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Abstract 
 

In this thesis we find a general expression for the surface plasmon modes 

following a treatment analogous to diffraction free beams, the main result being 

that the expression for the dispersion relation functions is generalized. This 

feature allows us the coupling between surface plasmon waves with other kinds of 

optical fields propagating in homogeneous media such as Bessel beams. We 

obtain the surface mode solution for the Helmholtz equation using an analog 

formalism for diffracted free beams. By means of a linear superposition of the 

surface modes we obtain an expression similar to the angular spectrum model 

which allows us the study of arbitrary surface diffraction fields. For the 

understanding of the physical features implicit in this representation, we describe 

the interaction between two counter-propagating surface modes, generating a 

standing plasmonic wave, whose nodes then generate a stationary local charge 

distribution. The study is reinforced by associating extremal features to the 

surface modes and an eikonal equation for plasmonic fields is obtained, where a 

plasmonic refractive index appears naturally. This representation allows us to 

interpret the surface optical field as a geodesic flow which in principle enables us 

to associate coherence features to plasmon modes and to analyze the stability of 

the surface fields under small perturbations of the refractive index. We study 

theoretically the surface plasmon electromagnetic field in the plane of the 

interface along which it propagates. Arbitrary surface plasmon fields are 

expressed by means of a linear superposition of elementary surface plasmon 

modes, thus obtaining an expression for the in-plane components similar to the 

angular spectrum model, which establishes the formal foundations of a two-

dimensional surface plasmon optics. From this representation, we obtain the 

general description for surface plasmon modes as in-plane diffraction free beams. 

These new modes with their corresponding phase parameters are used to study 

surface plasmon self-imaging phenomenon and the synthesis of surface plasmon 

singularity regions (caustics) of surface plasmon fields. Finally, we show the 

radiometric features for scalar optical fields by means of the spectral density 

function and the spectral flux function, this model is used to describe the 
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radiometric features of surface plasmon fields. Hence, we show that the 

singularities for the phase functions allow us to describe the angular transfer 

moment in the neighborhood of the focusing regions. We show that the 

differential equation associated to the singularities remains non-variable under 

linear transformations which may represent scaling or rotating. These features are 

the support for the study of dynamical surface plasmon behavior which explains 

the conditions to generate surface plasmon vortex.  

 



Resumen 
 

En esta tesis encontramos una expresión general para los modos plasmonicos de 

superficie siguiendo un tratamiento análogo para haces libres de difracción, el 

resultado principal es la expresión para la función de relación de dispersión que es 

generalizada, de modo que con esta característica nos deja el acoplamiento entre 

ondas plasmonicas de superficie con otros tipos de campos plasmonicos 

propagándose en un medio homogéneo tales como los haces Bessel. Se obtuvo la 

solución modal de superficie para la ecuación de Helmholtz utilizando un formalismo 

análogo para haces libres de difracción. Mediante una superposición lineal de los 

modos de superficie obtuvimos una solución similar al modelo del espectro angular, 

el cual nos permite el estudio de campos arbitrarios de difracción de superficie, así 

como la compresión de las características físicas implícitas en esta representación. 

Describimos la interacción entre dos modos de superficie contra propagándose que 

generan una onda plasmonica estacionaria, cuyos nodos producen una distribución 

local de carga estacionaria: El estudio es reforzado por las características extrémales 

para los modos de superficie y una ecuación eikonal es obtenida para campos 

plasmonicos, donde una índice de refracción plasmonico aparece, esta representación 

nos permite interpretar el campo óptico de superficie como un flujo geodésico que en 

principio; nos deja asociar características de coherencia, para modos plamonicos y 

analizar la estabilidad de campos plasmonicos de superficie, bajo pequeñas 

perturbaciones del índice de refracción. Se estudio teoréticamente el campo 

electromagnético plasmonico de superficie en el plano a lo largo de la interface en 

cual se propaga. Los campos arbitrarios plasmonicos de superficie son expresados 

mediante una superposición lineal de modos plasmonicos de superficie, así 

obteniendo una expresión similar para las componentes en el plano al modelo del 

espectro angular, que establece la formación formal de una óptica de plasmones de 

superficie en dos dimensiones, desde está representación se obtuvo la descripción 

general para modos plasmonicos de superficie como haces libres de difracción en el 

plano, estos nuevos modos con sus correspondientes parámetros de fase son 
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utilizados para estudiar fenómenos de auto imágenes y síntesis de regiones singulares 

(Causticas) de campos plasmonicos de superficie. Finalmente, se muestra las 

características radiométricas para campos ópticos escalares mediante la función de 

densidad espectral y la función de flujo espectral, este modelo es utilizado para 

describir las características radiométricas de campos plasmonicos de superficie. Por 

lo tanto, se mostro que las singularidades para la función de fase nos permite describir 

el momento de transferencia angular en la vecindad de regiones de focalización, se 

muestra también que la ecuación diferencial asociada a la permanencia de 

singularidades bajo una transformación lineal no cambia y que puede representar una 

escalamiento o rotación, estas características son el apoyo para el estudio del 

comportamiento dinámico de plasmones de superficie, que explica las condiciones 

para generar vorticidad plasmonica. 
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CHAPTER 1 

 
 

 
1 INTRODUCTION 

 

     The study of contemporary optics such as left-hand materials, atom trapping, 

etc., implies a two-dimensional analysis of the electromagnetic field propagating 

on a metal surface. In this context the absorption phenomena plays an important 

role and the application of the traditional models is not feasible. One alternative 

approach for avoiding absorption is the description of resonant phenomenon 

between surface plasmon waves where the structural features characterized by the 

dispersion relation function is modified. These features offer interesting 

applications in nano-optics and explain the evolution of light through left hand 

materials or meta-materials. The fundamental structure to generate resonant 

effects are the surface plasmons which are waves generated by collective 

oscillation of surface charges. The elementary surface plasmons waves were 

predicted by Raether almost twenty five years ago, these waves can be considered 

analogous to plane waves for homogeneous media. The structural properties of 

these surface plasmon waves are defined by the phase function and their 

properties are characterized by the dispersion relation function which essentially 

describes the coupling between light propagating in the space and the surface 
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plasmon mode, i.e. this function represents the conservation law of momentum 

between the optical fields as a function of the frequency. In the present thesis 

work we find a general expression for surface plasmon modes following a 

treatment analogous to diffraction free beams, the main result being the 

expression for a general dispersion relation function. This feature allows us the 

coupling between surface plasmon waves with modes propagating in 

homogeneous media such as Bessel beams.   

 

The current theory for surface plasmon waves has been obtained essentially 

from solid state models; this point of view has the inconvenient that classical 

optical models are not easy to be implemented in the analysis of the surface 

plasmon fields. In the present thesis we establish a new point of view. We start the 

study from the Helmholtz equation following the formalism for diffraction free 

beams and the dispersion relation function is obtained [1-4]. The refractive index 

is obtained following the theoretical model proposed by Drude (see Appendix 2). 

This theory considers the conduction electrons of a metal as a homogenous gas of 

electrons which are surrounding a positive uniform potential generated by 

immobile positive charges of red-crystal ions. The most interesting aspect of the 

Drude model allows us to predict acceptably the electrical and thermal 

conductivity of the metals; hence it predicts the possibility to generate surface 

plasmons waves. 

 

     As an introduction, we describe the analysis of the conductivity and the 

possibility to generate surface plasmons as is shown below. To calculate a current 

on a metal generated by a variable electric field, we use: 

 

                                                ( ) ( ) ( )tiEtE ωω −= exp                                           (1) 

 

where ( )ωE  represents the amplitude field as a function of the frequency ω . The 

motion equation for a free electron is represented by: 
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m
eEx

dt
dx

dt
xd

+−−= 0
2

2

2 1 ω
τ

       *                                (2) 

 

where e is the electron charge and τ  is the average time between successive 

collisions. We propose a stationary solution of the form: 

 

                                             ( ) ( ) ( )tixtx ωω −= exp                                               (3) 

 

Replacing the complex forms x(t) and E(t) in equation (2), which must be satisfied 

for both real and complex parts, we find: 

 

                                         ( ) ( ) ( )
m

eExxix ωω
τ
ωωωω −−=⋅ 2

0
2                                (4) 

 

Considering a unitary volume of the metal, which contains n free electrons, 

each of charge –e, the total charge will be –ne. The total charge crossing a unit 

area per unit time is , this is the definition of current density and  is 

the drift velocity. Therefore, by using the expression for current density we 

obtain: 

dnevj −= dv

 

                                                  ( ) ( ) ( )tijtj ωω −= exp                                         (5a) 

 

And  

                                   ( )
( ) ( )

ωτ

ω
ω

i

Em
ne

nevj d
−

==
1

2

                                              (5b) 

 

This result is commonly re-written as: 

 

 
* Equation (2) can be found in appendix 1, where e is the electron charge and τ is the relaxation 
time, i.e. the average time during which an electron can move without having a collision with an 
ion. 
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                                               ( ) ( ) ( )ωωσω Ej =                                                    (6) 

 

where ( )ωσ  is the alternating conductivity of the material; it depends on the 

frequency of the electrical field by: 

 

                                               ( )
ωτ

σ
ωσ

i−
=

1
0                                                      (7a) 

 

                                                   
m

ne τσ
2

0 =                                                          (7b) 

 

The most important application concerning this result is the study of the 

propagation of electromagnetic radiation on the metal, however in the Drude 

model some questions concerning the structure of the electrical field must be 

considered: 

 

1) For an electromagnetic wave, the electric field E has an associated 

perpendicular magnetic field H both of them have the same magnitude and they 

are not included in the motion equation (2). 

 

     2) For an electromagnetic wave, the fields vary not only with time but also in 

the space while the motion equation (2) was concluded by assuming a spatially 

uniform power (see Appendix 1). 

 

The first obstacle can be not to know why the magnetic field includes a term 

which is ( ) *Hmc
ep ×− ω  which is c

ν times smaller than the electric E term, 

where v is the average velocity of the electrons. Even for a high density current 

like 1 A/mm, ne
j=ν  is only 0.1 cm/s. Hence, the magnetic term is 

ximately 1010−  that of the electric term, so it can alwaappro ys be ignored. 

 
*Taking into account Lorentz law ( )HvcEeF ×+−= 1  
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The second difficulty has deep physical implications, the equation of 

movement for the electrons given by equation (2) implies that at any moment the 

same power value is on each electron, in general it is not true. This is because the 

electric field varies with the position. This implies that the current density is 

function of the position r, the distance must be minor than the average distance 

between collisions. The collision only takes place after a few free-mean paths 

from the point r. Hence, if the field is approximately constant over the same 

distance, then can be correctly calculated by considering that the field in all 

space is given by the value at the point r,

( )trj ,  

( )t, ;rE us, one obtains:  th

 

                                               ( ) ( ) ( )ωωσω ,, rErj =                                              (8) 

 

This equation is accepted provided that the wavelength of the field is larger 

than the electronic free-mean path l, so for metals, this is commonly accepted for 

the visible interval (λ approximately nm)∗. Next, we assume that the 

wavelength is larger than the free-mean path. Thus, the Maxwell equations are 

written by considering a current density j in the form!: 

310

 

                                                    0=⋅∇ D                                                            (9) 

 

                                                   0=⋅∇ B                                                            (10) 

 

                                              01
=

∂
∂

+×∇
t
B

c
E                                                    (11) 

 

                                           j
ct

D
c

H π41
=

∂
∂

+×∇                                                (12) 

 

( )tiω−expOne seeks a time dependent solution . According to equation (6) on the 

*This condition is not satisfied and it is necessary to tackle the problem with nonlocal theories. 
! We consider an electromagnetic wave where there is no induced charge density, farther on we 
consider the case of oscillations at the charge density. 
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metal, j can be written by terms of E n by combining with the Maxwell  whereupo

equations, we obtain: 

 

                  ( ) ⎟
⎞

⎜
⎛ −=×∇=−∇=×∇×∇ EiEiH

c
iEE ωπωω 42                       (13) 

⎠⎝ ccc

                   

 

so one finds 

 

 Ei
c

E ⎟
⎠
⎞

⎜
⎝
⎛ −=∇−

ω
σπω 412

2
2                                         

 

 has the usual form of a wave equation: 

   

                       (14) 

This equation

 

 ( )E
c

E ωεω
2

2
2 =∇−                                                                                          (15) 

 

The complex dielectric function is expressed as: 

 

                                              ( )
c
iσπωε 41−=    

 

                                                 (16) 

At sufficiently high frequencies such that 1>>tω  the combination of (16) and (7) 

ives as a result in first approximation: 

                                               

g

 

 ( ) 2

2

1
ω
ω

ωε p−=                                                     (17)   

 

where pω is known as the plasma frequency and is given by: 
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mp
ne2

2 4πω =                                                        (18) 

 

One important deduction of equation (17) is that a gas of electrons can support 

.e., a perturb

has a temporal dependence 

oscillations of charge density, i ation where the electric charge density 

( )tiω−exp . From the continuity equation: 

 

                                                    
t

j
∂
∂

−=⋅∇
ρ                                                    (19a) 

 

( ) ( )ωωρω ij =⋅∇                                                                                              (19b) 

 

and applying the Gauss law we have  

                                             

 

( ) ( )ωπρω 4=⋅∇ E                                                   (20) 

 

y considering equation (8), the density of charge is  

                                         

B

 

( ) ( ) ( )ωρωπσωωρ 4=i                                                (21) 

his equation has a solution given by: 

                                               

 

T

 

( ) 041 =+
ω
ωσπi                                                     (22) 

 

Equation (22) is essentially the condition previously found by the propagation 

represents the c

satisfy for a charge density wave to be propagated on the surface media. 

