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Abstract

Quantum dots are semiconductor structures whose size is in the order of 10 nm.
These structures can confine inside themselves electrons. The study of these
structures is interesting because of their application range is quite wide. They
are used in the manufacture of lasers with a small bandwidth. In medicine they
are used to obtain highly-contrasted medical images. Also, they can be applied
in the manufacture of efficient solar cells.

Among quantum dots there is an interaction, called Foerster interaction; it
consists on the exciton transfer from a quantum dot to another in a non-radiative
transfer mechanism.

This thesis work consist of two sections, the first is devoted to develop a semi-
classical model of the interaction between a single quantum dot and a classical
electric field. Analytic expressions for the single QD-population inversion and
complex amplitude electric dipole are given. Later this analysis is generalized
into a semiclassical study of a pair of coupled quantum dots through their Foerster
interaction; each quantum dot is within its own cavity interacting with its own
classical electric field. We give analytic expressions for their inversions and for
their respective complex electric dipole.

Finally we emphasize the weak coupling regime and in addition, we point out
the characteristics of that system in comparison to the single quantum dot. The
observation of those characteristics is a proof of the coupling and its analysis
allows obtaining information on the strength of the coupling.
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Resumen

Los puntos cuánticos son estructuras semiconductoras cuyo tamaño es del orden de
10 nm. Estas estructuras tienen la propiedad de confinar en su interior electrones.
El estudio de estas estructuras es interesante, ya que su campo de aplicación es
muy amplio. Son utilizados en la fabricación de láseres con un ancho de banda
muy pequeño. En la medicina son utilizados para obtener imágenes médicas de
alto contraste. También pueden ser aplicados en la construcción de celdas solares
eficientes.

Entre los puntos cuánticos se presenta una interacción, denominada interacción
de Foerster, la cual consiste en la transferencia de un excitón de un punto cuántico
al otro. Este es un mecanismo de transferencia de energía no radiativo.

Este trabajo de tesis consta de dos secciones, una dedicada a desarrollar el
modelo semiclásico de la interacción de un punto cuántico con un campo eléctrico
clásico. Se proporciona la expresión analítica para la inversión del punto cuántico;
de la misma forma se proporcionan expresiones analíticas para las oscilaciones de
la amplitud compleja del dipolo eléctrico.

Posteriormente este análisis es generalizado al estudio de un par de puntos
cuánticos acoplados mediante una interacción de Foerster; cada punto cuántico
está en su propia cavidad interactuando con su propio campo eléctrico clásico.
Proporcionamos expresiones analíticas para la inversión y para las oscilaciones
complejas del dipolo eléctrico.

Finalmente se pone énfasis en el régimen de acoplamiento débil comparado
con la Frecuencia de Rabi y se señalan las características que el sistema acoplado
presenta respecto al sistema de un punto cuántico. La observación de estas carac-
terísticas es una prueba del acoplamiento y su análisis permite obtener información
acerca de su fuerza.
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Chapter 1

General Introduction

1.1 Historical introduction

For a long period of time the scientific research in electronic systems was limited
to systems as isolated atoms or particles, metals or semiconductor crystals, or
beams of beta radiation; most of those are three-dimensional systems.

In the early 1970s, the research on semiconductor structures introduced an
important development [13]. They were the quantum wells; structures build as
very thin flat layers of semiconductor with high conduction-band energies [1]. The
motion of bound electrons in a layer, as thin as several crystalline monolayers, is
two-dimensional; and the excitations in the perpendicular direction are strongly
quantized. Nowadays, the characteristics of these quasi-two dimensional systems
are well understood; quantum wells has been produced and implemented in devices
as numerous as common, such is the case of CD players or microwave receivers
used in satellite television.

At the beginning of the 1980s the progress in lithographic techniques allowed
to confine electrons in a quasi one-dimensional structure, the so called quantum
wire [14]. They were produced in the form of a miniature strip, etched in a sample
containing a quantum well.

A complete trapping of the electrons in a quasi-zero dimensional structure
was reported by scientists from Texas Instrument Incorporated. Their dimen-
sions were of the order of 250 nm [2]. Subsequent publications reported structures
of the order of 30-45 nm at the AT&T Bell Laboratories and Bell Communica-
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tion Research Incorporated [8, 11]; these structures are the quantum dots. The
quantum dots (QD) are solid-state structures on the 10 nanometers range; they
are often called artificial atoms because they have quantum properties similar to
those of individual atoms at the 0.1 nm scale [16]. These nanometer-scale material
structures provide a potential energy well in a size similar to that of the deBroglie
wavelength, trapping the carriers in discrete energy levels, and resulting in objects
with atom-like optical properties.

1.2 Quantum dots relevance in optics

QD have important and varied scientific and technological applications. The use
of quantum dots to produce solar cells allows to increase the maximum attainable
thermodynamic conversion efficiency of solar photon conversion up to 66% [9]. On
the other hand QDs have applications in biological areas, fluorescence imaging and
tumor imaging [20] among others. Also has been explored the possibility to use
the quantum dots as active medium in the construction of lasers with a high
spectral purity.

1.3 Interaction among quantum dots

When a quantum dot is in the presence of an electric field, there is a dipolar
interaction between them, and a well expected dynamics like the one with a Two
Level Atom. However, if more than one QD is nearby, there is an additional
quantum and non radiative coupling between the QDs, produced by the exchange
of an exciton. Therefore the marriage of both interactions introduces quite an
interesting dynamics that is the object of this thesis.

When two quantum dots are sufficiently close, about 10nm, a resonant energy-
transfer process is originated. This process is called Foerster interaction and is
fundamental in biologic processes, and organic systems, such the photosynthesis.
In this process there is an excitation exchange with the neighbor QD, in other
words, an excited QD decays into the ground state while its neighbor change to
the excited state without the emission of a photon [6].
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Figure 1.1: Forster interaction. a) Initial configuration. b) Final configuration.
An electron in the first system is excited while the second has decayed.

We study a system of N , identical quantum and equally spaced, QDs with a
null net charge and illuminated by a classical light. If N = 2 then the QDs are in
a line, when N = 3 the QD are in the vertices of an equilateral triangle and when
N = 4 the QDs are at the vertices of a pyramid.

The Hamiltonian that gives the interaction of these quantum dots [12] is

H(t) = 1
2
~ε

N∑
n=1

(
e†

nen − hnh
†
n

)
− 1

2
~W

N∑
n,n′

(
e†

nhn′en′h†
n + hne

†
n′h

†
n′en

)

−d(t) · E(t)
N∑

n=1
e†

nh
†
n − d∗(t) · E∗(t)

N∑
n=1

enhn (1.1)

Here ε is the band gap energy, W gives the strength of the Foerster interaction,
e†

n(h†
n) is the electron (hole) creation operator in the nth QD. Let us notice the

presence of a common electric field to the system of N quantum dots.
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1.4 Structure of this thesis

The aim of this thesis work is to develop an analysis of the optical control of a
pair of quantum dots; each one interacting with its own classical electric field. To
achieve this aim, the thesis is organized as follows.

Chapter 2 gives a detailed study of a single quantum dot interacting with a
classical electric field. This interaction is given in exact resonance, i.e., when the
exciting frequency is equal to the QD frequency. We carry on a derivation along
the lines of a well know derivation for a Two Level Atom (TLA), that we could
summarize as deriving the equations of motion from the wave function. This is,
we derive the corresponding wave function and from it, the density matrix and
therein the TLA Bloch equations, instead of the common approach of deriving
the Heisenberg Equations. A detailed development in the Heisenberg picture can
be found in Optical Resonance and Two-Level Atoms [3], but soon we will realize
that the Foerster dipole-dipole interaction introduces an unnecessary complexity.
We have preferred to carry out a study in the Schrödinger picture because of
the simplicity of the Pauli matrices acting on the eigenstates of the QD. We will
produce analytical expressions for the single QD-population inversion and we will
analyze the resonance fluorescent spectrum.

In chapter 3, we will introduce the study of a pair of quantum dots, each
one within its own micro-cavity and interacting with its own classical electric
field, but still coupled trough the Foerster interaction. The aim is to develop
a similar analysis to that done in chapter 2 and to produce the corresponding
results for the inversion and the resonance fluorescent spectra of each one of the
QDs. However, such a simple idea shows the convenience of our approach. First,
it allows to conveniently deal with the Foerster term and then by introducing the
entanglement description in a straightforward manner.



Chapter 2

Semiclassical model of a single
quantum dot

2.1 Introduction

The Hamiltonian for the study of a set of N quantum dots interacting with the
same electric field has been developed by Quiroga et al, and their Hamiltonian
will be the starting point of our discussion; we will analyze a single quantum dot
interacting with its classical electric field.

This development is relevant because will give us the mathematical frame that
we will purpose in the following chapter when we will study the coupling between
a pair of coupled QDs; the results that we will obtain in this chapter shall allow
us to determinate the additional features because of the coupling.

2.2 Model

The Hamiltonian that describes a set of N quantum dots interacting with an
electric field is given by

10
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H(t) = 1
2
~ε

N∑
n=1

(
e†

nen − hnh
†
n

)
− 1

2
~W

N∑
n,n′

(
e†

nhn′en′h†
n + hne

†
n′h

†
n′en

)

−d(t) · E(t)
N∑

n=1
e†

nh
†
n − d∗(t) · E∗(t)

N∑
n=1

enhn. (2.1)

Our interest in this chapter is studying the case of a single QD, i. e., N = 1.
In that case the Hamiltonian 2.1 becomes,

H(t) = ε

2
(
e†e− hh†

)
− 1

2
W
(
e†heh† + he†h†e

)
− d(t) ·E(t)e†h† − d∗(t) ·E∗(t)he,

This can be rewritten in a simplified form by using the pseudo spin operators:

H(t) = ~εJz − ~W
(
J2 − J2

z

)
− d(t) · E(t)J+ − d∗(t) · E∗(t)J−,

Where

J+ = e†h†,

J− = he, (2.2)

Jz = 1
2
(
e†e− hh†

)
.

These operators satisfy the usual commutation relations

[J+, J−] = 2Jz,

[J±, Jz] = ∓J±.

The use of two convenient expressions
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J± = Jx ± iJy,

and

J2 − Jz = J+J− − Jz,

allows to rewrite the Hamiltonian in a more convenient form in terms of the
electric field and the electric dipole, both as real quantities

H(t) = 1
2
~ (ε−W )σz − d(t) · E(t)σx − ~Wσ+σ−, (2.3)

where J is related with the Pauli’s matrices through J = σ/2.

2.2.1 Non interacting system

The Hamiltonian without interaction is given by:

H0 = 1
2
~ (ε−W )σz − ~Wσ+σ−

For a single spinor σ+σ− = (1 + σz)/2, therefore

H0 = 1
2
~ (ε− 2W ) − ~

W

2
.

Therefore the two eigenstates, for the ground |g〉 and the excited state |e〉, are
the well known spinor eigenvalues of σz, with eigenvalues Eg

0 = −~(ε−W )/2 and
Ee

0 = ~(ε − 3W )/2 respectively. The time dependent wavefunction for the free
quantum dot is obtained from the Schrödinger’s equation:

i~
∣∣∣ψ̇0(t)

〉
= H0 |ψ0(t)〉 ,

with solution
∣∣∣ψl

0(t)
〉

= |l〉 exp
(
−iEl

0t/~
)

for l = g, e. The general wavefunc-
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tion is given by:

|ψ0(t)〉 = Cg(0) exp (−iEg
0 t/~) |g〉 + Ce(0) exp (−iEe

0t/~) |e〉 (2.4)

where Cg(0) and Ce(0) are constants, but we will use the parenthesis for con-
venience in the next chapter.

