform the

dP operation faster, this hardware implementation would be vulnerable to side

channel attacks. Side channel attacks and their countermeasures were reviewed

in the last section of chapter 2.

The traditional method for computing dP is the binary method. It parses every

bit value of scalar d and executes at each iteration one ECC-Dbl operation followed

by one ECC-Add only if the current bit value of d is ‘1’. The direct hardware

implementation of this dP method is vulnerable to side channel attacks, such as

the simple power analysis attack (SPA). In SPA, the attacker measures the power

produced by the hardware executing the operation dP and tries to reveal the

private key from those traces. An SPA attack for the hardware implementation of

the binary method for dP is possible because ECC-Add and ECC-Dbl are different

in essence and they will produce different power traces. Due the operations ECC-

Add and ECC-Dbl are strongly related to the d’s bits, the security of the system

could be compromised.

One approach for preventing SPA attacks is to rewrite the addition formulas

ECC-Add and ECC-Dbl so that a single formula can be used for both kinds of

point sums, indifferently [45]. This approach has been considered in the literature

but using projective coordinates [72] or special forms of the elliptic curve [73].

The next section explains a new unified formula for performing both ECC-Add

and ECC-Dbl operations. The implementation of this new formulation increases

the resistance of a hardware implementation of dP to side channel attacks.

4.3.1 A new affine formula for point addition

Addition and doubling operations are very similar in affine representation. Given

the points P = (xP , yP) and Q = (xQ, yQ), the rules to perform ECC-ADD(P, Q) =

(xADD, yADD) and ECC-DBL(P) = (xDBL, yDBL) are:

λ1 =
yQ + yP

xQ + xP

xADD = λ2
1 + λ1 + xQ + xP + a

yADD = λ1(xP + xADD) + xADD + yP

77

CHAPTER 4. ECC CO-PROCESSOR DESIGN

λ2 = xP +
yP

xP

xDBL = λ2
2 + λ2 + a

yDBL = x2
P + λ2xDBL + xDBL

The last equation can be rewritten in the form

yDBL = λ2(xP + xDBL) + xDBL + yP .

Both ECC-Add and ECC-Dbl operations require to perform one division, one

multiplication and one squaring. The ECC-Add operation requires to perform

nine additions and the ECC-Dbl requires six. Although both kinds of elliptic

curve point addition use almost the same number of operations, the way in which

each one is defined is in essence different. This implies a dedicated implementation

for each one of these operations. When implemented in hardware, these different

modules have different power traces that could be used in side channel attacks.

To unify the operations ECC-Add and ECC-Dbl in affine coordinates aims: i)

to reduce the hardware used for implementing the addition operation in elliptic

curves, used for performing scalar multiplications, and ii) to increase the resis-

tance of the dP hardware implementation to side channel attacks. The main idea

for the new formula is to unify the ECC-Add and the ECC-Dbl operations by

multiplexing data according to the operation being performed. Such multiplexing

is implemented by introducing the operation s0 · x, which is the bitwise AND

operation of bit s0 with each bit-value of x.

By introducing the s0 · x operation in the original formulas for point addition

and applying boolean reductions, the new formulas to perform an ECC-Add op-

eration if s0 = ’1’ or an ECC-Dbl operation if s0 = ’0’, are:

λ =
s0 · yQ + yP

s0 · xQ + xP

X = (λ + s0 · xP)2 + λ + s0 · xQ + xP + a

Y = (λ + s0 · xP)(xP + X) + X + yP

The new formula for unified ECC point addition operation requires the fol-

lowing field operations: 10 additions A, 1 multiplication M, 1 division D and 1

squaring S. That is, the new formula requires one more addition in the case of the

78

4.4. HARDWARE FOR THE HIGHER DP LAYER: DP METHOD

ECC-Add operation and four additions in the case of the ECC-Dbl (see table 2.2

in chapter 2). Field additions in GF(2m) are trivial operations implemented as

XOR operations so this difference has not a serious impact in the timing to com-

pute any of the two elliptic curve point additions. Instead of having two distinct

hardware modules for each ECC elliptic curve point addition operation, a single

hardware module is provided thus resulting in smaller area requirements.

Figure 4.8 shows the data flow for the point addition module. Since field

addition is an XOR operation and squaring can be implemented using combina-

torial logic, the whole latency for point addition is the latency of a field division

plus the one of a field multiplication. In figure 4.8, the combinatorial operations

like AND and XOR are represented as black boxes of two or three inputs (Lut2,

Lut3). The black boxes are well mapped to LUTs (Look Up Table), which are

elements in FPGAs that implement any boolean function of up to 4-inputs.

4.4 Hardware for the higher dP layer: dP method

As it was reviewed in section 2.2.4, there are several methods to compute the

operation dP . Implementing a method for dP is to implement a control unit that

commands the necessary control signal of the hardware modules for point addition

discussed in the previous section.

Algorithm 4.4 computes dP by executing ECC-Dbl and ECC-Add operations

serially. By using the Point Addition module shown in figure 4.8, the algorithm

4.4 can be implemented adding the control unit to orchestrate the data flow as

indicated in the algorithm itself. Figure 4.9 shows the block diagram of the

resulting dP co-processor.

The control unit of the ECC co-processor is a finite state machine (FSM) that

parses the scalar d and sends control signals to the GF(2m) arithmetic modules

and multiplexers. Both, the scalar d and point P are entered to the architecture in

groups of 32-bit words. Additionally to scalar multiplication dP , the architecture

can perform an ECC-Add operation, which is required in elliptic curve digital

signature verification schemes.

The right to left version of algorithm 4.4 listed in algorithm 4.5, can perform

ECC-Add and ECC-Dbl independently in each iteration. The implementation

of this algorithm will result in a faster computation of dP but at the cost of an

79

CHAPTER 4. ECC CO-PROCESSOR DESIGN

s
0

Div

Sqr

Mul

Lut 3
2
3in XOR

Lut3
1

Lut3

1

Lut3

1

x
P

y
P

x
Q

y
Q

s
0

Lut 3
2
3in XOR

Lut2
1
2in XOR

x
P

x
P

s

0

y

Q

+y

P

s

0

x

Q

+x

P

Div+s

0

x

P

-

Y

X

Figure 4.8: Diagram block for the new Point Addition formula

additional Point Addition module.

Even though the implementation of algorithms 4.4 and 4.5, using the Point

Addition module, ensures that the power traces of ECC-Add and ECC-Dbl not

to be distinguishable, the dP hardware implementation can be still vulnerable to

timing attacks.

4.4.1 A co-processor resistant to side channel attacks

The algorithms 4.4 and 4.5 for dP were modified by Coron [46] to be resistant

to simple power traces (SPA) and timing attacks (TA). These new algorithm for

dP are shown in algorithms 4.6 and 4.7.

80

4.4. HARDWARE FOR THE HIGHER DP LAYER: DP METHOD

Algorithm 4.4 Binary method for scalar multiplication dP . Left to right version,
Serial execution of ECC-Dbl and ECC-Add
Input: P = (x, y) x, y ∈ GF(2m), d = [dm−1, dm−2, ..., d0]2
Output: dP
1: Q ← (0, 0)
2: for i from m− 1 downto 0 do
3: Q ← ECC-DBL(Q)
4: if ki = 1 then
5: Q ← ECC-ADD(P, Q)
6: end if
7: end for
8: return Q

Algorithm 4.5 Binary method for scalar multiplication dP . Right to Left, par-
allel execution of ECC-Dbl and ECC-Add
Input: P = (x, y) x, y ∈ GF(2m), d = [dm−1, dm−2, ..., d0]2
Output: dP
1: Q ← (0, 0)
2: R ← (0, 0)
3: for i from 0 to m− 1 do
4: Q ← ECC-DBL(Q)
5: if ki = 1 then
6: Q ← ECC-ADD(Q,R)
7: end if
8: R ← ECC-DBL(R)
9: end for

10: return R

Algorithm 4.6 Binary method for scalar multiplication dP . Left to right version,
Serial execution of ECC-Dbl and ECC-Add
Input: P = (x, y) x, y ∈ GF(2m), d = [1, dt−2, ..., d0]2
Output: dP
1: Q0 ← P
2: for i from t− 2 downto 0 do
3: Q0 ← ECC-DBL(Q0)
4: Q1 ← ECC-ADD(Q0, P)
5: Q0 ← Qdi

6: end for
7: return Q0

81

CHAPTER 4. ECC CO-PROCESSOR DESIGN

32

Data In

m

GF(2
m
)
Squarer

m

x
y

Control

Unit

(Binary

method)
 GF(2
m
)
Multiplier

x
P

m
 m

x
Q
y
P
y
Q

m
m

32

Data Out

4
Control

clk

GF(2
m
) ECC CO-PROCESSOR

GF(2
m
)
 Divider

FSM

P
OINT
A
DDITION

FSM

s
0

C
om

binatorial logic

Figure 4.9: Elliptic curve co-processor for dP .

Again, the serial implementation implies less area but higher latency while the

parallel implementation implies the opposite, more area but faster computation.

Figure 4.10 shows the proposed serial and parallel architectures for algorithms

4.6 and 4.7 respectively, using the implementation of the unified formulas for

point doubling and addition showed in figure 4.8.

In the case of the serial architecture, the resulting point from the double and

add operations are temporary stored in the register Q0 and Q1. After completing

both operations, the result is back propagated using a simple multiplexer, whose

selector is given by a parser module. At each iteration the control unit shifts the

scalar d one bit to the left and emits a pulse from 0 to 1 for s0. The point addition

module starts and ends performing an ECC-ADD operation because the initial

value Q0 = P must be loaded at the beginning using the available circuit. So the

implementation of algorithm 4.6 performs (t·ECC-ADD + (t − 1) ECC-DBL)

operations. Because each point addition is computed in at most 3m clock cycles,

the whole latency for the dP operation is (6t− 3)m clock cycles.

In the case of the parallel architecture, each module for point addition can

82

4.5. THE ECC RECONFIGURABLE SYSTEM

Algorithm 4.7 Binary method for scalar multiplication dP . Right to Left, par-
allel execution of ECC-Dbl and ECC-Add
Input: P = (x, y) x, y ∈ GF(2m), d = [1, dt−2, ..., t0]2
Output: dP
1: Q0 ← P
2: Q1 ← 2P
3: for i from d− 2 downto 0 do
4: Q2 ← ECC-DBL(Qdi

)
5: Q1 ← ECC-ADD(Q0, Q1)
6: Q0 ← Q2−ki

7: Q1 ← Q1+ki

8: end for
9: return Q0

be optimized to perform each elliptic curve point sum. That is, s0 keeps the

same value during the dP operation. The resulting points from the double and

add operations are interchanged and back propagated. The selector is given by

a parser module. In each iteration the control unit shifts the scalar d one bit to

the left. A multiplexer at the input of the doubling module is required to start

the computation of dP . Initially, the input to the doubling module is P and

the other one for the addition module is 0. So, the initial values are stored as

P and 2P as required in the algorithm. This implementation of algorithm 4.7

performs (t·ECC-ADD + t ECC-DBL) operations. Because each point addition

is computed in at most 3m clock cycles, the whole latency for the dP operation

is 6tm clock cycles.