 

of radiation. In this case, it ondition which the frequency must 
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In fact, the electromagnetic field of these oscillations of charge density is 

known as plasma or plasmon oscillations where the oscillations can be understood 

by terms of a simple geometric model, i.e. one can imagine that gas of electrons is 

moved by a distance d with respect to the stable positive ion. Therefore, the 

pro

 

asmas 

 

hen, gas c

               

duced surface charge provides an electric field dimension with *4πρ  where 
*ρ  is the charge per area unit in each extreme. (See figure 1.1) 

 

FIGURE 1.1. Model for understanding the oscillations of plasmons or pl

ontains electrons (N) and it satisfies the motion equation by: T

 

           ( ) NdnenedNeNedNm 2* 444 πππρ −=−=−=&&                         (23) 

 

Th

 

.2 SURFACE PLASMON INTERFACE 

To improve our understanding of plasma waves, we consider an example. We 

nalyze the characteristics and excitation methods for the surface plasmon waves 

ctromagnetic field generated by the 

is equation shows an oscillation related to the plasma frequency. 

 

1

 

a

propagating at an interface using an ele
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illumination with a light beam. The interface is placed on the xy plane and it is 

divided into two semi-infinity spaces of different materials 1 and 2, of which 

optical properties are characterized by its complex dielectric constants ( )ωε1  and 

( )ωε 2  respectively, the geometric is shown schematically in figure 2.1. 

 

 
FIGURE 1.2 System of reference at an interface between two media with dielectric constants 

1ε and 2ε  

 

 this development the magnetic materials are discarded, i.e. we take In 1=μ  in 

all

electric field has a normal component at the surface which induces a surface 

charge

 processes. The surface plasmons can only be excited at the interface if the 

ρ . Hence, for it to be possible, the electric displacement must be:  

 

                                            ( ) *
12 4πρ=−⋅ DDz                                                 (24) 

 

S-polarized light is propagated along x-axis and has parallel components of 

lectric field at the y-axis, i.e. a TE wave has an electric field ( )0,,0 yEE =

lectric field

e ; 

nerate surface plas

only be exited by P-polarized light, that is, TM waves with e  

therefore, it is unable to ge mons. Thus, surface plasmons can 

( )zx EE ,0,=  andE ( )0,,0 yHH = , so the surface electromagnetic waves are given 

by: 

 

                  ( )( ) ( )( )tzkxkiEtxkiEE zx ωω −+=−= 11101101 expexp                    (25a) 
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           ( )( ) ( )( )tzkxkiEtxkiEE zx ωω −+=−= 22202202 expexp                        (25b) 

 

resent the electric vector E and the magnetic vec

ponents along the x-axis into media 1 and 2, he 

lues of the wave vector components along the z-ax

where 2,1E  rep tor is H, 2,1 xxk  are 

the wave vector com 2z  are t,1zk

absolute va is and ω is the 

angular frequency. All the components must satisfy the Maxwell equations (9-12). 

The boundary conditions are written in the form: 

 

                                                      xx EE 21 =                                                        (26) 

 

and 

 

                                                      yy HH 21 =                                                      (27) 

 

Equation (26) is obtained by xxx kkk == 21

, because there is no charge flux, the 

, in addition, if we use Maxwell’s 

equation (12) with E and H fields given 

    

0=j

by equation (25), take the form: 

 

                                            xyz Hk1 E
c 1ε
ω

=  

                                              

                                                  (28) 

 

zyx E
c

Hk 11ε
ω

−=                                                   (29) 

 

                                             xyz E
c

Hk 22 εω
−=                                                   (30) 
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zyx E
c

Hk 22                                             εω
−=                                                   (31) 

Equations (28) and (30) yield the non-trivial solution: 

 

 

2

1

2

1

ε
ε

−=
z

z

k
k                                                                                                           (32) 

By applying Maxwell’s equation (14) to E and H fields, one obtains: 

                                         

 

 

yxzzx H
c

EkEk ω
=+− 11                                              (33) 

                                        

 

yxzzx H
c

EkEk ω
=+− 22                                              (34) 

 

Equation (30) shows that the surface plasmons can only be exited on the 

interface between two media with different dielectric constants of opposite signs. 

can be the case of phonons or

these conditions up to an electromagnetic field respectively produces the named 

ph

Inside of certain limits, it  excitons. The coupling of 

onon surface polariton or exciton surface polariton. 

 

We are interested in the coupling of an electromagnetic field with the collective 

oscillations of plasma for the conduction electrons of a metal at the interface 

between a metal with dielectric constant mm miεεε +′= ′  and a dielectric with 

dielectric constant ddd iεεε ′+′= . These phenom na were previously named 

surface plas

e

mon polaritons or surface plasmons.  
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     We will use the  instead of 1 and d instead of 2 for specifying a 

dielectric and a metallic medium. By manipulatin

subscripts m

g equations (30), (31) and (34), 

we have: 

 

                                           ddzx c
kk εω 2

22 ⎟
⎞

⎜
⎛=+                                                 (35) 

⎠⎝

 

mmzx c
kk εω 2

22 ⎟
⎠
⎞

⎜
⎝
⎛=+                                                                                          (36) 

 

 

 

Obtaining 

2
2

xddz k
c

k −⎟
⎠
⎞

⎜
⎝
⎛=
ωε                                                                                         (37) 

 

                                          2
2

xmmz k
c

k −⎟
⎠
⎞

⎜
⎝
⎛=
ωε                                               (38) 

 

Thus, if we use equation (32), we obtain the dispersion relation of the surface 

tric interface. Then, on

 

    

plasmons in a metal/dielec e obtains: 

dm

dm
x c

k
εε
εεω
+
⋅

=                                                    (39)                                          

 

At this point is convenient to emphasize some details: 

1.- Frequently we only treat the real part of 

 

ω , in general, mε  is complex, and 

xk is complex too; i.e. xxx kikk ′′+′= . Therefore, the surfac asmons, which e pl
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propagate at a metal/dielectric interface, show up a finite propagation length , 

tha

xL

t is xx kL ′′= 1 , this decrease has a great im ortance since t determines the 

gth of propagation of t aves. 

 

2.- In tral interval of interest, one has: 

p  i

len he plasmon w

 the spec

 

                                               d
dm

dm ε
εε
εε

≥
+
⋅

                                                 (40) 

This has two important consequences. First, equation (38) is deduced, so if we 

e obtains a z-com

dielectric that is purely imaginary, from equations (25a, 25b) we can see that it 

means that the surface plasmons establish a nonradiative evanescent wave on the 

 

FIGURE 1.3. Evanescent electric field associated to surface plasmons at a metal/dielectric 

interface.  

 

 

insert equation (40); then, on ponent for the wave vector in the 

interface and its amplitude which is maximum for z=0 exponentially decreases 

into the dielectric [6], as represented in figure 1.3. 

 

The skin depth for metals is around nanometers, this detail is important for the 

characterization of the surface nanostructure. 
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The second point concerning the equation (40) is that the wave vector of a free-

photon which is propagating on the dielectric is given by: 

 

                                                    df c
k εω

=                                                     (41) 

 

This is always smaller than the wave vector of a surface plasmon which is 

propagated at an interface between dielectr c and metal, as shown in figure 1.4. 

FIGURE 1.4 X component of the wave vectors of a incident photon on the dielectric where the 

surface plasm

 

 

 

For the cou e x-axis component 

of t on the flat 

interface an

spk

i

 
 

ons are propagated by the dielectric/metal 

1.3 SURFACE PLASMON EXCITATION 

pling of light with the surface plasmon only th

 the wave vector is of interest. This means that using incident ligh

d by varying the incident angle one can obtain fxk ifk θsin⋅= . (see 

figure 1.4); it shows us that is not possible to generate a surface plasmon since the 

wave vector is smaller than that of the surface plasmon, as shown schematically in 

spersion curve is always below the figure 1.5. Thus, we can see that the plasmon di
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dispersion curve of the photon which propagates in the dielectric. Therefore, it is 

im ssible for this light to be coupled to the surface plasmons. 

 of 

 

po

 

 

FIGURE 1.5 Dispersion relation for incident photons into a dielectric d (dark line), a prism p

refraction index higher (dot line) and surface plasmon at an interface between a metal and 

dielectric d. 

 

To solve this point, we consider the Kretschmann configuration [7] (Other 

coupling methods exist too, as example Otto method [8] and Gratings coupling 

[1]), which allows the coupling of light with plasmon waves. This consists in

illuminating a dielectric prism p of higher refraction index ( )dp εε > , so the 

dispersion curve of the photons, is shown by the dot-line in figure 1.5. The wave 

vectors of light are for some frequencies bigger than the wave vectors of the 

surface plasmon, so that the photons can excite a surface plasmon if they 

illuminate at a correct angle, as exposed in figure 1.6. 
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FIGURE  and the surface 

plasmons are an the prism. 

 

reflection in  

so that one v

 

                           

1.6 Component x of the wave vectors of a incident photon up to prism

 propagated between metal and dielectric of refraction index smaller th

The resonant coupling can be measured as a function of angle versus the 

tensity. We check a minimum in the reflectivity for an incident angle,

erifies the resonant condition.  

fxspp
dm kk ==

⋅
= θεωεεω sin

dm

 

spx cc + εε
                                (42) 

he resonant condition of equation (42) can be calculated by the incident angle 

ass

                                     

T

ociated with the coupling of the incident light with the surface plasmons, so we 

obtain: 

 

( ) pdm

dm
sp εεε

εε
θ

⋅+
⋅

= arcsin                                            (43) 
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1.4

evious sections we showed how the surface plasmons waves may be 

obtained and we showed that the surface electromagnetic field presents a 

maximum of intensity at the surface and decreases exponentially inside the 

sing amplitude depends on the wa

sed also as the optical features of the metal for different frequency wavelengths 

t the visible spectrum and almost IR approximately 630 nm, He-Neon laser) and 

r thin metal films with values around 200nm. Because of this, any changes on 

e optic properties of the dielectric films around 200 nm, the conditions 

ristic allows us to detect 

the absorption of a film new by means of controlling of resonant angle.  

 SYSTEM LAYERS WITH SURFACE PLASMON 

 

In pr

dielectric/metal media, so the decrea velength 

u

(a

fo

th

excitement for surface plasmons changes. This characte

 

Now, we suppose the system prism/metal/dielectric and insert a new dielectric 

film on the metal. Taking this into account, we imagine that the new dielectric has 

a dielectric constant aε bigger than the original dielectric medium ( )da εε > . In 

this case, the effective refraction index is higher and related with the surface 

plasmons, so in a similar way (see figure 1.5), the dispersion curve is moved by 

the surface plasmon up to higher wave vectors, as represented in figure 1.7, the 

curve spω  is the dispersion relation of the surface plasmon in the normal system 

and the curve ps ′ω is the system in which was included the new dielectric layer. 

 

Therefore, for a specified frequency the wave vector of surface plasmons will 

d, of course, we will need a high incidence angle of for excitement the 

modes. Therefore, one concludes that the condition for excitement of surface 

plasmons depends on the effective refraction index of the materials deposited on 

the metal with thickness around 200 nm. Hence, if a dielectric layer is deposited 

on the metal, one can calculate the refraction index as a function of the film 

thickness. 

be higher an
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FIGURE 1.7 Dispersion relations for incident photons up to a dielectric d (dark line), a prism

of refraction index higher (dot line), surface plasmon at a interface between a metal m

dielectric d (dark curv

 p 

 and 

e spω  ) and plasmons at a interface whit a layer more (dot curve ps ′ω ) 

 

The reflectivity of system layers can be theoretically calculated by the 

dielectric constants and determined on each layer. These calculations, about 

reflectivity, can be related to the amplitude/irradiance distribution fields in each 

edia/layer. Hence, the mathematical development can be done using the section 

 

m

1.3. 
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1.5

on fields and the generation of surface plasmon focusing. In this last topic, 

we will show the possibility of generating dynamical features by means of the 

eneration of surface plasmon vortices.  

he structure of the thesis is as follows:  

In chapter two, we consider the description of surface plasmon fields starting 

om Helmholtz’s equation establishing an analog formalism for diffracting free 

eams. 

In chapter three we shall comment on the surface wave mode for the 

de

e spatial frequency and the obtained 

ondition is matched by Montgomery’s condition for homogeneous media. 