2.3 Interaction with a classical electric field

The interaction Hamiltonian, in addition of the specified non-interacting Hamilto-
nian H0, has a term of the form H0 = −d(t) ·E(t)σx. In the Schrödinger’s picture,
the dynamics of the interaction system is completely contained by the wave func-
tion, and to take into account the dipole interaction in the wave function the C
coefficients must be functions depending on time:

|ψ(t)〉 = Cg(t) exp (−iEg
0 t/~) |g〉 + Ce(t) exp (−iEe

0t/~) |e〉 (2.5)

and satisfy the Schrödinger’s equation given by the interaction Hamiltonian:

i~
∣∣∣ψ̇(t)

〉
= (H0 +Hint) |ψ(t)〉 (2.6)

The left hand side of is

i~
∣∣∣ψ̇(t)

〉
=
[
Ċg(t) exp (−iEg

0 t/~) − iEg
0Cg(t) exp (−iEg

0 t/~) /~
]

|g〉

+
[
Ċe(t) exp (−iEe

0t/~) − iEe
0Ce(t) exp (−iEe

0t/~) /~
]

|e〉

To calculate the right hand side of Eq it is necessary to obtain expressions
for the σx acting over the ground and excited states. This can be obtained by
considering the expressions for the σ+ and σ− operators
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σ+ = 1
2

(σx + iσy)

σ− = 1
2

(σx − iσy)

From here, σx = σ+ + σ− and therefore the action of σx on the ground and
excited state is

σx |e〉 = (σ+ + σ−) |e〉 = |g〉

σx |g〉 = (σ+ + σ−) |g〉 = |e〉

With these expressions we can determinate the right hand side of the equation
in which the dipole interaction is proportional to the σx Pauli matrix

(H0 +Hint) = [H0 − d(t) · E(t)σx]Cg(t) exp (−iEg
0 t/~) |g〉

+ [H0 − d(t) · E(t)σx]Ce(t) exp (−iEe
0t/~) |e〉

= Cg(t) exp (−iEg
0 t/~)Eg

0 |g〉 − Cg(t) exp (−iEg
0 t/~) d(t) · E(t) |e〉

+Ce(t) exp (−iEe
0t/~)Ee

0 |e〉 − Ce(t) exp (−iEe
0t/~) d(t) · E(t) |g〉

= [Cg(t) exp (−iEg
0 t/~)Eg

0 − Ce(t) exp (−iEe
0t/~) d(t) · E(t)] |g〉

+ [Ce(t) exp (−iEe
0t/~)Ee

0 −Cg(t) exp (−iEg
0 t/~) d(t) · E(t)] |e〉

From here, we obtain

Ċg(t) exp (−iEg
0 t/~) − i

Eg
0

~
Cg(t) exp (−iEg

0 t/~) = −iCg(t) exp (−iEg
0 t/~) E

g
0

~

+id(t) · E(t)
~

Ce(t) exp (−iEe
0t/~)

Ċe(t) exp (−iEe
0t/~) − i

Ee
0
~
Ce(t) exp (−iEe

0t/~) = −iCe(t) exp (−iEe
0t/~) E

e
0
~

+id(t) · E(t)
~

Cg(t) exp (−iEg
0 t/~)
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Or

Ċg(t) = i
d(t) · E(t)

~
Ce(t) exp (−iEe

0t/~) exp (iEg
0 t/~)

Ċe(t) = i
d(t) · E(t)

~
Cg(t) exp (−iEg

0 t/~) exp (iEe
0t/~)

2.4 Rotating wave approximation

We will call quantum dot frequency to the quantity

ωQD = Ee
0 − Eg

0

~
(2.7)

Then, equations becomes

Ċg(t) = i
d(t) · E(t)

~
Ce(t) exp (−iωQDt)

Ċe(t) = i
d(t) · E(t)

~
Cg(t) exp (iωQDt)

The applied electric field E(t) is close to resonance with the transition QD
frequency in the cases of interest to us. Explicitly it is

E(t) = e(t) cos (νt) = e(t)
2

[exp (iνt) + exp (−iνt)] (2.8)

Here e(t) is the amplitude of the electric field and ν is its frequency. If we
ignore the counter-rotating terms, i.e. terms proportional to exp [±i (ωQD + ν) t]
then reduces to
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Ċg(t) = i
ΩR(t)

2
Ce(t) exp [−i (ωQD − ν) t]

Ċe(t) = i
ΩR(t)

2
Cg(t) exp [i (ωQD − ν) t]

This approximation is the so called Rotating Wave Approximation (RWA)
and it is common to define ∆ = ωQD − ν as the detuning. The Rabi frequency is
defined as ΩR(t) = d(t) · e(t)/~.

Ċg(t) = i
ΩR(t)

2
Ce(t) exp (−i∆t) . (2.9)

Ċe(t) = i
ΩR(t)

2
Cg(t) exp (i∆t) . (2.10)

To solve equation is convenient to define the quantities

cg(t) = Cg(t) exp
(
i
∆
2
t

)

ce(t) = Ce(t) exp
(

−i∆
2
t

)

The coefficient cg(t) satisfies the differential equation

ċg(t) = Ċg(t) exp
(
i
∆
2
t

)
+ i

∆
2
Cg(t) exp

(
i
∆
2
t

)

= i
ΩR(t)

2
Ce(t) exp (−i∆t) exp

(
i
∆
2
t

)
+ i

∆
2
Cg(t) exp

(
i
∆
2
t

)

= i
ΩR(t)

2
Ce(t) exp

(
−i∆

2
t

)
+ i

∆
2
Cg(t) exp

(
i
∆
2
t

)

While ce(t)
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ċe(t) = Ċe(t) exp
(

−i∆
2
t

)
− i

∆
2
Ce(t) exp

(
−i∆

2
t

)

= i
ΩR(t)

2
Cg(t) exp (i∆t) exp

(
−i∆

2
t

)
− i

∆
2
Ce(t) exp

(
−i∆

2
t

)

= i
ΩR(t)

2
Cg(t) exp

(
i
∆
2
t

)
− i

∆
2
Ce(t) exp

(
−i∆

2
t

)

In this way we have found the set of equations

ċg(t) = i
ΩR(t)

2
ce(t) + i

∆
2
cg(t)

ċe(t) = i
ΩR(t)

2
cg(t) − i

∆
2
ce(t)

Which can be solved exactly by using the usual methods to solve differential
equations, for example taking Laplace transform, and easily because there are not
complex exponential terms left. By considering an monochromatic electric field
with constant amplitude we take Laplace transform for the system and we obtain

sc̃g(s) − cg(0) = i
ΩR

2
c̃e(s) + i

∆
2
c̃g(s)

sc̃e(s) − ce(0) = i
ΩR

2
c̃g(s) − i

∆
2
c̃e(s)

After adequately arranging the terms, it can be written in a matrix form

 s− i∆
2 −iΩR

2

−iΩR

2 s+ i∆
2

 c̃g(s)
c̃e(s)

 =

 cg(0)
ce(0)



The solution is obtained by multiplying on the left side by the inverse matrix
and taking the inverse Laplace transform (see appendix A) to obtain
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cg(t) = cg(0)
[
cos

(1
2

ΩRt
)

+ i
∆
ΩR

sin
(1

2
ΩRt

)]
+ ice(0)ΩR

Ω
sin

(1
2

ΩRt
)

ce(t) = icg(0)ΩR

Ω
sin

(1
2

ΩRt
)

+ ce(0)
[
cos

(1
2

ΩRt
)

− i
∆
Ω

sin
(1

2
ΩRt

)]

Where ΩR is the off resonance Rabi frequency. These quantities are the prob-
ability amplitude coefficients of the wave function in the rotating frame. They
allow us to determinate the Cg(t) and Ce(t) coefficients in the non-rotating by
inverting

Cg(t) = cg(t) exp
(

−i∆
2
t

)

Ce(t) = ce(t) exp
(
i
∆
2
t

)

2.5 Vector representation

2.5.1 Bloch’s vector

The equations and allow us to know the wave function of the single quantum dot.

|ψ(t)〉 = cg(t) exp
(

−i∆
2
t

)
exp (−iEg

0 t/~) |g〉 + ce(t) exp
(
i
∆
2
t

)
exp (−iEe

0t/~) |e〉

In order to simplify the notation, let’s consider the variables

αg(t) = cg(t) exp
(

−i∆
2
t

)
exp (−iEg

0 t/~)

αe(t) = ce(t) exp
(
i
∆
2
t

)
exp (−iEe

0t/~)
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By taking the expectation values of the Pauli matrices we can define the real
quantities

U(t) = 〈ψ(t)|σx |ψ(t)〉 = α∗
g(t)αe(t) + αg(t)α∗

e(t)

V (t) = 〈ψ(t)|σy |ψ(t)〉 = −iαg(t)α∗
e + iαe(t)α∗

g(t)

W (t) = 〈ψ(t)|σz |ψ(t)〉 = |αg(t)|2 − |αe(t)|2

They are the components of the called Bloch’s vector, i.e., R(t) = (U(t), V (t),W (t)).
The expected value of the σx Pauli’s matrix is

U(t) = α∗
g(t)αe(t) + αg(t)α∗

e(t)

= c∗
g(t)ce(t) exp (i∆t/2) exp (i∆t/2) exp (iEg

0 t/~) exp (−iEe
0t/~)

+cg(t)c∗
e(t) exp (−i∆t/2) exp (−i∆t/2) exp (−iEg

0 t/~) exp (iEe
0t/~)

= c∗
g(t)ce(t) exp(−iνt) + cg(t)c∗

e(t) exp(iνt)

= c∗
g(t)ce(t) cos (νt) − ic∗

g(t)ce(t) sin (νt) + cg(t)c∗
e(t) cos (νt) + icg(t)c∗

e(t) sin (νt)

=
[
c∗

g(t)ce(t) + cg(t)c∗
e(t)

]
cos (νt) −

[
ic∗

g(t)ce(t) − icg(t)c∗
e(t)

]
sin (νt)

The expected value of the σy Pauli’s matrix is

V (t) = −iαg(t)α∗
e + iαe(t)α∗

g(t)

= −icg(t) exp (−i∆t/2t) exp (−iEg
0 t/~) c∗

e(t) exp (−i∆t/2) exp (iEe
0t/~)

+ice(t) exp (i∆t/2) exp (−iEe
0t/~) c∗

g(t) exp (i∆t/2) exp (iEg
0 t/~)

= −icg(t)c∗
e(t) exp (iνt) + ice(t)c∗

g(t) exp (−iνt)

= −icg(t)c∗
e(t) cos (νt) + cg(t)c∗

e(t) sin (νt) + ice(t)c∗
g(t) cos (νt) + ce(t)c∗

g(t) sin (νt)

=
[
−icg(t)c∗

e(t) + ice(t)c∗
g(t)

]
cos (νt) +

[
cg(t)c∗

e(t) + ce(t)c∗
g(t)

]
sin(νt)

And the expected value of the σz
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W (t) = |αg(t)|2 − |αe(t)|2 = |cg(t)|2 − |ce(t)|2

As we have said, the expectation values of the Pauli’s matrices are the com-
ponents of the Bloch’s vector and are given in terms of the coefficients cg(t) and
ce(t) as


U(t)
V (t)
W (t)

 =


cos(νt) − sin(νt) 0
sin(νt) cos(νt) 0

0 0 1




c∗
g(t)ce(t) + cg(t)c∗

e(t)
−icg(t)c∗

e(t) + ice(t)c∗
g(t)

|cg(t)|2 − |ce(t)|2



This equation allows us to give an interpretation to cg(t) andce(t) coefficients:
they are the amplitude probability coefficients of the wave function in the rotating
frame. The Bloch’s vector in the rotating frame is given by

u(t) = c∗
g(t)ce(t) + cg(t)c∗

e(t)

v(t) = −icg(t)c∗
e + ice(t)c∗

g(t)

w(t) = |cg(t)|2 − |ce(t)|2

The pure unexcited state |g〉 has the vector r = (0, 0,−1) while the pure ex-
cited state |e〉 has the unit Bloch-vector (0, 0, 1) . Intermediate states have Bloch-
vectors pointing in other directions, and any state that is in a mixture of upper
and lower states has a Bloch-vector pointing in another direction, but conserving
unit norm.