4.5 The ECC reconfigurable system

The dP co-processor discussed in the previous sections needs to be modified given

an specific tuple T defined on GF(2m) fields. These parameters are:

1. The binary field (given by the value of m). This parameter determines the

width of data buses and the value of counters in the control units.

2. The irreducible polynomial F (x) defining GF(2m). This parameter af-

fects the design and structure of each dedicated module for GF(2m) arith-

metic.

83

CHAPTER 4. ECC CO-PROCESSOR DESIGN

Point

Addition

P

Q
0

Q
1

M

u

x

Shifter << 1
k
 k
i

s
0

Point

Addition

DBL

P
 M

u

x

Shifter << 1
k
 k
i

S

0

 = 0

M

u

x

Point

Addition

ADD

M

u

x

S

0

 = 1

Q

1

Q

2

a) Algorithm 3 implementation

b) Algorithm 4 implementation

Figure 4.10: Serial a) and parallel b) implementation for the Coron’s binary meth-
ods for dP .

3. The elliptic curve (see equation 2.9 in section 2.2) given by the constants

a and b. These values affect the definition of the point addition module.

The approach taken in this thesis is to design generic architectures for each

main module in the dP co-processor (arithmetic modules and control), and then

to extend those modules for different tuples T . The dP co-processor supporting

a specific tuple T is created by selecting the proper modules in each stage of the

dP operation according to the tuple T being used. This is shown in figure 4.11.

84

4.6. PROPOSED RECONFIGURABLE SYSTEM

Upper layer: dP

method

Middle layer: Group

law (Point addition)

dP layers

Lower layer: GF(2
m
)

finite field arithmetic

Multiplier

Squarer

Divider

Hardware

modules

Point

addition

Control

unit

Related values

from tuple T

m

m, a, b

m, F(x)

Control

unit m
1

Control

unit m
2

Control

unit m
n

Extending the

design

m
1
m
2

m
n

Point

addition

Point

addition
Point

addition

m
1
, a
1
, b
1

m
2
, a
2
, b
2

m
n
, a
n
, b
n

Multiplier

Squarer

Divider

Multiplier

Multiplier

Squarer
Squarer

Divider
Divider

m
1
, F
1
(x)

m
n
, F
n
(x)

m
1
, F
1
(x)

m
n
, F
n
(x)

m
1
, F
1
(x)

m
n
, F
n
(x)

Point addition

Multiplier

Squarer

Divider

Modules

selection

for tuple T

Control Unit

Host Interface

ECC coprocessor

for tuple T

Figure 4.11: Extending the dP processor to support different tuples T

4.6 Proposed reconfigurable system

Figure 4.12 shows the reconfigurable system proposed for interoperable ECC. The

target system performs ECC based cryptographic schemes using both software

and hardware. The ECC co-processor is configured for specific tuples T given by

the software application running on the embedded microprocessor. The reconfig-

urable system also includes local buses PLB and OPB, an universal asynchronous

receiver/transmitter UART module, memory blocks for data and program. The

original co-processor shown in figure 4.9 (see chapter 4) was wrapped with the

IPIF EDK core [74] to interconnect it to the OPB bus.

PowerPC

Microprocessor

PLB Bus

OPB Bus

Memory

PLB-OPB

Bridge

UART

ECC

Co-

Processor

IPIF

BusMacros

Figure 4.12: Co-processor attached to a microprocessor

The software application enables the ECC co-processor and sends the point

85

CHAPTER 4. ECC CO-PROCESSOR DESIGN

Reconfigurable fabric

PowerPC

Microprocessor

PLB Bus

OPB Bus

Memory

PLB-OPB

Bridge

UART
 ECC

Co-

Processor

IPIF

BusMacros

Static part
 Reconfigurable part

Figure 4.13: Layout of the proposed reconfigurable system

P and scalar d through the PLB bus as a group of 32-bit words. After reading

the input parameters, the ECC co-processor starts the computation while the

processor waits for the results. By asserting a signal, the co-processor notifies the

end of the computation and then the application reads back the results and shows

them via the UART module to the user. The system shown in figure 4.12 can be

generated using EDK from Xilinx. It is a GUI interface that allows to generate a

complete system and implement it in a physical device.

As described in chapter 3, the system shown in figure 4.12 is partitioned

in both, static and reconfigurable parts. In this case, the system is composed

of only one static and one reconfigurable part. The static part is composed of

all the modules in figure 4.12 except the ECC co-processor wrapped by the

IPIF module, which is the reconfigurable part. All signals that connect the fixed

and reconfigurable part go through busmacros. The layout of the reconfigurable

system is shown in figure 4.13

The reconfigurable and static parts, the busmacros, and other global resource

like clock of buffers must be correctly placed in the reconfigurable fabric. Previous

to the implementation phase, the placement of these components is specified in a

constraint file, that is generated manually or using advanced tools that also check

for inconsistences in the placement process. PlanAhead is a useful tool that allows

to generate this constraint file and also implement the completed reconfigurable

flow.

86

4.7. SUMMARY

4.7 Summary

This chapter discussed the design of a GF(2m) ECC co-processor using affine

coordinates and the binary method for computing the operation dP . Different co-

processors were designed and evaluated for studying the area/performance trade

offs given several designs for the GF(2m) arithmetic modules. The designed co-

processor implements a new representation of the formulas for elliptic curve point

addition that is more resistant to side channel attacks, such as timing attacks and

simple power analysis.

This chapter also presented the design issues of the proposed reconfigurable

system. It is based on a microprocessor that commands the execution of the

dP operation by the ECC co-processor. The design of the reconfigurable system

imposed several issues like the placement of the component of the system in the

reconfigurable fabric.

The next chapter discusses the design and implementation of a reconfigurable

system that uses ECC co-processor presented in this chapter. Partial dynamic

reconfiguration is used for implementing the system that allows interoperability

for elliptic curve cryptography.

87

CHAPTER 4. ECC CO-PROCESSOR DESIGN

88

Chapter 5

Results

This chapter presents the results of this research and is organized in three parts.

The first one presents the results of the GF(2m) arithmetic units, which are the

basis of the dP co-processor developed. The second part describes the results

of the dP co-processor, using different configurations depending on the area/per-

formance requirements. The third part presents the results of the reconfigurable

system for interoperable ECC. It shows the achievements in time and area of the

proposed system that allows run-time adaptation of hardware for elliptic curve

arithmetic depending on the security level required by the application.

5.1 Target technology for implementation

The results presented in this chapter are the ones obtained by implementing

the hardware designs in FPGA technology. The targeted FPGA is the Virtex4

XC4VFX12 from Xilinx [75]. The Virtex-4 device logic unit is the slice. Each

slice (see figure 5.1) consists of two fixed 4-input LUTs, embedded multiplexers,

carry logic, and two registers.

Configurable Logic Blocks (CLBs) in Virtex4 FPGAs are made up of four

slices. The function generators are configurable as 4-input look-up tables (LUTs).

Two slices in a CLB can have their LUTs configured as 16-bit shift registers, or

as 16-bit distributed RAM. In addition, the two storage elements are either edge-

triggered D-type flip-flops or level sensitive latches. Each CLB has internal fast

interconnect and connects to a switch matrix to access general routing resources.

The Virtex4 XC4VFX12 FPGA has 5472 slices available. It also includes an

89

CHAPTER 5. RESULTS

4-in

Function

Generator

or LUT

FF

1

2

3

4

combout(0)

regout(0)

4-in

Function

Generator

or LUT

FF

1

2

3

4

combout(1)

regout(1)

Virtex4 slice

Figure 5.1: Virtex4 slice

embedded IBM PowerPC 405 RISC CPU with a working frequency up to 450

MHz.

5.2 Metrics of performance

The developed hardware architectures are evaluated and measured by using the

area and throughput factors. These metrics provide a measure for comparing

different designs. Their definitions are [76]:

1. Area: The space occupied by a hardware design is expressed in terms of the

logic blocks of the FPGA. The additional resources in FPGAs like BRAMs,

multipliers, etc., should be also mentioned if they are used in the design.

The lesser the FPGA elements are used the most economical design in terms

of the area occupied by it.

2. Throughput: Throughput measures timing performances of hardware de-

signs. It is obtained by multiplying the allowed frequency for the design

with the number of bits processed per cycle. For cryptographic algorithms,

throughput (in bits/sec) is defined as:

Throughput =
Allowed Frequency

Number of Bits Processed

The higher the throughput of the design, the better its efficiency.

3. Throughput/Area: This is the ratio of the above two metrics and shows

how efficient the design is with respect to both area and throughput. The

ratio is high in case of high throughput and less space.

90

5.3. TOOLS

5.3 Tools

The results presented in this chapter were obtained using CAD tool from Xilinx.

ISE 8.2 was used for synthesizing, mapping, and implementing all the HDL de-

signed modules. The software tools for partial reconfiguration from Xilinx were

used. EDK and PlanAhead 8.2 from Xilinx were used for implementing the re-

configurable system and for floorplanning.

5.4 Results of GF(2m) arithmetic modules

5.4.1 Serial GF(2m) multiplication

The synthesis results for each one of the five versions for the implementation of

algorithm 4.1 are summarized in table 5.1. The main differences of the five

versions for the serial multiplier, as they were mentioned in chapter 4, are:

GF2m Mul Serial 1

- Version 1: Functional description in VHDL.

The control logic is implemented as a FSM (Finite State Machine).

- Version 2: Functional description in VHDL.

The control logic is implemented as a combinatorial circuit.

GF2m Mul Serial 2

- Version 1: Modular description in VHDL.

The control logic is implemented as a combinatorial circuit.

- Version 2: Modular description in VHDL.

The control logic is implemented as a FSM (Finite State Machine).

- Version 3: Functional description in VHDL.

The control logic is implemented as a combinatorial circuit.

All the circuits were implemented using two optimization criteria of the syn-

thesis tool, the Area and Speed optimization. In the first one, the synthesis tool

optimizes the area resources by reusing internal hardware of the circuit at the

cost of slower designs. In the speed criteria, the synthesis tool uses area as much

as required but tries to reduce the latency of the circuit and increases the clock

frequency for getting a faster circuit. The results in table 5.1 show that for

91

CHAPTER 5. RESULTS

Table 5.1: Synthesis results of the GF (2m) multiplication algorithm on the Virtex4
FPGA.

Hw Design 113 131 163
GF2m Mul Serial 1 v1 132/183 151/208 186/257 Slices

v2 130/129 149/148 184/183 Area/Speed
GF2m Mul Serial 2 v1 121/123 214/219 265/271

v2 187/236 216/272 268/337
v3 129/128 149/148 183/182

GF2m Mul Serial 1 v1 211/314 242/310 230/308 Freq.
v2 328/328 321/321 308/308 (MHz)

GF2m Mul Serial 2 v1 249/99 245/297 338/296 Area/Speed
v2 247/312 242/310 235/308
v3 317/363 317/354 317/339

area optimization, the versions one and two of circuit GF2m Mul Serial 1 and

the version three of circuit GF2m Mul Serial 2 uses almost the same amount of

area. However, the last one has a higher clock frequency. The fastest of the five

multipliers is the version two of circuit GF2m Mul Serial 1 but uses the double of

the area used by the multipliers with smaller area. From table 5.1, designers can

choose the multiplier that better meets the application requirements in terms of

area or speed.

