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Abstract

We present the solution of spherically symmetric flows for the gas injected by stellar

winds and supernova explosions within a super star cluster with a massive black hole

at the center by using a self-consistent hydrodynamical model . We proof that our

model always produce a stationary, self-consisten solution for the accretion flow and

the star cluster wind, for any mass of the black hole. Although, the black hole does

not modifies the large scale outflow, it shifts the threshold mechanical luminosity of

the clusters to lower values. We demonstrate that in the case of star clusters with

a central massive black hole the threshold mechanical luminosity separates clusters

for which the stagnation radius and mass accretion rate are defined by the black hole

from that, whose inner structure is defined by radiative cooling. We propose also an

analytic approach to the numerical results, finding expressions for the mass accretion

rate and the stagnation radius by using Bondi’s accretion theory and the theory of

adiabatic star cluster winds.



Resumen

Presentamos la solución de flujos esféricamente simétricos para el gas reinsertado

por vientos estelares y explosiones de supernova dentro de un super cúmulo estelar

con un agujero negro masivo central utilizando un modelo hidrodinámico autocon-

sistente. Probamos que nuestro modelo siempre produce una solución estacionaria,

autoconsistente para el flujo de acreción y el viento del cúmulo para cualquier masa

del agujero negro. Si bien el agujero negro no modifica la estructura a gran escala

del viento, éste desplaza la luminosidad mecánica cŕıtica de los cumulos hacia valores

menores. Demostramos que en el caso de cúmulos estelares con un agujero negro ma-

sivo central la luminosidad mecánica cŕıtica separa cúmulos para los cuales el radio

de estancamiento y la tasa de acreción de masa son definidos por el agujero negro de

aquellos, cuya estructura interna está definida por enfriamientoradiativo. También

proponemos una aproximación anaĺıtica a los resultados numéricos encontrando ex-

presiones para la tasa de acreción de materia y para el radio de estancamiento usando

la teoŕıa de acreción de Bondi y la teoŕıa de vientos de cúmulos estelares en el caso

adiabático.
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Chapter 1

Introduction

Intensive studies of active galactic nuclei (AGNs) in optic, infrared (IR) and X-ray

regimes during the last decade provided strong evidence for the presence of a massive

starbursts around the central supermassive black hole (BH) in a number of Seyfert

galaxies. In particular Heckman et al. (1997) and González Delgado et al. (1998)

presented a direct evidence for the existence of nuclear starbursts in the four Seyfert 2

galaxies Mrk 477, NGC 7130, NGC 5135 and IC 3639. They found in the ultraviolet

and optical spectra of these galaxies the absorption line features associated with

photospheres of O and B stars and their stellar winds. The nuclear starbursts in

these galaxies have sizes from less than 100 pc to a few hundred parsecs.

On the other hand, the strong correlation between the black hole mass and the

velocity dispersion, MBH−σ, (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Merritt

& Ferrarrese 2001; Tremaine et al. 2002; Greene & Ho 2006) or the black hole mass -

bulge mass relation, MBH −MBulge, (Merritt & Ferarrese 2001; Marconi & Hunt 2003;

Häring & Rix 2004) in systems such as composite active galactic nuclei and non-active

galaxies, indicates a tight connection between the central super-massive black hole

and the surrounding spheroid or stellar cluster. This also led to the proposal that

massive stellar clusters, like globular clusters, may host intermediate-mass black holes

(Barth et al. 2005; Gebhardt et al. 2005; Greene & Ho 2006).
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The synchronized activity of massive stars and supernovae within young stellar

clusters results in a large scale outflow known as super wind or star cluster wind.

The theory of star cluster winds has been studied extensively under the adiabatic

approximation (Chevalier & Clegg 1985; Cantó et al. 2000; Raga et al. 2001), and

in the more realistic radiative regime (Silich et al. 2004 and Tenorio-Tagle et al.

2007). However, so far there remains an open problem. How does the presence of a

central black hole affect the hydrodynamics of the matter reinserted by the massive

members of young stellar clusters? This problem was the motivation of the present

dissertation.

1.1 The aim of this thesis

The goal of this thesis is to determine the impact of the gravity provided by a star clus-

ter and by a central massive black hole on the hydrodynamic evolution of the gaseous

outflows which result from the individual stellar winds and supernova explosions that

occur within the cluster.

For this purpose, we develop a self consistent, spherically symmetric hydrody-

namic model which takes into account radiative losses of energy and also the gravi-

tational pull from the stellar component and that of the central black hole.

In order to understand how the gravitational field modifies the hydrodynamic

structure of the flow inside the star cluster, in Chapter 2 we develop the isothermal

solution for a star cluster wind in the two cases: with and without the gravitational

pull of the cluster (see sections 2.2 and 2.3, respectively). In section 2.4 we discuss

the isothermal assumption and in section 2.5 summarize our conclusions. Certainly,

the isothermal assumption is far from reality. Nevertheless, this chapter allows us to

understand how the hydrodynamics of star cluster winds are modified when gravity

is added and also gives us the tools to handle more sophisticated models. In Chapter

3 we study the impact of the star cluster gravity on the radiative star cluster wind
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model developed by Silich et al. (2004). In section 3.2 we collect the basic equa-

tions associated with the adiabatic model of star cluster winds. In section 3.3 the

solution of the basic equations including gravity terms is analyzed. In section 3.4 we

formulate our main conclusions. In particular, in this chapter we demonstrate that

the injected matter is accelerated more rapidly in more compact star clusters, despite

the large gravitational force. We also demonstrate that the star cluster gravity does

not significantly affect the shape of the integral curves found in Silich et al. (2004).

In Chapter 4 we numerically solve the Bondi accretion problem in order to under-

stand how a central black hole modifies the hydrodynamics of the gas inside the star

cluster. In section 4.2 we introduce the physical restrictions of the model and the

main equations for spherically symmetric accretion. In section 4.3 we present our

method to solve the accretion problem and analyze the structure of the resulting flow

for objects of different scales. In particular, in section 4.4 we apply our scheme to the

M87 galaxy. Section 4.5 summarizes our conclusions. In this chapter we also prove

that there is only one transonic solution for the spherically symmetric accretion prob-

lem. Although Bondi’s theory uses a simplified polytropic gas law and does not take

into consideration radiative losses of energy as well as the mass supplied by the star

cluster, it is a useful reference to compare with the self-consistent theory developed

in Chapter 5.

Chapter 5 is central in our study. Here we develop a self-consistent theory for

an spherically symmetric accretion that takes into consideration radiative losses of

energy, the mass deposition provided by the host stellar cluster and the gravitational

field of the central massive black hole. In section 5.2 we discuss the input physics. In

section 5.3 we introduce the main hydrodynamic equations and select the appropriate

boundary conditions. There, we also discuss the family of integral curves that result

from the selection of different stagnation radii. In section 5.4 we apply our model

to the earlier stages of evolution of some galaxies and to star clusters with central

black holes, whose parameters were taken from the literature. In this section we also
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propose an analytic approximation to the accretion rate and to the position of the

stagnation radius. Section 5.5 presents a brief discussion of a cluster evolving in the

catastrophic cooling regime when a massive black hole in the center is considered.

Section 5.6 we summarize our results and conclude that below the threshold energy

the stagnation radius and the accretion rate are defined by the black hole and that

above the threshold line these parameters are defined by the radiative cooling. We

proof also that is possible to find a smooth, stationary solution, which relates the

inner subsonic accretion flow to the outer supersonic star cluster wind.

Chapter 6, as a summary, presents the main contributions of this thesis.
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Chapter 2

The isothermal solution for star

cluster winds

Abstract

Here we describe a simplified isothermal model of the gaseous outflows

associated with the matter heated by the ionizing radiation supplied by

the massive members of a star cluster. We consider two cases, with and

without a gravitational field. The equations of motion are solved for two

regions: within the star cluster volume, r ≤ Rsc, and that outside of

Rsc. We show that there is a unique transonic solution for a particular

central density value, which is found numerically. The results of numerical

calculations for different star cluster parameters are presented.
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2.1 Introduction

In this chapter we describe the structure of an isothermal star cluster wind in which

the injected gas is under the effects of two forces only: the inward force of gravity

and the outward thermal pressure gradient. The star cluster wind model consists of a

spherically symmetric star cluster with a number of massive stars which lose matter

continuously. We suppose that the UV photons coming from the massive stars ionize

the ejected gas and maintain the reinserted matter at a constant temperature.

We find that the hydrodynamic equations have different solutions depending on

the gas central density, but there is only one solution, the so-called critical solution

for the flow, that starts in the subsonic regime, passes through the critical radius

with sonic velocity and then reaches a supersonic velocity at large distances. We use

l’Hopital rule to find the asymptotic form of the equations in the vicinity of the critical

radius where the equation of motion has a singularity. The critical solution occurs

only for one central gas density value, which is found by an iterative method. The

results of numerical calculations for both cases, with and without gravity terms, are

presented in sections 2.2 and 2.3, respectively. In section 2.4 we discuss the isothermal

assumption. Section 2.5 summarizes our results and conclusions.

2.2 Isothermal winds, the stationary solution

In this section we present the conservation equations of mass and momentum in

spherical coordinates, and solve them for the case when the injected gas is under the

effects of the star cluster gravitational field and the thermal pressure. The equation

of energy conservation is simplified by the isothermal condition, which assumes that

temperature is constant across the flow.
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2.2.1 Main equations

The main flow equations within the star cluster volume, r ≤ Rsc.

The mass conservation equation within the cluster volume is:

1

r2

d

dr

(

ρur2
)

= qm, (2.1)

where, ρ and u are the gas density and the velocity of the flow, respectively, at a

distance r from the center, and qm = 3Ṁsc/4πR3
sc is the mass deposition rate per unit

volume for a constant mass deposition rate, Ṁsc, of the cluster.

If the pressure gradient and gravity pull are the only forces defining the gas

motion, then the momentum equation has the form:

u
du

dr
+

1

ρ

dP

dr
+

GM(r)

r2
= −qmu

ρ
(2.2)

where P is the gas pressure at r and M(r) = Mscr
3/R3

sc is the mass within the radius

r, for an assumed homogeneous distribution of stars. If the injected matter cools

down fast and then is photoionized by the ionizing radiation supplied by the massive

members of the stellar cluster, the temperature of the gas can be approximated as a

constant value. In this case the equation of energy conservation is replaced by the

isothermal condition.

T (r) = T = constant. (2.3)

Equation (2.3) implies that the outflowing matter is continuously heated by the ion-

izing radiation supplied by the cluster. Thus, in this chapter we assume that the

ionizing power of the cluster is sufficient to completely photoionize the resultant out-

flow. However, in section 2.4 we demonstrate that in some cases this assumption may

be far from reality. Here, the pressure of the gas is in direct proportion to ρ:

P = kρT/µ (2.4)

where k is the Boltzmann constant and µ is the mean mass per particle, µ = 14
23

mH

for a completely ionized plasma with normal cosmic abundance and mH is the mass

of the hydrogen atom.
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Integrating equation (2.1), one can obtain

ρ =
qmr

3u
+

C

r2u
. (2.5)

The finite density at the star cluster center requires the constant of integration, C,

to be zero: C = 0. The density of the outflow is then:

ρ =
qmr

3u
. (2.6)

Using Eq. (2.4), one can derive the pressure gradient that promotes an isothermal

outflow:
1

ρ

dP

dr
=

k

µ

dT

dr
+

kT

µρ

dρ

dr
=

(

kT

µ

)

1

ρ

dρ

dr
, (2.7)

where the density gradient can be obtained from equation (2.6)

1

ρ

dρ

dr
=

1

r
− 1

u

du

dr
. (2.8)

The substitution of equation (2.7) and (2.8) into (2.2) yields

u
du

dr
+

(

kT

µ

)[

1

r
− 1

u

du

dr

]

+
GM(r)

r2
+

3u2

r
= 0. (2.9)

The term 3u2/r in equation (2.9) makes the analytic integration difficult. This equa-

tion may also be written in a more convenient form:

1

u

du

dr
=

1

r

(

V 2
esc

2
+ c2

s + 3u2
)

(c2
s − u2)

(2.10)

where cs = (kT/µ)1/2 is the isothermal sound speed, which is a constant, and V 2
esc =

2GM(r)/r is the square of the escape velocity at radius r. Note that inside the

cluster, du/dr remains positive if the outflow is subsonic, u < cs.

An analysis of equation (2.10) leads to an unexpected conclusion: the gas in-

side massive clusters (large Vesc) accelerates faster than that inside their low mass

counterparts with the same radius, despite the fact that they have a larger potential

well. This occurs because the gas in the subsonic region is in a quasi-hydrostatic

regime and it is not dominated by the velocity law (see the analysis in Appendix A).

This result is analogous to that of an isothermal wind of a single star (see Lamers &

Cassinelli 1999).

8



The main flow equations outside the cluster, r > Rsc.

As outside the stellar cluster there is no mass deposition, then qm = 0. Thus, for

r > Rsc the main hydrodynamic equations are

1

r2

d

dr

(

ρur2
)

= 0, (2.11)

u
du

dr
+

1

ρ

dP

dr
+

GMsc

r2
= 0, (2.12)

T (r) = T. (2.13)

Following the procedure described in the previous section, one obtains:

ρur2 = C. (2.14)

From the stationary condition, we get that the integration constant is, C = Ṁsc/4π.