The quantities u(t) and v(t) are related with the complex amplitude electric
dipole through

d(t) = u(t) + iv(t). (2.11)

And the quantity W (t) = w(t) is called inversion. When it is positive the
probability to find the QD in the upper state is higher than in the ground state
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and vice versa.

2.5.2 Bloch’s equations

In this section we find the time evolution of the Bloch’s vector in the rotating
frame, i.e., we will take the derivative of equation and we find

u̇(t) = ċ∗
g(t)ce(t) + c∗

g(t)ċe(t) + ċg(t)c∗
e(t) + cg(t)ċ∗

e(t)

v̇(t) = −iċg(t)c∗
e(t) − icg(t)ċ∗

e(t) + iċe(t)c∗
g(t) + ice(t)ċ∗

g(t)

ẇ(t) = ċ∗
g(t)cg(t) + c∗

g(t)ċg(t) − ċe(t)c∗
e(t) − ce(t)ċ∗

e(t)

But we already know the differential equation satisfied by cg(t) and ce(t)

ċg(t) = i
ΩR

2
ce(t) + i

∆
2
cg(t)

ċe(t) = i
ΩR

2
cg(t) − i

∆
2
ce(t)

For u̇(t)

u̇(t) =
[
− i∆

2
c∗

g(t) − i
ΩR

2
c∗

e(t)
]
cg(t) + c∗

g(t)
[
−i∆

2
ce(t) + i

ΩR

2
cg(t)

]

+
[
i∆
2
cg(t) + i

ΩR

2
ce(t)

]
c∗

e(t) + cg(t)
[
i∆
2
c∗

e(t) − i
ΩR

2
c∗

g(t)
]

= −i∆c∗
g(t)ce(t) + i∆cg(t)c∗

e(t)

= i∆
[
cg(t)c∗

e(t) − c∗
g(t)ce(t)

]
= ∆v(t)

For v̇(t)
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v̇(t) = −i
{[

−i∆
2
c∗

g(t) − i
ΩR

2
c∗

e(t)
]
ce(t) + c∗

g(t)
[
−i∆

2
ce(t) + i

ΩR

2
cg(t)

]

−
[
i∆
2
cg(t) + i

ΩR

2
ce(t)

]
c∗

e(t) − cg(t)
[
i∆
2
c∗

e(t) − i
ΩR

2
c∗

g(t)
]}

=
{

−∆
2
c∗

g(t)ce(t) − ΩR

2
c∗

e(t)ce(t) − ∆
2
c∗

g(t)ce(t) + ΩR

2
c∗

g(t)cg(t)

−∆
2
cg(t)c∗

e(t) − ΩR

2
ce(t)c∗

e(t) − ∆
2
cg(t)c∗

e(t) + ΩR

2
cg(t)c∗

g(t)
}

=
{

−∆
2
c∗

g(t)ce(t) − ΩR

2
c∗

e(t)ce(t) − ∆
2
c∗

g(t)ce(t) + ΩR

2
c∗

g(t)cg(t)

−∆
2
c1(t)c∗

2(t) − ΩR

2
c2(t)c∗

2(t) − ∆
2
c1(t)c∗

2(t) + ΩR

2
c1(t)c∗

1(t)
}

= −∆u(t) + ΩRw(t)

And for ẇ(t)

ẇ(t) =
{[
i∆
2
c1(t) + i

ΩR

2
c2(t)

]
c∗

1(t) + c1(t)
[
−i∆

2
c∗

1(t) − i
ΩR

2
c∗

2(t)
]

−
[
−i∆

2
c2(t) + i

ΩR

2
c1(t)

]
c∗

2(t) − c2(t)
[
i∆
2
c∗

2(t) − i
ΩR

2
c∗

1(t)
]}

=
{
i∆
2
c∗

1(t)c1(t) + i
ΩR

2
c∗

1(t)c2(t) − i∆
2
c1(t)c∗

1(t) − i
ΩR

2
c1(t)c∗

2(t)

+i∆
2
c∗

2(t)c2(t) − i
ΩR

2
c∗

2(t)c1(t) − i∆
2
c2(t)c∗

2(t) + i
ΩR

2
c2(t)c∗

1(t)
}

= iΩR [c∗
1(t)c2(t) − c1(t)c∗

2(t)]

= −ΩRv(t)

In this way, they are obtained the well known optical Bloch equations
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u̇(t) = ∆v(t)

v̇(t) = −∆u(t) + ΩRw(t)

ẇ(t) = −ΩRv(t)

They have been obtained for a constant electric field. Equations can be written
as a single vector equation

ṙ = Ω × r

r is the Bloch’s vector and Ω is the torque vector:

Ω = −ΩRx̂− ∆ẑ.

Above equations show that in the rotating frame al variables change slowly,
because of there are not optical frequencies left. Equation has a conservation law
associated:

u̇(t)u(t) = ∆v(t)u(t), (2.12)

v̇(t)v(t) = −∆u(t)v(t) + ΩRw(t)v(t), (2.13)

ẇ(t)w(t) = −ΩRv(t)w(t). (2.14)

Adding these equations it follows

u(t)2 + v(t)2 + w(t)2 = 1. (2.15)

The norm of the Bloch’s vector is constant and because of the conservation of
probability its norm is the unit.
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2.6 Resonance case

In last section we have introduced the Bloch’s vector and the Bloch’s equations in
a specific form: the electric field is not depending on time and there is a difference
between the field frequency and the frequency of the quantum dot, this fact is
characterized by the detuning.

This section is devoted to analyze solutions for the equations when the exciting
frequency is equal to the QD-frequency and the electric field amplitude is steady.
In this case the solutions become

cg(s) = cg(0) cos
(1

2
Ω0t

)
+ ice(0) sin

(1
2

Ω0t
)

ce(s) = icg(0) sin
(1

2
Ω0t

)
+ ce(0) cos

(1
2

Ω0t
)

Additionally, if the QD is initially in the excited state then the solutions are

cg(s) = i sin (Ω0t/2)

ce(s) = cos (Ω0t/2)

2.6.1 Bloch’s vector

By substituting in

u(t) = i cos (Ω0t/2) sin (Ω0t/2) − i sin (Ω0t/2) cos (Ω0t/2) = 0, (2.16)

v(t) = −i [i sin (Ω0t/2) cos (Ω0t/2) + i sin (Ω0t/2) cos (Ω0t/2)] ,

= 2 sin (Ω0t/2) cos (Ω0t/2) , (2.17)

w(t) = cos2 (Ω0t/2) − sin2 (Ω0t/2) . (2.18)
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Figure 2.1: Is shown the behavior of the Bloch’s vector when the excitation fre-
quency is equal to the QD frequency, i.e., in resonance. Notice the Bloch’s vector
traces out a circumference in the plane v − w

And can be rewritten as

u(t) = 0

v(t) = sin (Ω0t)

w(t) = cos (Ω0t)

They can be interpreted as the single vector equation

ṙ(t) = Ω × r(t)

Where
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Ω = (−Ω0, 0, 0)

This show us the time evolution of the Bloch’s vector as if it were the equations
of a solid body acted on by a torque Ω, its precessing is only about the x-axis.
Notice the in absence of electric field, there is not time evolution of the Bloch’s
vector.

2.6.2 Inversion

The single population inversion shows an oscillatory behavior between the values
−1 and 1. The applied field has the effect of repeatedly exciting and de-exciting
the QD.

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

In
ve

rs
io

n

Normalized area pulse

Figure 2.2: Single population inversion of the QD. It initially is in the excited
state. The normalized area of the pulse is defined as A = Ω0 (t2 − t1) /2π = 1.
After a pulse with duration 1 the system again is in the initial state.
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2.6.3 Resonance fluorescent spectrum

When the components of the Bloch’s vector are known we can determinate the
electric dipole oscillations, its Fourier transform will give a close resemblance of
its the resonance fluorescent spectrum.
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Figure 2.3: Spectrum of the resonance fluorescence. Has been consider the system
in resonance, the peaks correspond to the normalized Rabi frequency.



Chapter 3

Semmiclassical model of a pair of
coupled quantum dots

3.1 Introduction

In this chapter we will study a pair of quantum dots, each one in its own cavity.
Both of them are coupled trough the Foerster interaction between them. In addi-
tion, each QD is interacting with its own classical electric field through a dipole
interaction. We will develop a model based on the Schrödinger picture, similar
to that done in the previous chapter that describes the dynamics of the coupled
system.

In this chapter the systems will be labeled as system 1 and system 2. In order
to distinguish the operators corresponding to each system we will use the notation

σx
1 , σ

y
1 , σ

z
1

To distinguish the Pauli’s matrices of the system 1 from the Pauliâs matrices
of the system 2

σx
2 , σ

y
2 , σ

z
2

The assignation of that notation is different to the used in the previous chapter;
however it has been introduced in order to avoid confusions between the Pauli’s

28
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matrices of the system 2 and the square of the Pauli’s matrices.

3.2 Model

The Hamiltonian of N quantum dots is

H(t) = ε

2
~

N∑
n=1

(
e†

nen − hnh
†
n

)
− 1

2
~W

N∑
n,n′

(
e†

nhn′en′h†
n + hne

†
n′h

†
n′en

)

−d(t) · E(t)
N∑

n=1
e†

nh
†
n − d∗(t) · E∗(t)

N∑
n=1

hnen. (3.1)

This Hamiltonian describes N quantum dots interacting with the same electric
field.

Figure 3.1: This picture shows physical system studyied. Each circle represents
a quantum dot in a cavity. The different color used for the cavities suggest they
are interacting with different electric fiels

Our aim is to study a pair of quantum dots, so N = 2, each quantum dot is
inside its own micro cavity interacting with their local electric field. The Hamil-
tonian that describes this situation is
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H(t) = ε1

2
~
(
e†

1e1 − h1h
†
1

)
+ ε2

2
~
(
e†

2e2 − h2h
†
2

)
− d1(t) · E1(t)e†

1h
†
1

−d∗
1(t) · E∗

1(t)h1e1 − d2(t) · E2(t)e†
2h

†
2 − d∗

2(t) · E∗
2(t)h2e2

−1
2
~W

(
e†

1h1e1h
†
1 + h1e

†
1h

†
1e1 + e†

1h2e2h
†
1 + h1e

†
2h

†
2e1
)

−1
2
~W

(
e†

2h1e1h
†
2 + h2e

†
1h

†
1e2 + e†

2h2e2h
†
2 + h2e

†
2h

†
2e2
)
.

The above Hamiltonian is rewritten by using the pseudo spin operators in each
cavity

J+
1 = e†

1h
†
1, J

−
1 = h1e1, J

z
1 = 1

2
(
e†

1e1 − h1h
†
1

)
,

J+
2 = e†

2h
†
2, J

−
2 = h2e2, J

z
2 = 1

2
(
e†

2e2 − h2h
†
2

)
.

In the following form

H(t) = ~ε1J
z
1 − d1(t) · E1(t)J+

1 − d∗
1(t) · E∗

1(t)J−
1

+~ε2J
z
2 − d2(t) · E2(t)J+

2 − d∗
2(t) · E∗

2(t)J−
2

−1
2
~W

[
J2

1 − (Jz
1 )2 + J+

1 J
−
2 + J−

1 J
+
2 + J+

2 J
−
1 + J−

2 J
+
1 + J2

2 − (Jz
2 )2
]
.

Considering real both electric fields and both electric dipoles of each QD; using
the identities J2

1 − (Jz
1 )2 = J+

1 J
−
1 − Jz

1 and J2
2 − (Jz

2 )2 = J+
2 J

−
2 − Jz

2 the above
Hamiltonian becomes:

H(t) = ~ε1J
z
1 − d1(t) · E1(t)J+

1 − d∗
1(t) · E∗

1(t)J−
1

+~ε2J
z
2 − d2(t) · E2(t)J+

2 − d∗
2(t) · E∗

2(t)J−
2

−1
2
~W

[
J2

1 − (Jz
1 )2 + J+

1 J
−
2 + J−

1 J
+
2 + J+

2 J
−
1 + J−

2 J
+
1 + J2

2 − (Jz
2 )2
]
.
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Because J1 = σ1/2 and J2 = σ2/2.