5.4.2 Digit-Serial GF(2m) multiplication

The results for the digit-serial multiplier presented in chapter 4 are shown in table

5.2. The table shows the are and frequency of the circuit GF2m Dserial Mul 1

for the digit sizes D = 4, 8, 16, 32 and the finite field order m = 163, 233, 239, 409

and 571. Figure 5.2 shows the timing in microseconds to compute one field

multiplication using a specific combination of digit and field order 1.

5.4.3 GF(2m) squarer

In both implementations the area results and latency were the same. The squarer

occupied only 95 slices and 165 LUTs for the finite field GF (2163).

1Results using a XCV2 FPGA.

92

5.4. RESULTS OF GF(2M) ARITHMETIC MODULES

Table 5.2: Synthesis results for the GF(2m) digit serial multiplier on the Virtex4
FPGA.

m
Digit 163 233 277 283 409 571

4 462/460 647/641 770/760 787/775 1126/1333 1571/1589
8 749/808 1156/1016 1380/1193 1281/1201 1833/1779 2562/2418 Slices
16 1515/1488 2128/1946 2559/2332 2608/2370 3721/3635 5220/4731 Area/Speed a

32 2853/2627 3993/3744 4835/4431 4925/4530 7002/6399 9857/8936
4 200/365 236/366 172/330 172/330 203/383 172/370
8 197/308 138/315 114/285 180/277 173/284 188/276 Freq.(MHz)
16 145/246 132/252 131/245 130/248 119/264 127/244 Area/Speed
32 137/218 132/227 116/223 116/220 119/224 115/225

aOptimization criteria in the synthesis process.

150 200 250 300 350 400 450 500 550 600
−0.1

0.2

0.5

0.8

1.1

1.4

1.7

2

2.3

2.6

m (field order)

T
im

e
(u

s)

digit = 1
digit = 4
digit = 8
digit = 16
digit = 32

Figure 5.2: Timing us for GF (2m) digit serial multiplier

5.4.4 GF(2m) division

Table 5.3 shows the area results for the different implementations of the GF (2m)

division algorithm. The results are for the finite fields m = 113, 131, 163 optimiz-

ing for area or speed.

The second version of both architectures GF2m Div 1 and GF2m Div 2 for GF(2m)

division resulted faster than the first one due the use of a smaller comparator. Ver-

sion one of the circuit GF2m Div 1 is the smallest when area optimization is applied

while version two of the same circuit is the fastest using speed optimization.

93

CHAPTER 5. RESULTS

Table 5.3: Synthesis results for the GF (2m) division algorithm on the Virtex4
FPGA.

Hw Design 113 131 163
GF2m Div 1 v1 410/611 475/709 589/879 Slices

v2 627/600 723/693 893/852 Area/Speed
GF2m Div 2 v1 501/737 581/851 723/1057

v2 459/722 529/828 655/1025

GF2m Div 1 v1 95/105 87/98 76/86 Freq.
v2 113/154 99/152 94/146 (MHz)

GF2m Div 2 v1 76/106 73/98 64/86 Area/Speed
v2 113/164 101/164 99/160

5.4.5 Discussion

The results of the different hardware designs of the GF(2m) arithmetic modules

allow to explore an area/performance trade off in order to select the most appro-

priate modules for building the ECC co-processor. If a compact design is pursed,

then the mos appropriate hardware modules are the ones occupying the smallest

area. Otherwise, the designs with the highest clock frequency should be selected

if a faster architecture is required.

Even though a hardware design is good for a finite field order, it could not

be good for another. So, designer should consider all the available designs for

each arithmetic algorithm in order to select the most appropriate based on the

application requirements.

It can be seen from table 5.3 how the GF(2m) divider has a greater area

consumption and also, lower operational frequencies. This module will affect

the area/performance of the whole design of the dP co-processor so a carefully

selection of this module should be done. In the case of the multiplier, some designs

are cheaper in terms of area and still keep a high clock frequency. Although digit-

serial multiplier achieves the field multiplication faster, the area consumption for

digits greater that 16 grows quickly. The field multiplication is not the most time

consuming field operation in the dP operation. Digit sizes greater than 16 could

not offer a considerable advantage in the computation of scalar multiplication

thus the extra cost in terms of area for digit sizes greater that 32 bits will not be

justified.

94

5.5. RESULTS OF THE GF(2M) DP CO-PROCESSOR

5.5 Results of the GF(2m) dP co-processor

Previous sections discussed the design of hardware for each layer in the dP oper-

ation. Different versions for each GF(2m) arithmetic modules were implemented

leading to different area/performance results. This section presents the synthe-

sis results of the ECC co-processor discussed in chapter 4 using the GF(2m)

arithmetic units.

As it was shown, the dP operation can be executed in parallel or serially

and even side channel resistance could be provided. The implementation results

of the serial, parallel and side channels attacks resistant architecture for dP are

presented in this section.

Synthesis results of different hardware modules for dP were obtained in order

to select the best one in terms of area and performance. The selected hardware

for dP will be used to implement the reconfigurable system that will provide

interoperability for ECC. Different ECC co-processors were designed, one for each

tuple presented in appendix B. These are standard implementation parameters

recommended in [7] and [2]. All the hardware designs of the ECC co-processor

were validated by simulation, applying the test vectors shown in appendix B.

5.5.1 Parallel architecture for ECC

The first explored hardware architecture for dP was the parallel implementation

of algorithm 4.5.

Each one of the designed ECC co-processors were synthesized for a xc2v4000

FPGA using the area and speed optimization options and enabling/disabling the

keep hierarchy option. Optimizing for area indicates to the synthesis tool to reuse

the hardware as much as possible. In optimization for speed, the clock frequency

is optimized without any restriction of area resources. If the option keep hierarchy

is enabled, the synthesis tool synthesizes each modules in the design to a dedicated

area in the FPGA. If this option is not enabled, all the modules are merged in

just one big module and synthesized. Keeping the hierarchy is recommended if

FPGA reconfigurability is going to be exploited although more area resources are

needed and maybe, low performance is obtained compared to the results using

the no keep hierarchy option.

Area results of dP architectures are shown in figure 5.3. The ECC co-processor

95

CHAPTER 5. RESULTS

1 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 SEC163

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

1 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 SEC233

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

1 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 SEC277

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

1 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 SEC283

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

Figure 5.3: Area resources of the parallel implementation of dP for different
security levels and parallelism grade in the field multiplier.

uses the following GF(2m) arithmetic modules:

• GF2m Mul 1 and GF2m Dserial Mul 1 for multiplication.

• GF2m Div 2 for division.

• GF2m Sqr 1 for squaring.

The figure shows in the x-axis the different digit sizes (digit = 1 in the case

of the serial multiplier) for the multiplier. The number of logic gates used by the

architecture for each security level is shown in the y-axis. Keeping the hierarchical

structure of the HDL design and optimizing for speed leads to use bigger amount

of gates compared with the other synthesis options. In all cases the increase in

area is linear respect to the security level.

The timing achieved by dP architecture using different finite field multipliers

and security levels is shown in figure 5.4. Different curves correspond to the

different synthesis options previously mentioned. The results were obtained by

simulating the architecture and counting the cycles per clock spent. Then, the real

96

5.5. RESULTS OF THE GF(2M) DP CO-PROCESSOR

0 5 10 15 20 25 30 35
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

d (multiplier digit size)

SEC163

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

0 5 10 15 20 25 30 35
2

2.5

3

3.5

4

4.5

d (multiplier digit size)

T
im

e
(m

s)

SEC233

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

0 5 10 15 20 25 30 35
3

4

5

6

7

8

9

d (multiplier digit size)

T
im

e
(m

s)

SEC277

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

0 5 10 15 20 25 30 35
3

4

5

6

7

8

9

d (multiplier digit size)
T

im
e

(m
s)

SEC283

Area−Hierarchy
Area−No−Hierarchy
Speed−Hierarchy
Speed−No−Hierarchy

Figure 5.4: Timing to compute dP using the parallel architecture for different
security levels and parallelism grade in the field multiplier.

time was computed by multiplying the clock cycles with the delay of the clock cycle

given by the synthesis tool. From the figures it is concluded that the architecture

using the serial multiplier requires the minimum area but is the worst performer.

Using a digit multiplier with d = 4, 8, 16 results in a similar performance but

almost the half of time respect the serial multiplier. A digit-serial multiplier

with d = 32 performs well in some cases but the area requirements increase

approximately 40% respect to the architecture that uses the serial multiplier.

Figures 5.5 and 5.6 show the different area resources and performance of

the dP architecture for different security levels. These are results from synthesis

optimized by area and keeping the hierarchical structure of the design. These

results remark the importance of using efficiently the available silicon to obtain

the best performer implementations.

5.5.2 Serial architecture for ECC

A new architecture for dP was derived from the parallel one. Instead of having

a dedicated unit for ECC-Add and ECC-Dbl and performing both operations in

97

CHAPTER 5. RESULTS

1 4 8 16 32
0

0.5

1

1.5

2

2.5
x 10

5

d (multiplier digit size)

A
re

a
(g

at
es

)

sec163
sec233
sec277
sec283

Figure 5.5: Architecture 1 area resources for different security levels

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

d (multiplier digit size)

T
im

e
(m

s)

sec163
sec233
sec277
sec283

Figure 5.6: Timing to compute dP using architecture 1 and different parallelism
grade in the field multiplier

98

5.5. RESULTS OF THE GF(2M) DP CO-PROCESSOR

parallel, it was explored the area usage and performance of an architecture that

implements the serial algorithm for dP listed in algorithm 4.1. In this way, a

hardware module to support both kinds of elliptic point addition was developed.

The difference with the parallel architecture is that the control was changed by

adding the required states to the finite state machine and adding more control

signals. Although the affine coordinates remain, the organization of the module

for point addition was slightly modified but the arithmetic modules were not.

The serial architecture was validated and synthesized for all the cryptosystems

as in the parallel one. Figures 5.7 and 5.8 show the area and time results for this

new hardware architecture for dP . The results were obtained from the synthesis

tool optimizing by area and enabling the keep hierarchy option.

1 4 8 16 32
0

5

10

15
x 10

4

d (multiplier digit size)

A
re

a
(g

at
es

)

sec163
sec233
sec277
sec283

Figure 5.7: Area resources (logic gates) used by the ECC serial architecture for
different security levels.

Comparing both the serial and the parallel ECC architectures for each security

level, the serial dP implementation saves 40% of area resources ocupied by the first

architecture. However, the time to compute the scalar multiplication increases in

40% - 30%. For illustration purposes, figure 5.9 compares the area resources for

both implementations for the cryptosystem in the field m = 163 and different

99

CHAPTER 5. RESULTS

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

9

10

11

d (multiplier digit size)

T
im

e
(m

s)

sec163
sec233
sec277
sec283

Figure 5.8: Timing (ms) to compute dP by the ECC serial architecture for differ-
ent security levels.

finite field multipliers.