In chapter five we describe the dynamics of surface plasmon SP and the 

an

ly in chapter six, we shall present the general conclusions as well as the 

future research. 

 OBJETIVES 

 

The objective of the present thesis is to find the general expression for surface 

plasmon waves, and its applications for the synthesis of self-imaging surface 

plasm

 

g

 

T

 

fr

b

 

scription of plasmons at the interface, by obtaining the refraction index for 

interfering plasmons fields also as the description of general plasmon modes. 

 

In chapter four, we shall describe surface plasmon (SP) self-imaging fields 

where the analysis is performed at th

c

 

alysis is applied to the description of vortex for surface plasmon. 

 

Final
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CHAPTER 2 

 

Description of Surface Plasmon Fields  
 
 

2.1 INTRODUCTION 

 

We obtain the surface mode solution for the Helmholtz equation using 

formalism analogous to diffracted free beams. By means of a linear superposition 

of the surface modes we obtain an expression similar to the angular spectrum 

model which allows us the generation of general surface diffraction fields. 

 

2.2 MODES THEORY 

 

     A propagation mode is a solution of the Helmholtz equation that we describe in 

the analysis by the form: 

 

                                                                                                    (2.1) 022 =+∇ φφ k
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However, the Helmholtz equation can be described in a reference system which is 

separable in the coordinates of propagation, without a loss of generality the 

coordinate is considered as the z-axis, defining the transversal Laplace operator: 

 

                                              2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇⊥                                                  (2.2) 

 

Equation (2.1) can be rewritten in the form: 

 

                                             0)( 22
2

2

=+∇+
∂
∂

⊥ φφ k
z

                                         (2.3) 

 

Equation (2.3) is developed for coordinate z and by considering that equation 

(2.1) has one solution, expressed as: 

 

                                           ( ) ( ) ( )Aizyxfzyx ˆexp,,, =φ                                       (2.4) 

 

where  is an operator that is defined asÂ 22ˆ kA +∇= ⊥ , and  is an 

arbitrary function. Hence, we can expand equation (2.4) in series given by: 

( yxf , )

 

                                      ( ) ( ) ( yxf
n
Aizzyx

n

n

,
!

ˆ
,,

0
∑
∞

=

=φ )

)

                                          (2.5) 

 

Because of function , it can assign a solution group, such as an eigenvalue 

of operator 

( yxf ,

Â , i.e. which satisfies: 

 

                                              ( ) ( )yxfyxfA ,,ˆ γ=                                                 (2.6) 
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by applying n times the operator to the function ( )yxf , , this yields: 

 

                                          ( )yxfyxfA nn ,),(ˆ γ=                                               (2.7) 

 

By obtaining as a result a proposed solution (2.5) that is: 

 

                                     ( ) ( ) ( )γφ izyxfzyx exp,,, =                                            (2.8) 

 

where γ  is a constant and the function ( )yxf ,  describes the profile of the wave. 

Solutions of this type are known as propagation modes. The eigenvalue equation 

satisfies: 

 

                                  ( ) ( ) 0,)(, 222 =−+∇ yxfkyxf γ                                      (2.9) 

 

Therefore, we have a mode that is a solution of the Helmholtz equation whose 

profile does not change when it is propagating. In fact, the amplitude function 

satisfies a two-dimensional Helmholtz equation. This is the reason why mode 

solutions are known as non-diffracting beams. In general, the prototype solutions 

of the modes are the plane wave and Bessel waves [9], [10]. 

 

2.3 BEAMS THEORY 

 

The modes are exact solutions of the Helmholtz equation where we assume that 

the complex amplitude of any monochromatic optical disturbance propagating in a 

homogeneous medium must obey such a relation. Since the Helmholtz equation is 

a homogeneous linear equation the general solution can be represented by a 

coherent superposition of plane waves. On the other hand, another type of 

expression representing the propagation light is by using paraxial equation. The 

paraxial wave equation is an intermediary between the simple concepts of rays 

 22



 
 
Chapter 2                                                                   Description of Field Plasmons 

and plane waves and deeper concepts embodied in the wave equation; therefore, 

the solutions of the paraxial equation are known as beams [11].The Helmholtz 

equation is a linear equation, then the general solution can be expressed as a 

superposition of plane waves of the form  

 

                    ( ) ( ) ( )( )∫∫ ++= dudvzyvxuivuAzyx ρπφ 2exp,,,                         (2.10) 

 

where u, v and ρ are parameters which must satisfy the following condition 

 

                                           2
222 1

λρ =++ vu                                               (2.11) 

 

or equivalently  

 

                                        ( )22211 vu +−= λλρ                                           (2.12) 

 

By considering the condition ( )2221 vu +>> λ  which is obtained from (2.12) and 

by using the Taylor series, it yields: 

 

                                        ( )
2

1
22 vu +−= λ

λρ                                              (2.13) 

 

Then the approximate solution to the Helmoholtz equation is  

 

        ( ) ( ) ( )( ) ( )( ) ( )∫∫ +⋅−+= dudvikzvuziyvxuivuAzyx expexp2exp,,, 22πλπφ         

                                                                                                                          (2.14) 

Hence, this equation is known as the paraxial solution and can be rewritten in the 

form: 
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                                       ( ) ( ) ( )zyxikzzyx ,,exp,, ξφ =                                      (2.15) 

 

The first factor on the right hand represents a plane wave while the second factor 

is either the modulation function or the monochromatic plane wave amplitude 

along a coordinate z, which is represented by: 

 

        ( ) ( ) ( )( ) ( )( )∫∫ ++−= dudvyvxuivuzivuAzyx ππλξ 2expexp,,, 22            (2.16) 

 

where  is the considered beam function. Thus, the differential equation 

which satisfies the modulation function can be found by taking the Laplace 

equation from equation (2.15).

( vuA , )

( )zyx ,,ξ  varies linearly along coordinate z. Thus, 

we obtain: 

 

                                      022

2

2 =∂
∂+

∂
∂+

∂
∂

zkiyx
ξξξ                                 (2.17) 

 

Equation (2.17) is known as the wave paraxial equation.  

 

 

2.4 MODE EXTREMAL PROPERTIES 

 

FIGURE 2.1 Representation of different electric fields on the surface. 
 

 

 24



 
 
Chapter 2                                                                   Description of Field Plasmons 

Our notion of representing a mode is extended to flat metal surfaces, as 

illustrated in Fig. 2.1, where  and  are the amplitude fields, 1E 2E 1ε  and 2ε  are 

the media permittivity. Hence, we request a mode propagating on the plane 

surface. We consider that the field’s amplitudes  and  are expressed by the 

form: 

1E 2E

 

                                            ( ) ( ) ( )zixfCzxE βexpˆ, 111 =                                  (2.18a) 

 

                                             ( ) ( ) ( )zixfCzxE βexpˆ, 222 =                                (2.18b) 

 

We suppose that  and  are the electric fields, can be considered as a 

vector and

1E 2E iĈ

( )xfk  describes the wave profile whereas ( )ziβexp  is the propagation 

wave, where (k=1,2). Hence, on the interface one obtains equations by the 

boundary conditions of the electric field. If the boundary is free of charges and 

currents, the boundary conditions for the electric field are: 

 

                                                      TT EE 21 =                                                   (2.19a) 

 

                                                   nnnn EE 2211 εε =                                             (2.19b) 

 

kTE and are tangential and normal components, knE inε is the media permittivity 

where (k=1,2),  of equation (2.18) can be represented as a vector in two 

components by: 

2,1Ĉ

 

                                                   ( )nnn baC ,ˆ =                                                   (2.20) 
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where n=1,2. So, equation (2.18) is expressed by: 

 

                                   ( ) ( ) ( ) ( )zixfbkaizxE βexp, 1111
))

+=                               (2.21a) 

 

                                   ( ) ( ) ( ) ( )zixfbkaizxE βexp, 2222
))

+=                             (2.21b) 

 

where  and  are the amplitude components of the electric fields for different 

angles; for k=1,2. Thus, the boundary condition is described by equation (2.19) 

and is evaluated at the origin. By considering this and since the phase matching 

condition is

ka kb

21 ββ = , one obtains: 

 

                                                     ( ) ( )00 2211 fbfb =                                        (2.22a) 

 

                                                  ( ) ( )00 222111 fafa εε =                                     (2.22b) 

 

By considering a perturbation on the surface of the form  

 

                                                 ( ) ( )xxf 11 exp α−=                                          (2.23a) 

 

                                                ( ) ( )xxf 22 exp α−=                                           (2.23b) 

 

The boundary conditions allow us to find a function relation between the 

parameters ( , and by using the equations (2.21), (2.22) and (2.23), 

we have: 

)2121 ..,, bandbaa

 

                      ( ) ( ) ( ) ( ) 0,expexp, 1111 >−+= xzixbkaizxE βα
))                         (2.24a) 
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                  ( ) ( ) ( ) 0,expexp, 221
2

1
2 <−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= xzixbkaizxE βα

ε
ε ))                    (2.24b) 

 

Both representations are obtained when we illuminate a surface with               

P-polarized light and they described the propagation plasmon on the surface in 

each media. Now the charge-free media conditions and equations (2.24) must 

satisfy 02,1 =⋅∇ E
r

, given by: 

 

                                                   1221 αεαε =                                                    (2.25) 

 

Equation (2.25) implies that the attenuation ratio is related by the electric fields in 

each media. To obtain the possible values forβ  in equation (2.24) each 

component must satisfy the Helmholtz equation 02,1
2

2,1 =+⋅ EKE2∇
r

.Thus, it 

follows: 

 

                                                                                                  (2.26a) 2
1

2
1 αβ −=K

 

                                                                                                  (2.26b) 2
2

2
2 αβ −=K

 

Equations (2.25) and (2.26) can be explicitly resolved by the β  parameter. 

Therefore, it becomes 

                                           
2/1

21

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
rr

rr

c εε
εεωβ                                              (2.27) 

 

where 0εεε iir = refers to the relative permittivity. It should be noted that the 

expression for β  represents the possible values for the phase parameters 

associated with surface waves which can correspond to evanescent waves if β  is 

complex and plasmon waves if β  is real. For the last case, the dependence of the 
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wave vector β  on the frequency of light is known as the dispersion relation and it 

is related with the plasma oscillation as was discussed by Raether [1]. 

 

2.5 ANGULAR SPECTRUM 

 

Our idea is to use the mode solution to represent an arbitrary surface field. As a 

particular case and an example, we suppose two counter-propagating waves, as it 

is illustrated in Fig. 2.2  

 
 

 

FIGURE 2.2 Two similar waves counter-propagating on the surface. 

 

Thus, one may interpret the equation in two different electric fields by 

representing it in the vector form, which is given by: 

 

     ( ) )exp()exp()()exp()exp(), 121121 zixbkaizixbkazxET (i βαβα −−−+−+
))))      =

                                                                                                                          (2.28) 

 

These waves generate spatial redistribution charges, so by performing the explicit 

calculus we obtain: 

 

( ) ( ) ( ) ( )zsenxibkzxaixET .exp2.cos)exp(2, 1211          z βαβα −+−
))             (2.29) =
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In this case, when we evaluate it at the origin, (i.e. 0=z ), and by using the 

Maxwell equation  

 

                                                    ε
ρ=⋅∇ TE

v
                                                 (2.30) 

 

we have: 

 

                                        ( ) ( )zxiba βαβαερ cos)exp(2 1111 −−−=                   (2.31) 

 

This equation shows that the electric fields produce a distribution charge and 

depends on the attenuation coefficient 1α ; however, we can use the modal solution 

for an analogous structure at angular spectrum, and by using equation (2.24). 

 

 
FIGURE 2.3 Rotating the x-axis on the plane y-z only.  

 

 

Thus, once the reference system is rotated along the x-axis, as shown Fig 2.3 the 

expression for the surface wave becomes: 

 

         ( ) ( ) ( ) )cos(
13211 expcos,, θθβαθθ yzseniexsenbkbjaizyxE +−++=

)))           (2.32a) 

 

       ( ) ( ) )cos(
2321

2

1
2 expcos,, θθβαθθ

ε
ε yzseniexsenbkbjaizyxE +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=
)))     (2.32b) 
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 30

where θθ zsenyz +→ cos ; then, the representation for arbitrary surface fields 

can be obtained by a superposition of mode surfaces, by the following equations: 

 

                 (2.33a) ( ) ( )( ) ( ) ( )∫
∞

∞−

+−++= 1
11

11111 exp)(),,( duexuCkuBjuAizyxE zpyuiβα
)))

 

               (2.33b) ( ) ( )( ) ( ) ( )∫
∞

∞−

+−++= 2
11

21112 exp)(),,( duexuCkuBjuAizyxE zpyuiβα
)))

 

2,1
1

cos
λ

θ=u corresponds to spatial frequencies and 2,1λ  represents the 

wavelength in each media. The parameters A(u), B(u) and C(u) are related by the 

expression: 

 

                                               2
22 1

λ=+ pu                                                   (2.34) 

 

Essentially equation (2.33) has the same mathematical structure as the angular 

spectrum model [11]. 