H(t) = 1
2
~ (ε1 −W )σz

1 − ~W
(
σ+

1 σ
−
1

)
+ 1

2
~ (ε2 −W )σz

2 − ~W
(
σ+

2 σ
−
2

)
−~W

(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
− d1(t) · E1(t)σx

1 − d2(t) · E2(t)σx
2

3.2.1 Non interacting Hamiltonian

In this Hamiltonian we can distinguish the terms that describe the model of
quantum dots, we will call it non-interacting Hamiltonian H0, and the terms
corresponding to the interaction with the electric field, interaction Hamiltonian
Hint.

The non-interacting Hamiltonian consists of three terms

H0 = H1
0 +H2

0 +H12
0 (3.2)

The Hamiltonians

H i
0(t) = 1

2
~ (εi −W )σz

i − ~W
(
σ+

i σ
−
i

)
= 1

2
~ (εi − 2W )σz

i − ~
W

2

corresponds to the free Hamiltonian of each quantum dot and the Hamiltonian

H12
0 (t) = −~W

(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
gives the Foerster interaction.

As we have seen in the last chapter, the single quantum dot 1 has associated a
two-dimensional Hilbert space S1. Similarly the single quantum dot 2 has a two-
dimensional Hilbert space S2. We will designate by σ1 and σ2 the observables
of the quantum dots 1 and 2 respectively. In S1 (or inS2) we choose a basis the
eigenvectors of σz

1 (or σz
2) which we will denote by |g(1)〉 and |e(1)〉 ( or |g(2)〉

and |e(2)〉). The most general state of the quantum dot 1 in the absence of
electromagnetic interaction can be written as:
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|ψ1(t)〉 = C1g(0) exp
(
−iE1g

0 t/~
)

|g1〉 + C1e(0) exp
(
−iE1e

0 t/~
)

|e1〉 (3.3)

And the most general state of the quantum dot 2 is

|ψ2(t)〉 = C2g(0) exp
(
−iE2g

0 t/~
)

|g2〉 + C2e(0) exp
(
−iE2e

0 t/~
)

|e2〉 (3.4)

Those probability amplitudes have been already found in the chapter 2 and

Eig
0 = −~ (ε1 −W ) /2

Eie
0 = ~ (ε2 − 3W ) /2

Because of the Foerster coupling the two systems are joined making a single
system which state space is the tensor product S = S1 ⊗ S2 of the two preceding
spaces . This means that a basis of S can be obtained by tensor multiplication
the two basis defined for S1 and S2

|g(1), g(2)〉 = |g(1)〉 ⊗ |g(2)〉

|g(1), e(2)〉 = |g(1)〉 ⊗ |e(2)〉

|e(1), g(2)〉 = |e(1)〉 ⊗ |g(2)〉

|e(1), e(2)〉 = |e(1)〉 ⊗ |e(2)〉

The vector space S is therefore four-dimensional.

Let’s start by observing that the Hamiltonian contains terms corresponding
to the non-interacting QDs, Eq. establishing a parallel development with the
Hamiltonian of the single quantum dot. The single quantum dot does have a free
term whose eigenfunctions are the two-level basis of the problem, and the time
evolution is due to the action of a non-diagonal term. The Hamiltonian Eq. ) is
similar in that sense; it has the diagonal terms H1

0 and H2
0 and its eigenvectors
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are the basis Eq. ; also it has the Foerster interaction which is a non-diagonal
term. From this observation we can say, even before to solve the problem, that
the system will have a time evolution in absence of electric field. The Foerster
interaction strength W plays the role of Rabi frequency and the difference on the
QDs frequencies, the detuning.

The wave function of the quantum dots, in the absence of Foerster interaction,
is

|ψ0(t)〉 = Cgg
0 (0)e−i(E1g

0 +E2g
0 )t/~ |g(1), g(2)〉 + Cge

0 (0)e−i(E1g
0 +E2e

0 )t/~ |g(1), e(2)〉

+Ceg
0 (0)e−i(E1e

0 +E2g
0 )t/~ |e(1), g(2)〉 + Cee

0 (0)e−i(E1e
0 +E2e

0 )t/~ |e(1), e(2)〉

where it has been used the eigenvalues relation for H1
0 +H2

0

(
H1

0 +H2
0

)
|g(1), g(2)〉 =

(
E1g

0 + E2g
0

)
|g(1), g(2)〉(

H1
0 +H2

0

)
|g(1), e(2)〉 =

(
E1g

0 + E2e
0

)
|g(1), e(2)〉(

H1
0 +H2

0

)
|e(1), g(2)〉 =

(
E1e

0 + E2g
0

)
|e(1), g(2)〉(

H1
0 +H2

0

)
|e(1), e(2)〉 =

(
E1e

0 + E2e
0

)
|e(1), e(2)〉

To take into count the Foerster interaction, we let the coefficients of the wave
function Eq. ) is time-dependent:

∣∣∣ψ12
0 (t)

〉
= Cgg

0 (t)e−i(E1g
0 +E2g

0 )t/~ |g(1), g(2)〉 + Cge
0 (t)e−i(E1g

0 +E2e
0 )t/~ |g(1), e(2)〉

+Ceg
0 (t)e−i(E1e

0 +E2g
0 )t/~ |e(1), g(2)〉 + Cee

0 (t)e−i(E1e
0 +E2e

0 )t/~ |e(1), e(2)〉

This satisfies the Schrödinger equation

i~
∣∣∣ψ̇12

0 (t)
〉

=
(
H1

0 +H2
0 +H12

0

) ∣∣∣ψ12
0 (t)

〉
(3.5)
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The left hand side of )

i~
d

dt

〈
g(1), g(2)|ψ12

0

〉
= Ċgg

0 (t)e−i(E1g
0 +E2g

0 )t/~ − i

(
E1g

0 + E2g
0

)
~

Cgg
0 (t)e−i(E1g

0 +E2g
0 )t/~

i~
d

dt

〈
g(1), e(2)|ψ12

0

〉
= Ċge

0 (t)e−i(E1g
0 +E2e

0 )t/~ − i

(
E1g

0 + E2e
0

)
~

Cge
0 (t)e−i(E1g

0 +E2e
0 )t/~

i~
d

dt

〈
e(1), g(2)|ψ12

0

〉
= Ċeg

0 (t)e−i(E1e
0 +E2g

0 )t/~ − i

(
E1e

0 + E2g
0

)
~

Ceg
0 (t)e−i(E1e

0 +E2g
0 )t/~

i~
d

dt

〈
e(1), e(2)|ψ12

0

〉
= Ċee

0 (t)e−i(E1e
0 +E2e

0 )t/~ − i
(E1e

0 + E2e
0 )

~
Cee

0 (t)e−i(E1e
0 +E2e

0 )t/~

And the right hand side of ) gives the following four expressions. Multiplying
by 〈g(1), g(2)| on the left:

d

dt

〈
g(1), g(2)|H0|ψ12

0

〉
= 〈g(1), g(2)|

[
H1

0 +H2
0 − ~W

(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)] ∣∣∣ψ12
0 (t)

〉
=

[(
E1g

0 + E2g
0

)
〈g(1), g(2)|

] ∣∣∣ψ12
0 (t)

〉
=

(
E1g

0 + E2g
0

)
Cgg

0 (t)e−i(E1g
0 +E2g

0 )t/~

Multiplying by 〈g(1), e(2)| on the left:

d

dt

〈
g(1), e(2)|H0|ψ12

0

〉
= 〈g(1), e(2)|

[
H1

0 +H2
0 − ~W

(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)] ∣∣∣ψ12
0 (t)

〉
=

[(
E1g

0 + E2e
0

)
〈g(1), e(2)| − ~W 〈e(1), g(2)|

] ∣∣∣ψ12
0 (t)

〉
=

(
E1g

0 + E2e
0

)
Cge

0 (t)e−i(E1g
0 +E2e

0 )t/~ − ~WCeg
0 (t)e−i(E1e

0 +E2g
0 )t/~

Multiplying by 〈e(1), g(2)| on the left:

d

dt

〈
e(1), g(2)|H0|ψ12

0

〉
= 〈e(1), g(2)|

[
H1

0 +H2
0 − ~W

(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)] ∣∣∣ψ12
0 (t)

〉
=

[(
E1e

0 + E2g
0

)
〈e(1), g(2)| − ~W 〈g(1), e(2)|

] ∣∣∣ψ12
0 (t)

〉
=

(
E1g

0 + E2e
0

)
Ceg

0 (t)e−i(E1e
0 +E2e

0 )t/~ − ~WCge
0 (t)e−i(E1g

0 +E2e
0 )t/~
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And multiplying by 〈e(1), e(2)| on the left:

d

dt

〈
e(1), e(2)|H0|ψ12

0

〉
= 〈e(1), e(2)|

[
H1

0 +H2
0 − ~W

(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)] ∣∣∣ψ12
0 (t)

〉
=

[(
E1e

0 + E2e
0

)
〈e(1), e(2)|

] ∣∣∣ψ12
0 (t)

〉
=

(
E1e

0 + E2e
0

)
Cee

0 (t)e−i(E1e
0 +E2e

0 )t/~

From the identification of the left and the right side of ), it is obtained the set
of equations

Ċgg
0 (t) = 0

Ċge
0 (t) = iWCeg

0 (t)e−i(E1e
0 −E1g

0 )t/~ei(E2e
0 −E2g

0 )t/~

Ċeg
0 (t) = iWCge

0 (t)e−i(E1g
0 −E1e

0 )t/~e−i(E2e
0 −E2g

0 )t/~

Ċee
0 (t) = 0

The above equations contain oscillating exponential terms depending on the
QD-frequencies

ωQD1 = E1e
0 − E1g

0

~

ωQD2 = E2e
0 − E2g

0

~

Also, we define the quantity

δ = ωQD1 − ωQD2

The amplitude probability coefficients of the non-interacting system obey the
differential equation
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Ċgg
0 (t) = 0

Ċge
0 (t) = iWCeg

0 (t)e−iδt

Ċeg
0 (t) = iWCge

0 (t)eiδt

Ċee
0 (t) = 0

The set of Equations ) has the same form that equation )

Ċg(t) = i
ΩR(t)

2
Ce(t) exp (−i∆t)

Ċe(t) = i
ΩR(t)

2
Cg(t) exp (i∆t)

But we already know its solutions; therefore we know the solutions for the
system):

Cgg
0 (t) = Cgg

0 (0)

Cge
0 (t) = Cge

0 (0)
[
cos

(1
2

ΩQDt
)

+ i
δ

ΩQD

sin
(1

2
ΩQDt

)]
+ iCeg

0 (0) 2W
ΩQD

sin
(1

2
ΩQDt

)
Ceg

0 (t) = iCge
0 (0) 2W

ΩQD

sin
(1

2
ΩQDt

)
+ Ceg

0 (0)
[
cos

(1
2

ΩQDt
)

− i
δ

ΩQD

sin
(1

2
ΩQDt

)]
Cee

0 (t) = Cee
0 (0)

here ΩQD =
√

4W 2 + δ 2. In this section, we are interested in pure states for
the initial states of the system. Therefore, only one coefficient will be initially
equal to 1. An important aspect for the time evolution of that system is the
initial condition. If both QDs are initially in the ground state or in the excited
state, then the system will not present time evolution.

On other hand, if one QD is initially excited and the other is initially in the
ground state, then the system will have time evolution because of the Foerster
interaction. What happen with the expected value of the Pauliâs matrices of this
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system? Their expectation values are:

U0
1 (τ) = 0

U0
2 (τ) = 0

V 0
1 (τ) = 0

V 0
2 (τ) = 0

W 0
1 (τ) = − |Cge

0 (t)|2 + |Ceg
0 (t)|2

W 0
2 (τ) = |Cge

0 (t)|2 − |Ceg
0 (t)|2

The expectation value of the σ z Pauli’s matrix is the single quantum dot
population inversion. Their frequency is 2W and the quantity δ acts as a detuning.
This result also has been confirmed by numerical calculation.