5.5.3 An ECC hardware architecture resistant to Side Chan-

nel Attacks

This ECC co-processor is the one resulting of the implementation of the unified

point addition formula presented in section 4.4.1 and the implementation of the

serial algorithm 4.6 for dP .

For this case, the ECC co-processor was tested using each version of the arith-

metic modules presented in section 4.2 in order to select the best in terms of

area or latency. For the implementation of this new ECC co-processor the digit-

serial multiplier was not considered. The serial multiplier was only considered

in order to have a more compact architecture of the ECC co-processor. With

four implementations of the divider and five for the serial multiplier, 4x5 = 20

different combination of arithmetic modules should be tested. However, due the

circuits one and two for the multiplier occupy almost the same amount of area,

only the circuit two was considered. The same is for the version one of the divider

100

5.5. RESULTS OF THE GF(2M) DP CO-PROCESSOR

1 4 8 16 32
0

5

10

15
x 10

4

d (multiplier digit size)

A
re

a
(g

at
es

)

kP parallel
kP serial

Figure 5.9: Comparison of area resources for the parallel and serial implementation
of dP algorithm.

GF2m Div 1 and GF2m Div 2, which have the same operational frequency. So, ver-

sion one of the circuit GF2m Div 2 was discarded and the other three versions

of the divider were considered for designing the ECC co-processor. The results

shown in tables 5.4 and 5.5 are for the twelve GF (2163) co-processors synthesized

and optimized by area and speed respectively.

According to table 5.4, the co-processor that occupies less area is the one that

uses the version one of circuit GF2m Mul 2 for multiplication and the version four

of the division algorithm. However, in table 5.4, the co-processor that occupies

less area and runs faster is the one that uses the version three of circuit GF2m Mul 2

for multiplication, and the version four of the divider. According to table 5.5,

the fastest co-processors are the ones that use the circuit GF2m Div 2 but requires

more are compared to the co-processors using the circuit GF2m Mul 1

These results shown the importance of trying with different GF(2m) arithmetic

algorithms. Theoretically, the version three of circuit two for multiplication re-

quired minimum area but when it was integrated together the other modules, it

was not the best performer.

101

CHAPTER 5. RESULTS

Table 5.4: Synthesis results for three implementations of the dP co-processor on
the Virtex4 FPGA (Optimized by area).

Multiplier: Circuit , version 2
Divider V1 V2 V3 V4
Slices 2780 2779 3091 2713

Slice FF 2520 2518 2536 2534
4-in LUTs 4977 4970 5497 4836

Freq. (MHz) 69 64 88 88

Multiplier: circuit 2, version 1
Divider V1 V2 V3 V4
Slices 2769 2768 3080 2702

Slice FF 2683 2681 2699 2697
4-in LUTs 4975 4968 5495 4835

Freq. (MHz) 69 64 88 88

Multiplier: circuit 2, version 3
Divider V1 V2 V3 V4
Slices 2778 2777 3089 2711

Slice FF 2520 2518 2536 2534
4-in LUTs 4974 4967 5494 4833

Freq. (MHz) 69 64 88 88

102

5.5. RESULTS OF THE GF(2M) DP CO-PROCESSOR

Table 5.5: Synthesis results for three implementations of the dP co-processor on
the Virtex4 FPGA (Optimized by speed).

Multiplier: circuit 1, version 2
Divider V1 V2 V3 V4
Slices 3045 3040 3613 3529

Slice FF 2524 2521 2820 2826
4-in LUTs 5707 5702 6834 6752

Freq. (MHz) 81 81 136 150

Multiplier: circuit 2, version 1
Divider V1 V2 V3 V4
Slices 3051 3038 3080 3557

Slice FF 2687 2684 2699 2922
4-in LUTs 5718 5699 5495 6733

Freq. (MHz) 81 81 88 138

Multiplier: circuit 2, version 3
Divider V1 V2 V3 V4
Slices 3053 3038 3637 3464

Slice FF 2524 2521 2819 2758
4-in LUTs 5721 5699 6880 6568

Freq. (MHz) 81 81 136 138

103

CHAPTER 5. RESULTS

This last version of the ECC co-processor was the one that used low area

while keeping a high throughput. This ECC co-processor will be used to imple-

ment the reconfigurable system that will allow interoperability for elliptic curve

cryptography.

5.6 ECC reconfigurable system results

The reconfigurable design shown in figure 4.12 was implemented using the ISE

tools for partial reconfiguration [77] and scripts. This system was first defined

using the EDK 8.2 tools. The system includes the PowerPC microprocessor,

local buses PLB and OPB for data communication, an universal asynchronous

receiver/transmitter UART module for the I/O user interface, memory blocks

for data and program, and the ECC co-processor. A step by step guideline to

implement the reconfigurable system is presented in appendix A.

For the reconfigurable module, the best co-processor optimized by area was

used. Unfortunately, that module does not function properly. That is, the co-

processor uses the clock signal of the ML403 board, that is the same clock signal

that the microprocessor uses. The clock signal in the ML403 is 100 MHz but the

most compact dP co-processor optimized by area reaches a maximum speed of 88

MHz. This caused some problems for the correct operation of the co-processor. So,

the best performer co-processor optimized by speed was used. The co-processor

that fitted in the maximum available area in the FPGA was the one for the finite

fields GF(2113) and GF(2131).

For the implementation, the FPGA was divided in two columns. The resources

of the left column were assigned to the fixed part of the system. In this part there

is a hard core of the PowerPC 405 processor. The resources of the right column

were assigned for the reconfigurable part, that in this case correspond to the

dP co-processor. The available area for the reconfigurable part was 2,760 slices.

The dP co-processor for the 113-bit security fits well in this area but the one for

131-bit security did not. Then, the co-processor was synthesized using the area

optimization criteria. Results for each part of the system, fixed and reconfigurable

are shown in table 5.6.

The time to perform the scalar multiplication is given in table 5.7. The co-

processor uses the same clock frequency of the bus system, which is the same

104

5.7. COMPARISON WITH RELATED WORK

Table 5.6: Area results for the reconfigurable system.

Hw Resources
Reconfigurable part

Fixed Security level (bits)
part 113 131

Flip-Flops 942 1,966 2,233
LUTs 891 4,535 4,053
Slices 1027 2,748 2,336

Dual Port RAMs 216 0 0
Shift registers 64 0 0

RAMB16s 16 0 0
Gate count 1,079,972 44,411 43,751

Table 5.7: Time results for the reconfigurable dP co-processor.

Sec. level Cycles/dP Time (ms)

113 51,730 0.52 ms
131 68,887 0.69 ms
163 107,043 1.07 ms

that the microprocessor clock, 100 MHz. All results were validated by comparing

them against a software implementation that is a slight modification of the code

available in [78].

5.7 Comparison with related work

A reconfigurable system for providing interoperability of elliptic curve cryptog-

raphy had not been considered in the literature. So it is difficult to provide a

comparison against related work. However, the dP co-processor can be compared

because most of the related work is concerned with hardware implementations of

dP .

In order to provide a fair comparison, the results achieved in this work are

compared against the ones reported in the literature under the same conditions,

that is, against related works using binary fields, affine coordinates and the binary

method for the dP computation. The time and area results comparison against

these works is shown in table 5.8. The ECC co-processor was synthesized using

105

CHAPTER 5. RESULTS

the same FPGA used in related work for a fair comparison. Although other

parameterizable implementations reported in the literature have used different

arithmetic algorithms in order to achieve the dP operation faster, in this work

it was found that reduced area designs are desired due the problems experienced

when the reconfigurability of the co-processor was implemented. The proposed

co-processor uses less resources than Kerins et al., [19] and computes dP faster.

The co-processor discussed in this paper is also faster than Leong and Leung [41]

at the expense of higher area resources.

Table 5.8: Comparison results.

Ref. m Time (ms) Device FPGA Slices

[19]

151 5.1

XCV2000E 4048
176 6.9
191 8.2
239 12.8

[41]
113 3.7

XCV300-4
1290

155 6.8 1567
281 14.4 2622

[72] 179 2.47 XCV800 10,626
[39] 113 10.9 AT94K40 -
[17] 163 0.14 XCV2000E 19,000
[42] 160 3.81 XCV800 -
[79] 163 0.49 V2Pro 4,749
[22] 163 0.07 XCV2000E 5,008
[40] 191 0.05 VirtexE 3200 18, 314
[21] 113 0.27 XC2V6000 6,961

This work

113 0.84
XCV2000E

2449
131 1.25 2582
163 2.09 3324
113 1.05

XCV300-4
2515

131 1.58 2516
113 0.52

Virtex4
2405

131 0.69 2871
163 1.07 3528

Table 5.8 also shows the comparison results of the proposed dP co-processor

against other works that have used projective coordinates, like [39] (10.9 ms for

m = 113), [42] (3.8 ms for m = 160) or [72] (2.47 ms for m = 179). The

106

5.8. SUMMARY

use of projective coordinates supposes a better performance because inversions

are avoided in each point addition operation at the cost of more multiplications.

Other works using projective coordinates perform dP faster than the co-processor

presented in this article but they require higher area resources. For example, [79]

uses 4,749 slices from a Virtex2 Pro and performs the dP in the field GF (2163)

in 0.49 ms. In [17], the area required is 19,000 slices from a XCV2000E FPGA

while the dP operation in the field GF (2163) is computed in 0.14 ms. The area

used in [17] is six times bigger that the area used by the co-processor proposed in

this thesis, and the one used in [72] is three times bigger. In [21], the operation

dP is performed in a half of the time achieved in this work but the area required

is almost three times bigger.

The results of the co-processor discussed in this thesis are not only competitive

or better that the reported in the literature but also provide the capability of

adapting at run time the hardware to support the costly arithmetic in elliptic

curve cryptography.

5.8 Summary

This chapter presented and discussed the results of this research. These results

show that it is possible to have an interoperable elliptic curve cryptographic co-

processor that enables interoperability for the ECC cryptographic schemes using

different implementation parameters. Although other parameterizable implemen-

tations (non interoperable) reported in the literature have used different arith-

metic algorithms in order to achieve the dP operation faster, we found that re-

duced area designs are desired due the problems experienced when implemented

the reconfigurability of the co-processor. The area resources for our co-processor

and its performance are competitive among the reported works using the same

finite field, coordinates and the method for the dP computation. Comparison

results against those works were presented.

107

CHAPTER 5. RESULTS

108

Chapter 6

Conclusions and directions

This thesis presented the design and implementation of a reconfigurable system

for providing interoperability of elliptic curve cryptography. The proposed sys-

tem is well suited for IPSec or cryptographic schemes executed on the server side

where the agreement of the implementation parameters is at runtime. Dynamic

reconfiguration of the ECC co-processor allows to support different security levels

while retaining high performance. A new co-processor for ECC using affine repre-

sentation was designed and implemented in FPGA technology. This co-processor

is well performer as the ones using projective representation while the architecture

design is simpler and in a modular way, so the system can be updated with bet-

ter performer modules for finite field arithmetic, which still determine the whole

latency for the dP operation.

The unified formula for ECC point addition makes the elliptic curve point ad-

dition operations indistinguisible, which makes the dP hardware implementation

more resistant to side channel attacks.