 

2.6 CONCLUSIONS 

 

We described which modes are known like diffraction free beams and satisfy 

the Helmholtz equation where the complex amplitude of any monochromatic 

optical disturbance propagating in a homogeneous medium must obey such a 

relation. We determined that the solutions of the paraxial wave equation are 

known as beams too. In fact, the representation of a mode is extended to flat metal 

surfaces where we obtained the dispersion relation which represents the possible 

values for the phase parameters associated with surface waves which can 

correspond to evanescent waves, and finally we used the modal solution for an 

analogous structure at angular spectrum. 
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CHAPTER 3 

 

Modal Description of a Surface Wave  
 
 

3.1 INTRODUCTION 

 

In this chapter we comment on the general wave mode representation for flat 

metal surfaces, known as surface plasmons modes, obtaining an analytical 

expression for the effective refraction index. The general modes are obtained by 

means of the interference between two non-parallel surface plasmons. We show 

that the interference between surface plasmons generates charge redistribution. 

The explicit calculus is obtained by stationary surface waves obtained by 

interfering two counter-propagating plasmons.  

 

 

 

 

 

 

 

 31



 
 
Chapter 3                                                      Modal Description of Wave of Surface 

3.2 SURFACE WAVE MODAL DESCRIPTION 

 

3.2.1 PLASMON DESCRIPTION  

 

In chapter 2 we have obtained the dispersion relation function for surface 

plasmons (SP) using the charge media-free conditions. Now we can consider a 

plasmon wave propagating on the interfaces metal- dielectric media, as sketched 

in figure 3.1. 

 

 

FIGURE 3.1, Representation of a plasmon wave propagating at the interface between metal and 

dielectric media. 

 

The expression for the surface plasmon propagating on the metal surface is  

 

                         ( ) ( ) ( ) ( )zixBkAizxE βα expexp, 11 −+=
))                                     (3.1) 

 

The expression for the phase function, considering the dispersion relation function 

is 

                                      ( ) ( )znc
wiikz effexpexp =                                               (3.2) 
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From this equation, the effective refraction index is given by: 

 

                                                   ( )ηξ ineff +=                                                  (3.3) 

 

The refractive index can be obtained from the dispersion relation function, having 

the form  

 

                                               ( )
2

1

21

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+
rr

rri
εε
εεηξ                                        (3.4) 

 

where 0εεε iir = refers to the relative permittivity, then we have that equation 

(3.1) takes the form: 

 

                 ( ) ( ) ( ) ( ) ( )zkzikxBkAizxE ⋅−⋅−+= ηξα 0011 expexpexp,
))                 (3.5) 

 

This equation describes a plasmon wave propagating into the media as an 

evanescent wave, so we can generate two surface plasmon waves propagating at 

the plane y-z with an angle, as represented in the figure 3.2, and then one obtains: 

 

      
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )θθβαθθ
θθβαθθ

cosexpexpcosˆ
cosexpexpcosˆ,

1

1

yzsenixBsenkBjAi
yzsenixBsenkBjAizxEi

−−+−

++−++=
))

))

        

                                                                                                                            (3.6) 
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FIGURE 3.2 Representation of two plasmon waves propagating along the interface with an angle 

 

Equation (3.6) becomes: 

 

( ) ( ) ( ) ( ){ }
( ) ( )θβα

θβθθβθθβ
zsenix

kyBsenjyseniBiyAzxEi

expexp

ˆcoscos2ˆcoscos2ˆcoscos2,

1−
×++=

   

                                                                                                                            (3.7) 

 

Therefore, we can take the exponential term of equation (3.7) and compare 

with equation (3.5). Thus we obtain the new expression for the effective refractive 

index  

 

                                      ( ) eff
rr

rr nisen =+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ηξθ
εε
εε 2

1

21

21                                (3.8) 

 

From the real and complex parts of the effective refractive index we can obtain 

the values for the electrical permittivity. 
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     3.2.2 SURFACE MODE PLASMONS 

 

The following analysis is applied to SP modes, i.e. we are considering β  as 

real. Surface mode solutions given by equation (2.33 of chapter 2) are the 

analogous to plane waves for homogeneous media. For this reason they can be 

implemented to describe arbitrary SP fields of the form  
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where 
0

cos
λ
θ

=u  corresponds to spatial frequencies, 0λ  represents the wavelength 

in vacuum and A(u), B(u), C(u) are the amplitude functions which are related to 

the transmittance function by means of the Fourier transform. Essentially, 

equations (3.9) have the same mathematical structure as that of the angular 

spectrum model [11]. The electric field given by equation (3.9) generates surface 

charge redistribution; however, the spatial average of the charge must be zero to 

satisfy the condition of media free charge. This is the manifestation of the 

interference fringes between the elementary SP modes emerging from the 

transmittance function. 
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     3.2.3 DIFFRACTION FREE BEAMS 

 

The next point of the analysis consists of finding a general expression for SP 

modes, from which equations (2.24 of chapter 2) is a particular case. By analogy 

with diffraction free beams, the general structure of the mode must be of the form: 
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where the problem to be solved consists in finding the expression for the [a(y), 

b(y),c(y)] functions and phase parameterΩ . By substitution in the Helmholtz’ 

equation these functions satisfy: 
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and the general expression for mode solution is 
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where ( )222 Ω−+= αKp  and ( )3,2,1ξ , η  are arbitrary constants. 

 

Equation (3.12) can be obtained by means of the interference between two 

elementary plasmon modes of equations (2.24 of chapter 2). The parameter  is 

related to the dispersion relation function by means of 

Ω

θβ sin=Ω . In figure 3.3 

we show the parameters associated to equation (3.12).  
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FIGURE 3.3.- Interference between two elementary SP modes and the synthesis of an effective SP 

mode propagating along z-coordinate, the phase parameter Ω  is smaller than the dispersion 

relation β . 

 

Until this point, we have shown that it is possible to generate new modes by 

interfering elementary SP modes. This construction from the angular spectrum 

model is analogous to diffraction free beams for free space, a prototype of that 

being the Bessel beams; for such modes, the spatial frequency representation 

should be on a circle. For general SP modes the corresponding representation 

consists of two points as can be deduced from equation (3.12). These two points 

are generated by the intersection of a frequency circle for homogeneous media 

with the (u,p) plane. More details about the frequency representation for 

diffracting free beams can be found in [9,10,12]. A natural extension of the 

previous analysis consists in generating a coherent interaction between two or 

more modes. This can be obtained by a superposition of modes propagating in 

different directions and with different phase parameters. An interesting case 

occurs in some regions where a consonance between the phase parameters occurs. 
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3.3 INTERACTION OF PLASMONS 

 

The electric field given by equation (2.33) chapter 2 generates charge 

redistribution where the expressions for the charge density functions in both 

media are given by  
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In order to understand the physical meaning of equations (3.13) we describe the 

interaction between two counter-propagating plasmon waves, performing the 

calculus only for the electric field amplitude on media 1. We find that the electric 

field satisfies 
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A similar expression is obtained for media 2. In order to associate a physical 

meaning to the electric field, the parameters a, b must be imaginary. The 

expression corresponds to a standing wave. Taking the divergence of equation 

(3.14) we obtain 
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This is in general non-zero. This means that the superposition of two counter-

propagating plasmon waves generates a charge redistribution, where the charge 

density function of media 1 is given by  
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d βββαερ α += −

 

Again a similar expression is obtained for media 2. It must be noted that a 

periodical array of charges is generated, the spatial period of which is proportional 

to the inverse value of the dispersion relation given by  
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The possibility of generating charge distributions is a very interesting topic and 

it has been described by Rather [1]. 

 

 

3.4 CONCLUSIONS 

 

We obtained the general expression for surface plasmon modes establishing an 

analogy with diffraction free beams for homogeneous media. We show that the 

spatial frequency representation corresponds with two points. From this 

representation we obtain the expression for the effective refraction index and we 

show that it is possible modify the dispersion relation function. This kind of 

beams offers interesting applications as two-dimensional plasmon twisters. 

Finally we show that the coherent interaction between two or more surface 

plasmon modes generates charge redistribution. This feature allows us to generate 

the boundary condition to generate other kind of surface plasmon fields. 
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Description of Diffraction Plasmon 

Fields and Some of Its applications 
 

 

4.1 INTRODUCTION  

 

In the present chapter, we describe the possibility of synthesis for surface 

plasmons self-imaging fields, this analysis is performed in the frequency space 

and the obtained condition is matched with the Montgomery’s Rings for 

homogeneous media [13,14]. The angular spectrum model for SP allows us to 

describe the plasmonic diffraction field. This model is implemented to describe 

new features such as the description of surface singularities which occur in 

focusing regions [15,16,17]. The phase function on these regions presents an 

adiabatic behavior, and it is deeply related to the charge redistribution. Thus, the 

construction of focusing regions and some of its features is associating a 

catastrophe relation to the phase function. 
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In this way, we can start the study by using the equations for the angular 

spectrum model for both media as follows. 
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where ( ) ( )( )iii uCkuBjuAi
)))

++ )(  is the amplitude vector for a plasmon mode 

propagating in the direction defined by spatial frequency “u”. 

 

4.2 SURFACE PLASMON SELF-IMAGING FIELDS 

 

The self-imaging condition means that the amplitude function for the optical 

field must be periodic along the propagation coordinate and it can be represented 

as a Fourier series. By considering the z coordinate as direction of propagation, 

the vector amplitude distribution (on media 1) can be represented by:  
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                                                                                                                          (4.1b) 

 

where “d” is the period of self-imaging along the z-coordinate, and the 

coefficients  can be expressed at functions of the y- coordinate. To find 

the general structure of the amplitude frequency functions (A(u), B(u), C(u)), one 

),,( nnn cba
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can substitute expression (4.1) into the Helmholtz equation and by solving for the 

y-variable we obtain that solutions are given by: 
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being (a ,b ,c) arbitrary constants, and the phase term satisfies: 
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By using this representation in the series of equation (4.1b) and 

considering 0=z , we obtain that the amplitude frequency representation can be 

obtained by means of a Fourier transform having the structure of a                

Dirac-δ function of the form: 
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where  are arbitrary functions. Equation (4.4) consists of a 

set of points in frequency space; this result is equivalent to the Montgomery 

condition for free space [13]. The spatial analysis for the self-imaging fields can 

be obtained by using the paraxial approximation in equation (4.3). This 

corresponds to the weak self-imaging condition and by following the 

Montgomery’s treatment it can be rewritten as: 
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A particular case of equation (4.5) is when n=0, 1,4,9, …; this is known as 

Talbot’s effect, and the transmittance function corresponds to a periodical object 

of period “a” which is related to the self-imaging period by means of : 
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Equation (4.5) represents a set of points whose structure is a one-dimensional 

zone plate, as shown in figure 4.1. They can be obtained by intersecting a zone 

plate with u-axes. 

 

 

                           (a)                                                                              (b) 
 

Figure 4.1. a) Montgomery rings and its intersection with u-axis. The highlighted points are the 

frequency condition for the plasmon fields to present the “weak self-imaging”. b) Schematic set up 

for the generation of self-imaging by diffraction of SPs. 

 

The self-imaging field is obtained by means of the diffraction field generated 

by illuminating a transmittance whose Fourier transform corresponds to a set of 

“points” which must satisfy equation (4.5). In figure 4.2 we show a computational 
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simulation of the irradiance distribution on the Y-Z plane metal surface for the SP 

Talbot’s effect. 

FIGURE 4.2. Irradiance distribution for a weak SP self-imaging field. The field was generated 

by interfering 7 elementary SPs, propagating along directions making the following angles with 

respect to the positive z-axis: ( )0,3,6,9 000 ±±±=spθ . The wavelength in vacuum is 

== ω
πλ 2 502nm. a) On a gold surface for which the SP wavelength is =spλ 476 nm; b) On the 

surface of an Au thin film with thickness d=40 nm, covered by an oil drop of glycerin (n=2.1) for 

=spλ 68 nm.  

 

 

For a periodic transmittance with a period of 10 microns, and for a wavelength 

of 476 nm, the period of self-imaging is about 300 microns. For this propagation 

length, the absorption plays an important role and the self-imaging phenomenon is 

not possible. However, by considering a reduction of the period about 1.5 microns 

deposited on a gold film of thickness d=40 nm and covered with oil of refractive 

index n=2.1, the effective refractive index is 7/0 == SPeffn λλ . For these 

configurations, the self-imaging field has a period of 50 microns, which is feasible 

to implement experimentally avoiding absorption analysis. These comments are 

sketched in figures (4.2a) and (4.2b) just to compare the scale reduction in the 

self-imaging period. Similar configurations have been proposed recently to 

implement an oil drop as a mirror/lens [18,19].  
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4.3 DESCRIPTION OF PLASMON SINGULARITIES 

 

In order to have a complete description of the surface optical field it is 

necessary to describe the singular regions. On these regions, the amplitude 

distribution has adiabatic features; it means that the spatial/temporal amplitude 

function changes very slowly. These features are deeply connected with charge re-

distribution.  