The density of the gas is then

ρ =
Ṁsc

4πur2
. (2.15)

Substituting the derivatives of density and pressure into equation (2.12) one can

obtain:

u
du

dr
+

kT

µ

[

−1

u

du

dr
− 2

r

]

+
GMsc

r2
= 0. (2.16)

This equation may be rewritten in the form

1

u

du

dr
=

2

r

(c2
s − V 2

esc/4)

(u2 − c2
s)

. (2.17)

An analysis of equation (2.17) shows that it has a critical point at

r = rc ≡
GMsc

2c2
s

. (2.18)

At this distance the numerator of equation (2.17) is equal to zero. Note that if r < rc

the numerator of the equation (2.17) is negative, and thus the velocity gradient is

positive if u(r) < cs and negative if u(r) > cs. In the region outside the critical

radius, r > rc, the numerator of equation (2.17) is positive and the velocity gradient

is negative if u(r) < cs and positive if u(r) > cs.
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2.2.2 The isothermal solution

From equation (2.17) we know that if u(rc) 6= cs, the derivative of the velocity at

the critical radius is zero and the outflow remains subsonic everywhere. On the

other hand, the derivative of the expansion velocity at the sonic radius, rsonic, goes

to infinity, unless u(rc) = cs. Thus the smooth transition from the subsonic to the

supersonic regime requires that the critical point coincides with the sonic point,

u(rc) = cs =
Vesc(rc)

2
(2.19)

where Vesc(rc) is the escape velocity at the critical point. Thus there is only one

solution which has a positive velocity gradient at all distances from the star cluster

center. This is the critical solution which has

u(rc) = cs at rc =
GMsc

2c2
s

. (2.20)

The critical radius remains outside the cluster if

GMsc/2c2
s > Rsc or Vesc(Rsc) > 2cs. (2.21)

In order to avoid a singularity at the critical point, and integrate equations (2.10)

and (2.17) numerically, we apply l’Hopital ’s rule to equation (2.17), see Appendix

B, that results in

1

u

(

du

dr

)

rc

=

[

−2c2
s

r2
c

+
2GMsc

r3
c

] [

2u du

dr

]−1

rc

=
c2
s

r2
c

(

u du

dr

)−1

rc

. (2.22)

Which implies that a smooth transition from the subsonic to the supersonic regime

requires that at r = rc
(

du

dr

)

rc

=
2c3

s

GMsc

. (2.23)

We use equation (2.23) in the vicinity of the critical point in our scheme to

integrate numerically.

The results of the numerical integration for a star cluster whose parameters are:

Rsc = 10 pc, Msc = 3.3×106M⊙ and ionization temperature, T = 104K, are presented

10



Figure 2.1: The critical and the breeze isothermal solutions, solid and dashed lines, respec-

tively. For the critical solution the critical radius is outside the cluster volume. The breeze

solution remains subsonic everywhere and has a maximum at rc. We used a star cluster

with mass Msc = 3.3 × 106M⊙, Rsc = 10 pc, T = 104 K.

in Figure 2.1. The solid line represents the critical solution which starts subsonic,

goes through the critical point and then reaches supersonic velocities. The dotted line

represents the so-called breeze solution. In this case the central density is too large

and the pressure gradient is not sufficient for the outflow to reach the critical radius

with the sound speed and thus the expansion velocity remains everywhere subsonic

with a maximum at r = rc. In the critical solution the critical radius is outside

the cluster volume, rc = 52.3 pc, and the outflow crosses this radius with a velocity

u = cs = 11.6 km s−1.

Figure 2.2 shows the density profiles for the critical and breeze solutions, solid

and dotted lines, respectively. In the case of the wind (solid line) the density decreases

11



Figure 2.2: Density profiles for the critical solution (solid line) and the breeze solution

(dotted line). Note that both distributions are almost equal as far as three times the cluster

radius.

continuously as ∼ 1/r2, whereas in the breeze solution it reaches an asymptotic value

at larger radii.

Analytic solution.

Note that in equation (2.10) the variables are coupled and make an analytic integra-

tion difficult. However the momentum equation (2.17) has an analytic solution which

in terms of the Mach number, M ≡ u/cs, is

M
2

− lnM = ln ξ2 + 2ξ−1 − 3

2
(2.24)

where ξ = r/rc. The integration constant was fixed by the condition u(rc) = cs at

the critical radius.
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Figure 2.3: Comparison of the isothermal wind solution for the cases with and without

gravity, solid line and dashed lines, respectively. When gravity term is avoided the gas

accelerates faster that in the gravity case. The parameters of the cluster are Rsc = 10 pc,

Msc = 3.3 × 106M⊙. The temperature of the gas is T = 104K.

2.3 The isothermal wind structure without gravity

If the gravity force is neglected, equations (2.10) and (2.17) take the form:

1

u

du

dr
=

(c2
s + 3u2)

r (c2
s − u2)

, (2.25)

and
1

u

du

dr
=

2c2
s

r (u2 − c2
s)

, (2.26)

respectively. In this case there is no critical radius, but there is a sonic radius. The

sign of equation (2.25), remains positive if cs > u, while equation (2.26) is positive

if u > cs. Thus a smooth transition from subsonic to supersonic expansion velocities

requires that the gas velocity must equal the sound speed at the star cluster surface.

13



Figure 2.4: The density profiles calculated for the case with (solid line) and without (dashed

line) gravity. Note that in the case with gravity term the central density is about 4 orders

of magnitude larger that in the case without gravity.

The preceding analysis shows that there is a unique solution that starts subsonic and

ends up as a supersonic flow. This solution occurs for a unique value of the gas central

density. The results of the numerical integration of equations (2.25) and (2.26) are

compared with that discussed in the previous section. Note that the gravitational

field of the cluster modifies the structure of the isothermal outflow drastically. The

gas in the case with gravity expands slower than in the case without it (see Figure

2.3) due to a larger central density. The central density in the case with gravity is

about 4 orders of magnitude larger that in the case without it (see Figure 2.4).
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Analytic solution

In general, inside the cluster the term of mass deposition qm = 3ρu/r makes the

analytic integration of equations (2.10) and (2.25) difficult. However, in the case

without gravity, for r ≤ Rsc, equation (2.25) has an analytic solution, which in terms

of the Mach number, is

M
(

4

1 + 3M

)2/3

= ξ. (2.27)

Equation (2.27) results after applying exponentials in the integral solution.

For r ≥ Rsc, equation (2.26) also has a simple analytic solution, which in terms

of the Mach number results in

M− 1

2
− lnM = ln ξ2, (2.28)

where, ξ = r/Rsc. The integration constant in (2.27) and (2.28) is fixed by the

condition u(Rsc) = cs at the cluster surface.

2.4 Problems with the isothermal assumption

The isothermal scenario assumes that the UV photons coming from the massive stars

of the cluster are sufficient to keep the outflow completely ionized. But in some cases

this assumption may be far from reality as shown in this section.

In a coeval starbursts, the production of UV photons remains constant until the

massive stars of the cluster move away from the main sequence, to finally explode as

supernovae. Before the first explosion the UV photon flux remains constant, and is

given by

SUV = S0
MSB

MLH
(2.29)

where the initial constant flux, S0, is normalized to the standard model of Leitherer

& Heckman (1995), S0 = 9 × 1052 photons s−1 , MSB is the mass of the starbursts

and MLH = 106M⊙. For the star clusters described in the previous sections, MSB =
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3.3×106M⊙, the photon flux is SUV ∼ 1053photons s−1, then it is possible to estimate

the size of the ionized region by means of the Strömgren sphere (Strömgren, 1939)

RSt =

(

SUV
4
3
πβ2n

2
H

)1/3

, (2.30)

where the recombination coefficient to levels greater than the fundamental level is

β2 ∼ 2.6 × 10−13 cm3 s−1, which is valid for T = 104K, and nH is the hydrogen atom

number density. For the case with gravity, we found that the central number density

of hydrogen atoms is nH ∼ 107 cm−3. Using this density in the equation (2.30) one

obtains a Strömgren radius RSt ∼ 1017 cm, less than one parsec! In the case without

gravity, for r < Rsc, the gas density of the outflow remains almost constant with

value nH ∼ 2 × 103 cm−3, putting this into equation (2.30) one obtains a Strömgren

sphere of radius RSt ∼ 10 pc. This implies that outside of the cluster there are not

sufficient ionizing photons to keep the outflow at a constant temperature.

The previous analysis shows that there are not sufficient ionizing photons to

guarantee the isothermal condition. However, the isothermal wind model has allowed

us to understand the impact of gravity in the acceleration of the gaseous outflow and

its density distribution.

2.5 Conclusions

We have shown that there are many solutions for isothermal winds, depending on

the initial conditions at the star cluster center. There is, however, only one critical

solution for which the outflow is transonic. This solution passes through the critical

radius with u(rc) = cs = Vesc(rc)/2, and is known as the isothermal wind solution.

This implies that in the case of a wind, the critical radius coincides with the sonic

point. This condition also selects a unique central gas density.

We demonstrated that the gravitational potential of the cluster modifies dras-

tically the structure of the isothermal gaseous outflow, leaving a large central gas

density which impedes pressure gradients accelerating it efficiently.
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The isothermal assumption does not represent reality very well, because the ion-

izing photons coming from massive stars are not sufficient to maintain the star cluster

volume ionized. In both cases with and without gravity, the ionized region is smaller

than the star cluster volume. However, even though the isothermal assumption is the

simplest case, it has allowed us to understand how the hydrodynamics of star cluster

winds are modified when gravity is considered and has also provided us with the tools

to handle more sophisticated models, as described in the forthcoming chapters.
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Chapter 3

The impact of gravity on radiative

star cluster winds

Abstract

Super stellar clusters have masses of several thousands to a few millions of

solar masses and can contain more than 104 massive stars concentrated in

a few parsecs. Masses of central starbursts detected around AGNs are even

larger and may reach 1010M⊙. Massive stars lose a significant fraction

of their mass due to stellar winds and supernova explosions. Here we

focus on the powerful gaseous outflows (star cluster winds) that result

from the thermalization of the injected material within the volume occupied

by the cluster. We have incorporated the gravity terms into the main

hydrodynamic equations. The results of numerical calculations that take

into account both the impact of radiative cooling and gravity, are presented.

3.1 Introduction

A pioneering model for star cluster winds was proposed by Chevalier and Clegg (1985).

This model is based on the assumption that, within a star cluster with radius Rsc, the
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matter injected by massive stars in the form of individual stellar winds and supernova

ejecta is fully thermalized via random collisions promoted by the large stellar density.

Thermalization implies the conversion of the stellar winds and supernova kinetic en-

ergy into thermal energy. Thus, thermalization results in a large central overpressure

that continuously accelerates the injected matter from zero velocity at the center to

the local sound speed at Rsc, allowing the gas to escape from the cluster, establishing

a stationary outflow.

Chevalier and Clegg (1985), and more recently Cantó et al. (2000), presented

analytic solutions to the problem. The analytic solutions have been confirmed by

means of 3D adiabatic numerical calculations (see Cantó et al. 2000; Raga et al.

2001). They considered the wind as a steady state adiabatic flow coming from a

spherically symmetric star cluster with a homogeneous stellar distribution and negli-

gible gravity. However, in the case of massive and compact clusters, the temperature

profile of the winds could be different from that predicted by the adiabatic model if

radiative cooling is taken into account (see Silich et al. 2004).

In this chapter we take one step forward, by taking into consideration the impact

of gravity due to the stellar cluster. Following the scheme proposed by Silich et al.

(2004), we assume a spherically symmetric star cluster of radius Rsc with a large

number of interacting stellar winds and supernova ejecta. The thermalization of

the ejected material then results in a high central over-pressure that accelerates the

ejected gas and establishes a star cluster wind. Section 3.2 shows the basics of the

adiabatic case. In section 3.3 we include gravity force in the conservation equations

and solve them numerically, and present results for different star cluster parameters.

Section 3.4 summarizes our results.
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3.2 The adiabatic solution

The main hydrodynamic equations that govern the steady state adiabatic solution

are the mass, the momentum and the energy conservation equations. For the region

r ≤ Rsc, they are:
1

r2

d

dr

(

ρwuwr2
)

= qm, (3.1)

ρwuw
duu

dr
= −dPw

dr
− qmuw, (3.2)

1

r2

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= qe, (3.3)

where r is the spherical radius, uw, ρw and Pw are the wind velocity, density and

thermal pressure, respectively (the suffix w refers to wind parameters). In Equations

(3.1)-(3.3), qm = 3Ṁ/4πR3
sc and qe = 3Lsc/4πR3

sc are the mass and energy deposition

rates per unit volume, respectively.

Outside of the star cluster, qe = qm = 0, then the set of main equations for

r > Rsc is:
1

r2

d

dr

(

ρwuwr2
)

= 0, (3.4)

ρwuw
duu

dr
= −dPw

dr
, (3.5)

1

r2

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= 0. (3.6)

The analytic solutions for the set of equations (3.1)-(3.3) and (3.4)-(3.6) are (see

Cantó et al. 2000):

v

[

1 +
(5γ + 1)

(γ − 1)
v2

]−(3γ+1)/(5γ+1)

= Ar, (3.7)
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for the case r ≤ Rsc, where they introduced the dimensionless variable v = uw/VA,∞

and the constant A

A =

(

γ − 1

γ + 1

)1/2 (
γ + 1

6γ + 2

)(3γ+1)/(5γ+1)

. (3.8)

Outside of the cluster the solution is

v
(

1 − v2
)1/(γ−1)

=
B

r2
, (3.9)

where the constant B is

B =

(

γ − 1

γ + 1

)1/2 (
2

γ + 1

)1/(γ−1)

. (3.10)

Equations (3.7) and (3.9) together with constants A and B completely define the ana-

lytic solution. For the central region, i.e., for small values of r, the expansion velocity

grows almost linearly, whereas the temperature and density remain almost homo-

geneous. However, outside of the star cluster, the hydrodynamic variables rapidly

approach their asymptotic values: uw → VA,∞, ρw ∼ r−2, T ∼ r−4/3 and P ∼ r−10/3.

Physically, there are three star cluster parameters that together define the hy-

drodynamic properties of the adiabatic wind outflow, or the distribution of density

ρw(r), temperature Tw(r) and expansion velocity uw(r) as functions of distance from

the cluster center: they are the mean mechanical luminosity, Lsc, the mass deposi-

tion rate, Ṁsc, and the size of the stellar cluster, Rsc. The total mass and energy

deposition rates also define the adiabatic wind terminal velocity, VA,∞:

VA,∞ =
(

2Lsc

Ṁ

)1/2

(3.11)

The central parameters in the adiabatic case are (see Cantó et al. 2000):

ρc =
Ṁw

4πAR2
scVA,∞

, (3.12)

Pc =
γ − 1

2γ

ṀwVA,∞

4πAR2
sc

, (3.13)
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cc =

√

γ − 1

2
VA,∞, (3.14)

Tc =
γ − 1

γ

µ

k

qe

qm
. (3.15)

Using these initial values one can solve the conservation equations (Eqs. 3.1-3.3 and

3.4-3.6) numerically and reproduce the analytic wind solution.