The time evolution of the expected value of the Pauli’s matrices of the non-
interacting system depends not only of δ and W , also depend on the initial con-
ditions they can’t be interpreted as a set of Bloch’s equations

3.3 QDs interacting with electric fields

We have studied the non-interacting system formed by two QDs in absence of
interactions such as electric fields. Now, we will take in count the interaction with
an electric field.

|ψ(t)〉 = C1(t)e−i(E1g
0 +E2g

0 )t/~ |g(1), g(2)〉 + C2(t)e−i(E1g
0 +E2e

0 )t/~ |g(1), e(2)〉

+C3(t)e−i(E1e
0 +E2g

0 )t/~ |e(1), g(2)〉 + C4(t)e−i(E1e
0 +E2e

0 )t/~ |e(1), e(2)〉

The wave function satisfies the Schrödinger equation

i~
∣∣∣ψ̇(t)

〉
= H |ψ(t)〉
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The left hand side of gives the equations

i~
d

dt
〈g(1), g(2)|ψ(t)〉 = Ċ1(t)e−i(E1g

0 +E2g
0 )t/~ − i

(
E1g

0 + E2g
0

)
~

C1(t)e−i(E1g
0 +E2g

0 )t/~

i~
d

dt
〈g(1), e(2)|ψ(t)〉 = Ċ2(t)e−i(E1g

0 +E2e
0 )t/~ − i

(
E1g

0 + E2e
0

)
~

C2(t)e−i(E1g
0 +E2e

0 )t/~

i~
d

dt
〈e(1), g(2)|ψ(t)〉 = Ċ3(t)e−i(E1e

0 +E2g
0 )t/~ − i

(
E1e

0 + E2g
0

)
~

C3(t)e−i(E1e
0 +E2g

0 )t/~

i~
d

dt
〈e(1), e(2)|ψ(t)〉 = Ċ4(t)e−i(E1e

0 +E2e
0 )t/~ − i

(E1e
0 + E2e

0 )
~

C4(t)e−i(E1e
0 +E2e

0 )t/~

The right side of ) gives the following four expressions. Multiplying by 〈g(1), g(2)|
on the left:

〈g(1), g(2)|H|ψ(t)〉 = 〈g(1), g(2)| [H0 − d1(t) · E1(t)σx
1 − d2(t) · E2(t)σx

2 ] |ψ(t)〉

=
[(
E1g

0 + E2g
0

)
〈g(1), g(2)|

−d1(t) · E1(t) 〈e(1), g(2)| − d2(t) · E2(t) 〈g(1), e(2)|] |ψ(t)〉

=
(
E1g

0 + E2g
0

)
C1(t)e−i(E1g

0 +E2g
0 )t/~

−d1(t) · E1(t)C3(t)e−i(E1e
0 +E2g

0 )t/~ − d2(t) · E2(t)C2(t)e−i(E1g
0 +E2e

0 )t/~

Multiplying by 〈g(1), e(2)| on the left:

〈g(1), e(2)|H|ψ(t)〉 = 〈g(1), e(2)| [H0 − d1(t) · E1(t)σx
1 − d2(t) · E2(t)σx

2 ] |ψ(t)〉

=
[(
E1g

0 + E2e
0

)
〈g(1), e(2)| − d1(t) · E1(t) 〈e(1), e(2)|

−d2(t) · E2(t) 〈g(1), g(2)| −~W 〈e(1), g(2)|] |ψ(t)〉

=
(
E1g

0 + E2e
0

)
C2(t)e−i(E1g

0 +E2e
0 )t/~ − d1(t) · E1(t)C4(t)e−i(E1e

0 +E2e
0 )t/~

−d2(t) · E2(t)C1(t)e−i(E1g
0 +E2g

0 )t/~ − ~WC3(t)e−i(E1e
0 +E2g

0 )t/~

Multiplying by 〈e(1), g(2)| on the left:
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〈e(1), g(2)|H |ψ(t)〉 = 〈e(1), g(2)| [H0 − d1(t) · E1(t)σx
1 − d2(t) · E2(t)σx

2 ] |ψ(t)〉

=
(
E1e

0 + E2g
0

)
C3(t)e−i(E1e

0 +E2g
0 )t/~ − d1(t) · E1(t)C1(t)e−i(E1g

0 +E2g
0 )t/~

−d2(t) · E2(t)C4(t)e−i(E1e
0 +E2e

0 )t/~ − ~WC2(t)e−i(E1g
0 +E2e

0 )t/~

And, multiplying by 〈e(1), e(2)| on the left:

〈e(1), e(2)|H |ψ(t)〉 = 〈e(1), e(2)| [H0 − d1(t) · E1(t)σx
1 − d2(t) · E2(t)σx

2 ] |ψ(t)〉

= [Eee
0 〈e(1), e(2)| − d1(t) · E1(t) 〈g(1), e(2)|

− d2(t) · E2(t) 〈e(1), g(2)|] |ψ(t)〉

= e−i(E1e
0 +E2e

0 )t/~C4(t)e−i(E1e
0 +E2e

0 )t/~ − d1(t) · E1(t)C2(t)e−i(E1g
0 +E2e

0 )t/~

−d2(t) · E2(t)C3(t)e−i(E1e
0 +E2g

0 )t/~

By equating the right and the right side of equation ) is obtained the set of
equations

Ċ1(t)e−i(E1g
0 +E2g

0 )t/~ = i
d1(t) · E1(t)

~
C3(t)e−i(E1e

0 +E2g
0 )t/~+id2(t) · E2(t)

~
C2(t)e−i(E1g

0 +E2e
0 )t/~

Ċ2(t)e−i(E1g
0 +E2e

0 )t/~ = i
d1(t) · E1(t)

~
C4(t)e−i(E1e

0 +E2e
0 )t/~+id2(t) · E2(t)

~
C1(t)e−i(E1g

0 +E2g
0 )t/~

+iWC3(t)e−i(E1e
0 +E2g

0 )t/~

Ċ3(t)e−i(E1e
0 +E2g

0 )t/~ = i
d1(t) · E1(t)

~
C1(t)e−i(E1g

0 +E2g
0 )t/~+id2(t) · E2(t)

~
C4(t)e−i(E1e

0 +E2e
0 )t/~

+iWC2(t)e−i(E1g
0 +E2e

0 )t/~

Ċ4(t)e−i(E1e
0 +E2e

0 )t/~ = i
d1(t) · E1(t)

~
C2(t)e−i(E1g

0 +E2e
0 )t/~+id2(t) · E2(t)

~
C3(t)e−i(E1e

0 +E2g
0 )t/~

Then set of coupled differential equations for the amplitude probability is
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Ċ1(t) = i
d2 · E2

~
C2(t) exp(−iωQD2t) + i

d1 · E1

~
C3(t) exp(−iωQD1t)

Ċ2(t) = i
d2 · E2

~
C1(t) exp(iωQD2t) + i

d1 · E1

~
C4(t) exp(−iωQD1t)

+iWC3(t) exp [−i(ωQD1 − ωQD2)t]

Ċ3(t) = i
d1 · E1

~
C1(t) exp(iωQD1t) + i

d2 · E2

~
C4(t) exp(−iωQD2t)

+iWC2(t) exp [i(ωQD1 − ωQD2)t]

Ċ4(t) = i
d1 · E1

~
C2(t) exp(iωQD1t) + i

d2 · E2

~
C3(t) exp(iωQD2t)

To write in this form the differential equation allow us to apply the rotating
wave approximation

3.4 Rotating wave approximation

Equation depends on the frequencies ωQD1 and ωQD2, to solve this fact we will
follow the same analysis done in the chapter 2. We assume the electric fields in
the cavities on the form

E1(t) = e1(t) cos (ν1t) = e1(t)
2

[exp (iν1t) + exp (−iν1t)] , (3.6)

E2(t) = e2(t) cos (ν2t) = e2(t)
2

[exp (iν2t) + exp (−iν2t)] . (3.7)

Then the equation become
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Ċ1(t) = i
Ω2

2
C2(t) exp (−i∆2t) + i

Ω1

2
C3(t) exp (−i∆1t) ,

Ċ2(t) = i
Ω2

2
C1(t) exp (i∆2t) + i

Ω1

2
C4(t) exp (−i∆1) + iWC3(t) exp (−iδt) ,

Ċ3(t) = i
Ω1

2
C1(t) exp (i∆1t) + i

Ω2

2
C4(t) exp (−i∆2t) + iWC2(t) exp (iδt) ,

Ċ4(t) = i
Ω1

2
C2(t) exp (i∆1t) + i

Ω2

2
C3(t) exp (i∆2t) .

Where has been introduced the detunings

δ = ωQD1 − ωQD2

∆1 = ωQD1 − ν1,

∆2 = ωQD2 − ν2.

And the Rabi’s frequencies

Ω1(t) = d1(t) · E1(t)
~

Ω2(t) = d2(t) · E2(t)
~

An ideal Foerster interaction requires that the frequencies of both QDs are the
same, then the frequencies ωQD1 and ωQD2 must be the same. This implies that
for resonance, where the detunings are equal to zero equation becomes
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Ċ1(t) = i
Ω2(t)

2
C2(t) + i

Ω1(t)
2

C3(t), (3.8)

Ċ2(t) = i
Ω2(t)

2
C1(t) + i

Ω1(t)
2

C4(t) + iWC3(t), (3.9)

Ċ3(t) = i
Ω1(t)

2
C1(t) + i

Ω2(t)
2

C4(t) + iWC2(t), (3.10)

Ċ4(t) = i
Ω1(t)

2
C2(t) + i

Ω2(t)
2

C3(t). (3.11)

We will focus our attention in one of the QDs, in other words, to understand
the dynamics of the system in terms of the dynamics of one of the constituents of
the system. So, we will introduce the normalizations

W = AΩ1 (3.12)

Ω2 = BΩ1 (3.13)

The time unit now will be expressed as

τ = Ω1t

Now the set of equations to be solved will be

β̇1(τ) = i
B

2
β2(τ) + i

1
2
β3(τ) (3.14)

β̇2(τ) = i
B

2
β1(τ) + iAβ3(τ) + i

1
2
β4(τ) (3.15)

β̇3(τ) = i
1
2
β1(τ) + iAβ2(τ) + i

B

2
β4(τ) (3.16)

β̇4(τ) = i
1
2
β2(τ) + i

B

2
β3(τ) (3.17)

Where has been introduced the normalizations.
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βi(τ) = ΩiCi

Obviously, it has been considered and steady electric field.

3.5 Steady electric field amplitude

Our aim in this section is to find an analytical solution for the system. We can
construct an alternative set of equations which solution is easier for finding.

d

dτ
[β1(τ) + β4(τ)] = i

1
2

[B + 1] [β2(τ) + β3(τ)] , (3.18)

d

dτ
[β1(t) − β4(τ)] = i

1
2

[B − 1] [β2(τ) − β3(τ)] , (3.19)

d

dτ
[β2(τ) + β3(τ)] = i

1
2

[B + 1] [β1(τ) + β4(τ)] + iA [β3(τ) + β2(τ)] , (3.20)

d

dτ
[β2(τ) − β3(τ)] = i

1
2

[B − 1] [β1(τ) − β4(τ)] − iA [β2(τ) − β3(τ)] . (3.21)

Basically we have a pair of equations on the form

d

dτ
ξ± = iΩ±χ±

d

dτ
χ± = iΩ±ξ± ± iAχ±

Where

ξ±(τ) = β1(τ) ± β4(τ)

χ±(τ) = β2(τ) ± β3(τ)

Ω± = 1
2

(B ± 1)
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So that

β1(τ) = 1
2

[ξ+(τ) + ξ−(τ)] ,

β4(τ) = 1
2

[ξ+(τ) − ξ−(τ)] ,

β2(τ) = 1
2

[χ+(τ) + χ−(τ)] ,

β3(τ) = 1
2

[χ+(τ) − χ−(τ)] .