 

The simplest case to generate a singularity is by interfering two elementary 

counter-propagating plasmon waves, as represented in figure (4.3a), the nodes 

correspond to singular points. Performing the calculus only for the electric field 

amplitude on media 1 and using the equation (3.14) described in Chapter 3, we 

find that the electric field satisfies: 
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A similar expression is obtained for the medium 2. To associate a physical 

meaning to the electric field, the parameters (a, b) must be pure imaginary. The 

expression corresponds to a standing wave.  

 

It must be noted that the period “d” (equation 3.17 of chapter 3) of the charge 

array is proportional to the inverse value of the dispersion relation function given 

by  
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For the SP fields, the charge period satisfies λ>d . Expression (4.7) has 

associated a discrete set of singular points; the continuous case is generated by a 
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set of elementary mode solutions. The geometrical construction is analogous to 

the envelope region for homogeneous media.  

 

 
 

                             (a)                                              (b)                                                
 

FIGURE 4.3. Geometrical description of singular regions: a) The generation of discrete singular 

points by means of the interference between two contra-propagating elementary SPs. b) The 

singular region by means of the envelope of elementary SPs. The modes emerge in a perpendicular 

direction to the curve. 

 

The singular regions associated to the diffraction field emerging from a 

transmittance function of the form ))((),( zgyzyt −= δ  means that parameterized 

amplitude function can be represented by 
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where u is considered as a parameter. From this representation, the extremal 

features of the mode trajectories whose phase function 

is ))((),,( pygyuuyxL += β  are given by 0=
∂
∂

y
L  and the calculus of the 
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envelope implies that the phase function satisfies θtan==
∂
∂

u
p

y
g . This is the 

tangential condition for envelope regions of mode trajectories. Hence, the 

geometrical point of view means that the trajectories are tangent to the singular 

regions, as represented in figure (4.3b). In figure 4.4 one shows the computational 

simulations for the focusing region for the case when the geometry of the 

boundary condition corresponds to a Gaussian profile. 
 

FIGURE 4.4.. Focusing region obtained by illuminating with an elementary surface plasmon 

wave a reflecting surface with Gaussian shape with spλσ 10=  and depth 5 spλ . 

 

Due to the tangent property, generic features for the phase function can be 

implemented. This means that a catastrophe function for the phase function can be 

used [15,17]. By considering a curve where the trajectories emerge in a 

perpendicular way, it is easy to show that singularities correspond with the 

envelope of the curvature centers, this curve is known as evolute curve. Thus, on 

this region adiabatic features are presented, which means that the phase function 

changes very slowly and charge re-distribution is generated. More details 

concerning this representation can be found within [17]. By associating to the set 
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of surface modes a parametric representation as a catastrophe function the surface 

plasmon field has a structure of the form: 
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4.4 EIKONAL EQUATION FOR PLASMON FIELDS 

 

 A very important topic can be incorporated in order to improve the 

understanding of the physical characteristics of the plasmon fields. This can be 

obtained by incorporating a geometrical analysis. From the fact that a plasmonic 

field can be described by a superposition of plasmon modes, we can describe the 

evolution of the surface field using a model similar to geometric optics, i.e. we are 

incorporating extremal features to trajectories of the surface plasmon mode. We 

can propose the evolution of the optical field through a solution of the Helmholtz 

equation of the form: 
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where k is the wave number in free space. By substituting equation (4.24) in the 

set of Helmholtz equations (4.10) and comparing real and complex parts, we 

obtain a set of eikonal equations 
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When we approach the surface through media 1 or through media 2, the optical 

path length must have the same value. This is possible only if  
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The physical interpretation is that once a plasmon mode is generated, it 

propagates in a media with a plasmonic refractive index, given by  
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The plasmonic refractive index depends on the attenuation rate in each media, 

which is a fundamental difference with the effective index method as described by 

Marcuse [20]. As a principal result of this section, we have that homogeneous 

light arriving at the surface detects two refractive indices:  and , however the 

plasmon mode “feels” a single refractive index Np. From equation (4.27), we have 

that the decreasing rate in each media is related to the homogeneous refractive 

index according to 

1n 2n
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Using the expression for the plasmonic refractive index, we can associate 

extremal features with the optical path length. For this case, the functional is 

given by 
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a
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and the extremal behavior can be considered as Fermat´s principle for plasmonic 

fields. The proposition of a plasmonic refractive index and its extremal analysis 
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has deep physical consequences, because each set of extremal trajectories 

associated with the surface modes generates a “flow of extremals”, also known as 

geodesic flow.  

 

The flow has generic features: It is ergodic and structurally stable [21, 22, 23]. 

The first property allows us to analyze the possibility for generating partially 

coherent plasmons. This can be pursued using the correlation function obtained 

from equation (4.7), given by 
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where and W is the cross spectral density function. It has been 

shown that this function satisfies the Helmholtz equation [11]. By the same 

approach we can also associate an eikonal equation for the cross spectral density 

function, which means that along surface modes the correlation function is an 

extremal. More details can be found in [24-28].The structurally stable features of 

the flow allow us to analyze the structural stability of the surface optical field. We 

can analyze the behavior of the plasmonic field when the refractive index N is 

changing. The changes must be manifested by the fluctuations of the optical path 

length, given by  

),( 11 zzyyPo −−=
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where ξ  is a function which may depend on spatial coordinates and/or time. It 

describes the fluctuations of the refractive index. If this parameter has only a 

temporal dependence, then equation (4.31) has the form: 
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                          ( )∫ ++=
b

a
p dtzytNtztyL 22 )'()'()())(),(( ξ                           (4.32) 

This can occur when surface parameters are changing with time, for example if 

the surface has a different temperature than the environment and the refractive 

index is changing due to the process of thermal equilibrium. Another interesting 

situation occurs when we have a rough surface. For this case, Eq. (4.31) takes the 

form 

                       ( )∫ +++=
B

A
p dzdydxzyxNxzxyL 222),,())(),(( ξ                  (4.33) 

 

This extremal model is very interesting, because we can compare the 

trajectories obtained following (4.33) by the trajectory obtained by a flat surface 

when 0),,( =zyxξ . When the correlation function between these two trajectories 

diverges, the two electromagnetic features must be dramatically different, and this 

occurs when plasmons are coupled to homogeneous media, generating light 

propagating in space. Equation (4.26) allows us to determine the range of 

variability in the refractive index and thus determine the stability of the plasmonic 

field. From the expression for plasmonic refractive index associated to roughness, 

we find that at points where ( ) 2

2
12,,

k
zyx α

ξ ≈ the plasmon mode generates light 

propagating back into space. This is because  which means that the 

plasmonic refractive index tends to the refractive index for homogeneous media. 

This is a very interesting result because it allows us to identify the scattering 

points for plasmonic fields, avoiding statistical treatments, i.e., we can identify 

points where plasmons are converted to light propagating in space. 

2
1

2 nN p ≈
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4.5 CONCLUSIONS 

 

We find that the sufficient condition for self-imaging is analogous to the 

Montgomery’s condition for homogenous media. We showed that singular points 

can be generated experimentally by means of the interference between two plane 

plasmon modes propagating in opposite directions. Finally, we have shown that 

the surface optical field can be described using an extremal analysis where a 

refractive index for plasmon modes is obtained. The optical path length was 

calculated for a flat surface; however expression (4.29) is more general and can be 

applied to curved geometries, where the trajectories correspond to a set of 

geodesics. 
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Radiometric features of Surface Plasmon 

Fields and synthesis of Plasmon Vortex 

 

5.1 INTRODUCTION  

 

In this chapter we describe the radiometric features for scalar optical fields by 

means of the spectral density function and the spectral flux function. The analysis 

is transferred to surface plasmon fields. After this, the definition of Surface 

plasmon optical singularity is presented and we will show that in these regions the 

phase function for SP has adiabatic features. Also in these regions the front wave 

concept is not valid. These regions are formed by the envelope of general plasmon 

modes, which justifies the name of singularities. Thus, in these regions the 

curvature of the front wave is reversed, i.e. front waves with negative curvature 

after this region acquire a positive curvature. For this reason, they represent 

regions of organization for the surface optical field. These regions are 

implemented to describe the generation of surface plasmon vortex.  
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5.2 DESCRIPTION OF THE ANALYSIS OF OPTICAL VORTICES FOR 

SURFACE PLASMON 

 

In fact we know that structural features of light such as polarization and 

coherence can be obtained by the phase function. Also, the momentum transfer 

and the radiometric behavior can be obtained by the amplitude scalar function 

[29,30]. In this sense, a very interesting topic consists in describing the 

radiometric and momentum behavior of surface plasmons. The staring point 

consists in describing two functions known as spectral density of energy and 

spectral flux of energy, defined respectively as  
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These two functions satisfy the continuity equation 

 

                                                        0=
∂
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+⋅∇
t

HF                                            (5.3) 

 

This is known as the law of conservation of energy. The scalar function ),( tXφ  

satisfies the wave equation 2

2

2
2 1

tv ∂
∂

=∇
φφ . 

 

In order to obtain a physical meaning for the F function, the definition is applied 

to a plane wave of the form  
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                                                                (5.4) ( ) )(2),,(, tzpyvxuievuAtX γπγφ −++=

 

Substituting this equation into equation (5.2) we obtain the vector function  

 

                                            ( ) ( )( )ργγπ ,,,,8, 2 vuvuAtxF −=                            (5.5) 

 

This function can be interpreted as the energy transported by a plane wave in a 

direction given by the spatial frequencies at a given temporary frequency. By 

analogy, it is called vector power spectrum. From this equation the information 

about energy and linear momentum can be obtained, because power spectrum 

must be proportional to number of photons. The mathematical generalizations can 

be obtained, using the angular spectrum model, associating an arbitrary optical 

field. Thus, the angular spectrum model is given by 

 

                                 
                    (5.6) ∫ ∫∫ −++= γγφ γπ dudvdevuAtX tzpyvxui )(2),,(),(

 

Consequently the flux spectral density function spectrum takes the form: 
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')')'()(')'()((4),( )'(2)(2)'(2)(22 dUdUUeeUAUAUeeUAUAtXF XUiXUiXUiXUi ππππ γγπ  

                                                                                                                            (5.7) 

 

This expression corresponds to completely coherent fields. Partially coherent 

effects can be associated when the power spectrum is fluctuating, having the form  

 

                         ∫ ∫∫ −++= γγπ γπ dudvdpvueAtXF tzpyvxui ),,(8),( )(222             (5.8) 
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where brackets mean an average value. The points that remain to be solved consist 

in the analysis of angular momentum. For this case, in general we have that the 

optical fields have an optical representation given by  

 

                                     )),,,((exp),,(),( tzyxLiKzyxgrk o γφ =                       (5.9) 

 

where g and L are real functions. The H function has the form 

 

                             
2

02

2
222 2)( K

v
gLgLggXH γ
+∇⋅∇+∇+∇=                    (5.10) 

 

It should be noted that if g is constant, equation (5.9) represents the eikonal 

equation.  

 

Expression (5.6) has other physical implications. Some of them are described 

as follows. If v = V(u), p = P(u), then the vector function depends only on a single 

variable and takes the form: 

 

                                                                        (5.11) 
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So, the front wave is given by  

 

                                                                              (5.12) tconszyxguf tan),,(.)( =
→→

 

The evolution of the front wave is given by its gradient function 

 

                      (5.13) ),,()(),,())(()),,(.)(( zyxgufzyxgufzyxguf ×∇×+∇⋅=∇
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From the latter representation, we have that regions exist where the curl is 

different of zero.  

 

                                                                                  (5.14) 
→→

=×∇ ),,(),,( zyxhzyxg

 

Very interesting features can be obtained. One of them is generating a closed path 

and calculating the flux of the curl. For this case, we have that 

 

                                       ∫∫∫ ⋅=⋅×∇
→

LD

dlzyxgndszyxg ),,(),,(                        (5.15) 

 

 
Figure 5.1 Envelope of the critical points 

 

The angular momentum transfer can be obtained through the collective effects 

of the envelope of critical points. The understanding of these features can be 

obtained from figure 5.1. It must be clear that in a region with a single value in the 

phase function; only linear momentum can be generated. However in multivalue 

phase functions, it is possible to obtain angular moment transfer.  