This is the first reported partially reconfigurable solution that is well suited

to provide dynamic adaptation to different tuples T and hence to provide inter-

operability in elliptic curve cryptography. Further work would be done to have

extremely light-weight (low area) ECC in hardware. Low-power ECC is necessary

mainly if the co-processor is used in constrained devices.

6.1 Summary of contributions

The contributions of this work are:

109

CHAPTER 6. CONCLUSIONS AND DIRECTIONS

1. A reconfigurable hardware architecture for ECC that allows interoperability.

2. A reconfiguration strategy for interoperable ECC architectures.

3. An study of the best performer ECC arithmetic algorithms and implemen-

tation parameters. This study will allow to establish an area/performance

trade off in the architecture.

4. A new formulation for elliptic curve point addition using affine representa-

tion that increases the physical security of a hardware implementation of

dP using this new formulation.

The proposed architecture will operate in an environment where a secure com-

munication link is required. The entities involved in a communication will be

capable enough to authenticate each other and establishing the secure communi-

cation link (confidentiality and integrity) using the reconfigurable solution pro-

posed. Also, they will be able to manage different security levels depending on

the available computational resources.

6.2 Future work

Further work could be done considering more implementation issues for elliptic

curve cryptography. The ECC co-processor discussed in this thesis is for binary

field of the form GF(2m). Further work could consider the use of prime fields

GF(p) and unified hardware architectures for finite field arithmetic. That is,

to use a single arithmetic unit that perform arithmetic for both fields. This will

enable the use of more curves than only consider the ones for binary fields. Also, it

is interesting to explore the design of a hardware module for scalar multiplication

that consider not only polynomial but also normal basis. The squaring operation

is binary fields that use normal basis is a simple shift operation. Some area

reduction could be achieved and the design of the field multiplier and inverter

considering both kinds of basis could be explored.

By the side of the implementation, a softcore processor could be used instead

of a hardcore processor as it was done in this work for validation purposes. This

will allow to have an open design independent of a the technology.

110

Publications

The results derived from this research work were published and presented in dif-

ferent forums. The next are articles that reports the results of this dissertation.

1. M. Morales-Sandoval, C. Feregrino-Uribe, René Cumplido, and I. Algredo-

Badillo. An area/performance trade-off analysis of a GF(2m) multiplier

architecture for elliptic curve cryptography. In Computers and Electrical

Engineering, Elsevier, doi:10.1016/j.compeleceng.2008.05.008, 2008.

2. M. Morales-Sandoval, C. Feregrino-Uribe, R. Cumplido, and I. Algredo-

Badillo. A run time GF (2m) reconfigurable co-processor for elliptic curve

scalar multiplication. In 16th International Conference on Computing

(CIC07). IEEE Computer Society. 2007.

3. R. Duraisamy, Z. Salcic, M. Adriano Strangio, and M. Morales-Sandoval.

Supporting symmetric 128-bit aes in networked embedded systems: An ellip-

tic curve key establishment protocol-on-chip. EURASIP Journal on Embed-

ded Systems, 2007:Article ID 65751, 9 pages, 2007. doi:10.1155/2007/65751.

4. M. Morales-Sandoval and C. Feregrino-Uribe. GF (2m) arithmetic modules

for elliptic curve cryptography. In 3rd International Conference on ReCon-

Figurable Computing and FPGAs (ReConFig06)., pages 176–183. IEEE

Computer Society, September 2006.

5. R. Duraisamy, Z. Salcic, M. Morales-Sandoval, and C. Feregrino-Uribe. A

fast elliptic curve based key agreement protocol-on-chip (PoC) for securing

networked embedded systems. In 12th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA

2006), pages 154–161. IEEE Computer Society, August 2006.

111

CHAPTER 6. CONCLUSIONS AND DIRECTIONS

112

Appendix A

Guidelines for partial

reconfiguration of a GF (2m) ECC

co-processor

This appendix describes the steps to implement partial reconfiguration of an el-

liptic curve crypto-processor using the tools ISE, EDK and PlanAhead.

A.1 The base design

The design of the system that includes both the fix and reconfigurable modules

must be HDL-designed. The EDK tool allows to define this system using a wizard.

The system shown in figure 4.12 in section 4.6 was targeted to the prototyping

board ML403 [80] which includes a FPGA Virtex xc4vfx12-10ff668.

A guide to develop the base design using EDK is provided by Xilinx [81].

Throughout the EDK wizard, the base design is defined using the minimum com-

ponents. The size of the memory must be as big as the size of the code to be

executed by the microprocessor. Once all the components, sizes for memory and

applications have been selected, the HDL-design will be generated and the EDK

Platform Studio will launch.

The module corresponding to the reconfigurable one will be integrated later

using the EDK wizard for peripherals. This wizard asks for the peripheral name,

how it will be interconnected, what signals will be used as interface with the

local bus, etc. For our case, the OPB bus interconnected by the IPIF module

113

APPENDIX A. GUIDELINES FOR PARTIAL RECONFIGURATION
OF A GF (2M) ECC CO-PROCESSOR

was selected. The communication of our module with the local microprocessor is

by registers mapped to memory. For detailed steps to use the EDK wizard for

peripherals the reader can refer to [81].

To add the reconfigurable module to the design, use the view System Assembly

and the tab IP Catalog from the window Project Information Area of the

EDK Platform Studio. Expand the option Project Repository to locate the

peripheral to be added to the base system. Drag and drop the peripheral to the

view System Assembly. The added peripheral must be connected to the local bus,

in this case, to the OPB bus. Finally, the peripheral clock signal is connected by

connecting the signal OPB CLK with the signal sys clk s. Then, a logical address

for the new peripheral must be generated.

An application program is generated by default to test the peripheral. This

application writes and reads to and from the registers mapped to memory to

interact with the peripheral. To add these files and test the new added peripheral

do the following:

1. Select the tap Applications from the window Project Information Area

and expand the option Sources.

2. Remove all .c files and add the ones from the directory

\edk design\drivers\peripheral name v1 00 a\src

Then the application is built and the bitstream to configurate the FPGA is

generated.

Before downloading the bitstream to the FPGA and to see the application

running on the microprocesor, open a windows terminal with the following con-

figuration: 9600 bps, 8 bits for data, no bits for parity and one bit for stop. The

application IMPACT can be used to download the bitstream.

A.2 Modifying the base design

To have our peripheral interacting with the local microprocessor, the file user logic.vhd

in the directory \edk design\pcores\periferico name\hdl\vhdl is modified.

This file defines the peripheral connected to the IPIF module that is the one

that communicates the peripheral with the bus of the microprocessor.

114

A.3. DIFFERENT VERSIONS OF THE PERIPHERAL: PARTIAL
RECONFIGURATION

The original user logic.vhd file reads data coming from the microprocessor

and writes the same data back to the microprocessor. This file can be modified to

create an instance of the reconfigurable module and use the input/output registers

as input and output signals for this instance. So, by writing or reading values from

the registers we interact with the reconfigurable module.

We have to add all the associated vhdl files of the reconfigurable module to be

considered in the synthesis process. We do this by including the full path to the

vhdl files at the end of the .pao file located in the directory

\edk design\pcores\periferic name v1 00 a\data
The software application is modified to write and read to and from the registers

that are now used as interface signals for our reconfigurable module. The new

bitstream is updated and downloaded to the FPGA to have our peripheral module

working.

A.3 Different versions of the peripheral: partial

reconfiguration

A partially reconfigurable system can be designed if the user peripheral is going to

have different versions of implementation but keeps the same interface. To gener-

ate a partially reconfigurable system it is recommended to have a well structured

directory tree to process all the related files to the design. This is because the

synthesis process and the generation of the configuration files will be performed

manually (using batch files). The recommended directories are:

• Reconfig Design: This is the project directory.

• Base: It will contain all the files associated to the fixed part of the system.

• BITS: It will contain the full and partial configuration bitstreams.

• Data: It will contain the constraint files and the busmacro files.

• Files base: It will contain all the .ngc files and the file system.bmm lo-

cated in the directory \edk desig\implementation. The file .ngc for the

reconfigurable module will not be considered.

• Final: In this directory the .bit file will be merge together the .elf file.

115

APPENDIX A. GUIDELINES FOR PARTIAL RECONFIGURATION
OF A GF (2M) ECC CO-PROCESSOR

• Merges Modules: It will contain the static and partial bitstreams.

• Merges full: In this directory will be merged the static and partial bit-

streams.

• PlanAhead: In this directory will be created the PlanAhead project to gen-

erate the constraint file for the design.

• PRM: It will contain the .ngc files for each one of the versions of the recon-

figurable module.

• Top: It contains the system.ngc that is the synthesized system that includes

the fixed, reconfigurable module and busmacros.

A.4 .ngc files generation

The original system.vhd file that defines the complete system including the fixed

part, the reconfigurable part and the busmacros is modified to include the follow-

ing:

1. A new source for the clock signal. To do this, the instruction dcm clk s

<= sys clk pin; in the file system.vhd should be commented. dcm clk s

is the global clock signal for DCM module that produces the clock signal

sys clk s. This last signal is the clock signal for all modules in the base

design. The clock signal for DCM must now pass throw a buffer.

i bu f g 0 : IBUFG

port map (

I => s y s c l k p i n ,

O => dcm clk s

) ;

Then, the global clock signal sys clk s is taken from one of the outputs of

the DCM module (dcm out clk) and passed throw a buffer.

bu f g c l k : BUFG

port map (

116

A.4. .NGC FILES GENERATION

I => dcm out clk ,

O => s y s c l k s

) ;

2. The bus macros are instantiated and added to the original system.vhd

file. All the necessary signals for interconnection must be declared and

instantiated.

3. The system.vhd file with all the changes is synthesized to generate the

system.ngc file. The synthesis process is performed out of the EDK environ-

ment. To do this, create a .bat file in the directory \edk design\synthesis
with the command:

>xst -ifn system xst scr

The resulting .ngc file must be placed in the directory \regonfig design\top.

4. Now, the constraint file is generated. This is done using the PlanAhead tool

to define the area in the FPGA for the fixed and reconfigurable parts. The

buffers and busmacros must be specified to assign them specific locations

in the FPGA. Input files to the PlanAhead tool are the .ngc file generated

previously and the .ucf file generated by EDK and located in the directory

\edk design\data.
After verifying that the placement of the components in the design is cor-

rect, all the design is exported to the directory PlanAhead\export di-

rectory. The new generated system.ucf file is copied to the directory

\reconfig desig\data.
The file system.bmm and all the .ngc are copied from the directory

\edk design\implementation to the

\reconfig design\files base directory.

The .nmc busmacro files are also copied to the directory \reconfig design\data.

5. All the versions for the reconfigurable module are generated. Batch files can

be used to do this task.

6. Finally, the design flow for partial reconfiguration is performed. The batch

files that implement this design flow are listed next:

Command line instructions to generate the top design.