We will solve

d

dt
ξ = iΩχ,

d

dt
χ = iΩξ ± iAχ.

Here ξ, χ and Ω are either ξ+, χ+ and Ω+ or ξ−, χ− and Ω−. By taking
Laplace transform

sξ(s) − iΩχ(s) = ξ(0),

sχ(s) − iΩξ(s) ∓ iAχ(s) = χ(0).

Or, written in matrix form

 s −iΩ
−iΩ s∓ iA

 ξ(s)
χ(s)

 =

 ξ(0)
χ(0)

 . (3.22)

Multiplying by the inverse matrix
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 s −iΩ
−iΩ s∓ iA

−1

= 1
s (s∓ iA) + Ω2

 s∓ iA iΩ
iΩ s

 . (3.23)

We obtain a no coupled set of equations

ξ(s) = ξ(0) s∓ iA

s (s∓ iA) + Ω2 + χ(0) iΩ
s (s∓ iA) + Ω2 ,

χ(s) = ξ(0) iΩ
s (s∓ iA) + Ω2 + χ(0) s

s (s∓ iA) + Ω2 .

It is necessary rewrite in a more convenient form so that their inverse Laplace
Transform could be determinate immediately; we can complete the squares by
using

(
s∓ i

1
2
A
)2

= s2 ∓ isA− 1
4
A2.

To obtain

ξ(s) = ξ(0) s∓ iA(
s∓ i1

2A
)2

+
(
Ω2 + 1

4A
2
) + χ(0) iΩ(

s∓ i1
2A
)2

+
(
Ω2 + 1

4A
2
) ,

= ξ(0)
s∓ i1

2A(
s∓ i1

2A
)2

+
(
Ω2 + 1

4A
2
) +

iΩχ(0) ∓ ξ(0)i1
2A(

s∓ i1
2A
)2

+
(
Ω2 + 1

4A
2
) ,

= ξ(0)
s∓ i1

2A(
s∓ i1

2A
)2

+
(
Ω2 + 1

4A
2
)

+
iΩχ(0) ∓ ξ(0)i1

2A√
Ω2 + 1

4A
2

√
Ω2 + 1

4A
2(

s∓ i1
2A
)2

+
(
Ω2 + 1

4A
2
) .

And similarly
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χ(s) = ξ(0) iΩ(
s∓ i1

2A
)2

+
(
Ω2 + 1

4A
2
) + χ(0) s(

s∓ i1
2A
)2

+
(
Ω2 + 1

4A
2
) ,

= iΩξ(0)√
Ω2 + 1

4A
2

√
Ω2 + 1

4A
2(

s∓ i1
2A
)2

+
(
Ω2 + 1

4A
2
) + χ(0)

s∓ i1
2A± i1

2A(
s∓ i1

2A
)2

+
(
Ω2 + 1

4A
2
) ,

=
iΩξ(0) ± iχ(0)1

2A√
Ω2 + 1

4A
2

√
Ω2 + 1

4A
2(

s∓ i1
2A
)2

+
(
Ω2 + 1

4A
2
)

+χ(0)
s∓ i1

2A(
s∓ i1

2A
)2

+
(
Ω2 + 1

4A
2
) .

We have obtained a set of equations which have an immediate inverse Laplace
transform

ξ(τ) =

ξ(0) cos

√Ω2 + 1
4
A2t

+
iΩχ(0) ∓ ξ(0)i1

2A√
Ω2 + 1

4A
2

sin

√Ω2 + 1
4
A2τ


× exp

(
±i1

2
Aτ
)
,

χ(τ) =

ξ(0)iΩ ± χ(0)1
2iA√

Ω2 + 1
4A

2
sin

√Ω2 + 1
4
A2τ

+ χ(0) cos

√Ω2 + 1
4
A2τ


× exp

(
±i1

2
Aτ
)
.

Above equation is the most general possible, with accurate initial conditions
we can find solutions when the system is initially separable or entangled. Now we
will consider as initial condition the separable state with initial coefficients

β3(0) = 1, β1(0) = β2(0) = β4(0) = 0.

Which represents the QD-1 in the excited state and the QD-2 in the ground
state. This means that
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ξ±(0) = 0,

χ±(0) = ±1.

In this point we can choose different values of the electric field, in other words
different values for B. An interesting case is when one of the QD is an isolated
system and when the electric field amplitude of this QD is zero. This case allows
us to investigate the effect of the coupling in a QD in absence of electric field,
when B = 0.

Ω± = ±1
2

And

ξ±(τ) =
[

i√
1 + A2

sin
(1

2
√

1 + A2τ
)]

exp
(

±i1
2
Aτ
)
,

χ±(τ) =
[

iA√
1 + A2

sin
(1

2
√

1 + A2τ
)

± cos
(1

2
√

1 + A2τ
)]

exp
(

±i1
2
Aτ
)
.

Then, probabilityamplitude coefficients are

β1(τ) = i√
1 + A2

sin
(√

1 + A2τ/2
)

cos (Aτ/2) , (3.24)

β2(τ) = i
A√

1 + A2
sin

(√
1 + A2τ/2

)
cos (Aτ/2)

+i cos
(√

1 + A2τ/2
)

sin (Aτ/2) , (3.25)

β3(τ) = − A√
1 + A2

sin
(√

1 + A2τ/2
)

sin (Aτ/2)

+ cos
(√

1 + A2τ/2
)

cos (Aτ/2) , (3.26)

β4(τ) = − 1√
1 + A2

sin
(√

1 + A2τ/2
)

sin (Aτ/2) . (3.27)
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We can observe that β1(τ) and β2(τ) are imaginary complex numbers while
β3(τ) and β4(τ) are real numbers. This fact will be important when calculated
the expected value of the Pauli matrices.

3.5.1 Vector representation

As we have demonstrated in the last chapter the coefficients ) are the amplitude
probability in the rotating frame. The electric field frequencies are in resonance
with the QD frequencies

∣∣∣ψ̃(t)
〉

= β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉 + β3(τ) |e(2), g(1)〉 + β4(τ) |e(1), e(2)〉 .

By taking the expectation values of the Pauli’s matrices we can to define the
real quantities

u1(t) =
〈
ψ̃(τ)

∣∣∣σx
1

∣∣∣ψ̃(τ)
〉
,

v1(t) =
〈
ψ̃(τ)

∣∣∣σy
1

∣∣∣ψ̃(τ)
〉
,

w1(t) =
〈
ψ̃(τ)

∣∣∣σz
1

∣∣∣ψ̃(τ)
〉
.

and

u2(t) =
〈
ψ̃(τ)

∣∣∣σx
2

∣∣∣ψ̃(τ)
〉
,

v2(t) =
〈
ψ̃(τ)

∣∣∣σy
2

∣∣∣ψ̃(τ)
〉
,

w2(t) =
〈
ψ̃(τ)

∣∣∣σz
2

∣∣∣ψ̃(τ)
〉
.

They are the components of the Bloch vector
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r1(τ) = u1(τ)x̂+ v1(τ)ŷ + w1(τ)ẑ

r2(τ) = u2(τ)x̂+ v2(τ)ŷ + w2(τ)ẑ

3.5.1.1 Expected values of the Pauli’s matrices

With the wave function that we have found we take the expected value of the
Pauli matrices

σx Pauli Matrices.

The expectation value of σx
1 is

u1(τ) =
〈
ψ̃
∣∣∣σx

1

∣∣∣ψ̃〉 .
=

〈
ψ̃
∣∣∣σx

1 [β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉

+ β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

=
〈
ψ̃
∣∣∣ [β1(τ) |e(1), g(2)〉 + β2(τ) |e(1), e(2)〉

+ β3(τ) |g(1), g(2)〉 + β4(τ) |g(1), e(2)〉] ,

= β∗
3(τ)β1(τ) + β∗

4(τ)β2(τ) + β∗
1(τ)β3(τ) + β∗

2(τ)β4(τ)

= 2 Re [β∗
3(τ)β1(τ) + β∗

4(τ)β2(τ)] .

Because of the product of β∗
3(τ)β1(τ) + β∗

4(τ)β2(τ) is imaginary follows

u1(τ) = 0 (3.28)

And the expectation value of σx
2 gives
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u2(τ) =
〈
ψ̃
∣∣∣ σx

2

∣∣∣ψ̃〉 ,
=

〈
ψ̃
∣∣∣ σx

2 [β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉

+ β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

=
〈
ψ̃
∣∣∣ [β1(τ) |g(1), e(2)〉 + β2(τ) |g(1), g(2)〉

+ β3(τ) |e(1), e(2)〉 + β4(τ) |e(1), g(2)〉] ,

= β∗
2(τ)β1(τ) + β∗

1(τ)β2(τ) + β∗
4(τ)β3(τ) + β∗

3(τ)β4(τ),

= 2 Re [β∗
1(τ)β2(τ) + β∗

4(τ)β3(τ)] .

Then

u2(τ) = A

1 + A2 sin2
(1

2
√

1 + A2τ
)
. (3.29)

There is a time evolution of u2(τ) even in resonance due to the coupling.

σy Pauli Matrices.

The next operators for obtaining the expected value are σy
1

〈σy
1〉 =

〈
ψ̃
∣∣∣σy

1

∣∣∣ψ̃〉 ,
=

〈
ψ̃
∣∣∣σy

1 [β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉

+ β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

=
〈
ψ̃
∣∣∣ [−iβ1(τ) |e(1), g(2)〉 − iβ2(τ) |e(1), e(2)〉

+iβ3(τ) |g(1), g(2)〉 + iβ4(τ) |g(1), e(2)〉] ,

= iβ∗
1(τ)β3(τ) + iβ∗

2(τ)β4(τ) − iβ∗
3(τ)β1(τ) − iβ2(τ)β∗

4(τ),

= 2 Re [iβ∗
1(τ)β3(τ) + iβ∗

2(τ)β4(τ)] .

When the coefficients are known:
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v1(t) = 2 Re [iβ∗
1(τ)β3(τ) + iβ∗

2(τ)β4(τ)] ,

= −4 A

1 + A2 sin2
(1

2
√

1 + A2τ
)

cos
(1

2
Aτ
)

sin
(1

2
Aτ
)

+2 1√
1 + A2

sin
(1

2
√

1 + A2τ
)

cos
(1

2
√

1 + A2τ
) [

cos2
(1

2
Aτ
)

− sin2
(1

2
Aτ
)]
,

= − A

1 + A2

[
1 − cos

(√
1 + A2τ

)]
sin (Aτ) + 1√

1 + A2
sin

(√
1 + A2τ

)
cos (Aτ) .

Is obtained

v1(t) = − A

1 + A2

[
1 − cos

(√
1 + A2τ

)]
sin (Aτ)

+ 1√
1 + A2

sin
(√

1 + A2τ
)

cos (Aτ) . (3.30)

And for σy
2

v2(τ) =
〈
ψ̃
∣∣∣σy

2

∣∣∣ψ̃〉 ,
=

〈
ψ̃
∣∣∣σy

2 [β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉

+ β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

=
〈
ψ̃
∣∣∣ [−iβ1(τ) |g(1), e(2)〉 + iβ2(τ) |g(1), g(2)〉

− iβ3(τ) |e(1), e(2)〉 + iβ4(τ) |e(1), g(2)〉] ,

= iβ∗
1(τ)β2(τ) − iβ∗

2(τ)β1(τ) + iβ∗
3(τ)β4(τ) − iβ∗

4(τ)β3(τ),

= 2 Re [iβ∗
1(τ)β2(τ) + iβ∗

3(τ)β4(τ)] .

The quantity iβ∗
1(τ)β2(τ) + iβ∗

3(τ)β4(τ) is imaginary, then

v2(τ) = 0 (3.31)
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σz Pauli Matrices.

The single-population inversion for each system is given by the expected value
of the following Pauli matrices:

w1(τ) =
〈
ψ̃
∣∣∣σz

1

∣∣∣ψ̃〉 ,
=

〈
ψ̃
∣∣∣σz

1 [β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉

+β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

=
〈
ψ̃
∣∣∣ [−β1(τ) |g(1), g(2)〉 − β2(τ) |g(1), e(2)〉

+β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

= − |β1(τ)|2 − |β2(τ)|2 + |β3(τ)|2 + |β4(τ)|2 .