 

The region must satisfy the following equation: 
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whose solution is given by: 

 

                                                                                               (5.17) αα −= 1),( yxyxg

 

5.3 RADIOMETRIC FEATURES OF SURFACE PLASMON FIELDS. 

 

The plasmon is a vector wave, however each scalar component has associated a 

function , . The structure of these functions is very simple so that 

the scalar components for the electric field present a common phase. This fact is 

interesting because the singularities of the plasmon surface can be obtained from 

the phase function. In this way a parallelism with homogeneous fields may be 

implemented. Hence, it is possible to predict focal plasmon regions that one 

elaborated in chapter 4. Thus, the dynamic behavior is obtained by differential 

partial equation for focal regions through scaling and rotating. Hence, we can use 

an expression for the angular spectrum model described in chapter 2 given by: 

( )tXF , ( tXN , )
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where each component for the electric field ( )321 ,, φφφ=E  is represented by: 
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We can proceed in the same way for other components. Thus, equation (5.20) is 

an example to be substituted into equations (5.1) and (5.2), so that we take the 

sum of all components. Hence, equation H represents the flux density of energy 

and its equation is given by: 

 

                                                                                              (5.21) iiTotally HH ∑ == 3
1

 

so that 
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Equation (5.20) only expresses one component, so that one can take all 

components. Hence, the flux density of phase F becomes. 
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This equation means that the flux density of energy is along the gradient of the 

phase function. In this way, the F-function allows to describe the moment transfer 

for surface plasmon fields.  

 

 

5.4 VORTEX OF SURFACE PLASMONS 

 

The previous analysis was described for scalar fields; however it may be 

extended to the description of surface plasmon fields. This can be done from the 

analysis of the structure of equation (5.16). After long but straightforward 

calculations, it is easy to show that equation (5.17) remains non-variable under the 

changes of variable 
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                                         dbyaxcbyax +−=++= ηξ ,                                (5.23) 

 

So equation (5.16) becomes: 
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The changes of variable, for real values of (a,b,c,d) parameters may represent 

scaling, rotations, translations or combinations of them. We have that a solution 

for Equation (5.24) takes the form  

 

                                                                                              (5.25) ααηξηξ −= 1),(L

 

or in the plane x-y the solution is given by  

 

                                     ( ) ( ) αα −+−++= 1),( dbyaxcbyaxyxL                       (5.26) 

 

The first transformation means that the equation is non-variant with a scale 

change, and the second condition means that it is non-variable under a rotation. 

By describing a dynamics motion for equation (5.17) we make a transformation to 

the cylindrical coordinate system. Thus, the equation becomes: 

 

                                          ( ) ( ) αα θθ −= 1cos),( rsenryxL                                 (5.27) 
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where ),( θrL  is the evolution of the curve which is changing along of the 

variables r and θ , θcosrx =  and θrseny = . Figure 5.2 shows a graph of the 

curve in space x, y, z for equation (5.17), and figure 5.3 shows the projection on 

the plane x, y represented by equation (5.17). The value of parameter α=0.5.  

 

 

FIGURE 5.2 Evolution of the curve for a value alfa= 0.1 

 

FIGURE 5.3 Projection of the curve on the plane x, y  for a value alfa=0.1. 
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Then, if we take another value of 1.0=α  the curves are presented in figures 5.4 

and 5.5 
 

 

FIGURE 5.4 Evolution of the curve for a value alfa= 0.01 

 

FIGURE 5.5 Projection of the curve on the plane x, y for a value alfa=0.01 
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.5 CONCLUSIONS 
 

ifferent figures under a 

transformation the generation of surface plasmon vortex. 

5

We described the radiometric features for scalar optical fields by means of the 

spectral density function and the spectral flux function, so we have demonstrated 

that energy and linear momentum can be obtained from angular spectrum model 

representation associating an arbitrary optical field. The angular momentum 

transfer can be obtained through the collective effects of the envelope of critical 

points, taking this into account, the singularities of the plasmon surface can be 

obtained from the phase function, and it is possible to predict focal plasmon 

regions. Finally, we showed that on multivalue phase functions, angular moment 

transfer can be obtained which satisfies in the region the differential equation 

(5.16), this differential equation is non-variant with a scale change, and is non-

variable under a rotation. Hence, we have shown by d
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CHAPTER 6  

 
 

 

Conclusions 

 

In this Thesis we described the treatment for the coupling of light with surface 

plasmon modes; the analysis was obtained by establishing an analogy with 

homogeneous modes known as diffraction free beams.   

 

We generate a coherent superposition of elementary surface plasmon modes in 

order to describe arbitrary plasmon fields. The expression obtained corresponds 

with the angular spectrum model. This representation allows us to describe 

diffraction features from which we can expect novel surface plasmon fields.  

 

We showed that a physical manifestation of the electromagnetic field 

associated to plasmon fields consists in the generation of charge distribution. The 

simplest case occurs for two counter-propagating plasmon modes. This simple 

interaction allows the establishment of the boundary condition to generate more 

complex plasmon fields such as the self-imaging plasmon fields. 
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The general case offers interesting technological applications, for example ion 

trapping, generation of quantum dots, generation of tunable photonic crystals, etc.  

 

We obtained a more general mode solution for surface plasmon fields having 

the property that the phase function along the coordinate of propagation is less 

small than the one determined by the dispersion relation function Ω>β . This 

behavior of the phase function allows one to generate surface plasmon modes of 

large trajectory and the self-imaging phenomenon can be generated 

experimentally. 

 

We found that the sufficient condition for plasmon self-imaging is analogous to 

the Montgomery’s condition for homogenous media.  

 

We showed that singular points can be generated experimentally by means of 

the interference between two plane plasmon modes propagating in opposite 

directions. The nodes correspond to stationary charge distribution, having a 

periodic representation. General singular regions were described using a 

parameterization for the phase function by means of a catastrophe function.  

 

The mode analysis presented allows incorporation of other interesting features 

related to self imaging, such as the Lau effect as well as the generation of partially 

coherent effects. Recall that the plasmon self-imaging reproduces periodical 

patterns of relatively intense surface electromagnetic fields, which could be 

exploited to generate surface optical lattices and surface optical tweezers. The 

associated arrays of surface charge distributions can be also of fundamental 

interest in a number of fields.  

 

We have shown that the surface optical field can be described using an 

extremal analysis where a refractive index for plasmon modes is obtained. The 

optical path length was calculated for a flat surface; however, the equation for 
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extremal features with the optical path length is more general and can be applied 

to curved geometries, where the trajectories correspond to a set of geodesics.  

 

We described the radiometric features for scalar optical fields by means of the 

spectral density function and the spectral flux function, this model was used to 

describe the radiometric features of surface plasmon fields. We demonstrated that 

energy and linear momentum can be obtained from the angular spectrum model 

for an arbitrary surface optical field. The angular momentum transfer can be 

obtained through the collective effects for the envelope of critical points. The 

singularities of the plasmon surface can be obtained from the phase function and it 

makes possible the prediction of focusing plasmon regions.  

 

Finally, we showed that the singularities for the phase functions allow us to 

describe the angular transfer moment in the neighborhood of the focusing regions. 

This is possible because the differential equation associated to the singularities 

remain non-variable under linear transformations which represent scaling or 

rotating. These features are the support for the study of dynamical surface 

plasmon behavior which explains the conditions to generate surface plasmon 

vortex. 

 



 
 

Bibliography 

 

 

 

BIBLIOGRAPHY 

 
1.- Raether, H. Surface Plasmon on Smooth and Rough Surfaces and on Gratings. 

Springer, Berlin 1988. 

 

2.- Agranovich, V.M. Surface Polaritons North Holland, Amsterdam, 1982. 

 

3.-Yeh, P. Optical Waves in Layered Medition. John Wiley & Sons, New York, 

1988. 

 

4.- C. D. Josè Adrian. Acoplamiento Òptico de Plasmones Superficiales, Tesis 

INAOE, 2005.  

 

5.- Charles Kittel. Introduction to Solid State Physics, Wiley & Sons, Canada, 

1996. 

 

6.- Knoll, W. Interfaces and Thin Films as Seen by Bound Electromagnetic 

Waves. Annual Review of Physical Chemistry, 49, 569-638, 1998. 

 

7.- E. Kretschmann, H. Raether, Z.Naturforsch, 239, p 2135, 1963. 

 

 67



 
 

Bibliography 

8.- Otto A. Excitation of Nonradiative Surface Plasmon Waves in silver by the 

Method of Fustrated Total Reflection, Z, Phys. 216, 398-410, 1968. 

 

9.- J. Durnin, Exact solution for Nondiffracting Beams. I. The Scalar Theory, J. 

Opt. Soc. Am A., 651-654 (1987) 

 

10- Gabriel Martínez Niconoff,  Julio C. Ramírez San Juan, Patricia M. Vara 

Adrián Carbajal D. and Andrey S. Ostrovsky, Generation of partially coherent 

diffraction-free fields with tunable geometry JOSA A (2004), Vol. 21, No. 4 

 

11- Mandel&Wolf, Optical Coherence and Quantum Optics, Cambridge U. 

Press.UK, 1995. 

 

12.- Patorsky K, “The self-imaging and some of their applications”, Progress in 

Optics, E. Wolf  Editor, North Holland Vol. XXVII, (1989). 

 

13.- D. Montgomery, Self-imaging Objects of Infinite Aperture, J. Opt. Soc. Am, 

6, 1967. 

 

14.- Patorsky K, The self-imaging and some of applications, Progress in Optics, 

E. Wolf Editor, North Holland Vol. XXVII, 1989. 

 

15.- M.V. Berry and C. Upstill, Progress in Optics, E. Wolf Editor, North 

Holland, Vol. XVIII, (1980). 

 

16.- G. Martinez-Niconoff, E. Mendez, P.M.Vara and A. Carbajal D. Adiabatic 

Features of Optical Fields, Opt. Comm., 239, 259-263, 2004. 

 

17.- G.Martinez Niconoff, J. Carranza and A. Cornejo R. Self-imaging Objects of 

Variable Geometry, Opt. Comm., 114, 209-213, 1995. 

 68



 
 

Bibliography 

18.- Smolyaninov, I, I., L. Mazzoni, and C. C. Davis., Imaging of Surface 

Plasmon Scattering by Lithographically Created Individual Surface Defects. Phys. 

Rev. Lett., 77, 3877-3880, 1996. 

 

19.- S.Bozhevolnyi and F. A. Pudonin., Two-Dimensional Micro-Optics of 

Surface Plasmon., Phys. Rev. Lett., 78, 2823-2826, 1997. 

 

20.-  D. Marcuse, Theory of Dielectric Optical Waveguides, Academic 

Press(1991). 

 

21.-  J. Palis, W. de Melo, "Geometric Theory of Dynamical Systems, an 

introduction". Springer, 1982. 

  

22.-  M. Pollicot, M. Yuri, "Dynamical Systems and Ergodic Theory". CUP, 1998.  

 

23.- C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics and 

Chaos". CRC Press, 1995.  

 

24.- G. Martinez-Niconoff, Patricia M. Vara and Adrian Carbajal D., Optics 

Comm., 259, (2006) p.p 488-491 

 

25.- Hoechol, Shin, Shanhui Fan, All-Angle Negative Refractive for Surface 

Plasmon Waves Using a Metal-Dielectric-Metal Structure, Physical Review 

Letters, 96, 073907 (2006)  

 

26.- Aristeidis Karalis., E. Lidorikis., Mihai Ibanescu and Marin Solja, Surface-

Plasmon-Assited Guiding of Brodband Slow and Subwalength light in Air, Phys 

Rev Lett, 056625 (2005). 

 

 69



 
 

Bibliography 

 70

27.- Steven A. Cummer, Dynamics of Casual Beam Refraction in Negative 

Refractive Index Materials, Applied Physics Letters, 82, 2008, (2003) 

 

28- Nicholas Fang, Hyesog Lee, Cheng Sun and Xiang Zhang, Science Sub-

Diffraction-Limited Optical Imaging with a Silver Superlens, V.308, No. 5721, 

(2005)  

 

29.- Patricia Martinez Vara y Gabriel Martinez Niconoff.-“Focusing with 

Partially Coherent Sources” “Optica Pura y Aplicada, OPA”  Vol. 36, 2003, 85-87 

 

30.- Patricia Martinez Vara y Gabriel Martinez Niconoff “Propiedades 

radiometricas de Fuentes Parcialmente Coherentes” Optica Pura y Aplicada” Vol 

36, 2003   

 

31.-   Ashcroft N. W., Mermin N. D. Solid state physics 

 

 

 

 



 
 

Appendices 

Appendices 

 

 

 

APPENDIX 1 

 
 
i  INTRODUCTION 

 

In this thesis work we use techniques concerning excitement of the surface 

plasmons and the interaction of the evanescent electric field with thin films. This 

is the reason why one must know the theory of the electromagnetic modes. 

 

In this appendix we show the development of the electromagnetic theory, in 

particular we study their ground and the mode excitements. 

 

ii  ELECTROMAGNETIC THEORY 

 

The description of electromagnetic theory is represented by the electric field E 

and magnetic field H for describing the electromagnetic fields at the matter with 

the need to add a second set of vectors: the density current j, the electric 

displacement D and the magnetic induction B. The spatial and temporal derivates 

of these vectors are related by the Maxwell equations, which are accepted at all 
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point where the physical properties are continuous in their environment. They are 

given by: 

 

                                                          πρ4=⋅∇ D                                                  (1) 

 

                                                        0=⋅∇ B                                                      (2) 

 

                                                  01
=

∂
∂

+×∇
t
B

c
E                                               (3) 

 

                                              j
ct

D
c

H π41
=

∂
∂

−×∇                                            (4) 

 

In this case, the Maxwell equations are written in the form of the Gaussian system 

(CGS). The constant c relates the electric and the magnetic quantities and 

represents the speed of light in vacuum, and ρ  is the volume density of charge. 