3.3 The radiative solution with gravity

More realistic models of star cluster winds must include radiative cooling and gravity.

The effects of radiative cooling have been discussed in Silich et al. (2004). In this

section we discus the impact of gravity on the hydrodynamics and the structure of

radiative star cluster winds.

3.3.1 Main equations

The set of equations that includes the gravitational pull of the cluster are similar to

those in Holzer and Axford (1970), but here we also include radiative cooling. For

r ≤ Rsc they are:
1

r2

d

dr

(

ρwuwr2
)

= qm, (3.16)

ρwuw
duw

dr
= −dPw

dr
− qmuw − GρwM(r)

r2
, (3.17)

1

r2

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= qe − Q − GρwuwM(r)

r2
, (3.18)

where M(r) is the mass of the cluster as a function of the spherical radius, r. In the

case of a homogeneous stellar mass distribution M(r) = Msc(r/Rsc)
3.

The main equations for r ≥ Rsc are:

1

r2

d

dr

(

ρwuwr2
)

= 0, (3.19)
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Figure 3.1: The cooling rate as a function of temperature for different metallicities of the

emitting plasma. Z = 0.1Z⊙ (green), Z = Z⊙ (black), Z = 3Z⊙ (blue) and Z = 10Z⊙.

(Raymond et al. 1977).

ρwuw
duu

dr
= −dPw

dr
− GρwMsc

r2
, (3.20)

1

r2

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= −Q − GρwuwMsc

r2
. (3.21)

The cooling rate, Q, in equations (3.18) and (3.21) is:

Q = nineΛ(Z, T ), (3.22)

where ni and ne are the ion and electron number densities, respectively, and Λ(Z, T )

is the cooling function, which depends on the gas temperature and metallicity, Z (see

Figure 3.1). The main cooling processes are dependent on the plasma temperature:

for T ≤ 107 cooling is mainly due to ion de-excitation and recombination lines, and
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for T > 107, electron bremsstrahlung is the dominant agent (see Raymond et al. 1976;

Sutherland & Dopita, 1993).

The highly nonlinear character of the cooling function makes it impossible to find

the analytic solution of the hydrodynamic equations. On top of that, when cooling is

added, the initial conditions become unknown. Thus, to take into account the impact

of radiative cooling on the internal structure of the star cluster winds, one has to

know three parameters: nc, Tc and Z, the central density, the central temperature

and the metallicity, respectively. The way to solve the problem was suggested in

Silich et al. (2004). Hereafter, we follow their scheme, which enables us to solve the

set of equations (3.16)-(3.21) numerically. As first step, we rewrite the conservation

equations in a more convenient form.

The set of flow equations inside the star cluster, r ≤ Rsc.

The integration of equation (3.16) yields:

ρw =
qmr

3uw
+

C

uwr2
, (3.23)

where the constant of integration, C, is defined by the boundary conditions. It is

equal to zero if the central density is finite. Then the density of the plasma inside

the cluster is

ρw =
qmr

3uw
. (3.24)

Substituting equation (3.24) into the momentum equation (3.17) we get:

(

qmr

3

)

duw

dr
= −dPw

dr
− qmuw − GρwM(r)

r2
. (3.25)

Note that, M(r) = Msc (r/Rsc)
3, is the mass within the volume of radius r. Rear-

ranging equation (3.25), one can obtain:

dPw

dr
= −qm

(

r

3

duw

dr
+ uw

)

− GρwM(r)

r2
. (3.26)
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On the other hand, substituting equation (3.24) into equation (3.18) we obtain

1

r2

d

dr

[

(

qmr

3

)

r2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= qe − Q − GρwuwM(r)

r2
. (3.27)

Taking derivatives in the left-hand side of equation (3.27) and substituting equation

(3.26), we obtain

duw

dr
=

(qe − Q)(γ − 1) + (γ + 1) (qmu2
w/2) − 2γPwuw/r + ρwuwGM(r)/r2

ρw (γPw/ρw − u2
w)

. (3.28)

The gas pressure is Pw = c2
sqmr/3γuw. Substituting Pw into Eq. (3.28), yields

duw

dr
=

(γ − 1)(qe − Q) + qm

[

(γ+1)
2

u2
w − 2

3

(

c2
s − V 2

esc

4

)]

ρw (c2
s − u2

w)
, (3.29)

where V 2
esc = 2GM(r)/r is the square of the escape velocity at radius r.

Equation (3.29) together with equations (3.26) and (3.24) form the set of the main

equations that define the structure of the steady state outflow inside the cluster.

The set of flow equations outside the star cluster, r > Rsc.

The integration of the mass conservation equation outside of the cluster results in

ρw =
Ṁsc

4πr2uw
. (3.30)

Substitution of the Eq. (3.30) into Eq. (3.20) gives

dPw

dr
= − Ṁsc

4πr2

duw

dr
− ρwGMsc

r2
. (3.31)

The energy conservation, Eq. (3.21), may be rewritten in the form

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= −Qr2 − ρwuwGMsc. (3.32)

Combining Eq. (3.30) and Eq. (3.31) then results in

(

γPw − ρwu2
w

) duw

dr
=

(

−Q − ρwuwGMsc

r2

)

(γ − 1) − 2γPwuw

r
+

γρwuwGMsc

r2
(3.33)

25



Finally, replacing the thermal pressure by the sound speed, cs, as it was done in the

previous section,

duw

dr
=

1

ρw

(γ − 1)r2Q + 2ruwρw (c2
s − V 2

esc/4)

r2 (u2
w − c2

s)
. (3.34)

Equations (3.30), (3.31) and (3.34) form the set of the main equations outside of

the star cluster volume.

3.3.2 Numerical results and discussion.

If, at the star cluster surface, the sound speed exceeds one half of the escape velocity,

the steady state outflow is possible. The smooth transition from the subsonic to

the supersonic solution then requires that the velocity of the plasma equals the sound

speed at the star cluster surface. The derivative of the expansion velocity then remains

positive throughout the space (see Silich et al. 2004).

There are three possible types of the integral curves that result from different

positions of the sonic point (see Silich et al. 2004):

1. Rsonic coincides with the radius of the star cluster, Rsc. In this case the sta-

tionary wind solution is possible. The thermal presure decreases continuously

inside and outside the star cluster and approaches a negligible value at large

radii. The expansion velocity grows from zero km s−1 at the center, to the lo-

cal sound speed at the star cluster surface and then reaches its terminal value,

VA,∞, which is ∼ 2 times the sound speed at the star cluster surface.

2. The sonic point is outside the star cluster, Rsonic > Rsc. In this case the breeze

solution sets in. The central density is larger than that in the wind solution.

The pressure gradient inside the cluster is not sufficient for the ejected material

to reach the supersonic velocity and the outflow remains subsonic everywhere.

The expansion velocity decreases abruptly and goes to zero km s−1 outside of

the star cluster surface.
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3. The expansion velocity reaches the sonic value inside the cluster, Rsonic ≤ Rsc.

In this case the formal solution is double-valued which implies that it has no

physical meaning.

Thus, in order to find the stationary wind solution, we have to choose the appro-

priate central parameters (ρc and Tc) that accommodate the sonic point at the star

cluster surface. This is the key point that allows the numerical integration of the hy-

drodynamic equations (3.26)-(3.29) and (3.31)-(3.34). To find the central conditions,

we compare Eq. (3.29) at r = 0, where uw = 0, with the derivative of the velocity

from the equation (3.24) evaluated at r = 0:

qm

3

1

ρc
=

1

ρc

(γ − 1) [qe − n2
cΛ(Z, Tc)] − 2

3
qmc2

c

c2
c

(3.35)

Equation (3.35) defines the relation between the density and the temperature of

the plasma at the star cluster center:

nc =

[

qe − qmc2
c/(γ − 1)

Λ(Z, Tc)

]1/2

= q1/2
m

[

V 2
A,∞/2 − c2

c/(γ − 1)

Λ(Z, Tc)

]1/2

, (3.36)

where V 2
A,∞ = 2qe/qm. In the absence of radiative cooling one can recover from

equation (3.36) the value of the adiabatic temperature at the center (see equation

3.15). Note, that equation (3.36) may be also derived from the equation of energy

conservation (see, for example, Sarazin & White III 1987).

Thus to perform the numerical integration, one has to iterate the central tempera-

ture until the sonic point reaches the star cluster surface. The central temperature has

a maximum which corresponds to the adiabatic value, Tmax = [γ − 1/γ](µ/k)(qe/qm).

When the central temperature approaches the adiabatic value, the sonic point goes

to zero (see Figure 3.2) and, consequently, the central density and pressure also go to

zero (see eq. 3.36). For smaller values of Tc, the sonic radius and the central pressure

grows until they reach a maximum at some critical temperature (Tcrit), the maximum

in pressure is bounded by the gas radiative cooling (Silich et al. 2004). If the central

temperature becomes even smaller that Tcrit, there is a fall in pressure promoted by
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Figure 3.2: Position of the sonic point for a star cluster with Rsc = 7 pc and VA,∞ =

1000 km s−1. The outflow has solar metallicity. The solid line results from the model

with gravity. Dotted line is the case without gravity. In this particular case the adiabatic

temperature is Tmax ∼ 1.47 × 107 K and the critical temperature Tcrit = 107 K.

radiative cooling, this effect is called catastrophic cooling. In such conditions the

central pressure cannot promote an effective outward accreleration. Therefore, in the

radiative case the sonic radius (Rsonic) cannot be arbitrarily large and has a maxi-

mum value for any given set of star cluster parameters. The parameters of the cluster

for which the sonic radius and pressure take their maximum value define the critical

luminosity of the cluster.

One can find the critical luminosity for any set of star cluster parameters if one

fixes Tcrit that corresponds to the maximum sonic radius and then iterates the star

cluster mechanical luminosity until the sonic point reaches the star cluster surface.

This critical luminosity is plotted in Figure 3.3 (black line), and is compared with
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Figure 3.3: The threshold energy input rate as a function of the star cluster radius. Above

the line, the bimodal solution with the stagnation radius 0 < Rst < Rsc sets in. Star clusters

whose mechanical luminosity is close to the critical value blow away material in the strongly

radiative regime. Far below the line, the wind is quasi-adiabatic. The figure shows models

with (solid line) and without (red dashed line) gravity. For larger values of the terminal

speed the threshold line moves upward.

that from Silich et al. (2004) (red dashed line) for star cluster winds with solar

metallicity, Z⊙, and adiabatic terminal velocity, VA,∞ = 1000 km s−1. One can see

that gravity pull from the cluster does not change the location of the threshold line.

This is because the gravitational energy is smaller than the thermal energy at any

distance from the star cluster center. One can see this by comparing the escape

velocity, Ve ≃ 100 km s−1 with the local sound speed, cs ∼ 400 km s−1, at the star

cluster surface.

In Figure 3.3 if the luminosity of the star cluster is smaller than the critical value,
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Figure 3.4: Star cluster wind density distributions for three star cluster models: Rsc = 3

pc (dotted line), Rsc = 10 pc (solid line) and Rsc = 30 pc (dashed line). All of these with

mass Msc = 106M⊙, mechanical luminosity Lsc = 1041 erg s−1 and adiabatic wind terminal

velocity VA,∞ = 1000 km s−1. Note that the most compact cluster has the larger central

density and thus in this case the radiative cooling becomes very important.

the star cluster wind is in a quasi-adiabatic regime. If the luminosity approaches the

critical value, the wind becomes strongly radiative. When the luminosity exceeds the

critical value, catastrophic cooling sets in the central region (see Silich et al. 2004)

and the stagnation point (the point where uw = 0) moves away from the center and

the cluster evolves into a bimodal regime in which the central, densest zones cool

rapidly and accumulate the injected matter, while the outer zones are still able to

drive a stationary wind (see Tenorio-Tagle et al. 2007).

The results of the numerical calculations that include the gravitational pull of

clusters with mass, Msc = 106M⊙, mechanical luminosity, Lsc = 1041 erg s−1, and

radii, Rsc = 3pc (dotted line), 10pc (solid line) and 30 pc (dashed line), respectively,

are presented in Figures 3.4a, 3.4b and 3.4c. The most compact star cluster presents

the largest central densities, two orders of magnitude larger if compared to the Rsc =
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Figure 3.4b.—Temperature distributions for the clusters described in Figure 3.4a. The

most compact cluster (dotted line) strongly departs from the adiabatic solution as a result

of radiative cooling. Note that for larger Rsc the solution approaches the adiabatic case

(solid and dashed lines).

Figure 3.4c.— Wind velocity profiles for the three clusters described in the text. More

compact clusters (dotted line) accelerates the gas more efficiently than larger ones (solid

and dashed lines).
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30 pc case (see Figure 3.4a). Note that inside the clusters, temperature remains

almost constant (see Figure 3.4b). In the most compact cluster the temperature

drops down quickly, about two orders of magnitude within the first 20 pc, while in

the largest cluster the temperature profile follows a quasi-adiabatic solution. Figure

3.4c shows that the outflow in the most compact cluster accelerates faster than in

clusters with the same mass but larger radii. In all these calculations gravity does

not significantly change the radiative model of Silich et al. (2004).

3.4 Conclusions.

In this chapter we have incorporated the gravity terms into the main hydrodynamic

equations and presented the results of numerical calculations that take into considera-

tion both, the impact of radiative cooling and gravity. We found that the gravitational

pull from the star cluster does not modify significantly the radiative solution found

by Silich et al. (2004).

We demonstrate that in more compact clusters, the gas accelerates more rapidly

despite the larger gravitational pull. This is because the pressure gradient is larger

in the case of compact clusters.

In the next chapters we will consider the impact of a supermassive black hole

placed at the center of the star cluster as it has been inferred in the case of composite

AGN-SB galaxies, in bulges of non-active galaxies and in massive clusters.
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Chapter 4

Steady-state spherically symmetric

accretion

Abstract

The high luminosities associated with AGNs require an effective energy

production mechanism. One of the most efficient mechanisms known in

astrophysics is the accretion of matter onto a massive compact object. It

may convert the rest mass energy of the accreted material into radiation

with an efficiency up to ∼ 10%.