117

APPENDIX A. GUIDELINES FOR PARTIAL RECONFIGURATION
OF A GF (2M) ECC CO-PROCESSOR

@echo Cleaning f i l e s . .

de l /q Top\ I n i t i a l \∗

@rem I n i t i a l

@echo Step 1 − Build top l e v e l context

cd Top\ I n i t i a l

copy . . \ system . ngc

copy . . \ . . \ Data\ system . uc f

copy . . \ . . \ Data \∗ .nmc

REM Trans late the top l e v e l des ign

ngdbui ld −p xc4vfx12−10 f f 6 6 8 −modular i n i t i a l system . ngc

pause

Command line instructions to implement the fixed part of the design.

de l /q base \∗
de l /q Merges\∗
pause

@rem Build the s t a t i c modules

@echo Step 2 − Build the s t a t i c modules

cd Base

copy . . \ f i l e s b a s e \∗ . ngc

copy . . \ Data\ s y s t em fu l l . uc f system . uc f

copy . . \ Data \∗ .nmc

copy . . \ f i l e s b a s e \ system .bmm

copy . . \ f i l e s b a s e \ system .bmm . . \ Merges

ngdbui ld −p xc4vfx12−10 f f 6 6 8 −bm system .bmm −modular

i n i t i a l . . \Top\ I n i t i a l \ system . ngo

map −t iming system . ngd

par −w system . ncd system base routed . ncd

Now, each version of the reconfigurable module is generated.

118

A.4. .NGC FILES GENERATION

@rem Build p a r t i a l modules

@echo Step 3 − Build the p a r t i a l modules

de l /q PRM\PRM 113\∗
de l /q PRM\PRM 131\∗
de l /q PRM\PRM 163\∗
pause

cd PRM\PRM 113

copy . . \ . . \ Synt PRM\PRM 113\ ec c co r e 0 wrappe r . ngc

copy . . \ . . \ Data\ system . uc f system . uc f

copy . . \ . . \ Data \∗ .nmc

copy . . \ . . \ Base\ s t a t i c . used a r c s . exc lude

ngdbui ld −p xc4vfx12−10 f f 6 6 8 −modular module −a c t i v e

e c c co r e 0 wrappe r . . \ . . \ Top\ I n i t i a l \ system . ngo

map system . ngd

par −w system . ncd system routed . ncd

cd . . \ . .

cd PRM\PRM 131

copy . . \ . . \ Synt PRM\PRM 131\ ec c co r e 0 wrappe r . ngc

copy . . \ . . \ Data\ system . uc f system . uc f

copy . . \ . . \ Data \∗ .nmc

copy . . \ . . \ Base\ s t a t i c . used a r c s . exc lude

ngdbui ld −p xc4vfx12−10 f f 6 6 8 −modular module −a c t i v e

e c c co r e 0 wrappe r . . \ . . \ Top\ I n i t i a l \ system . ngo

map system . ngd

par −w system . ncd system routed . ncd

cd . . \ . .

Now, the bitstreams of the fixed and reconfigurable parts are generated.

@rem Assemble f u l l des ign

@echo Step 4 − Merge and generate b i t s t r eams

de l /q Bi t s \∗ . b i t

de l /q Bi t s \∗ .bmm

de l /q Merges Modules \∗

119

APPENDIX A. GUIDELINES FOR PARTIAL RECONFIGURATION
OF A GF (2M) ECC CO-PROCESSOR

pause

cd Merges Modules

copy . . \ f i l e s b a s e \ system .bmm

copy . . \ Base\ sys tem base routed . ncd s t a t i c . ncd

copy . . \PRM\PRM 113\ system routed . ncd SEC 113 . ncd

copy . . \PRM\PRM 131\ system routed . ncd SEC 131 . ncd

pause

PR ver i fydes ign . bat s t a t i c . ncd SEC 113 . ncd SEC 131 . ncd

The fixed and reconfigurable parts are merged to generate a single configu-

ration file.

de l /q Merges Ful l \∗

cd Merges Ful l

copy . . \ f i l e s b a s e \ system .bmm

copy . . \ Base\ sys tem base routed . ncd s t a t i c . ncd

copy . . \PRM\PRM 113\ system routed . ncd SEC 113 . ncd

copy . . \PRM\PRM 131\ system routed . ncd SEC 131 . ncd

pause

PR assemble s t a t i c . ncd SEC 113 . ncd

@Los a r ch ivo s b i t generados se copian a l a carpeta \
r e c o n f i g d e s i g n \ b i t s .

cd Merges Modules

copy SEC 113 part ia l . b i t . . \ Bit s

copy SEC 131 part ia l . b i t . . \ Bit s

copy PRtmpdir\ SEC 113 fu l l . b i t . . \ Bit s

copy PRtmpdir\ SEC 131 fu l l . b i t . . \ Bit s

copy PRtmpdir\ s t a t i c . b i t . . \ Bit s

copy system bd .bmm . . \ Bit s

cd . .

cd Merges\ Modules

copy s t a t i c \ f u l l . b i t . . \ Bit s

120

A.4. .NGC FILES GENERATION

The .elf executable C program from the EDK design is added to the full

bitstream using the bitgen program. The following command line instruc-

tions are executed.

cd Fina l

REM de l /q Fina l /∗
REM copy . e l f and .mhs and todo e l d i r e c t o r i o pcores

copy . . / Bi t s / system bd .bmm

copy . . / Bi t s / s t a t i c f u l l . b i t

pause

b i t i n i t system .mhs −bm system bd .bmm −bt s t a t i c f u l l . b i t −
o download . b i t −pe ppc405 0 executab l e . e l f

pause

The result is the download.bit file that is downloaded to the FPGA as

the initial configuration file. After, the Partial reconfiguration version of

IMPACT is used to download the partial bitstreams.

121

APPENDIX A. GUIDELINES FOR PARTIAL RECONFIGURATION
OF A GF (2M) ECC CO-PROCESSOR

122

Appendix B

GF(2m) ECC co-processor test

vectors

This appendix presents the test vectors used to verify the correct operation of the

arithmetic units and the ECC co-processor developed in this thesis. These test

vectors were generated from a software application that is a slight modification

of the code available in [78]. The elliptic curve domain parameters over GF(2m)

are specified by the tuple T = (m, f(x), a, b, G, n, h). m is the order of the finite

field and determines the security level. f(x) generates the finite field GF(2m) and

a and b defines the elliptic curve E : y2 +xy = x3 +ax2 + b over GF(2m). G is the

generator of E and n and h are the order of G and the co-factor of E respectively.

Details of these parameters were presented in section 2.2.3.

B.1 Test vectors for finite field arithmetic

GF(2163) multiplication and division

A: 6 3f497f91 531bca6e 2f2f677b 4c3a11d2 2c3b0a08

B: 5 284f6600 ca2b553 67eb4631 75184da9 f2bed412

A/B: 2 00bdc727 d7b7a196 88bf3fe 9177fdbe 4f500c2c

A ∗B: 6 a6532ac9 e16d6657 a3aaa7b5 a6287ba2 6a11a2f4

123

APPENDIX B. GF(2M) ECC CO-PROCESSOR TEST VECTORS

B.2 Test vectors for scalar multiplication dP

B.2.1 Test vectors for m = 113

Tuple T SEC113r1 recommended by [2] and [9].

f(x) = x113 + x9 + 1

a = 003088 250CA6E7 C7FE649C E85820F7

b = 00E8BE E4D3E226 0744188B E0E9C723

G = (x, y)

x = 009D73 616F35F4 AB1407D7 3562C10F

y = 00A528 30277958 EE84D131 5ED31886

n = 010000 00000000 00D9CCEC 8A39E56F

h = 2

The scalar multiplication (u, v) = dG is

d = 17876 FC01A2EA 920FF4E4 789CF04B

u = 03650 2761D847 1F2FDE59 3713DFEF

v = 1ECB1 4E64590E 95EB1424 6703532F

B.2.2 Test vectors for m = 131

Tuple T SEC131r1 recommended by [2] and [9].

f(x) = x131 + x8 + x3 + x2 + 1

a = 07 A11B09A7 6B562144 418FF3FF 8C2570B8

b = 02 17C05610 884B63B9 C6C72916 78F9D341

G = (x, y)

x = 00 81BAF91F DF9833C4 0F9C1813 43638399

y = 07 8C6E7EA3 8C001F73 C8134B1B 4EF9E150

n = 04 00000000 00000002 3123953A 9464B54D

h = 2

The scalar multiplication (u, v) = dG is

d = 6 FC01A2EA 920FF4E4 789CF04B E39E9302

u = 7 E1FC59FF 9584DC1A 821CD518 3AFD0CC4

v = 5 75F2BC49 31BBE7CC 433E7037 0A9FBDD9

B.2.3 Test vectors for m = 163

Tuple T SEC163r1 recommended by [2], [9] and [8].

124

B.2. TEST VECTORS FOR SCALAR MULTIPLICATION DP

f(x) = x163 + x8 + x7 + x3 + 1

a = 7 B6882CAA EFA84F95 54FF8428 BD88E246

D2782AE2

b = 7 13612DCD DCB40AAB 946BDA29 CA91F73A

F958AFD9

G = (x, y)

x = 3 69979697 AB438977 89566789 567F787A

7876A654

y = 4 035EDB42 EFAFB298 9D51FEFC E3C80988

F41FF883

n = 3 FFFFFFFF FFFFFFFF FFFF48AA B689C29C

A710279B

h = 2

The scalar multiplication (u, v) = dG is

d = 1 33E3CAE7 2CD0F448 B2954810 FB75B5E3 D8F43D07

u = 0 70326580 B9D897AB 325BCD03 289C8E4F 99BF0598

v = 1 7F250719 80A6052C 67E2EBAA 62606AB1 DFB3312E

B.2.4 Test vectors for m = 233

Tuple T SEC233r1 recommended by [2], [9] and [8].

f(x) = x233 + x74 + 1

a = 01

b = 066 647EDE6C 332C7F8C 0923BB58

213B333B 20E9CE42 81FE115F 7D8F90AD

G = (x, y)

x = 0FA C9DFCBAC 8313BB21 39F1BB75

5FEF65BC 391F8B36 F8F8EB73 71FD558B

y = 100 6A08A419 03350678 E58528BE

BF8A0BEF F867A7CA 36716F7E 01F81052

n = 080 00000000 00000000 00000000

00069D5B B915BCD4 6EFB1AD5 F173ABDF

h = 4

The scalar multiplication (u, v) = dG is

125

APPENDIX B. GF(2M) ECC CO-PROCESSOR TEST VECTORS

d = 76 FC01A2EA 920FF4E4 789CF04B

E39E9302 1D486C8 CF0EC27F AB882021

u = F3 EE481F9D E6668307 8925D697

8AAE5768 636A6B7E 1FB4163D 219ADA5A

v = 59 90AE743E 91F662F3 BB1D28E1

8A47720D EE01810B 4F10A05F B5CBCE7B

B.2.5 Test vectors for m = 277

Tuple T 277-bit recommended by [82].

f(x) = x277 + x12 + x6 + x3 + 1

a = 185304 4e52ac19 59e666eb 97684079 46267563

89C3084E 1C0E8EE5 8B5ADE55 B0E94F06

b = 12709B 9501DBD0 C98DC5E7 E17AF396 B445303D

FDBDEA0A AE05840A 8204625E 0B9157B9

G = (x, y)

x = 18094 9B3BBF7F 5168DA76 47F9BBAE 716F02F6

174EC79D EA5AC9AE C5FF48E4 D696323B

y = 1CB7 297D4520 04A0F2C3 4F33E5A6 90122103

B5F78BE5 B838AA97 848CCFED D1F60618

n = 0FFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFB82 4C3073AC E595EDF7 ACEEC635 A1F5740B

h = 2

The scalar multiplication (u, v) = dG is

d = 1B7876 FC01A2EA 920FF4E4 789CF04B E39E9302

1D486C8 CF0EC27F AB882021 AF8E5BEA

u = 38425 E18D964F 953C9404 7D3C4052 35C1BC6D

B0A516D3 EEF6409A 6C784F81 8F4ACCD8

v = 8866 7913681D 12EF75FE 892CE074 FC5F4166

96703641 B59B00D3 704679AC 77A5C414

B.2.6 Test vectors for m = 283

Tuple T SEC283r1 recommended by [2], [9], [8] and [7].