To determine the form of the vector fields in particular conditions of charges and 

electric currents the Maxwell equations must be complemented with equations 

described by the process with the electromagnetic fields. These equations are 

called constitutive equations or material equations. 

 

In general, resolution of Maxwell’s equations is complicated, but if the bodies 

are static (or are put in motion) and the materials are isotropic, the material 

equations or constitutive equations are given by: 

 

                                                         Ej ⋅= σ                                                     (5) 

 

                                                           ED ⋅= ε                                                     (6) 

 

                                                           HB ⋅= μ                                                    (7) 
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whereσ  is the electric conductivity, ε  the dielectric constant and μ  the magnetic 

permittivity. Maxwell’s equations are related by vector fields through a system of 

differential equations. Thus, if one manipulates mathematically we can obtain 

differential equations that will satisfy the electric and magnetic vectors. 

 

Taking this into account, the space part does not contain charges nor currents 

and is a homogenous medium, i.e., 0=ρ , 0=j ; in addition, ε  and μ  are 

independent of the position by substituting the material equation (7) into the 

Maxwell equation (3) and by calculating the rotation in both parts. Hence, one 

obtains: 

 

                                               ( ) 0=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

×∇+×∇×∇
t

H
c

E μ                                (8) 

 

By taking material equations (6) into Maxwell equation (4) and by deriving 

with respect to time one obtains: 

 

                                                E
ct

E
ct

H &&εε
=

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

×∇ 2

2

                                     (9) 

 

Substituting equation (9) into (8) we find: 

 

                                                   ( ) 02 =+×∇×∇ E
c

E &&εμ                                      (10) 

 

Now, by doing use of the identity ( ) vvv 2∇−⋅∇∇=×∇×∇

0

 and by taking into 

account that there is no charge, i.e., =⋅∇ E , one obtains a wave equation 

similar to equation (10) for the magnetic field H: 
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                                                   02
2 =−∇ E

c
E &&εμ                                                (11) 

 

                                                    02
2 =−∇ H

c
H &&εμ                                            (11a) 

 

These equations indicate the existence of electromagnetic waves with velocity 

of propagation given by: 

 

                                                              
εμ
cv =                                                 (12) 

 

This concept of the velocity of an electromagnetic wave is only represented 

when it refers to simple waves, for example plane waves. Equation (12) does not 

represent the velocity of propagation for any solution of equation (11), if one 

takes into account that stationary waves are solutions too.  

 

For the common substances used the relative dielectric constant is larger than 

unit, and the magnetic permittivity is equal to the unit; thus, in agreement with 

equation (12) the velocity v is almost always smaller than the speed of light in 

vacuum c. 

 

iii  BOUNDARY CONDITIONS 

 

Maxwell’s equations have been sketched for regions of space upon which the 

properties of the medium, like ε andμ , are continuous. However, sometimes one 

needs to deal with physical situations whereupon the properties of medium 

abruptly change through one or more surfaces; in fact, one may expect that the 

vectors E, H, D and B change abruptly at the surfaces while ρ and j give surface 

quantities correspondingly. 
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Next, we derive the relation that describes the transition at an interface. First it 

is necessary to think about the surface of discontinuity, i.e., as not only a surface 

but also a thin film where the values of ε  and μ  will vary constantly from the 

values 1ε , 1μ  on one side of the film to 2ε , 2μ  which represents the other side of 

the film. So into the film one considers a little cylinder whose main axis is normal 

to the interface, and its bases have an area Aδ , as represented in figure A1. 

 

Figure A1 Interface considered as a volume of transition by the optics properties  

 

The magnetic vector induction B and its derivates can be assumed continuous 

in the transition film. In this case, one can apply Gauss’s theorem up to the 

divergence integral B into the volume of the cylinder, yielding: 

 

∫ ∫                                                  =⋅= 0ndsBdivBdV

0....2211 =

                                    (13) 

 

The second integral is realized at the surface of the cylinder, and n is the 

normal vector. Because of the consideration that the areas are very small, we can 

suppose that B is constant. Then, the integral of surface (13) can be changed into:  

 

                    +⋅+⋅ surfacestheofionparticipattheAnBAnB δδ            (14) 
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Taking the limit for hδ  approaching zero and neglecting the contribution of the 

walls, we obtain:  

 

                                                         ( ) 012 =−⋅ BBn                                           (15) 

 

This equation assigns the first boundary condition; the normal component of 

the magnetic induction is continuous at the surface discontinuity, so for writing 

equation (14) we take the condition 21 nn −=  . The electric displacement is treated 

in a similar way but one considers an additional term if charges are present as:  

 

                                           ∫ ∫ ∫=⋅= dVndSDdivDdV ρπ4                              (16) 

 

We take the limit for the thickness of the film approaching zero, so we must 

make a change from volume density to surface charge density which is given by: 

 

                                                                                            (17) ∫ ∫=→
dAdV

h

*

0
lim ρρ
δ

 

So  

 

                                                     ( ) *
12 4πρ=−⋅ DDn                                        (18) 

 

Equation (18) assigns a second boundary condition: for a surface charge with 

surface density  the normal component of the electric displacement changes 

quickly through the surface by a value /n. Next, we study the tangential 

components by considering a rectangular area perpendicular to the film, as shown 

in figure A2. Let b be the unit vector perpendicular to the rectangle; then, by using 

Stokes’ relation, Maxwell´s equation (3) becomes: 

*ρ

*4πρ

 

 76



 
 

Appendices 

                                       ∫ ∫ ∫ ⋅−=⋅=⋅×∇ bdSB
c

drEbdSE &1                           (19) 

 

 

 
 

Figure A2 Transversal cutting of the interface considered as a space of transition by the optics 

properties. 

 

The first and the third integral can be realized on the area of the rectangle and 

the second integral along the rectangle edge. If the length or are very 

small

11QP 22QP

( )sδ , one can accept that the electric field takes constant values and 

along the respective sides of the rectangle, and one can similarly consider 

that

1E

2E

B&  is constant along these paths. Taking into account these considerations, 

equation (19) can be expressed by:  

 

                     hsbB
c

sidesvecontributithestEstE δδδδ ⋅−=+⋅+⋅ &1..2211

h

             (20) 

 

Taking the limit for δ approaching zero and assuming that E presents no 

singularity and B& 21PP 21Q is finite, then the contribution of sides  and Q  

disappear: 

 

[                                          ( ) ( )] 01221⋅ − = ⋅ × − =EEnbEEt                            (21) 
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The position of the rectangle is generally arbitrary as well as the unit vector b. 

Therefore, we have: 

 

                                                         ( ) 021 =−× EEn                                         (22) 

 

Equation (22) defines a third boundary condition, i.e., the tangential component 

of the electric vector is continuous at the interface. One can examine the case of 

magnetic field, where the only difference is that a term appears when electric 

currents exist; thus, instead of equation (20): 

 

     sbj
c

hsbD
c

sidesvecontributithestHstH δπδδδδ ⋅+⋅−=+⋅+⋅ *
2211

41.. &      (23) 

 

The vector represents the surface current density in a form similar to the 

surface density of charge, equation (17). Hence, taking the limit of 

*j

hδ approaching zero: 

 

                                                   ( ) *
21

4 j
c

HHn π
=−×                                       (24) 

 

Finally, equation (24) assigns a fourth boundary condition, i.e., in the presence 

of a surface current density  the magnetic field vector undergoes a sudden 

change across the interface, and the value of the continuity can be written as 

*j

njc ×*4π . 
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iV  ELECTORMAGNETIC WAVES 

tion is to 

use the electromagnetic field of a plane wave so we will study this case. 

 

In an homogeneous medium free of charge and without currents the electric 

and magnetic vector must satisfy the wave equation (11). The easy solu

 

Let ( )zyxr ,,  be the position vector of a point P in space and ( )zyx ssss ,,  be a 

unit vector in the direction of propagation of the wave; thus, any solution of the 

wave equation takes the form: 

                                                      

 

( )vtsrEE −⋅=                                            (25a) 

                                                     

 

( )vtsrHH −⋅=                                           (25b) 

lane use at each instant t, E or H are 

constants on the plane given by 

 

These equations represent a p wave beca

=⋅ sr constant.  

ith respect th an accent 

the derivative with respect to the variable

 

Showing with a point the derivative w to time t and wi

vtsru −⋅= , one can write: 

                                                              

 

EvE ′−=&                                                (26) 

 

                               ( ) ( )xzyyz
yz

x EssEsE
z

E
y

EE ′×=′−′=
∂

∂
−

∂
∂

=×∇                 (27) 

ector rotors. Substituting these equations into 

Maxwell’s equations (3) and (4):  

 

In an analogous way one can obtain equations for the magnetic field H and for 

the components y and z of the v
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0=′+′× H
c
vEs μ                                                                                             (28a) 

                                                       

 

0=′+′× H
c
vEs μ                                        (28b) 

Integrating equations (28) (discarding any constant field in space) and 

considering

 

εμ
1=c

v , one obtains: 

                                                        

 

HsE ×−=
ε
μ                                           (29a) 

                                                        

 

EsH ×−=
μ
ε                                           (29b) 

n equations (29

    

 

Taking the scalar product with s i ) one gets: 

 

                                                     0=⋅=⋅ sHsE                                           (30) 

 

This equation shows the transversal electric and magnetic vectors, i.e., the field 

vectors are in planes perpendicular to the propagation direction. In addition, it can 

be concluded from equations (29) and (30) that E, H and s are orthogonal vectors 

    

and satisfy: 

 

                                                      EH εμ =                                              (31) 

 

An important particular case, is the harmonic plane waves; each Cartesian 

form: component of E and H has the 
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( ) ( ){ }δτδτ +−=+ iaea Recos                                                                                  (32) 

 

            rkt
v

srt ⋅−=⎟
⎠
⎞

⎜
⎝
⎛ ⋅
−= ωωτ                                                                      (33) 

 

V 

onal system, i.e., if one takes the z-axis parallel to the direction of 

propagation s, only the components x and y of the vectors E and H will be not 

vo

lled elliptically polarized light. However this ellipse can be 

changed to a circle or line form, these cases are respectively called circular and 

lin

 by the direction of propagation of the wave and the normal 

component up to the surface. If the wave is linearly polarized then there are two 

ca

a) The vector E is perpendicular to the plane of incidence, in which case the

 POLARIZATION 

 

In previous sections, we showed how Maxwell’s electromagnetic theory 

predicts the electromagnetic waves and could observe that for the electromagnetic 

waves the electric and magnetic vectors and the propagation vector establish an 

orthog

id. 

 

Also one is interested to know the curve described by the vector E along time 

at a specific point of space, so this curve is called state polarization. We do not 

develop those equations in this section, because the most important is the 

geometric concept. Generally, the electric vector E will describe an ellipse in the 

plane XY and it is ca

eal polarizations.  

 

We consider a plane wave which influences a surface where the plane of 

incidence is defined

ses to stand out: 

 

 

wave is called Transverse Electric (TE); 

 
In the case of a plane wave one can obtain the polarization state determining the components x and 
y of the wave, according to equations 32 and 33, with independent amplitudes for each component. 
If one use the identity ( )τ δ δτδτ sinsincoscoscos = −+ , so one can eliminate the variable part 
which contain τ  and one obtain the curve. Thus the curve would be a rotated ellipse but for in 
particular cases can be obtained as a circle or as a line. 
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b) The vector H is perpendicular to the plane of incidence, in which case the 

wave is called Transverse magnetic (TM). 

 

We note that a polarized wave in the arbitrary form is important and it can be 

decomposed in two waves, i.e., a TE and a TM wave.  

 

The TE waves are called S-polarized while the TM waves are named P-

polarized. 

 

Vi  REFLECTION AND REFRACTION 

 

When a plane wave strikes at the interface between two homogenous media 

having different optical properties the wave is separated in two forms: one wave 

enters the second medium (refracted wave) and the other is reflected and goes on 

propagating into the first medium. The problem of reflected and refracted waves 

can be resolved by means of the boundary conditions at the interface, i.e., these 

conditions cannot be fulfilled without both waves. 