In this chapter we present and solve numerically the main equations for

spherically symmetric accretion onto the massive central object. We an-

alyze how the mass accretion rate changes with the mass of the central

black hole and apply our results to the nuclear region of the galaxy M87.

We derive the position of the sonic point and the radius (the accretion

radius) at which gravity becomes an important factor. The mass accretion

rate and the expected luminosity for M87 are also calculated and compared

with observations.
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4.1 Introduction

In the accretion problem if all the kinetic energy of in-falling matter onto a compact

object of mass M is given up to radiation at its surface, R, the accretion luminosity

is given by

Lacc = GMṀ/R. (4.1)

The efficiency of accretion as energy release mechanism is strongly dependent on the

rate Ṁ at which matter is accreted. But, for a fixed value of Ṁ , the luminosity of

an accreting system depends on the compactness, M/R, of the accreting object. For

the case of an accretion onto a black hole the accretion efficiency is less certain. Since

the radius does not refer to a hard surface but only to a region into which matter can

fall and from which it cannot escape, much of the accretion energy could disappear

into the hole and simply add to its mass, rather than be radiated. The uncertainty in

this case is parametrized by a dimension less quantity η in equation (4.1) and using

R = RSchw = 2GM/c2, the Schwarzschild radius:

Lacc = ηṀc2. (4.2)

A reasonable assumption in this case is η ∼ 0.1 (see Frank et al., 2002). Hereafter we

use this value for η.

The problem of gas accretion onto the central compact object was first considered

in the classical study by Bondi and Hoyle (1944), and later by Bondi (1952), who found

that in this case the mass accretion rate can be expressed in terms of the ambient

conditions around the accreting object. In this chapter we follow this prescription.

It is assumed that the compact object is spherically symmetric and at rest inside an

infinite homogeneous gas cloud. Here the central issue is to know the mass accretion

rate to solve the set of hydrodynamic equations. In section 4.2 we present and analyze

qualitatively the main hydrodynamic equations. In section 4.3 we formally present

the accretion solution by numerically solving the resulting algebraic equation. The
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numerical solution for different black hole masses is presented. In particular, in section

4.4 we apply the theory to the super massive BH at the center of M87. Section 4.5

presents our conclusions.

4.2 Main equations

Again, like in the previous chapters, we consider the mass, momentum and the en-

ergy conservation equations to find the steady accretion flow. For a steady state,

spherically symmetric flows, the continuity equation is

1

r2

d

dr

(

ρur2
)

= 0, (4.3)

where ρ is the ISM gas density and u is the gas velocity at some radius r. The velocity,

u, is assumed to be negative since the flow is directed inward.

In this case, the only contribution to the external force is from gravity, therefore

the Euler equation takes the form:

u
du

dr
+

1

ρ

dP

dr
+

GMBH

r2
= 0, (4.4)

where P is the gas pressure, MBH is the mass of the accreting object (black hole)

and G is the gravitational constant. The energy conservation equation has a more

complex structure and in the simplest case can be replaced by the polytropic relation

P = Kργ , (4.5)

where γ is the polytropic index and K is a constant.

One can derive some conditions for the gas inflow before the integration. The

gradient of the pressure can be expressed as

dP

dr
=

dP

dρ

dρ

dr
= c2

s

dρ

dr
. (4.6)

where cs is the sound speed at a distance r from the accreting object. Hence, the term

(1/ρ)(dP/dr) in the momentum equation (4.4) is (c2
s/ρ)(dρ/dr). From the continuity
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equation (4.3) one can obtain

1

ρ

dρ

dr
= − 1

ur2

d

dr
(ur2) (4.7)

Therefore, equation (4.4) can be re-written in the form:

u
du

dr
− c2

s

ur2

d

dr
(ur2) +

GMBH

r2
= 0. (4.8)

And after some algebra it may be presented in the form:

1

2

(

1 − c2
s

u2

)

d

dr
(u2) =

1

r

(

2c2
s −

GMBH

r

)

. (4.9)

The term in parentheses in the right hand side of this equation vanishes at r = rB,

where

rB =
GMBH

2c2
s(rB)

. (4.10)

This is known as the Bondi radius. Note that at r = rB the escape velocity is two

times larger than the local sound speed.

Far away from the gravitational center the flow must be subsonic because it is

assumed that the gas is at rest, but the temperature and thus the speed of sound, are

non-zero:

u2 < c2
s for r ≫ rB. (4.11)

Note that, as the gas approaches the accreting object, the factor (2c2
s−GM/r) in

the right-hand side of equation (4.9) steadily decreases until it vanishes at the Bondi

radius. For r < rB, (2c2
s − GM/r) becomes negative and to maintain the accretion

regime (du2/dr < 0), 1 − c2
s/u

2 must be positive. This implies that for r < rB, the

velocity of the flow must be supersonic:

u2 > c2
s for r < rB. (4.12)

Thus, we are looking for a solution in which the flow starts with zero velocity at

large radii, then its velocity becomes negative and remains subsonic until it reaches
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the local sound speed at r = rB, to then move with supersonic velocities towards the

surface of the accreting body.

A similar analysis of the signs in equation (4.9) shows that it is possible to have

a transonic solution with subsonic velocities at small radii and supersonic velocities

at large radii. This is known as a wind solution (Chapter 2, see also Holzer & Axford,

1970 and Frank et al. 2002).

4.3 The inner structure of the accretion flow

Equation (4.3) can be easily integrated:

r2ρu = C, (4.13)

where C is the integration constant. Since ρu is the inward flux of mass, the constant

C is related to the accretion rate, Ṁ , and equation (4.13) may be re-written as

r2ρu =
Ṁ

4π
. (4.14)

Notice that so far we do not know the exact value of the accretion rate, Ṁ .

One can also integrate equation (4.4), that results in:

u2

2
+

Kγ

γ − 1
ργ−1 − GMBH

r
= C2 (4.15)

where C2 is the integration constant. We have used dP = Kγργdρ, from the poly-

tropic relation. The integration constant C2 can be found from the outer boundary

condition, namely, that the velocity of the gas goes to zero when r −→ ∞:

C2 =
Kγ

γ − 1
ργ−1

ISM , (4.16)

where ρISM is the ISM gas density far away from the accreting body. Substituting

(4.16) into (4.15) and using Kγργ−1
ISM = c2

ISM , and Kγργ−1 = c2
s, one can obtain

u2

2
+

c2
s

γ − 1
− GMBH

r
=

c2
ISM

γ − 1
, (4.17)
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where cISM is the sound speed of the interstellar gas far away from the accreting

object.

Through equation (4.17) one can relate the sound speed at the Bondi radius,

cB, with that far away from the accreting object. Indeed, using equation (4.10) and

taking into account that at the Bondi radius u2(rB) = c2
s(rB) ≡ c2

B, one obtains:

cB = cISM

(

2

5 − 3γ

)1/2

, (4.18)

where c2
B = GMBH/2rB. The density at the sonic point can be related to the density

of the ISM, ρISM , by the polytropic relation:

ρB = ρISM

(

cB

cISM

)2/γ−1

. (4.19)

This allows one to derive the accretion rate, Ṁ , for stationary, spherically symmetric

accretion. Indeed, at the Bondi radius

Ṁ = 4πρBcBr2
B. (4.20)

Substituting equations (4.18), (4.19) and the sonic radius rB = GMBH/2c2
B into

equation (4.20) one can obtain

ṀB = πG2M2
BH

ρISM

c3
ISM

(

2

5 − 3γ

)
5−3γ

2(γ−1)

, (4.21)

where ṀB is known as the Bondi accretion rate. Note that it depends only on the

gas parameters far away from the accreting body and on the mass of the compact

object. In the stationary case ṀB does not depend on the distance from the center.

Observe that ṀB is not defined for polytropic indexes γ = 5/3 and γ = 1. However,

see Appendix C to see how to avoid these problems.

In order to find the stationary solution, equation (4.17) can be rewritten in a

more convenient form

v2

2
+

c2
ISM

γ − 1





(

ρ

ρISM

)γ−1

− 1



− GMBH

r
= 0 (4.22)

38



Figure 4.1: The shape of function f(δ, ξ) for different dimensionless radii, ξ. For r = rB

(solid line) there is a single root. For ξ 6= 1 the function f(δ, ξ) has two roots, these are

described in the text.

In which, if one substitutes u from equation (4.14) and, using (4.19), (4.21) and

(4.10), one finds the algebraic equation that defines the distribution of density in the

accretion flow:
(

ρ

ρISM

)γ−1

+
γ − 1

2

(rB

r

)4
(

ρISM

ρ

)2(

2

5 − 3γ

)γ+1/γ−1

− 4

(

γ − 1

5 − 3γ

)

rB

r
= 1. (4.23)

One can rewrite this equation for the dimensionless variables, δ = ρ/ρISM and ξ =

r/rB:

f(δ, ξ) = δγ−1 +
γ − 1

2
ξ−4δ−2

(

2

5 − 3γ

)

γ+1
γ−1

− 4

(

γ − 1

5 − 3γ

)

ξ−1 − 1 = 0 (4.24)

Figure 4.1 shows the function f(δ, ξ) for three different radii: r = rB, r = 2rB
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Figure 4.2: The inner structure of the accretion flow. Panel a displays the velocity profile

(normalized to the sound speed at rB) and panel b shows the density distribution (normal-

ized to the ISM density) for the stationary, spherically symmetric accretion. The distance

is also normalized to the Bondi radius. We have used a 1M⊙ object, embedded into a ISM

whose particle number density is 1 cm−3, temperature TISM = 5500 K and polytropic index

γ = 4/3.

and r = rB/2. For each value of ξ, the function f(δ, ξ) has two roots (see dotted and

dashed lines). Only for r = rB does it have a single solution. For ξ < 1 (dashed line)

the left-hand side root corresponds to the accretion solution and the right hand side

root to the wind solution. If ξ > 1 (dotted line), the left hand side root corresponds

to the wind solution and the right hand side root represents the accretion solution.

To construct the density distribution, ρ(r), in the accretion flow we solve equation

(4.24) by an iterative method for each value of ξ. Then we use equation (4.22) to

find u(r). Figure 4.2 presents the velocity and density profiles for an accretion flow

onto a compact object with a solar mass, embedded into a gas cloud with polytropic

index, γ = 4/3, particle number density, n = 1 cm−3, and sound speed, cs = 10 km

s−1, at large distances from the accreting body. The velocity of the flow grows as it
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Figure 4.3: Velocity profiles for different black hole masses. Panels a, b, c and d) present

results for MBH = 106M⊙, 107M⊙, 108M⊙ and for 109M⊙, respectively. The intersection

of dotted lines represents the Bondi radius, rB , it scales linearly with the mass of the BH.

approaches the accreting object, the gas moves with subsonic velocities outside of the

Bondi radius, passes rB with sonic speed (u = cB) and then moves to the center with

supersonic speed (see Panel a). Note that the calculated velocity is consistent with

cB =
√

2cISM derived from equation (4.18). The density in the accretion flow (panel

b) at r = rB is consistent with ρB = 8ρISM derived from equation (4.19).

For this particular case, the accretion rate is Ṁ = 6.26× 1011 g s−1. Then if one

assumes that the accretion efficiency is η = 0.1, one can estimate the luminosity of

the accreting object, in this case:

Lacc = ηṀc2 ≃ 5.6 × 1031erg s−1. (4.25)
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Table 4.1: Accretion parameters for different black hole masses.

MBH (M⊙) rB (pc) Ṁ (M⊙ yr−1) Lacc (erg s−1)

106 5.9 × 10−2 1.04 × 10−7 5.89 × 1038

107 5.9 × 10−1 1.04 × 10−5 5.89 × 1040

108 5.9 1.04 × 10−3 5.89 × 1042

109 5.9 × 101 1.04 × 10−1 5.89 × 1044

This represents only ∼ 1.5 % of L⊙.

Because the solution of equation (4.24) is for dimensionless variables, it can be

applied to objects of any scale. We just need to select the parameters of the ISM

and the mass of the BH. Here we apply the solution to super massive BHs, as those

predicted in AGNs. Figure 4.3 displays the velocity profiles for different black hole

masses, panels a, b, c and d present the results for MBH = 106M⊙, 107M⊙, 108M⊙

and for 109M⊙, respectively. In all cases an ISM whose gas number density is n=0.1

cm−3, temperature T=106 K, and polytropic index γ = 4/3 was assumed. As one

can see, the sonic radius, rB, is a linear function of the black hole mass (see equation

4.10). The accretion rates and the accretion luminosities are presented in Table 5.1,

these scale as the square of the black hole mass (see equation 4.21). The density and

the temperature used for these calculations are typical of the ISM coronal phase.

4.3.1 Asymptotic limits.

In the region r < rB, the gas moves supersonically and the inflow velocity asymptot-

ically approaches the free fall value (see equation 4.17, for u ≫ cs):

u2 ∼= 2GM

r
= v2

ff for r ≪ rB, (4.26)
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where vff is the free fall velocity. Using the continuity equation (4.14) and the free

fall velocity one can obtain

ρ ∼= 1

2
ρB

(

rB

r

)3/2

for r ≪ rB. (4.27)

From the perfect gas law and the polytropic relation one can then estimate the tem-

perature of the gas in the region inside the Bondi radius:

T ∼= T (rB)
(

rB

r

)3(γ−1)/2

for r < rB. (4.28)

These equations (4.26 - 4.28) provide an analytic approximation to the gas parameters

interior to rB.

4.4 Accretion onto the super massive BH in the

center of the galaxy M87.