And

w2(τ) =
〈
ψ̃
∣∣∣σz

2

∣∣∣ψ̃〉 ,
=

〈
ψ̃
∣∣∣σz

2 [β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉 (3.32)

+β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

=
〈
ψ̃
∣∣∣ [−β1(τ) |g(1), g(2)〉 + β2(τ) |g(1), e(2)〉 (3.33)

− β3(τ) |e(1), g(2)〉 + β4(τ) |e(1), e(2)〉] ,

= − |β1(τ)|2 + |β2(τ)|2 − |β3(τ)|2 + |β4(τ)|2 . (3.34)

In order to obtain analytical expressions for the inversion it is necessary to
determinate the module of the coefficients:
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|β1(τ)|2 = 1
1 + A2 sin2

(1
2

√
1 + A2τ

)
cos2

(1
2
Aτ
)
,

|β2(τ)|2 = A2

1 + A2 sin2
(1

2
√

1 + A2τ
)

cos2
(1

2
Aτ
)

+ cos2
(1

2
√

1 + A2τ
)

sin2
(1

2
Aτ
)

+2 A√
1 + A2

sin
(1

2
√

1 + A2τ
)

cos
(1

2
Aτ
)

cos
(1

2
√

1 + A2τ
)

sin
(1

2
Aτ
)
,

|β3(τ)|2 = A2

1 + A2 sin2
(1

2
√

1 + A2τ
)

sin2
(1

2
Aτ
)

+ cos2
(1

2
Aτ
)

cos2
(1

2
√

1 + A2τ
)

−2 A√
1 + A2

sin
(1

2
√

1 + A2τ
)

sin
(1

2
Aτ
)

cos
(1

2
Aτ
)

cos
(1

2
√

1 + A2τ
)
,

|β4(τ)|2 = 1
1 + A2 sin2

(1
2

√
1 + A2τ

)
sin2

(1
2
Aτ
)
.

For the inversion of the system 1 we have

w1(τ) = − |β1(τ)|2 − |β2(τ)|2 + |β3(τ)|2 + |β4(τ)|2 ,

= cos
(√

1 + A2τ
)

cos (Aτ) − A√
1 + A2

sin
(√

1 + A2τ
)

sin (Aτ)(3.35)

And the inversion of the system 2

w2(τ) = − |β1(τ)|2 + |β2(τ)|2 − |β3(τ)|2 + |β4(τ)|2 ,

=
[
A2 − 1
A2 + 1

sin2
(1

2
√

1 + A2τ
)

− cos2
(1

2
√

1 + A2τ
)]

(3.36)

+ A√
1 + A2

sin
(√

1 + A2τ
)

sin (Aτ) .

3.5.1.2 Resonance fluorescent spectrum

The expected value of the Pauli matrices σx and σy are related with the complex
amplitude of the electric dipole through
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d1(τ) = u1 + iv1(τ),

d2(τ) = u2 + iv2(τ).

Explicitly

d1(τ) = − A

1 + A2

[
1 − cos

(√
1 + A2τ

)]
sin (Aτ)

+ 1√
1 + A2

sin
(√

1 + A2τ
)

cos (Aτ) ,

d2(τ) = A

1 + A2 sin2
(1

2
√

1 + A2τ
)
.

If the interdo coupling is weak, then we can assume A � 1

d1(τ) = −iA sin (Aτ) + iA cos (τ) sin (Aτ) + i sin (τ) cos (Aτ) ,

d2(τ) = A
[1
2

− 1
2

cos (τ)
]
.

The above equations are quite interesting. They can produce an approximation
to the resonance fluorescence spectrum for each system. Let’s notice that in
absence of coupling A = 0, the expected result is reproduced: the system 1 has a
spectrum studied in the last chapter while the QD-2 doesn’t have oscillations.

d1(τ) = −1
2
A exp (iAτ) + 1

2
A exp (−iAτ) +

(1
4
A+ 1

4

)
exp (iτ) exp (iAτ)

−
(1

4
+ 1

4
A
)

exp (−iτ) exp (−iAτ) +
(1

4
A− 1

4

)
exp (−iτ) exp (iAτ)

−
(1

4
A− 1

4

)
exp (iτ) exp (−iAτ) ,

d2(τ) = 1
2
A− 1

4
A exp (iτ) − 1

4
A exp (−iτ) .
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Figure 3.2: It is shown the resonance fluorescent spectrum of each system. Blue
line corresponds to the non-isolated system while the red line represents to the
isolated system. The isolated QD has oscillations due to the coupling and the
non-isolated system has a different structure in comparison with the single QD
spectrum.

Expressing the dipoles in this form, allow us to take the Fourier transform. Lets
to start describing the system 2: it presents a three-peaked resonance fluorescent
spectrum, the main peak is in the origin at the field excitation frequency of the
system 1 while the secondary peaks are located at Rabi frequency of the system
1.By other hand, the first system is six-peaked distributed in pairs; each pair is
shifted an amount A from the peaks of the isolated system.

3.5.1.3 Inversion

The expectation value of the σz Pauli matrices is called single population inversion.
In the weak-coupling regime, whereA � 1 we can neglect A2 terms, equations )
and ) become
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w1(τ) = cos (τ) cos (Aτ) − A sin (τ) sin (Aτ) ,

w2(τ) = − cos (Aτ) + A sin (τ) sin (Aτ) .
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Figure 3.3: Red line indicates the inversion of the isolated system, blue line shows
a modulation in the Rabi oscillations due to the coupling.

In above equations the terms contain to A as multiplicative factor are small,
so the dominant part is contained in the other terms.

The dominant part of the system 2 shows Rabi oscillations for this system,
the frequency of these oscillations is explicitly the strength of the coupling A. By
other hand, the system 1 presents Rabi oscillations at Rabi frequency, remember
τ = Ω1t, but its oscillations are modulated by the inversion of the isolated system.

3.5.2 Optcal Bloch’s equations

We have already calculated the optical Bloch equations for the single quantum dot
interacting with a classical electric field. Is it possible to obtain optical Bloch equa-
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tions for the coupled system? To answer this question we will take the derivate of
the expected value of the Pauli matrices. We have been studying resonance case
and a null electric field for the isolated system, so we will work in this situation.

Taking the derivate of equations ) we obtain the following set of equations

u̇1(τ) = β̇∗
3(τ)β1(τ) + β∗

3(τ)β̇1(τ) + β̇∗
4(τ)β2(τ) + β∗

4(τ)β̇2(τ)

+β̇∗
1(τ)β3(τ) + β∗

1(τ)β̇3(τ) + β̇∗
2(τ)β4(τ) + β∗

2(τ)β̇4(τ), (3.37)

v̇1(τ) = iβ̇∗
1(τ)β3(τ) + iβ∗

1(τ)β̇3(τ) + iβ̇∗
2(τ)β4(τ) + iβ∗

2(τ)β̇4(τ)

−iβ̇∗
3(τ)β1(τ) − iβ∗

3(τ)β̇1(τ) − iβ̇2(τ)β∗
4(τ) − iβ2(τ)β̇∗

4(τ), (3.38)

ẇ1(τ) = −β̇∗
1(τ)β1(τ) − β̇1(τ)β∗

1(τ) − β̇∗
2(τ)β2(τ) − β̇2(τ)β∗

2(τ)

+β̇∗
3(τ)β3(τ) + β̇3(τ)β∗

3(τ) + β̇∗
4(τ)β4(τ) + β̇4(τ)β∗

4(τ). (3.39)

By choosing B = 0, the differential equation for the amplitude coefficients is:

β̇1(τ) = i
1
2
β3(τ), (3.40)

β̇2(τ) = iAβ3(τ) + i
1
2
β4(τ), (3.41)

β̇3(τ) = i
1
2
β1(τ) + iAβ2(τ), (3.42)

β̇4(τ) = i
1
2
β2(τ). (3.43)

With the equations ) this set becomes for u1(τ)
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u̇1(τ) =
[
−i1

2
β∗

1(τ) − iAβ∗
2(τ)

]
β1(τ) + β∗

3(τ)
[
i
1
2
β3(τ)

]
+
[
−i1

2
β∗

2(τ)
]
β2(τ)

+β∗
4(τ)

[
iAβ3(τ) + i

1
2
β4(τ)

]
+
[
−i1

2
β∗

3(τ)
]
β3(τ) + β∗

1(τ)
[
i
1
2
β1(τ) + iAβ2(τ)

]
+
[
−iAβ∗

3(τ) − i
1
2
β∗

4(τ)
]
β4(τ) + β∗

2(τ)
[
i
1
2
β2(τ)

]
= −iAβ∗

2(τ)β1(τ) + iAβ∗
4(τ)β3(τ) + iAβ∗

1(τ)β2(τ) − iAβ∗
3(τ)β4(τ)

= 2ARe [iβ∗
4(τ)β3(τ) + iβ∗

1(τ)β2(τ)] .

For v1(τ)

v̇1(τ) = i
[
−i1

2
β∗

3(τ)
]
β3(τ) + iβ∗

1(τ)
[
i
1
2
β1(τ) + iAβ2(τ)

]
+ i

[
−iAβ∗

3(τ) − i
1
2
β∗

4(τ)
]
β4(τ)

+iβ∗
2(τ)

[
i
1
2
β2(τ)

]
− i

[
−i1

2
β∗

1(τ) − iAβ∗
2(τ)

]
β1(τ) − iβ∗

3(τ)
[
i
1
2
β3(τ)

]
−i
[
iAβ3(τ) + i

1
2
β4(τ)

]
β∗

4(τ) − iβ2(τ)
[
−i1

2
β∗

2(τ)
]

= −β∗
1(τ)β1(τ) − β2(τ)β∗

2(τ) + β∗
3(τ)β3(τ) + β∗

4(τ)β4(τ)

−Aβ∗
1(τ)β2(τ) + Aβ∗

3(τ)β4(τ) − Aβ∗
2(τ)β1(τ) + Aβ3(τ)β∗

4(τ)

= w1(τ) + 2ARe [β∗
3(τ)β4(τ) − β∗

2(τ)β1(τ)] .

And for the inversion

ẇ1(τ) = i
1
2
β∗

3(τ)β1(τ) − i
1
2
β3(τ)β∗

1(τ) + iAβ∗
3(τ)β2(τ) + i

1
2
β∗

4(τ)β2(τ) − iAβ3(τ)β∗
2(τ)

−i1
2
β4(τ)β∗

2(τ) − i
1
2
β∗

1(τ)β3(τ) − iAβ∗
2(τ)β3(τ) + i

1
2
β1(τ)β∗

3(τ) + iAβ2(τ)β∗
3(τ)

−i1
2
β∗

2(τ)β4(τ) + i
1
2
β2(τ)β∗

4(τ)

= iβ∗
3(τ)β1(τ) − iβ3(τ)β∗

1(τ) + iβ∗
4(τ)β2(τ) − iβ4(τ)β∗

2(τ)

−iAβ∗
2(τ)β3(τ) + iAβ2(τ)β∗

3(τ) + iAβ∗
3(τ)β2(τ) − iAβ3(τ)β∗

2(τ)

= −v1(τ) + 4ARe [iβ∗
3(τ)β2(τ)] .
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(a) Bloch’s vector of the non isolated system

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

w

u

(b) Bloch’s vector of the isolated system

Figure 3.4: Blue line shows the behavior of the Bloch’s vector; its dynamics is
restricted to the v − w plane and does not create a circumference in that plane.
Red line shows the Bloch’s vector of the isolated system; its time evolution is due
to the coupling and is in the u− w plane.