126

B.2. TEST VECTORS FOR SCALAR MULTIPLICATION DP

f(x) = x283 + x12 + x7 + x5 + 1

a = 01

b = 27B680A C8B8596D A5A4AF8A 19A0303F CA97FD76

45309FA2 A581485A F6263E31 3B79A2F5

G = (x, y)

x = 5F93925 8DB7DD90 E1934F8C 70B0DFEC 2EED25B8

557EAC9C 80E2E198 F8CDBECD 86B12053

y = 03676854 FE24141C B98FE6D4 B20D02B4 516FF702

350EDDB0 826779C8 13F0DF45 BE8112F4

n = 3FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFEF90 399660FC 938A9016 5B042A7C EFADB307

h = 02

The scalar multiplication (u, v) = dG is

d = 45B7876 FC01A2EA 920FF4E4 789CF04B E39E9302

1D486C8 CF0EC27F AB882021 AF8E5BEA

u = 0038294 A063535C 2CC0758B 111D0026 F67A5918

2E71FF1C A2675EDC C4DA7538 708B55A2

v = 140389B F2FFBE5C DB3B84A 9BE08A3E 6933A6CA

64CC084B 1E8A54D8 DCF09C9B 8E87D8BE

127

APPENDIX B. GF(2M) ECC CO-PROCESSOR TEST VECTORS

128

Bibliography

[1] B. Kaliski, TWIRL and RSA Key Size, RSA Laboratories Techni-

cal Note, May, 2003, http://www.rsasecurity.com/rsalabs/technotes/

twirl.html.

[2] SEC 1, Elliptic Curve Cryptography: Standards for Efficient Cryptography

Group, 2000, http://www.secg.org.

[3] W. Stallings, Cryptography and Network Security, Prentice Hall, NJ,

2003.

[4] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic

Curve Cryptography, Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2003.

[5] B. Schneier, Applied Cryptography, John Wiley & Sons, NY, 1996.

[6] N. Ferguson and B. Schneier, Practical Cryptography, Wiley, Indianapo-

lis, Indiana, 2003.

[7] NIST, Recommended Elliptic Curves for Federal Government Use, 1999,

http://csrc.nist.gov/csrc/fedstandards.html.

[8] American Bankers Association, ANSI X9.62-1998: Public Key Cryp-

tography for the Financial Services Industry: The Elliptic Curve Digital Sig-

nature Algorithm (ECDSA), 1998.

[9] IEEE P1363 Committee, Standards Specification for Public Key Cryp-

tography, 1998, http://grouper.ieee.org/groups/1363/.

129

http://www.rsasecurity.com/rsalabs/technotes/twirl.html
http://www.rsasecurity.com/rsalabs/technotes/twirl.html
http://www.secg.org
http://csrc.nist.gov/csrc/fedstandards.html
http://grouper.ieee.org/groups/1363/

BIBLIOGRAPHY

[10] S. Schwiderski-Grosche et al., Security Challenges in the Personal Dis-

tributed Environment, in 60th Vehicular Technology Conference, VTC Fall

’04, volume 5, pp. 3267–3270, IEEE, 2004.

[11] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and

P. Cheung, Reconfigurable computing: architectures and design methods,

IEE Proceedings Computers and Digital Techniques 152, 193 (2005).

[12] T. Wollinger and C. Paar, How Secure are FPGAs in Cryptographic

Applications?, Cryptology ePrint Archive, Report 2003/119, 2003, http:

//eprint.iacr.org/.

[13] B. Kasim and L. Ertaul, GSM Security., in ICWN’05: International

Conference on Wireless Networks, pp. 555–561, CSREA Press, 2005.

[14] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar, State of the Art in

Ultra-Low Power Public Key Cryptography for Wireless Sensor Networks, in

PERCOMW ’05: Proceedings of the Third IEEE International Conference on

Pervasive Computing and Communications Workshops, pp. 146–150, Wash-

ington, DC, USA, 2005, IEEE Computer Society.

[15] K. Lauter, The advantages of Elliptic Curve Cryptography for Wireless

Security, IEEE Wireless Communications , 62 (2004).

[16] R. Zuccherato, Using a PKI based upon Elliptic Curve Cryptography,

Entrust white paper, 2003, http://www.entrust.com/resources.

[17] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, and V. Gupta, An End

to End Systems Approach to Elliptic Curve Cryptography, in Proc. of CHES

2002, volume 2523, pp. 349–365, Springer, 2002.

[18] G. Orlando and C. Paar, A High-Performance Reconfigurable Elliptic

Curve Processor for GF(2m), in Proc. of the Second International Work-

shop on Cryptographic Hardware and Embedded Systems, CHES’2000, vol-

ume 1965 of Lecture Notes in Computer Science, pp. 41–56, Worcester, MA,

2000, Springer.

[19] T. Kerins, E. Popovici, W. Marnane, and P. Fitzpatrick, Fully

Parameterizable Elliptic Curve Cryptography Processor over GF(2m), in

130

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.entrust.com/resources

BIBLIOGRAPHY

Proc. of 12th International Conference on Field Programmable Logic and

Application, FPL’2002, volume 2438 of Lecture Notes in Computer Science,

pp. 750–759, Montpellier, France, 2002, Springer.

[20] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi,

and J. Teich, Reconfigurable Implementation of Elliptic Curve Crypto

Algorithms, in IPDPS ’02: Proceedings of the 16th International Parallel

and Distributed Processing Symposium, pp. 284–291, Washington, DC, USA,

2002, IEEE Computer Society.

[21] R. Cheung, N. Telle, W. Luk, and P. Cheung, Customizable Elliptic

Curve Cryptosystems, IEEE Trans. on VLSI Systems 13, 1048 (2005).

[22] J. Lutz and A. Hasan, High Performance FPGA based Elliptic Curve

Cryptographic Co-Processor, in ITCC’04: International Conference on In-

formation Technology: Coding and Computing, volume 2, pp. 486–492, IEEE

Society Press, 2004.

[23] A. Satoh and K. Takano, A Scalable Dual-Field Elliptic Curve Crypto-

graphic Processor, Transactions on Computers 52, 449 (2003).

[24] H. Eberle et al., A Public-Key Cryptographic Processor for RSA and ECC,

in ASAP’04: 15th IEEE International Conference on Application-Specific

Systems, Architectures and Processors, pp. 98–110, 2004.

[25] R. Dahab and J. López, An Overview of Elliptic Curve Cryptography,

Technical Report IC-00-10, State University of Campinas, Brazil, 2000.

[26] S. T. J. Fenn, M. Benaissa, and D. Taylor, GF(2m) Multiplication

and Division Over the Dual Basis, IEEE Trans. Comput. 45, 319 (1996).

[27] N. Koblitz, Elliptic Curve Cryptosystems, Mathematics of Computation

48, 203 (1987).

[28] V. Miller, Use of Elliptic Curves in Cryptography, in Proc. of Advances

in Cryptology, CRYPTO’85, pp. 417–426, Santa Barbara, CA, 1985.

[29] J. Pollar, Monte Carlo Methods for Index Computation mod p, Mathe-

matics of Computation 32, 918 (1978).

131

BIBLIOGRAPHY

[30] NIST, FIPS 180-2: Secure Hash Standard (SHS), 2002, http://csrc.

nist.gov/publications/fips/.

[31] D. Hankerson, L. López, and A. Menezes, Software Implementation

of Elliptic Curve Cryptography Over Binary Fields, in Proc. of the Second

International Workshop on Cryptographic Hardware and Embedded Systems,

CHES’2000, volume 1965 of Lecture Notes in Computer Science, pp. 1–24,

Worcester, MA, August 2000, Springer.

[32] J. López and R. Dahab, Improved Algorithms for Elliptic Curve Arith-

metic in GF(2n, in Proc. of Selected Areas in Cryptography, volume 1556 of

Lecture Notes in Computer Science, pp. 201–212, Springer, 1998.

[33] J. López and R. Dahab, Fast Multiplication on Elliptic Curves over

GF(2m) without Precomputation, in Proc. of the First International Work-

shop on Cryptographic Hardware and Embedded Systems, CHES’99, vol-

ume 1717 of Lecture Notes in Computer Science, pp. 316–327, Berlin, 1999,

Springer.

[34] M. Aydos, T. Yantk, and C. Koc, A high-speed ECC-based wireless au-

thentication on an ARM microprocessor, in 16th Annual Computer Security

Applications Conference (ACSAC’00), pp. 401–410, Los Alamitos, CA, USA,

2000, IEEE Computer Society.

[35] J. Grobschadl and G.-A. Kamendje, Instruction Set Extension for Fast

Elliptic Curve Cryptography over Binary Finite Fields GF(2m), in Proceed-

ings of the 14th IEEE International Conference on Application-specific Sys-

tems, Architectures and Processors (ASAP 2003), pp. 455–468, IEEE Com-

puter Society Press, 2003.

[36] J. Krasner, Using Elliptic Curve Cryptography (ECC) for Enhanced Em-

bedded Security, Certicom white paper, 2004, http:///www.techonline.

com/community/ed resource/tech paper/37933.

[37] A. Weimerskirch, D. Stebila, and S. C. Shantz, Generic GF(2m)

Arithmetic in Software and its Application to ECC, in Proc. of 8th Aus-

tralasian Conference on Information Security and Privacy (ACISP 2003),

132

http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/publications/fips/
http:///www.techonline.com/community/ed_resource/tech_paper/37933
http:///www.techonline.com/community/ed_resource/tech_paper/37933

BIBLIOGRAPHY

volume 2727 of Lecture Notes in Computer Science, pp. 79–92, Wollongong,

Australia, July 2003, Springer.

[38] M. Ernest, S. Klupsch, O. Hauck, and S. Huss, Rapid Prototyping for

Hardware Accelerated Elliptic Curve Public Key Cryptosystems, in Proc. of

12th IEEE Workshop on Rapid System Prototyping, RSP’2001, pp. 24–31,

Monterey, CA, 2001.

[39] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, A Recon-

figurable System on Chip Implementation for Elliptic Curve Cryptography

over GF(2n), in Proc. of the 4th International Workshop on Cryptographic

Hardware and Embedded Systems - CHES’2002, volume 2523 of Lecture Notes

in Computer Science, pp. 381–399, Redwood Shores, CA, 2002, Springer.