The super massive black holes at the centers of elliptical galaxies are likely to accrete

primarily from the surrounding hot, quasi-spherical ISM. The mass accretion rate

can then be estimated using Bondi accretion theory that requires an accurate mea-

surement of the gas parameters at the Bondi radius. Di Mateo et al. (2003) studied

the accretion onto the supermassive black hole in M87 using Bondi accretion theory

and X-ray observations from Chandra. The nucleus of the giant elliptical galaxy M87

contains a black hole whose mass, M ∼ 3× 109M⊙, was determined from the Hubble

Space Telescope (HST) observations (Ford et al. 1995; Harms et al. 1994; Macchetto

et al. 1997). This galaxy has an active galactic nucleus. The temperature of the gas

within the central kpc is kT = 0.8 keV. Di Mateo et al. (2003) found that within

the central ∼ 2 kpc the density profile flattens reaching a value of ne=0.17 cm−3. We

use these values of temperature, density and mass of the black hole in our numerical

scheme to derive parameters of the Bondi accretion flow. At the M87 distance (18
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Mpc) the spatial resolution of Chandra corresponds to ∼ 100 pc. A crude estima-

tion of the radius at which the gravitational energy balances the kinetic energy of a

particle of mass m under the gravitational pull of the BH mass, MBH , gives

r =
2GMBH

u2
. (4.29)

Looking at equation (4.17), for larger r the gravitational pull of the accreting object

is weak and all quantities have their ‘ambient’ values (ρISM , cISM , u ∼ 0). As one

moves to smaller r the inflow velocity increases until u reaches the ISM sound speed,

cISM . At this point, density and sound speed begin to increase above their ambient

values. Then using equation (4.29) one can define an accretion radius, racc:

racc =
2GM

c2
ISM

≃ 150 pc, (4.30)

where c2
ISM = γkTISM/µ, TISM is the temperature of the hot ISM and µ = 14/23 mH

is the mean mass per particle of the ionized ISM. Regions of such size can be resolved

with Chandra.

Figure 4.4 shows the velocity profile and density distribution for the case of

M87. Panel a, presents the inflow velocity derived from the numerical calculations

(solid line) and its asymptotic limit (dotted line), vff ∝ r−1/2. Panel b, displays the

density distribution that results from the numerical calculations (solid line) and its

asymptotic value (dotted line), ρ ∝ r−3/2. The parameters used for M87 give us an

ISM sound speed cISM = 409 km s−1, which was used to calculate the Bondi radius,

rB = 19 pc, and the Bondi accretion rate ṀB ∼ 0.06M⊙ yr−1. The luminosity

associated with this accretion rate is

LB = ηṀBc2 ≃ 3 × 1044erg s−1 (4.31)

where we have used an accretion efficiency η = 0.1. Note that in this case the

Eddington luminosity, LEdd
∼= 1.3 × 1038 M

M⊙
erg s−1, is 3 orders of magnitude larger

than the Bondi accretion luminosity, LB. The derived values for the accretion radius,
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Figure 4.4: Bondi solution for the M87 galaxy. Panel a, displays the velocity (solid line)

and the asymptotic approach (dotted line). Panel b, shows the density distribution (solid

line) and the asymptotic approach (dotted line). The parameters are described in the text.

the accretion rate and the luminosity are in very good agreement with those obtained

by Di Mateo et al. (2003).

The Chandra X-ray luminosity of the AGN in M87 is LX,0.5−7 keV ∼ 7× 1040 erg

s−1. It is at least 4 orders of magnitude smaller than the predicted Bondi luminosity.

The low luminosity observed implies that the accretion efficiency is small or that the

Bondi model is inappropriate in this case. In particular, a low radiative efficiency

may result from strong outflows that may remove most of the mass and energy from

the accretion flow (Blandford & Begelman, 1999; Stone et al. 1999). Di Mateo et

al. (2003) suggested that adding the thermal energy provided by the jet into the

energy conservation equation may reduce the accretion radius and, consequently, the

accretion rate with respect to the Bondi value.
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4.5 Conclusions

In this chapter we studied the inner structure of Bondi accretion flows. We presented

a formal solution for the accretion problem. We proved that although there are many

simplifications in the Bondi accretion physics, the broad picture seems to be correct,

so this model should be regarded as a reference and can be used as a test for systems

of different scales.

The key parameter in the spherically symmetric accretion theory is the accretion

rate. It may be derived from the ambient conditions (ρISM and TISM) of the ISM far

away from the accreting body.

There is only one transonic solution for the spherically symmetric accretion, for

which the gas moves with subsonic velocity outside the Bondi radius, reaches the

sound speed at rB, and then moves with supersonic velocity approaching a free fall

velocity for r ≪ rB. The sonic radius, rB, changes linearly with mass of the accreting

black hole while the mass accretion rate changes as a square function of the BH mass.

The main shortcoming of Bondi theory is that it uses a very simplified polytropic

gas law and does not include radiative losses of energy and the mass deposition from

massive stars. An accurate model thus requires that the energy conservation equation

must be used instead of equation (4.5). The comprehensive study of spherically

symmetric accretion including radiative cooling and outflow effects is presented in

the next chapter, where we develop a self-consistent theory of spherically symmetric

accretion that takes into consideration both the energy and mass deposition from the

stellar cluster around a central massive black hole.
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Chapter 5

The impact of a black hole’s

gravity on the super star cluster

wind radiative solution.

Abstract

Intensive studies of active galactic nuclei in several spectral ranges provide

strong evidence for the presence of a massive starbursts around the central

supermassive black hole, mainly in Seyfert galaxies (Heckman et al. 1997;

González Delgado et al. 1998). The black hole mass vs velocity dispersion

(MBH − σ) relation (Greene & Ho 2006, and references therein) as well

as the black hole mass vs bulge mass (MBH − Mbulge) relation (Häring &

Rix 2004, and their references) tell us also that black holes at the center

of galaxies and the surrounding stellar systems are closely related. In this

chapter we develop a self-consistent hydrodynamic model to study the in-

ternal structure and kinematics of the accretion flows and the starburst

driven winds that result from stellar clusters with a super massive central

black hole. We derive the hydrodynamic equations that take into consid-

eration the gravitational pull of the star cluster and the central black hole
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and then solve them numerically. We provide numerical calculations for 7

objects of different scales: 3 selected from the list of galaxies with central

super massive black holes of Häring & Rix (2004), the globular cluster G1

and for 3 synthetic objects with an intermediate mass black hole. We pro-

pose a simple analytic approximation to the numerical mass accretion rate

and to the position of the stagnation point. Finally, we briefly discuss the

case when catastrophic cooling begins to dominate over gravity affecting

the inner structure of the resulting flow.

5.1 Introduction

Super massive black holes (MBH ∼ 107M⊙ − 1010M⊙) are thought to be present in

the centers of active galactic nuclei (AGNs). Intensive studies of AGNs in optic,

infrared (IR) and X-ray regimes during the last decade provided also strong evidence

for the presence of a massive starbursts around the central BH in a number of Seyfert

galaxies.

For example, Rodŕıguez Espinosa et al. (1987) found from a sample of opti-

cally selected Seyfert galaxies that far-IR colors are indistinguishable from that of

starbursts galaxies. They suggest then that far-IR luminosities associated with many

Seyfert galaxies indicate on an intrinsic link between the circumnuclear star formation

and the AGN activity.

Baum et al. (1993) found from a sample of Seyfert galaxies that the morphology

of the diffuse radio emission, its intensity, correlation with the far-IR luminosity of

the host galaxy and 25 - 60 µm spectral index are consistent with the heated dust

emission and suggested that circumnuclear starbursts and starburts driven winds may

be intrinsic for many Seyferts despite their relative strengths may vary from one to

another galaxy.

Levenson et al. (2001) presented results of the X-ray imaging and spectroscopic
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Figure 5.1: The MBH − σ relation (from Barth et al. 2005). The solid and dashed lines

represent the MBH −σ relations derived by Tremaine et al. (2002) and Merritt & Ferrarese

(2001), respectively. The black symbols are black holes compiled by Tremaine et al. (2002).

In red a sample from the SDSS compiled by Barth et al. (2005). Other nearby galaxies are

also indicated.

analysis of Seyfert 2 galaxies. They found that the X-ray spectra of their galaxies

require, in addition to the power-law Seyfert component, a thermal emission with

kT = 0.8keV which is characteristic of pure starburst. Jiménez-Bailón et al. (2005)

presented results of the XMM-Newton and Chandra observations of the Seyfert 2

galaxy NGC 1808. They found that the hard X-ray emission is associated with the

unresolved nuclear sources whereas the soft one is dominated by a thermal component

associated with an extended starburst.

Heckman et al. (1997), González Delgado et al. (1998) presented a direct evi-

dence for the existence of nuclear starbursts in the four Seyfert 2 galaxies Mrk 477,
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NGC 7130, NGC 5135 and IC 3639. They found in the UV and optical spectra of

these galaxies the absorption line features associated with photospheres of O and B

stars and their stellar winds. The nuclear in these galaxies have sizes from less than

100 pc to a few hundred parsecs. The co-existence of the W-R features in the op-

tical and CaII triplet in the near-IR part of the spectra requires a continuous star

formation during more than ∼ 10 Myr or two stellar generations with the age of (5-6)

Myr for the younger starburst and (10-20) Myr for the older one, respectively. Such

starbursts are likely drive high-velocity outflows detected in the above and Seyfert

2/starburst composite ultraluminous infrared galaxies (González Delgado et al. 1998;

Rupke et al. 2005).

On the other hand, the MBH ∼ σ4 relation between the mass of the black hole

and the velocity dispersion in the bulge of the host galaxy, revealed by Ferrarese &

Merritt (2000), Merritt & Ferrarese (2001), Gebhardt et al. (2000), Tremaine et al.

(2002), Greene & Ho (2006), can be extrapolated to intermediate-mass black holes

(hereafter IMBH), see Figure 5.1, which shows that the MBH−σ relation extends over

more than 4 orders of magnitude along the mass range (Barth et al. 2005). Recently

it was also proposed that massive stellar clusters may host a central IMBH with mass

about MBH ∼ 103 − 106M⊙ (see Barth et al. 2005; Gebhardt et al. 2005; Greene

& Ho 2006). The globular cluster G1 in the M31 galaxy may be the best example

of a cluster with an IMBH of mass MBH ∼ 2 × 104M⊙ (Gebhardt et al. 2002, 2005;

see however Baumgardt et al. 2003 and Pooley & Rappaport 2006, for an alternative

scenario). These results between MBH and σ as well as the correlation between the

black hole mass and the bulge mass of the host galaxy, MBH − Mbulge, (Merritt &

Ferrarese 2001; Marconi et al. 2003; Häring & Rix 2004) indicate that black holes

and the surrounding stellar systems are closely related.

The connection between a star forming galaxy and its nuclear activity has been

suggested in several works, like for example Ĺıpari & Terlevich (2006) and references

therein. They proposed an evolutionary scenario where a super massive black hole
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is formed during the formation of the galactic core, resulting in an active nucleus

powered by accretion of part of the mass reinserted by the massive members of a

circumnuclear starburst onto the super massive black hole.

The starburst can dramatically alter the structure of the host galaxy. In fact, the

combined action of supersonic stellar winds from young stars and supernova explosions

promotes the formation of a hot X-ray emitting super bubble. This bubble expands

and eventually breaks out to form a galactic or star cluster wind. The structure of

a super stellar cluster wind is strongly affected when radiative cooling is considered

(see Silich et al. 2004). As demonstrated by Silich et al. (2004) and corroborated

by Tenorio-Tagle et al. (2007), there is a threshold line for the super stellar cluster’s

mechanical luminosity. This line separates clusters that are able to drive a stationary

quasi-adiabatic or strongly radiative wind from those evolving in a bimodal regime in

which catastrophic cooling in the central part of the cluster volume accumulates the

injected matter, while the outer zones are still able to drive a stationary super wind

(Tenorio-Tagle et al. 2007).

In this chapter we study the hydrodynamics of the gas inserted by massive stars

and supernova explosions of a massive stellar cluster subjected to the influence of the

gravity of a super massive black hole (BH) at the center. We consider a self-consistent

radiative scenario by taking into account the mass and energy deposition from the

stellar component, we also consider radiative losses. Section 5.2 presents the basics

of the model: the main assumptions, simplifications and the input physics. Section

5.3 presents the main equations, the selected boundary conditions and the method

of solution. In section 5.4 we apply our model to bulges of galaxies with central

super massive black holes and to massive stellar clusters with IMBHs, we present the

integral curves for the wind and the accretion flows as well as density and temperature

distributions for the selected objects. There we propose an analytic approximation

to the mass accretion rate and to the position of the stagnation radius. In section

5.5 we briefly discuss the case of stellar clusters above the threshold line. Section 5.6
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summarizes our results and gives conclusions.

5.2 The model

A composite black hole - starburst system results in a variety of physical processes.

However, here we concentrate on the influence of a black hole on the hydrodynamics

of the matter injected by the massive members of the stellar cluster by making some

assumptions and simplifications: first of all, we consider a static super massive black

hole at the center of a spherically symmetric stellar cluster, we assume that the cluster

has a large number of young massive stars and supernova explosions, distributed

homogeneously throughout its volume. We suppose that the gas injected by massive

stars and supernova explosions is completely thermalized due to random interactions

between individual stellar winds and supernova ejecta. We take into account radiative

losses. The heating efficiency and radiative pressure are neglected in our approach.

We assume zero total angular momentum for the system.

5.2.1 Input physics

The gravitational well associated with the central BH results in the displacement

of the stagnation radius, Rst, (the radius at which the gas velocity is zero) from

the star cluster center towards the star cluster surface. Inside the stagnation radius

the gravitational field of the central black hole dominates and the matter injected

by stellar winds and supernova explosions is accreted onto the BH, despite a high

thermal pressure provided by thermalization. On the other hand, outside of the

stagnation radius the injected matter flows away forming a star cluster wind. Figure

5.2 shows an artistic representation of the model. The small circle shows the black

hole’s sphere of influence of radius Rst and the external circle or radius Rsc represents

the star cluster surface. The central black dot marks the position of the black hole.

The arrows directed towards the center represent the accreting gas whereas those
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Figure 5.2: The structure of the flow that results from the thermalization of the supernova

ejecta and stellar winds when a massive black hole is present at the star cluster center. The

radii of the internal and the external circles represent the stagnation radius Rst and the

star cluster radius Rsc, respectively. The arrows indicate the direction of the flow and the

central dot shows the position of the black hole.

directed outwards represent the out-flowing matter.