 

A plane wave propagates in the direction of unit vector , so it can be 

completely defined when one knows a particular point in space. For example 

is

( )tF  

represents the temporal state of a field at a point specified, the temporal state at 

another point whose position from the first point is r is ( )v
srF ⋅t − . At the 

interface between two media the temporal variation of the secondary field must be 

equal to the primary field; then, if the unit vectors representing the directions of 

propagation of the reflected and refracted waves are given by and , 

respectively, one can make the analysis of the waves at a point r of the interface: 

rs ts

 

                                           
211 v
tr

t
v

sr
t

v
sr

t tri ⋅
−=

⋅
−=

⋅
−                                   (34) 
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where and are the velocities of propagation in the media. 1v 2v

 

We now consider a plane wave which propagates in the plane XZ at the 

interface z=0. Then,  and equation (34) becomes: ( 0,, yxr = )
 

                                        
211 v
ysxs

v
ysxs

v
ysxs tytxryrxiyix +

=
+

=
+

                          (35) 

 

Equation (35) must be satisfied at any point on the interface, i.e., any value of x 

and y given by: 

 

                                                         
211 v

s
v
s

v
s txrxix ==                                           (36a) 

 

                                                        
211 v

s
v
s

v
s tyryiy ==                                            (36b) 

 

The plane defined by and the normal vector is known as the plane of 

incidence; in our case it is taken as the plane XZ, equation (36) shows that the 

incident, reflected and refracted waves are in the plane of incidence. Defining 

is

ri θθ , and tθ  as the angles that the vectors and make with the z-axis, they 

can be written in the form: 

ri ss , ts

 

iixs θsin=  0=iys  iizs θcos=  

rirs θsin=  0=irs  rizs θcos=  

tits θsin=  0=its  tizs θcos=  

                                                                                                                             (37) 

 

 
The subscript i, r and t are to denote the magnitudes of the incident, reflected and transmitted 
waves. 
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Equation (37) is substituted by the components x into equation (36): 

 

                                                  
211

sinsinsin
vvv

tri θθθ
==                                      (38) 

 

Then, ri θθ sinsin =  and because the reflected wave propagates in the same 

plane than the incident wave ri θθ coscos = , one obtains: 

 

                                                      iir θθπθ −=−= 2                                          (39) 

 

This equation together with the fact that the reflected wave is in the same 

incident plane, establish the Reflection Law. Moreover, from equation (38) one 

can see: 

 

                                                             
2

1

sin
sin

v
v

t

i =
θ
θ

                                             (40) 

 

So that using equation (12) and defining the refraction index of a medium n as 

the ratio between the velocity in vacuum and the velocity of propagation in the 

medium, we obtain: 

 

                                                       
kk

k
k c

v
n

με
με 00==                                         (41) 

 

                                                12
11

22

2

1

sin
sin

n
n
n

t

i ===
με
με

θ
θ

                                 (42) 
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Equation (42) along with the fact that the refracted wave is in the incident 

plane establish the Refraction law. 
2

1
12 n

nn = is as the ratio between indexes of 

refraction both media (see figure A3). 

 

 

 
 

FIGURE A3 Direction and paths of the waves and incident, reflected and refracted electric 

fields at an interface on the plane XY 

 

Vii FRESNEL’S FORMULA 

 

In previous sections we presented the laws of reflection and refraction which 

indicate the direction of the electromagnetic waves in each case. Both are 

functions of the incident wave and of the optical properties of the medium. 

However, we have not considered the amplitudes and intensities of the reflected 

and refracted fields. Fresnel`s theory shows us how one can calculate the 

amplitude of the fields. 
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We consider the media as homogenous and isotropic, having no conductivity 

and being transparent, i.e., ( )*0, =′′′= εεε ; moreover, their magnetic 

permeability is equal to the unit ( )121 == μμ . 

 

Let be the amplitude of electric incident field, so  is a complex number 

with its phase equal to wave function 

iE iE

δ (See equation (32)) yields: 

 

                                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
−=

i

iii
i v

zx
t

v
sr

t
θθ

ωωτ
cossin

1

                      (43) 

 

We separate the vectors in the form of components parallel (subscript ) and 

perpendicular (subscript ) to the plane of incidence. In Figure A3 one can see 

the positive direction of the components, so that the Cartesian components of the 

electric incident field are given by: 

//E

⊥E

 

                                            ( )ωτθ iiiix iEE −−= expcos//                                 (44a) 

 

                                                  ( )ωτ iiiy iEE −−= ⊥ exp                                     (44b) 

 

                                            ( )ωτθ iiiiz iEE −= expsin//                                    (44c) 

 

The components of the magnetic field can be calculated by equation (41) 

with 1=μ : 

 

                                                             EsH ×= ..ε                                         (45) 

 

*The dielectric constant is in general a complex number εεε ′′+′= i . The imagine part ε ′′ is related 
with the losses by absorption. When a metal is transparent i.e., there is not absorption of the light 

0=′′ε the Fresnel calculates for transparent materials making easy the understanding. Farther on, 
one will take the problem the surface plasmon excitation, but it is necessary of a film metal which 
it is not transparent. In this case one would see the fundamental roll of imagine part of the dielectric 
constant 
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                                         ( )ωτεθ iiiix iEH −−= ⊥ expcos 1                             (46a) 

                                               ( )ωτε iiiy iEH −−= exp1//                                (46b) 

 

                                            ( )ωτεθ iiiiz iEH −= ⊥ expsin 1                             (46c) 

 

Taking the reflection and refraction laws of previous section and by following 

a development analogous to the above one can develop the reflected and refracted 

components of the electric and magnetic fields. 

 

The boundary conditions can be obtained from the continuity of the tangential 

components of the fields, hence, they yield: 

 

txrxix EEE =+  tyryiy EEE =+  

                                                                                                                           (47a) 

txrxix HHH =+  tyryiy HHH =+  

                                                                                                                           (47b) 

 

The conditions (15) and (18) for the normal components of B and D satisfy 

automatically. Substituting equation (47) into the components of the incident 

reflected and refracted field and taking into account ir θθ coscos −= , one obtains: 

 

                                                ( ) ////// coscos ttrii EEE θθ =−                             (48a) 

 

                                                        ⊥⊥⊥ =+ rri EEE                                         (48b) 

 

                                       ( ) ⊥⊥⊥ =− ttrii EEE θεθε coscos 21                        (48c) 

 

                                                ( ) //2////1 tri EEE εε =+                                  (48d) 

 87



 
 

Appendices 

These equations consist of two groups of two equations: a group contains the 

parallel components while the other group contains the perpendicular components 

to the plane of incidence, therefore these two kinds of waves are independent. 

 

According to the relation ε=n , one can resolve the system of equations (48) 

for the reflected and refracted components in terms of the incident wave: 

 

                                            //
12

1
// coscos

cos2
i

ti

i
t E

nn
n

E
θθ

θ
+

=                                (49a) 

 

                                             ⊥⊥ +
= i

ti

i
t E

nn
n

E
θθ

θ
coscos

cos2

21

1                               (49b) 

 

                                            //
12

12
// coscos

coscos
i

ti

ti
r E

nn
nn

E
θθ
θθ

+
−

=                                (49c) 

 

                                            ⊥⊥ +
−

= i
ti

ti
r E

nn
nn

E
θθ
θθ

coscos
coscos

21

21                                (49d) 

 

Equations (49) are called Fresnel’s formulas. By using these equations one can 

calculate the reflectivity and refractivity, thus these developments can be 

expressed for multilayer systems including film of conductive materials (i.e. non-

transparent materials with εεε ′′+′= i ). 

 

Viii  TOTAL INTERNAL REFLECTION 

 

We have excluded up to now the case where the refraction obtains an 

imaginary value for the angle of refraction tθ . It happens when the light is 

propagated from a dense medium to another less dense medium so that: 
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                                                   1
11

22

1

2
12 <==

με
με

n
n

n                                       (50) 

 

and its incident angle is larger than critic angle cθ given by 12sin nc =θ . 

 

When ci θθ = , sin 1=tθ , then and the reflected light emerges in a 

direction tangential to the interface. If 

090=tθ

iθ  is higher than cθ all the incident light is 

reflected into the first medium, a phenomenon known as total internal reflection. 

 

Taking into account that tθ  is a complex number ( )1sin >tθ , one can write:  

 

                                                        
12

sin
sin

n
i

t
θ

θ =                                             (51a) 

 

                                                 1
sin

cos 2
12

2

−±=
n

i i
t

θ
θ                                     (51b) 

 

Substituting these equations into Fresnel`s equations, one can see for each 

component that the intensity of light is totally reflected:  

 

//// ir EE =  ⊥⊥ = ir EE  

                                                                                                                             (52) 

 

However the electromagnetic field in the second medium does not disappear, it 

only implies that there is no net flux of energy through the interface; thus one can 

remember the phase that is the part variable written by the refracted and reflected 

wave (equation (43) written by the refracted wave)  
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                                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
−=

22

cossin
v

zx
t

v
sr

t ttt
t

θθ
ωωτ                       (53) 

 

Substituting equations (52) into the phase, the wave equation becomes: 

 

                      ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
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⎝

⎛
−−=− 1

sin
exp

sin
expexp

2

2

22 nv
z

nv
x

tii it
t

θωθ
ωτ        (54) 

 

This equation shows an aspect of the phenomenon of total internal reflection, 

i.e., that an electromagnetic field in the incident plane extends beyond the 

interface, this electromagnetic field decays exponentially in amplitude in the 

depth of the second medium*+; the length of the amplitude decay at e
1  is given 

by: 

 

                                  
2

1

2
12

2
2

1

2
12

2
2 1

sin
2

1
sin

−−

⎟⎟
⎠

⎞
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−=⎟⎟

⎠

⎞
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⎝

⎛
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nn
vL ii θ

π
λθ

ω
                     (54) 

 

 

 

 

 

 

 

 

 

 

 

*Only the sing negative in front of the square root is the signified physics. The positive sing 
mean which the amplitude of the wave would infinitely increase in the form exponential while 
it enter at the second medium. 
+The interaction of the electromagnetic evanescent field with the medium start a number of 
techniques known as Attenuated Total Internal Reflection (ATR) . 
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APPENDIX 2 

 
 

Electrons in Movement in a Metal 

According to Drude`s theory  
 

 

iX  INTRODUCTION 

 

The discovery by J. J. Thomson, of the electron in 1897, has caused an impact 

in the theories of the structure of matter and has proposed a structure of the 

conductivity of the metals. After three years of the discovery by Thomson, 

Drude`s theory was constructed for the electric and thermal conduction which is 

the kinetic theory of the gas applied to the metals considered as an electron gas. 

 

Drude`s theory [31] supposes that the electrons are immersed in a positive 

uniform potential imposed by the immobile ions at the crystalline-lattice. By 

considering that only during the collisions (with the ions or with other electrons) 

are crated power on the electrons and the duration of the collisions are 

insignificant. 
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X  EQUATION OF MOVEMENT OF THE ELECTRONS 

 

The movement of the electrons is caused by a uniform power (electric or 

magnetic) in the Drude model. 

 

An electron taken at random at the instant t will cause a collision at the instant 

with probabilitydtt + τ
dt , where τ  is the relaxation time, conversely it will pass 

a time dt without causing collision with probability τ
dt−1 . If the electron does 

not undergo a collision it will evolve by the action of the uniform power which is 

caused on him, because of spatially electric and magnetic uniform field, and it 

will acquire a quantity of movement ( ) ( )2dtOdttf + . Let  be as the 

displacement of the electron at the instant t. The contribution to the displacement 

of all the electrons that have not undergone a collision between and is 

represented by the product between the fraction 

( )tx

t dtt +

( )τdt−1  and the average 

displacement ( ) ( ) ( )[ ]2dtOdttftx ++  of the electrons. 

 

Then, if one eliminates the contribution to ( )dttx + of the electrons that are 

caused by a collision between t and t+dt, one obtains: 

 

                                ( ) ( ) ( ) ( )( )21 dtOdttftxdtdttx ++⎟
⎠
⎞

⎜
⎝
⎛ −=+

τ
                         (1a) 

 

                                 ( ) ( ) ( ) ( ) ( )2dtOdttftxdttxdttx ++⎟
⎠
⎞

⎜
⎝
⎛−=+
τ

                       (1b) 

 

The adjustment equation (1), because of the electrons which cause a collision, 

is of second order in dt. To see this one must first note that the electrons are 

composed by a fraction τ
dt . In addition, as the velocity and displacement has 
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taken a random direction after each collision, each electron will contribute to the 

average of the displacement ( )dttx +  only if it has acquired a displacement 

through the power action f from the last collision. Then the quantity must be 

acquired by a time no higher than dt, thus it is approximately , thus the 

correction is about 

( )dttf

( ) ( )dt

( )

tfdt
τ  which does not affect the lineal terms at dt. 

Therefore, one can write: 

 

                                 ( ) ( ) ( ) ( )dtOdttftxdtdttx ++⎟
⎠
⎞−+

τ
tx ⎜

⎝
⎛−= 2                      (2) 

 

where the contribution has been taken by all the electrons. By dividing dt and 

taking the limit when dt approaches to zero, it becomes:  

 

( ) ( ) ( )tftx
dt

tdx
+−=

τ
                                        (3)                                                      

 

This is an equation of movement of the electrons driven by a uniform power 

according to Drude`s model, the equation establishes that the electrons impact the 

ions and insert a term of attenuation in the equation of movement. 
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