[40] N. Saquib, F. Rodriguez, and A. Diaz, A Parallel Architecture for Fast

Computation of Elliptic Curve Scalar Multiplication over GF(2n), in Proc.

of 11th Reconfigurable Architectures Workshop, RAW’04, pp. 26–27, Sta. Fe,

USA, 2004.

[41] P. Leong and K. Leung, A Microcoded Elliptic Curve Processor Using

FPGA Technology, IEEE Trans. on VLSI Systems 10, 550 (2002).

[42] N. Mentens, S. Berna, and B. Preneel, An FPGA Implementation of

an Elliptic Curve Processor GF(2m), in Proceedings of the 14th ACM Great

Lakes symposium on VLSI, pp. 454–457, Boston, MA, 2004.

[43] P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems, Lecture Notes in Computer Science 1109, 104

(1996).

[44] Wikipedia, Side channel attack — Wikipedia, The Free Encyclopedia, 2007,

[Online; accessed 27-December-2007].

[45] B. Chevallier-Mames, M. Ciet, and M. Joye, Low-Cost Solutions for

Preventing Simple Side-Channel Analysis: Side-Channel Atomicity, IEEE

Transactions on Computers 53, 760 (2004).

[46] J.-S. Coron, Resistance against Differential Power Analysis for Elliptic

Curve Cryptosystems, in Cryptographic Hardware and Embedded Systems,

number Generators, pp. 292–302, 1999.

133

BIBLIOGRAPHY

[47] K. Compton, Reconfigurable Computing: A Survey of Systems and Soft-

ware, ACM Computing Surveys 34, 171 (2002).

[48] F. Barat and R. Lauwereins, Reconfigurable Instruction Set Processors:

A Survey, in Proc. of the 11th International Workshop on Rapid System

Prototyping (RSP’00), pp. 168–173, 2000.

[49] D. A. Buel, J. Arnold, and W. Kleinfelder, Splash 2: FPGAs in a

Custom Computing Machine, Wiley-IEEE Computer Society Press, 1996.

[50] R. A. Keaney, C. H. Lee, D. J. Skellern, J. Vuillemin, and

M. Shand, Implementation of Long Constraint Length Viterbi Decoders

using Programmable Active Memories, in 11th Australian Microelectronics

Conference, pp. 52–57, 1993.

[51] P. M. Athanas and H. F. Silverman, Processor reconfiguration through

instruction-set metamorphosis, Computer 26, 11 (1993).

[52] A. Lawrence, A. Kay, W. Luk, T. Nomura, and I. Page, Using Recon-

figurable Hardware to Speed up Product Development and Performance, in

Proceedings of the 5th International Workshop on Field-Programmable Logic

and Applications, pp. 111–118, London, UK, 1995, Springer-Verlag.

[53] J. R. Hauser and J. Wawrzynek, Garp: a MIPS processor with a recon-

figurable coprocessor, in FCCM ’97: Proceedings of the 5th IEEE Symposium

on FPGA-Based Custom Computing Machines, p. 12, Washington, DC, USA,

1997, IEEE Computer Society.

[54] E. Sanchez, J.-O. Haenni, J.-L. Beuchat, A. Stauffer, A. Perez-

Uribe, and M. Sipper, Static and Dynamic Configurable Systems, IEEE

Trans. Comput. 48, 556 (1999).

[55] M. Wirthlin, B. Hutchings, and K. Gilson, The Nano Processor: a

low resource reconfigurable processor, in Proceedings of the IEEE Workshop

on FPGAs for Custom Computing Machines, pp. 23–30, 1994.

[56] M. J. Wirthlin and B. L. Hutchings, DISC: the dynamic instruc-

tion set computer, in Field Programmable Gate Arrays (FPGAs) for Fast

Board Development and Reconfigurable Computing, Proc. SPIE 2607, edited

134

BIBLIOGRAPHY

by J. Schewel, pp. 92–103, Bellingham, WA, 1995, SPIE – The Interna-

tional Society for Optical Engineering.

[57] M.-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi,

E. M. C. Filho, and V. C. Alves, Design and Implementation of the

MorphoSys Reconfigurable ComputingProcessor, J. VLSI Signal Process.

Syst. 24, 147 (2000).

[58] R. Wittig and P. Chow, OneChip: An FPGA Processor with Reconfig-

urable Logic, in IEEE Symposium on FPGAs for Custom Computing Ma-

chines, edited by K. L. Pocek and J. Arnold, pp. 126–135, Los Alamitos,

CA, 1996, IEEE Computer Society Press.

[59] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, The chimaera

reconfigurable functional unit, IEEE Trans. Very Large Scale Integr. Syst.

12, 206 (2004).

[60] M. Dales, Initial Analysis of the Proteus Architecture, in FPL ’01: Pro-

ceedings of the 11th International Conference on Field-Programmable Logic

and Applications, pp. 623–627, London, UK, 2001, Springer-Verlag.

[61] B. Zeidman, Designing with FPGAs and CPLDs, CMP Books, 2002.

[62] W. Wolf, FPGA-Based System Design, Prentice Hall, 2002.

[63] N. H. E.Weste and K. Eshraghian, Principles of CMOS VLSI Design -

A Systems Perspective, Addison-Wesley, 1993.

[64] J. Wolkerstorfer, Hardware Aspects of Elliptic Curve Cryptography,

PhD thesis, Graz University of Technology, 2004.

[65] IEEE 1076-2002, IEEE Standard VHDL Language Reference Manual,

2002.

[66] Xilinx Inc., Two Flows for Partial Reconfiguration: Module Based or

Difference Based, Application Note 290, XAPP290., 2004, www.xilinx.com.

[67] Wikipedia, Formal verification — Wikipedia, The Free Encyclopedia, 2008,

[Online; accessed 28-July-2008].

135

www.xilinx.com

BIBLIOGRAPHY

[68] J. López and R. Dahab, Fast Multiplication on Elliptic Curves over

GF (2m) without Precomputation, in Proc. of the First International Work-

shop on Cryptographic Hardware and Embedded Systems, Lecture Notes in

Computer Science, pp. 316–327, Springer, 1999.

[69] S. Kumar and C. Paar, Low-Cost Elliptic Curve Digital Signature Copro-

cessor for Smart Cards, in Workshop on RFID Security 2006, Graz, Austria,

2006.

[70] S. C. Shantz, From Euclid’s GCD to Montgomery Multiplication to the

Great Divide, Technical Report TR-2001-95, Sun Microsystems Laboratories,

2001.

[71] G. M. de Dormale and J.-J. Quisquater, Iterative Modular Division

over GF (2m): Novel Algorithm and Implementations on FPGA, in Inter-

national Workshop on Applied Reconfigurable Computing (ARC2006), edited

by K. Bertels, J. Cardoso, and S. Vassiliadis, pp. 370–382, Springer,

2006.

[72] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, Balanced

point operations for side-channel protection of elliptic curve cryptography, in

IEE Proceedings of Information Security, volume 152, pp. 57–65, 2005.

[73] T. Izu and T. Takagi, A Fast Parallel Elliptic Curve Multiplication Re-

sistant against Side Channel Attacks, in PKC ’02: Proceedings of the 5th

International Workshop on Practice and Theory in Public Key Cryptosys-

tems, pp. 280–296, London, UK, 2002, Springer-Verlag.

[74] Xilinx Inc., OPB IPIF (v3.01a), Data Sheet, ds414., 2004, www.xilinx.

com.

[75] Xilinx Inc., Virtex4 Family Overview, Data Sheet, DS112 (v2.0)., 2007,

www.xilinx.com.

[76] N. A. Saqib, Efficient Implementation of Cryptographic Algorithms on Re-

configurable Hardware Devices, PhD thesis, Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional, 2004.

136

www.xilinx.com
www.xilinx.com
www.xilinx.com

BIBLIOGRAPHY

[77] Xilinx Inc., Early Access Partial Reconfiguration., User Guide, UG208.,

2006, www.xilinx.com.

[78] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publica-

tions, Greenwich, CT, USA, 1999.

[79] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, Super-

scalar Coprocessor for High-speed Curve-based Cryptography, in Crypto-

graphic Hardware and Embedded Systems - CHES 2006, volume 4249, pp.

415–429, Springer-Verlag, 2006.

[80] Xilinx Inc., ML401/ML402/ML403 Evaluation Platform, User Guide,

UG080., 2006, www.xilinx.com.

[81] Xilinx Inc., EDK 8.2 PowerPC Tutorial in Virtex-4, , WT001 (v4.0)., 2006,

www.xilinx.com.

[82] P. Panjwani and Y. Poeluev, Additional ECC Groups For IKE, 1999,

IPSecWorking Group, INTERNET-DRAFT.

137

www.xilinx.com
www.xilinx.com
www.xilinx.com

	List of figures
	List of tables
	Introduction
	Information security and cryptography
	Motivation
	Research question
	Thesis objectives
	General objective
	Specific objectives

	Thesis outline

	Elliptic Curve Cryptography
	Groups and Finite Fields
	Modular arithmetic
	Prime and binary finite field

	Elliptic Curve Cryptography (ECC)
	The elliptic curve group
	The discrete logarithm problem
	Cryptographic schemes
	Scalar multiplication dP

	ECC implementations
	ECC in software
	ECC in hardware
	ECC implementations and side channel attacks

	Summary

	Reconfigurable computing and design methodology
	Reconfigurable computing
	Reconfigurable devices
	Design methodology
	Design flow for ECC hardware architectures
	Design flow for reconfigurable ECC hardware architectures
	Verification and Validation

	Summary

	ECC co-processor design
	Requirements
	Hardware for the lower dP layer: GF(2m) arithmetic
	GF(2m) Multiplication
	GF(2m) Squaring
	GF(2m) Inversion

	Hardware for the middle dP layer: Coordinate system
	A new affine formula for point addition

	Hardware for the higher dP layer: dP method
	A co-processor resistant to side channel attacks

	The ECC reconfigurable system
	Proposed reconfigurable system
	Summary

	Results
	Target technology for implementation
	Metrics of performance
	Tools
	Results of GF(2m) arithmetic modules
	Serial GF(2m) multiplication
	Digit-Serial GF(2m) multiplication
	GF(2m) squarer
	GF(2m) division
	Discussion

	Results of the GF(2m) dP co-processor
	Parallel architecture for ECC
	Serial architecture for ECC
	An ECC hardware architecture resistant to Side Channel Attacks

	ECC reconfigurable system results
	Comparison with related work
	Summary

	Conclusions and directions
	Summary of contributions
	Future work

	Guidelines for partial reconfiguration of a GF(2m) ECC co-processor
	The base design
	Modifying the base design
	Different versions of the peripheral: partial reconfiguration
	.ngc files generation

	GF(2m) ECC co-processor test vectors
	Test vectors for finite field arithmetic
	Test vectors for scalar multiplication dP
	Test vectors for m=113
	Test vectors for m=131
	Test vectors for m=163
	Test vectors for m=233
	Test vectors for m=277
	Test vectors for m=283