5.3 Main equations and solution

To derive the equations of mass, momentum and energy conservation, we use new-

tonian physics. The set of equations that we use in this chapter are similar to those

in Chapter 3, section 3.3, except for the terms which incorporate the gravity of the

central BH. We solve the set of equations following the ideas proposed in Silich et
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al. (2004), Tenorio-Tagle et al. (2007) for three separate regions: 1) outside of the

cluster, 2) between the star cluster radius and the stagnation radius and 3) inside the

stagnation radius.

The set of hydrodynamic equations outside of the cluster

Outside of the cluster the equations of mass, momentum and energy conservation in

spherical coordinates, are:
1

r2

d

dr

(

ρwuwr2
)

= 0, (5.1)

ρwuw
duu

dr
= −dPw

dr
− Gρw(MBH + Msc)

r2
, (5.2)

1

r2

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= −Q − Gρwuw(MBH + Msc)

r2
. (5.3)

As it was demonstrated in Chapter 3, equations (5.1)-(5.3) can be presented in a

more convenient form:

ρw =
Ṁw

4πuwr2
, (5.4)

dPw

dr
= − Ṁw

4πr2

duw

dr
− ρwG(MBH + Msc)

r2
, (5.5)

duw

dr
=

(γ − 1)Q/ρw + 2uw(c2
s − V 2

esc

4
)/r

u2
w − c2

s

, (5.6)

where MBH and Msc are the black hole and the cluster mass, respectively. cs =

(γPw/ρw)1/2 is the sound speed and Vesc(r) = [2G(MBH + Msc)/r]
1/2, is the escape

velocity at radius r. The mass returned by the star cluster into the interstellar

medium is equal to the total mass deposited by supernova explosions and stellar

winds, Ṁsc, minus that injected within the stagnation radius, Ṁst = Ṁsc (Rst/Rsc)
3:

Ṁw = Ṁsc (1 − R3
st/R

3
sc)

The set of hydrodynamic equations inside the cluster

Inside the cluster the main hydrodynamic equations are:

1

r2

d

dr

(

ρwuwr2
)

= qm, (5.7)
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ρwuw
duw

dr
= −dPw

dr
− qmuw − Gρw(MBH + M(r))

r2
, (5.8)

1

r2

d

dr

[

ρwuwr2

(

u2
w

2
+

γ

γ − 1

Pw

ρw

)]

= qe − Q − Gρwuw(MBH + M(r))

r2
, (5.9)

where M(r) is the mass of the stellar system as a function of r. In the case of a

homogeneous stellar mass distribution, the mass within a spherical volume of radius

r is M(r) = Msc(r/Rsc)
3.

For r ≤ Rsc, the constant C in the integral form of the mass conservation equa-

tion, is not equal to zero:

ρw =
qmr

3uw
+

C

uwr2
. (5.10)

The value of C depends on the location of the stagnation point, C = −qmR3
st/3, and

thus the mass conservation equation (5.7) is

ρw =
qmr

3uw

(

1 − R3
st

r3

)

. (5.11)

Using this equation one can replace terms ρwuw and ρwuwr2 in equations (5.8)

and (5.9). Taking the derivative in equation (5.9) and replacing dPw/dr from equation

(5.8), we obtain:

duw

dr
=

1

ρw

(γ − 1)(qe − Q) + qm

[

(γ+1)
2

u2
w − 2

3

(

1 − R3
st

r3

) (

c2
s − V 2

esc

4

)]

c2
s − u2

w

, (5.12)

dPw

dr
= −qw

[

r

3

(

1 − R3
st

r3

)

duw

dr
+ uw

]

− Gρw(MBH + M(r))

r2
, (5.13)

where the escape velocity is Vesc = [2G(MBH + M(r))/r]1/2. Equations (5.11)-(5.13)

describe the flow inside the cluster, for both regions: between the stagnation radius,

Rst, and the edge of the cluster, Rsc, and also in the region r ≤ Rst, where the injected

matter accretes onto the central black hole.

5.3.1 Boundary conditions and solutions.

As was shown by Silich et al. (2004) and in Chapter 3, section 3.3. For clusters below

the threshold line one can always select the proper central temperature that places
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the sonic point at the cluster surface (hereafter we refer to this sonic point as the

outer sonic point), producing a stationary wind. When the black hole is considered,

the stagnation point moves out of the center towards the cluster surface, introducing

a second sonic point (hereafter we refer to this sonic point as the inner sonic point)

interior to the stagnation radius. Thus the problem one has to solve in order to build

a self-consistent solution is to find the proper position of the stagnation radius. In

this respect, the proper position of Rst is defined by the second sonic point (which is

similar to that in the Bondi accretion case with γ = 5/3), specifically that the inner

sonic point ought to be at the star cluster center, see Eqs. (4.18) and (4.10). Here

we replace this condition with

Rsonic 2 = 3RSchw, (5.14)

where RSchw = 2GMBH/c2 is the central black hole Schwarzschild radius, c is the

speed of light and 3RSchw is the radius of the last stable orbit around the black hole

(see Frank et al. 2002). Smaller radii than 3RSchw are not considered in our approach.

Like in the case without gravity, to carry out the numerical integration of equa-

tions (5.4-5.6) and (5.11-5.13), we need to know the relation between the gas number

density, nst, and temperature, Tst, at the stagnation radius. As shown in Appendix

D, gravity does not change the relation between nst and Tst with respect to that found

by Silich et al. (2004) (see section 3.3):

nst = q1/2
m

[

V 2
A,∞/2 − c2

st/(γ − 1)

Λ(Z, Tst)

]1/2

(5.15)

where, cst is the sound speed at Rst, VA,∞ = (2qe/qm)1/2 is the adiabatic wind terminal

speed.

Thus one can always select the Tst that sets the outer sonic point at the star

cluster surface. Then we can use this temperature and the gas number density derived

from equation (5.15) as initial conditions for the inward integration from Rst towards

the star cluster center. The shape of the integral curves (see Figure 5.3) depend,
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however, on the location of the stagnation radius. If the selected Rst is too large,

the backward integration leads to a double-valued, unphysical solution (see Figure

5.3, green line). In this case the turnoff point coincides with the second (inner) sonic

point. The second sonic point moves towards the center when Rst becomes smaller

and continuously approaches 3RSchw (see Figure 5.4, panel c) to finally reach 3RSchw

for a certain value of Rst. For this stagnation radius the stationary solution sets in

(see Figure 5.3, black line). For even smaller Rst the velocity of the flow inside Rst

remains subsonic and may go to zero (see Figure 5.3, red line).

There is a family of integral curves whose Rst sets the inner sonic points at

r < 3RSchw (see Figure 5.4, panel a). We select the largest Rst, that satisfies the

condition (5.14). We select the largest Rst also because in this case the density at

the stagnation point, ρst, is the smallest one (see Figure 5.4, panel d) required for a

stationary accretion flow.

Then, the procedure that allows one to find the self-consistent hydrodynamic

solution for the case of a star cluster with a central massive black hole is:

1. Select an arbitrary stagnation radius inside the cluster and iterate Tst until the

outer sonic point sits at the star cluster surface.

2. Then, the selected ρst and Tst are used as initial conditions to integrate equations

(5.11)-(5.13) inwards from the stagnation point.

3. If the integral curve has a transition from subsonic to supersonic velocities but

is double valued, we select a smaller value for Rst and repeat the calculations.

4. We select the largest Rst from the condition that the inner sonic point sets at

3RSchw, with the minimum density required for a stationary solution.

Figure 5.4 shows different types of the integral curves that appear when one

applies the above procedure. This plot results from an artificial, compact Rsc = 3

pc cluster with mass Msc = 5 × 105M⊙, with the same mass for the central BH.
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Figure 5.3: Possible types of the integral curves inside Rst. Three possible integral curves

marked by green, black and red lines correspond to three different positions of the stagnation

radius: 1 pc, 3.3 pc and 5 pc, respectively. Green line represents a transonic unphysical

solution whose sonic point marked by a cross coincides with the turnoff of the line. Red

line displays a mathematical everywhere subsonic solution. We select the black line as the

proper solution because it satisfies the boundary conditions for the inner and the outer

sonic points and has the smallest density at the stagnation point, and allows also a smooth

solution with a positive du/dr across the flow. The normalization velocity, u0 = 104km s−1,

for black and green lines, and u0 = 102km s−1 for the red line. These solutions were derived

from an artificial system with Msc = MBH = 108M⊙, radius, 100 pc, and the adiabatic wind

terminal speed, VA,∞ = 1500km s−1. It was assumed that the metallicity of the plasma is

solar.

Panel a, shows the integral curves for the region Rst ≤ r ≤ Rsc, obtained for different

stagnation radii. All these solutions have the outer sonic point at the star cluster
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Figure 5.4: The family of integral curves for a Rsc = 3 pc cluster with mass Msc =

5 × 106M⊙ and VA,∞ = 1500km s−1. We have considered MBH = 5 × 106M⊙. Solar

metallicity was assumed in all calculations. Panels a and b display the shape of integral

curves for different positions of the stagnation point. Panel c, shows how the sonic point

moves towards the center for different values of Rst. Panel d, displays the density at the

stagnation point, ρst, as a function of Rst. All these curves are described in the text.

surface. The black solid line represents the selected proper solution whose Rst sits

the inner sonic point at r = 3RSchw. Panel b, displays the integral curves for r ≤ Rst.

The solid line represents the proper solution (i.e, is the continuation of the solid line

in panel a) which satisfies both boundary conditions: the outer sonic point sits at the

star cluster surface (see panel a) and the inner one is at r = 3RSchw (see panel c).

In this case the density at Rst is the smallest (see panel d) between those allowed by
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the stationary solutions with positive derivatives, du/dr > 0, everywhere in the flow.

Dotted lines in panel b are unphysical solutions whose sonic points coincide with their

turn-off points. Dashed lines in panel b satisfy the external boundary condition but

not the internal one.

Panel c, shows how the sonic point approaches the last stable orbit, 3RSchw, when

the stagnation radius moves towards the appropriate Rst. Panel d displays ρst as

a function of Rst. The red diamond marks the density associated with the selected

proper solution. Note that only unphysical double-valued solutions result from a

smaller ρst. The horizontal line separates the double-valued solutions (below the line)

from the single valued ones (above the line).

Thus, there is a number of integral curves for our main equations (5.4)-(5.6) and

(5.11)-(5.13). However, there is only one solution that simultaneously satisfies the two

boundary conditions: the outer sonic point is at the star cluster surface and the inner

one is at r = 3RSchw. We select this solution as the proper physical self-consistent

solution.

5.4 Application to galaxies with a central super

massive black hole

In the previous section, we found the stationary solution for fictitious objects, in the

sense that we have used an arbitrary mass for the BH. In reality, the mass of the

BH is just a small fraction of the mass of the stellar component. MBH ∼ 10−3Mbulge,

according to Merritt & Ferrarese (2001). Hereafter, we use the terms stellar cluster

and bulge without distinction, as both refer to the stellar component.

The main condition on the stellar cluster to apply our model is that its mechanical

luminosity must be below the threshold energy (see Chapter 3, section 3.3). But

the position of the threshold line strongly depends on metallicity and also on the

assumed adiabatic wind terminal speed (see Rodŕıguez-González, 2006). Here, we
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standarize all cases to solar metallicity, Z⊙, and to VA,∞ = 1500 km s−1 for the

adiabatic wind terminal speed, which is a typical wind velocity in the starburst model

of Leitherer et al. (1999). In all cases, the star cluster mechanical luminosity, Lsc =

ṀscV
2
∞

/2, is assumed to be constant and scaled linearly with the mass of the cluster:

Lsc = LLH(Msc/MLH), where the Lsc has been normalized to the standard model

MLH = 106M⊙ −→ LLH = 3 × 1040 erg s−1, of Leitherer & Heckman (1995).

Once we have made the above simplifications, to apply our model we just need 3

physical parameters: the mass of the stellar cluster, Msc, its radius, Rsc, and the mass

of the black hole, MBH . We select and apply our model to several bulges of galaxies

which have central massive black holes, from the list of Häring & Rix (2004). The

model is also applied to the globular cluster G1, assuming that those stellar systems

were formed instantaneously. Obviously all those objects are not young starburst

since they are Gyr old, and probably do not have a sufficient number of stellar winds

and SNe to completely thermalize the injected gas. We can, however, apply our model

by using their parameters together with the assumptions given above. In fact, our

model can be applied to starbursts - AGN galaxies, such as those mentioned in Ĺıpari

& Terlevich (2006), if they fulfill the requirements of our model.

The input data for the selected objects are plotted in Figure 5.5, panel a, which

shows a tight correlation between the mass of the central black hole and the mass of

the surrounding spheroid or bulge (see Häring & Rix, 2004):

log

(

MBH

M⊙

)

= (8.20 ± 0.10) + (1.12 ± 0.06) log

(

Mbulge

1011M⊙

)

. (5.16)

To derive the radius of the bulge we suppose that it is in virial equilibrium, then we

use the velocity dispersion given by Häring & Rix (2004) and the relation:

Msc = 7.5
σ2rm

G
(5.17)

where it is assumed that the cluster is spherically symmetric and has an isotropic

velocity dispersion (see for example, Smith & Gallager 2001). We associated the
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Figure 5.5: The MBH − Mbulge relation (panel a) from Häring & Rix (2004) and the

derived Rbulge −Mbulge relation (panel b). The red symbols are objects for which we apply

our model. Red diamonds are artificial objects.

bulge radius with the half mass radius rm, where rm = 4rhl/3, and rhl is the half-light

radius (see e.g. the review of Gerhard 2000).

Figure 5.5 Panel b displays the derived radii of the bulges against their masses

for 30 objects from the list of Häring & Rix (2004). The red squares mark the objects

for which we apply our model. A log-linear regression fit to Häring & Rix (2004) data

results in

log

(

Rbulge

pc

)

= 0.48 log

(

Mbulge

M⊙

)

− 2.17. (5.18)

Extrapolating expression (5.18) to masses typical of massive star clusters we found

that the fit is in good agreement with the data of the globular cluster G1, taken from

Pooley & Rappaport (2006). Red diamonds in Figure 5.5b are artificial objects on

the regression line (Eq. 5.18).

To select the appropriate objects we use the analytic approximation to the thresh-

old line found in Wünsch et al. (2007), for the assumed Z⊙ and VA,∞ = 1500 km s−1

(see Figure 5.6). We found that most of the objects from the list of Häring & Rix

(2004) evolve in the bimodal, catastrophic cooling regime (see Tenorio-Tagle et al.
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Figure 5.6: The star cluster mechanical luminosity - star cluster radius parameter space.

The solid line marks the threshold luminosity (see Wünsch et al. 2007). The squares are

objects from Häring & Rix (2004); the red symbols mark the selected objects which evolve

in the sub-critical regime. From left to the right these are the bulges of M32, NGC 7457

and the bulge of the Milky Way. Squares in the insert are the globular cluster G1 and the

bulge of M32, diamonds corresponds to artificial objects selected in Figure 5.5.

2007). Only three bulges from the list of Häring & Rix (2004) satisfy the condition for

the mechanical luminosity (see Figure 5.6); these are the bulges of (from left to right

in Figure 5.6): M32, NGC 7457, and the bulge of the Milky Way. The black square

below the threshold line corresponds to the bulge of NGC 4742, excluded because it

lays on the threshold in the numerical calculations. The red diamonds in the insert

of Figure 5.6 corresponds to those in panel b (Figure 5.5), squares mark the bulge

of M32 and the globular cluster G1 in M31 which is the best example of a globular

cluster with an intermediate mass black hole MBH = 2× 104M⊙ (see Gebhardt et al.
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Table 5.1: Summary of object properties

Object MBH Ref. σ Mbulge Ref. Lsc Rbulge Rst

(M⊙) (km s−1) (M⊙) (erg s−1) (pc) (pc)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

SC1 5.3 × 103 . . . . . . 1.0 × 107 . . . 3.0 × 1041 15.5 2.0 × 10−3

SC2 6.4 × 104 . . . . . . 1.0 × 108 . . . 3.0 × 1042 46.8 1.5 × 10−2

SC3 9.0 × 105 . . . . . . 1.0 × 109 . . . 3.0 × 1043 141 1.5 × 10−1

G1 2.0 × 104 1 . . . 1.5 × 107 7 4.5 × 1041 13.5 5.0 × 10−3

M32 2.5 × 106 2 75 8.0 × 108 5 2.4 × 1043 81.6 2.8 × 10−1

NGC 7457 3.5 × 106 3 67 7.0 × 109 3 2.1 × 1044 894 7.3 × 10−1

Milky Way 3.7 × 106 4 75 1.1 × 1010 6 3.3 × 1044 1120 8.5 × 10−1

NOTE. —Col. (1): Object name. Col. (2): Black hole mass. Col. (3): References for the black hole mass. Col.

(4): Stellar velocity dispersion from Tremaine et al. (2002), except for G1 which is taken from Meyland et al. (2001).

Col. (5): Bulge mass. Col. (6) References for the photometric and kinematic data used for the adopted bulge mass.

Col. (7): Mechanical luminosity scaled according with Leitherer & Hechman (1995). Col. (8): Bulge radius. Col.

(9): Stagnation point for the self-consistent solution.

REFRENCES. —(1) Gebhadt et al. (2005); (2) Verolme et al. 2002; (3) Gebhardt et al. 2003; (4) Schödel et al.

2002; (5) Magorrian et al. 1998; (6) Bissantz et al. 1997; (7) Meyland et al. 2001.

2005).

The properties of the selected objects are summarized in Table 5.1. The clusters

SC1, SC2 and SC3 are artificial objects represented by red diamonds in Figure 5.5

panel b, and in the insert in Figure 5.6. The BH masses in these cases were derived

from relation (5.16) and the star cluster radii were calculated from equation (5.18).

The mass of the globular cluster G1 and its central BH were taken from the literature

(see references in Table 5.1), the cluster radius, RG1 = 13.5pc, was derived assuming

a distance of 770 kpc (Freedman et al. 2001). The masses of the BHs and bulge mass

in M32, NGC 7457 and the Milky Way have been taken from Häring & Rix (2004).

Their radii were derived from the relation (5.17), where we used the stellar velocity

dispersion from Tremaine et al. (2002). The mechanical luminosities in all cases were

assumed to be constant and scaled linearly with the mass of the cluster (see Leitherer

& Heckman, 1995).

From our numerical calculations we found that the cooling rate is not so impor-
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Figure 5.7a.—

65



Figure 5.7b.—

66



Figure 5.7c.—

Figure 5.7: The velocity integral curves and the distributions of density and temperature,

panels a, b, and c, respectively, for a set of selected objects of different scales (see Table 5.1).

Solid lines represent the accretion solution, while dotted lines represent the wind solution.
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tant for the accretion flow and the gas accretes in a quasi-adiabatic regime, in contrast

with the outflows where radiative cooling drastically modifies the temperature distri-

bution. The shapes of the integral curves for all selected objects are shown in Figure

5.7. Panels a, b and c display the velocity, density and temperature, respectively, as

functions of the distance to the center, r. Dotted lines represent the wind solution

(r ≥ Rst) and solid lines represent the accretion solution (r ≤ Rst). Panel a, shows

that for any stellar system below the threshold line we can always select the proper

Rst to obtain a smooth, stationary solution for the hydrodynamics of the gas inserted

by the stellar cluster under the gravitational field of a central BH. We found that for

r > Rst the gravity of the black hole does not affect significantly the shape of the

wind solution. Note that in more massive BHs cases the gas accelerates more rapidly

towards the center, as it is expected. Note also that for the range of BH masses here

used, the stagnation radii are smaller than 1 pc. Panel b shows how density increases

inside the stagnation radius. Observe that, inside Rst, density increases faster for

larger BH masses, however, when we compare the density profile of M32 with that

of the Milky Way, we observe the opposite, this is because the bulge of M32 is more

compact and the ratio Msc/R
3
bulge is larger than in the Milky Way. Panel c shows how

the gas temperature grows as it moves from Rst towards the BH. Note that, in some

cases, the temperature is too high (> 108 K) in the central region leading possibly to

X-rays.

5.4.1 An analytic approximation to the mass accretion rate

and the stagnation radius

In the spherically symmetric case, all mass deposited by stellar activity within the vol-

ume delimited by the stagnation radius is accreted by the central black hole. However,

it is known that even a small initial angular momentum would lead to the formation

of an accretion disk around the black hole. In this way, the mass accretion rate cal-
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culated under assumption of spherical-symmetry should be considered as the upper

limit to the mass accreted by the central object. In this respect, it is instructive to

compare our theory (where Macc represents a fraction of the total mass deposited by

the stellar cluster, Ṁsc)

Ṁacc = Ṁsc

(

Rst

Rsc

)3

(5.19)

with Bondi’s (Bondi 1952; Frank et al. 2002 and references therein) spherically sym-

metric accretion onto a black hole embedded in a homogeneous, static ISM:

ṀB = πG2M2
BH

ρISM

c3
ISM

, (5.20)

where ṀB is the Bondi accretion rate for an interstellar medium with polytropic index

γ = 5/3 (see Appendix C), ρISM and cISM are the density of the ISM and the sound

speed at infinity. As below the threshold line (see section 3.3 in Chapter 3), density

and temperature inside the cluster remain close to that derived from the adiabatic

solution of Chevalier & Clegg (1985), see Silich et al. (2004). We can compare our

results with those of a Bondi accretion by using the central temperature, Tc, and the

central density, ρc, of a cluster evolving in the adiabatic regime (see Cantó & Raga,

2000):

ρc =
1

2πA

Lsc

R2
scV

3
A,∞

, (5.21)

Tc =
γ − 1

γ

µ

k

qe

qm
, (5.22)

cc =

√

γ − 1

2
VA,∞, (5.23)

where the constant A corresponds to the relation (3.8) in Chapter 3, section 3.2.

The results of the comparison for the objects listed in Table 5.1 are shown in

Figure 5.8, where our results (Eq. 5.19) are labeled by red diamonds. The solid line

mark the Bondi accretion rates (Eq. 5.20) calculated under the assumption that ρISM

and cISM correspond to the central density ρc and sound speed cc of an adiabatic star
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Figure 5.8: The accretion rates and accretion luminosities calculated for objects listed

in Table 5.1. Red diamonds present the results of our numerical calculations. Solid line

represents the analytic approximation to the numerical Ṁacc, based on Bondi and Cantó et

al., results. Dashed line represents the Eddington luminosity.

cluster wind. Figure 5.8 shows that one can reproduce our numerical results with a

good accuracy if one uses Bondi’s accretion theory (Eq. 5.20) with ρISM ≈ ρc and

cISM ≈ cc derived from the adiabatic star cluster wind theory of Chevalier & Clegg

(1985), see formulae (5.21) - (5.23).

The luminosity that results from the calculated mass accretion rates for an

accretion efficiency η = 0.1, remains always below the Eddington limit LEdd ≃

1.3 × 1038MBH/M⊙ erg s−1 (see Figure 5.8b, where dashed line represents the Ed-

dington luminosity and, red diamonds are the numerical results and solid line is the

analytic approximation.

Because Macc ≈ MB, we can derive an analytical formula for the mass accretion

rate and for Rst in terms of the BH and the cluster parameters. Indeed, equating

Macc ≈ MB (Eqs. 5.19 and 5.20) under the assumption that ρISM = ρc, cISM = cc:

Ṁacc = πG2M2
BH

ρc

c3
c

, (5.24)
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and taking into account that the mass deposition per unit volume is

qm =
3

4π

Ṁsc

R3
sc

=
3

2π

Lsc

V 2
A,∞R3

sc

, (5.25)

one can obtain:

Rst = cc

(

3

4

G2M2
BHρc

qm

)1/3

. (5.26)

Thus below the threshold line one can obtain Rst from equation (5.26) if the cluster

radius, the adiabatic wind terminal speed and the mass of the central black hole are

known.

5.5 Stellar clusters in a catastrophic cooling regime

The theory developed in previous sections was applied to the case of clusters below

the threshold line in the Lsc − Rsc parameter space (see Chapter 3). Above the

threshold line clusters evolve in a bimodal regime (see Tenorio-Tagle et al. 2007).

In this regime, strong radiative cooling causes the displacement of the stagnation

point from the center and leads to the accumulation of the mass injected inside the

stagnation radius, while the outer zones drive a stationary outflow. As we show in

Appendix D, the relation between the gas number density and the temperature at

the stagnation point is not affected by gravity. One can then calculate the pressure

at the stagnation point (see Figure 5.9) for any cluster from the relation:

Pst = kTstq
1/2
m

[

V 2
A,∞/2 − c2

st/(γ − 1)

Λ(Z, Tst)

]1/2

. (5.27)

Figure 5.9 displays the relation between pressure and temperature at the stagnation

point for clusters with different mechanical luminosities and radii 100 pc. For an

energy input rate Lsc = 3 × 1042 (short-dashed line), the pressure at the stagnation

point, which sets the sonic point at the star cluster surface, is smaller than the

maximum pressure, Pmax, which is associated with the critical temperature Tcrit.

Note, however that Pst becomes larger for more massive clusters (long-dashed line),
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Figure 5.9: The pressure and temperature at the stagnation point for 100 pc clusters with

different masses. The pressure at the stagnation point, Pst, for several clusters is indicated

by the red crosses. Pst remains below the maximum possible value for clusters that are below

the threshold line (the short and long-dashed lines), and acquires the maximum value, Pmax,

when Msc = Mcrit (solid line). Note that Pmax selects the critical stagnation temperature,

Tcrit, marked by the vertical line (see Tenorio-Tagle et al. 2007). Tcrit ≈ 2.2× 107 K for an

assumed value of the adiabatic terminal speed VA,∞ = 1500 km s−1. Solid line represents

the case with a critical energy input rate, Lsc = 2.7× 1043 erg s−1. Long-dashed and short-

dashed are for clusters below the threshold line, with Lsc = 1.5 × 1043 and Lsc = 3 × 1042

erg s−1, respectively.

continuously approaching the maximum pressure until the mass of the cluster reaches

the critical value Mcrit. It was demonstrated by Tenorio-Tagle et al. (2007) that in

the case without a black hole, if Msc ≥ Mcrit, the pressure at the stagnation point,

Pst, takes the maximum possible value and Tst remains equal to the value acquired

at the threshold line, Tst = Tcrit. Thus if Msc < Mcrit, then Tst > Tcrit and if
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Figure 5.10: The stagnation temperature as a function of the star cluster mass. Solid

line represents Tst in the case of the clusters with a central black hole. Dashed line shows

the same in the case without the central black hole. The horizontal line represents Tcrit.

Star clusters whose masses reach the critical value are marked by the red and blue lines, in

the case with and without the central black hole, respectively. The corresponding critical

luminosities are Lcrit = 2.7 × 1043erg s−1 and Lcrit = 4.7 × 1043 erg s−1. Note that when

a central black hole is added, the threshold line shifts below the critical luminosity found

in the case without a black hole. In all calculations we assumed that the mass of the BH is

108M⊙.

Msc ≥ Mcrit, Tst = Tcrit (see Figure 5.9). The vertical line in this figure marks the

critical temperature and shows the track of Pmax for clusters above the threshold

energy.

The temperature at the stagnation point for 100 pc clusters with different masses

and with a 108M⊙ central BH, is shown in Figure 5.10 and is compared with the
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central temperature for clusters with the same radii but without BH (Figure 5.10,

dashed line). As the mass of the cluster increases, Tst, diminishes and reaches the

critical temperature, Tcrit, (marked in Fig. 5.10 by the horizontal line) when clusters

reach the critical mass, Mcrit, (represented with red and blue vertical lines for both

cases with and without BH, respectively). Note that in the BH case, Mcrit is smaller

than in the without BH case. If we look at the red line, we note that the BH shifts Tst

to lower values for the same parameters of the cluster. Note also that when the BH is

considered, Tst reaches the critical temperature at smaller Msc value with respect to

the without BH case. When Tst = Tcrit, radiative cooling becomes a dominant factor

in both cases, and the clusters evolve in the bimodal regime. In this case, Rst and

Ṁacc are controlled by the radiative cooling of the injected matter. While below the

threshold line these parameters are defined basically by the mass of the BH.

From the precedent analysis we demonstrate that in the case of low mass clusters

the stagnation radius is defined by the central BH whereas for the more massive

clusters - by a strong radiative cooling. One can introduce then, by analogy with

the case without BH, the threshold mechanical luminosity. However in this case

the threshold luminosity separates clusters whose inner structure (stagnation radius)

is dominated by the central BH from that, whose stagnation radius is defined by

the radiative cooling. Thus in presence of the central BH the threshold mechanical

luminosity is defined by the condition

Rst,BH = Rst,cool, (5.28)

where Rst,BH and Rst,cool are the stagnation radii required by the BH and the strong

radiative cooling, respectively (see solid line in Figure 5.11). Dashed line in the same

figure separates clusters for which the stagnation radius is at the center of the cluster

from that, whose stagnation radius is defined by cooling.

Note that the 108M⊙ BH used in the calculations shifts the threshold mass

(luminosity) by a factor of 1.4 for the assumed VA,∞ = 1500 km s−1 and Z⊙.
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Figure 5.11: The threshold mechanical luminosity of the cluster with a central black hole.

The dashed line presents the threshold luminosity for the case without the central black

hole. The solid line displays the threshold luminosity for the same cluster, but with a 108M⊙

black hole in the center. It was assumed that the adiabatic wind terminal speed is 1500 km

s−1 and solar metallicity for the plasma.

5.6 Conclusions

In this chapter we developed a self-consistent, steady-state radiative solution for

gaseous flows driven by stellar clusters with a central black hole.

We demonstrated that a black hole at the star cluster center shifts the stagnation

radius from the center towards the star cluster surface. We also demonstrated that

below the threshold mechanical luminosity the position of the stagnation radius is

defined by two boundary conditions: the outer sonic point is at the star cluster

surface and the inner one is at r = 3RSchw. The proper solution corresponds to

75



the minimum ρst required for a stationary solutions with positive derivatives, du/dr,

across the flow.

We applied our model to the bulges of three galaxies: M32, NGC 7457 and the

Milky Way, and also to the globular cluster G1 and three artificial clusters whose

parameters were derived from the Mbulge−MBH relation. In spite of the fact that the

bulge of the selected objects and G1 are not young starbursts we use their parameters

to demonstrate that for stellar clusters below the threshold line and an arbitrary mass

of the BH, our model leads always to a stationary solution.

We demonstrated that the threshold mechanical luminosity of the cluster in the

case with a black hole separates clusters whose stagnation radius is defined by the

BH from that, whose inner structure is defined by radiative cooling.

We propose a simple analytical approximation to the numerical accretion rate

and to the position of the stagnation point (equations 5.20 and 5.26), that can be

used as upper limits.

Our study is a step towards constructing a self-consistent model for spherically

symmetric accretion onto the black hole at the center of a young stellar cluster (com-

pare for example, with the isothermal model of Durisen & Burns, 1981; and the

polytropic model of Bondi, 1952). The model requires some further improvements.

One of them is to implement more realistic assumptions about the stellar mass dis-

tribution and to account for the radiative heating caused by radiation emerging from

the accretion disc around the central black hole. However, for my future work the

main problem to be addressed is the case of a central black hole inside a cluster that

evolves in the catastrophic cooling regime.
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Chapter 6

Conclusions of this thesis

We studied the impact of gravity on the internal structure of super stellar cluster

winds. We demonstrated that the gravity field of the cluster modifies the structure

of isothermal winds: in the case without gravity the gas outflow accelerates faster

than in cases with gravity, because when the gravity term is neglected the central

density becomes more than 4 orders of magnitude smaller than in the case with

gravity. In the isothermal case without a gravity there is no critical point, and the

stationary solution requires that the sonic point lies at the cluster surface. Although

the isothermal assumption is simple, we have solved the problem in a self-consistent

manner by taking into account the mass deposition inside the cluster.

Although the gravity force of the stellar cluster modifies the structure of the

isothermal winds, here we demonstrated that the gravity field of the stellar cluster

does not modify the hydrodynamic evolution of radiative winds. This results from

the high pressure gradient, which exceeds the gravity force.

In order to attack the main goal of this work, we reconsidered the Bondi accretion

solution as a reference for our self-consistent model. Because Bondi accretion is used

in many cases, here we present a formal solution (for the accretion velocity and density

distribution) in terms of dimensionless variables which can be scaled to BHs of any

mass.
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The main contribution of this thesis is that, we propose a solution of the spher-

ically symmetric flows for the gas injected within super stelar clusters with a central

massive black hole by using a self consistent model.

We proof that our model can be applied to AGN-SB composite with intermediate

mass black holes and super massive black holes.

We demonstrated that the central BH modifies locally the behavior of the gas

injected inside the stagnation point but does not change the structure of the outflow.

However, from our numerical calculations, we found that the presence of the BH

lowers the threshold energy below the values obtained in the cases without gravity.

We demonstrate that the threshold mechanical luminosity of young stellar clus-

ters with a central BH separates clusters for which the stagnation radius and accretion

rate is defined by the BH from that, whose inner structure is defined by radiative cool-

ing.

In many cases, to estimate luminosities or solve accretion problems the key pa-

rameter is the mass accretion rate. As in the Bondi accretion formulation, the problem

is to select the appropriate values for the density and temperature of the ISM; here

we presented alternative formulae to the mass accretion rate and to the stagnation

radius in terms of physical parameters of the BH and the host stellar spheroid, instead

of ISM parameters.
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Appendix A

Density distribution for an

isothermal wind in the subsonic

regime

For the subsonic region r ≤ rc (the region inside the critical radius, Eq. 2.18),

equation (2.12) can be written in the form

u

c2
s

du

dr
+

1

ρ

dρ

dr
+

GMsc

c2
sr

2
= 0. (A.1)

An integration of Eq. (A.1) results in

log
ρ

ρ0
+

1

2

(

ρ0u0r
2
0

c2
sρr2

)2

=
GMsc

c2
s

(

1

r
− 1

ρ0

)

+
u2

0

2c2
s

(A.2)

where ρ0 and u0 are density and velocity, respectively at a given radius r0. Let us now

compare equation (A.2) with the density distribution of a hydrostatic atmosphere.

In a static atmosphere the density is given by the hydrostatic equation

1

ρ

dp

dr
+

GMsc

r2
= 0 (A.3)

which transforms, with p = ρkT/µ, into

r2

ρ

dρ

dr
= −GMsc

c2
s

(A.4)

79



if the atmosphere is isothermal. The solution is

log
ρ

ρ0
=

GMsc

c2
s

(

1

r
− 1

r0

)

(A.5)

The density structure (equation A.5) of the hydrostatic region is very similar to

that of an isothermal cluster wind. In particular at the critical or sonic point where

u0ρ0r
2
0 = csρ(rc)r

2
c , Eq. (A.2) is identical to Eq. (A.5). In fact, Eq. (A.2) remains

close to Eq. (A.5) when the wind velocity is highly subsonic, u0 ≪ cs. The close

agreement between the hydrostatic and wind density distributions in the subsonic

region is due to the fact that the term udu/dr in the momentum equation (2.12) is

much smaller than the pressure gradient term.
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Appendix B

l’Hopital’s rule for equations with

a singular point

l’Hopital’s rule provides an expression for the derivative of a first order differential

equation with a singular point:
dF

dx
=

f(x)

g(x)
. (B.1)

Let us suppose that this equation has a singularity at xc, where f(x) = 0 and g(x) = 0.

The derivative dF/dx at the critical point, xc, can be found by expanding f(x) and

g(x) in Taylor’s series around xc.

dF

dx











xc

=
f(xc) + (x − xc)f

′(x) + 1
2
(x − xc)

2f ′′(xc)...

g(xc) + (x − xc)g′(x) + 1
2
(x − xc)2g′′(xc)...

(B.2)

If the first derivatives of f and g at xc are both non zero then

dF

dx











xc

=
f ′(xc)

g′(xc)
. (B.3)

If only one of the two derivatives f ′(xc) or g′(xc) is zero, then dF
dx









xc

is either 0 or

±∞. If both f ′(xc) and g′(xc) are zero, then

dF

dx











xc

=
f ′′(xc)

g′′(xc)
(B.4)
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etc.

This rule is useful for determining the stationary stellar wind solution. In this

case the momentum equation often has the form

1

u

du

dr
=

2γa2

r
− GMsc

r2 + f(r)

u2 − γa2
(B.5)

where u(r) is the velocity, γa2 = c2
s is the square of the sound speed and function

f(r) represents the external forces which are different from the thermal gas pressure

and gravity. The critical point occurs at rc where the numerator and denominator

are zero. At the critical point the velocity of the gas equals the sound speed

u2(rc) = c2
s (B.6)

and
GMsc

r2
c

− f(rc) =
2c2

s(rc)

rc
=

2u2(rc)

rc
(B.7)

The application of l’Hopital’s rule to equation (B.5) in the case of isothermal

wind (γ = 1 and cs = constant) gives

1

uc

(

du

dr

)

rc

=
−2c2s

r2
c

+ 2GMsc

r3
c

+
(

df
dr

)

rc

2uc

(

du
dr

)

rc

(B.8)

with uc = cs. This results in a quadratic expression for (du/dr)rc
whose roots are

(

du

dr

)

rc

= ±
[

−c2
s

r2
c

+
GMsc

r3
c

+
1

2

(

df

dr

)

rc

]1/2

(B.9)

If we neglect df/dr, then the critical point occurs at rc = GMsc/2c2
s and

(

du

dr

)

rc

= ± 2c3
s

GMsc
(B.10)

For a wind with an outward increasing velocity the positive sign in (B.10) must be

adopted. The determination of the velocity gradient in the critical point by l’Hopital’s

rule is essential for the numerical integration of the momentum equation because

it allows a smooth transition through a region where the numerical integration is

impossible because du/dr is uncertain.
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Appendix C

The Bondi accretion rate for the

cases γ = 5/3 and γ = 1

The Bondi accretion rate is defined by the gas parameters far away from the center:

Ṁ = πG2M2 ρISM

c3
ISM

(

2

5 − 3γ

)

5−3γ

2(γ−1)

. (C.1)

In the adiabatic case (γ = 5/3) the factor

f =

(

2

5 − 3γ

)
5−3γ

2(γ−1)

(C.2)

is uncertain. One can avoid this problem taking the logarithm, from both sides of

equation (C.2) and then apply l’Hopital’s rule to the resulting expression:

log f =
5 − 3γ

2(γ − 1)
log

(

2

5 − 3γ

)

. (C.3)

Note that (C.3) has the form

log f =
1

γ − 1

log x

x
, (C.4)

where x = 2/(5−3γ). When γ → 5/3, the log x/x has the undetermined form ∞/∞.

l’Hopital’s then gives

limx→∞

log x

x
= limx→

1
x

1
= 0. (C.5)
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Therefore log f(5/3)=0 that implies that f = 1. So the accretion rate is

Ṁ = πG2M2 ρISM

c3
ISM

. (C.6)

In the isothermal case (γ = 1), equation (C.3) can be expressed as

log f =
5 − 3γ

2(γ − 1)
[log 2 − log(5 − 3γ)] (C.7)

which has the form 0/0 for γ = 1. If g = [(5−3γ)/2][log 2−log(5−3γ)] and h = γ−1,

its derivatives are g′ = 3/2 and h′ = 1, respectively. And l’Hopital’s rule gives

log f =
g′

h′
=

3

2
, then f = e3/2. (C.8)

Therefore, the accretion rate is

Ṁ = πG2M2 ρISM

c3
ISM

e3/2. (C.9)
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Appendix D

The relation between the gas

density and temperature at the

stagnation point

The relation between the gas number density and temperature at the stagnation point

can be found from the energy and mass conservation equations:

du

dr
=

1

ρ

(γ − 1)(qe − Q) + qm

[

(γ+1)
2

u2 − 2
3

(

1 − R3
st

r3

) (

c2
s − V 2

e

4

)]

c2
s − u2

, (D.1)

ρur2 =
qmr3

3

(

1 − R3
st

r3

)

. (D.2)

An evaluation of the equation (D.1) at the stagnation point (u = 0), results in

du

dr











r=Rst

=
(γ − 1)(qe − Q)

ρc2
s

. (D.3)

The derivative of the velocity from equation (D.2) is

du

dr
=

qm

3ρ

[

1 +
2R3

st

r3
+

1

ρ

(

R3
st

r2
− r
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. (D.4)

At r = Rst, it is
du

dr











r=Rst

=
qm

ρst
. (D.5)
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The comparison of equations (D.3) and (D.5) then results in

nst = q1/2
m

[

qe/qm − c2
st/(γ − 1)

Λ(Z, Tst)

]1/2

(D.6)

Thus, the relation between the gas number density and the temperature at the stag-

nation point remains the same as derived by Silich et al. (2004) for the case without

gravity.
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5.11 The threshold mechanical luminosity of the cluster with a central black hole.

The dashed line presents the threshold luminosity for the case without the

central black hole. The solid line displays the threshold luminosity for the

same cluster, but with a 108M⊙ black hole in the center. It was assumed

that the adiabatic wind terminal speed is 1500 km s−1 and solar metallicity

for the plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

93



References

Barth, A. J., Greene, J. E., & Ho, L. C. 2005, ApJ, 619, L151

Baum, S. A., O’Dea, C. P., Dallacasa, de Bruyn, A. G. & Pedlar, A. ApJ, 419,

553

Baumgardt, H., Makino, J., Hut, P., McMillan, S., & Portegies Zwart, S. 2003,

ApJ, 589, L25

Bissantz, N., Englmainer, P., Binney, J., & Gerhard, O. 1997, MNRAS, 289,

651

Blandford, R. D., & Begelman, M. C. 1999, MNRAS, 303, L1

Bondi, H., & Hoyle, F. 1944, MNRAS, 273

Bondi, H. 1952, MNRAS, 112, 195
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Wünsch, R., Palouš, J., Tenorio-Tagle, G., & Silich, S. 2007, in IAU Symposium,

Vol. 237, IAU Symposium, 497-497

97