In this way we obtain the set of equations

u̇1(τ) = 2ARe [−iβ∗
2(τ)β1(τ) + iβ∗

4(τ)β3(τ)] , (3.44)

v̇1(τ) = w1(τ) + 2ARe [−β∗
1(τ)β2(τ) + β∗

3(τ)β4(τ)] , (3.45)

ẇ1(τ) = −v1(τ) + 4ARe [iβ∗
3(τ)β2(τ)] . (3.46)



3.5. Steady electric field amplitude 60

Let’s notice, they are the optical Bloch in resonance with additional terms due
to the coupling which cannot be identified with any of the QDs variables. These
equations cannot be written in terms of the components of the Bloch vector.
They also depend on the normalized probability amplitude and they are different,
depending of the initial conditions of the problem.

The derivate of the expected values of the Pauli matrices for the isolated
system is

u̇2(τ) = β̇∗
2(τ)β1(τ) + β∗

2(τ)β̇1(τ) + β̇∗
1(τ)β2(τ) + β∗

1(τ)β̇2(τ)

+β̇∗
4(τ)β3(τ) + β∗

4(τ)β̇3(τ) + β̇∗
3(τ)β4(τ) + β∗

3(τ)β̇4(τ)

v̇2(τ) = iβ̇∗
1(τ)β2(τ) + iβ∗

1(τ)β̇2(τ) − iβ̇∗
2(τ)β1(τ) − iβ∗

2(τ)β̇1(τ)

+iβ̇∗
3(τ)β4(τ) + iβ∗

3(τ)β̇4(τ) − iβ̇∗
4(τ)β3(τ) − iβ∗

4(τ)β̇3(τ)

ẇ2(τ) = −β̇∗
1(τ)β1(τ) − β̇1(τ)β∗

1(τ) + β̇∗
2(τ)β2(τ) + β̇2(τ)β∗

2(τ)

−β̇∗
3(τ)β3(τ) − β̇3(τ)β∗

3(τ) + β̇∗
4(τ)β4(τ) + β̇4(τ)β∗

4(τ).

For u2(τ)

u̇2(τ) =
[
−iAβ∗

3(τ) − i
1
2
β∗

4(τ)
]
β1(τ) + β∗

2(τ)
[
i
1
2
β3(τ)

]
+
[
−i1

2
β∗

3(τ)
]
β2(τ)

+β∗
1(τ)

[
iAβ3(τ) + i

1
2
β4(τ)

]
+
[
−i1

2
β∗

2(τ)
]
β3(τ)

+
[
−i1

2
β∗

1(τ) − iAβ∗
2(τ)

]
β4(τ) + β∗

3(τ)
[
i
1
2
β2(τ)

]
= −iAβ∗

3(τ)β1(τ) + iAβ3(τ)β∗
1(τ) + iAβ2(τ)β∗

4(τ) − iAβ∗
2(τ)β4(τ)

For v2(τ)



3.5. Steady electric field amplitude 61

v̇2(τ) = i
[
−i1

2
β∗

3(τ)
]
β2(τ) + iβ∗

1(τ)
[
iAβ3(τ) + i

1
2
β4(τ)

]
−i
[
−iAβ∗

3(τ) − i
1
2
β∗

4(τ)
]
β1(τ) − iβ∗

2(τ)
[
i
1
2
β3(τ)

]
+i
[
−i1

2
β∗

1(τ) − iAβ∗
2(τ)

]
β4(τ) + iβ∗

3(τ)
[
i
1
2
β2(τ)

]
−i
[
−i1

2
β∗

2(τ)
]
β3(τ) − iβ∗

4(τ)
[
i
1
2
β1(τ) + iAβ2(τ)

]
= −Aβ3(τ)β∗

1(τ) − Aβ∗
3(τ)β1(τ) + Aβ∗

2(τ)β4(τ) + Aβ∗
4(τ)β2(τ)

And for the inversion

ẇ2(τ) = −
[
−i1

2
β∗

3(τ)
]
β1(τ) −

[
i
1
2
β3(τ)

]
β∗

1(τ) +
[
−iAβ∗

3(τ) − i
1
2
β∗

4(τ)
]
β2(τ)

+
[
iAβ3(τ) + i

1
2
β4(τ)

]
β∗

2(τ) −
[
−i1

2
β∗

1(τ) − iAβ∗
2(τ)

]
β3(τ)

−
[
i
1
2
β1(τ) + iAβ2(τ)

]
β∗

3(τ) +
[
−i1

2
β∗

2(τ)
]
β4(τ) +

[
i
1
2
β2(τ)

]
β∗

4(τ)

= −iAβ∗
3(τ)β2(τ) + iAβ3(τ)β∗

2(τ) + iAβ∗
2(τ)β3(τ) − iAβ2(τ)β∗

3(τ)

And results into

u̇2(τ) = 2ARe [iβ∗
1(τ)β3(τ) + iβ∗

4(τ)β2(τ)] ,

v̇2(τ) = 2ARe [β∗
2(τ)β4(τ) − β∗

3(τ)β1(τ)] ,

ẇ2(τ) = 4ARe [iβ3(τ)β∗
2(τ)] .

We can see the time evolution of the isolated system is due to the coupling,
when the coupling is null there is no time evolution.



Chapter 4

General Conclusions

We have studied the interaction between a pair of coupled quantum dots, where
the coupling is because of the Foerster interaction. Additionally there are interac-
tions with electric fields for each QD. The problem can be studied by using either
Schrödinger’s or Heisenberg’s picture. The use of Heisenberg’s picture give a set
of six non linear coupled equations which solutions can be found only numerically.
In this work we have used the Schrödinger’s picture, it allow us to find analytical
solutions to the problem of a pair of coupled quantum dots interacting with its
own classical electric field.

In the chapter 2, we have developed the semi-classical study of a single quan-
tum dot interacting with a classical electric field. We have used an amplitude
probability method based on the Schrödinger’s picture and we have shown the
way to obtain the optical Bloch equations. Also we have proved that the atomic
inversion react back to the initial state after a time such the area pulse is 2π.

The frequency of the exciting field needs to be resonant at:

ν1 = −Egg
0 − Eeg

0

~
= ε1 − 2W

This frequency is smaller than the frequency necessary to produce a resonant
effect in the two-level atom.

We have shown that in absense of electric field the Bloch’s vector associated
to the single quantum dot remains constant.
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We also have developed a model to describe the coupling between a pair of
quantum dots; this analysis has been based on the Schrödinger’s picture because
Heisenberg’s picture gives non-linear set of equations whose analysis seems to be
untreatable.

An ideal Foerster interaction between the QD requires that the frequencies
of the QD be the same; this fact has been used and has helped to simplify the
system of equations to solve but remains as a realistic possibility. Also we have
worked under the resonance condition for simplicity. Under those considerations
we have found analytical solutions for the slowly varying probability amplitude.

We have supposed, as a particular case, that one of the quantum dots is isolated
and the electric field of its cavity is null. This allows us to point out the features
in the isolated system due to the coupling and point out the differences in relation
to the single quantum dot.

The first observation refers to the atomic inversion, the expected values of σz
1

and σz
2. The dynamics of a single quantum does not indicate time evolution of

the inversion; on other hand, we have obtained an analytical expression explicitly
demonstrating a time evolution of the inversion of the isolated QD even in absence
of electric field. When the coupling is weak, the oscillations of the inversion are
fundamentally at the coupling frequency. An interesting fact is that the inversion
of the non isolated QD shows oscillations at Rabi frequency, but those oscillations
are modulated by the inversion of the isolated system. Therefore, its detection
gives an evidence of the coupling and a measuring of its strength.

Also we give analytical expressions showing the resonance fluorescent spec-
trum. The single quantum dot in absence of electric field does not offer evidence
of electric dipole oscillations. The isolated system shows oscillations that can be
seen in the three-peaked RFS, it oscillates at exciting electric field and is mod-
ulated because of the coupling; notice the exciting field is a feature of the non
isolated system. The RFS of the non isolated system is six-peaked distributed in
pairs: each pair is shifted from the origin and from the Rabi frequency an amount
related with the coupling strength. Again, a measure of the RFS of the non iso-
lated system will give an evidence for the coupling and give a measuring of the
strength of the coupling.
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Also we calculate the equivalent to the optical Bloch’s equations, that is, we
found the differential equation for the derivate of the expected values of the Pauli
matrices. For the non isolated system, it was possible to recover the Bloch’s
equation in resonance with additional terms due to the coupling. The isolated
system shows a time evolution due exclusively to the coupling. It was no possible
to express those additional quantities in terms of the components of the Bloch
vector.

As a proof of physical and mathematical consistence, is necessary to mention
that all the results demonstrated reduce to the predicted results for the single
quantum dot in absence of coupling.



Appendices
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Appendix A

Solving the differential equation
of probability amplitude

coefficients of a single quantum
dot

In the study of the single quantum dot interacting with a classical electric field
appears the system of differential equations

ċg(t) = i
ΩR(t)

2
ce(t) + i

∆
2
cg(t)

ċe(t) = i
ΩR(t)

2
cg(t) − i

∆
2
ce(t)

The application of the Laplace transform gives the matrix equation when is
considered an electric field with constant amplitude, i.e, ΩR(t) = ΩR

A

 c̃g(s)
c̃e(s)

 =

 cg(0)
ce(0)



where the A matrix is
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A =

 s− i∆/2 −iΩR/2
−iΩR/2 s+ i∆/2



To obtain the inverse matrix A−1 we have to calculate the determinant of A

det(A) =
(
s− i

∆
2

)(
s+ i

∆
2

)
−
(
i
ΩR

2

)(
i
ΩR

2

)

= s2 + ∆2

4
+ Ω2

R

4

Then A−1

A−1 =
(
s2 + ∆2

4
+ Ω2

R

2

)−1
 s− i∆/2 iΩR/2

iΩR/2 s+ i∆/2



Multiplying on the left side by A−1 the equation )

 c̃g(s)
c̃e(s)

 =
(
s2 + ∆2

4
+ Ω2

R

2

)−1
 s− i∆/2 iΩR/2

iΩR/2 s+ i∆/2

 cg(0)
ce(0)



=

 s− i∆/2 iΩR/2
iΩR/2 s+ i∆/2


 cg(0)

(
s2 + ∆2

4 + Ω2
R

2

)−1

ce(0)
(
s2 + ∆2

4 + Ω2
R

2

)−1



In this form is obtained a pair of uncoupled algebraic equations

c̃g(s) = cg(0)
s+ i∆

2

s2 + ∆2

4 + Ω2
R

4

+ ce(0)
iΩR

2

s2 + ∆2

4 + Ω2
R

4

c̃e(s) = cg(0)
iΩR

2

s2 + ∆2

4 + Ω2
R

4

+ ce(0)
s− i∆

2

s2 + ∆2

4 + Ω2
R

4
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They are written in a more suggestive form as

c̃g(s) = cg(0) s

s2 + ∆2

4 + Ω2
R

4

+
ice(0)ΩR

2 + icg(0)∆
2√

∆2

4 + Ω2
R

4

√
∆2

4 + Ω2
R

4

s2 + ∆2

4 + Ω2
R

4

c̃e(s) =
icg(0)ΩR

2 − ice(0)∆
2√

∆2

4 + Ω2
R

4

√
∆2

4 + Ω2
R

4

s2 + ∆2

4 + Ω2
R

4

+ ce(0) s

s2 + ∆2

4 + Ω2
R

4

Written in this form, they are easily computed by calculating their inverse
Laplace transform

cg(t) = cg(0) cos
(1

2

√
∆2 + Ω2

Rt
)

+ ice(0)ΩR + icg(0)∆√
∆2 + Ω2

R

sin
(1

2

√
∆2 + Ω2

Rt
)

ce(t) = icg(0)ΩR − ice(0)∆√
∆2 + Ω2

R

sin
(1

2

√
∆2 + Ω2

Rt
)

+ ce(0) cos
(1

2

√
∆2 + Ω2

Rt
)

The quantity
√

∆2 + Ω2
R is the off resonance Rabi frequency and it is denoted

by Ω =
√

∆2 + Ω2
R

Finally, the required solution is

cg(s) = cg(0)
[
cos

(1
2

Ωt
)

+ i
∆
Ω

sin
(1

2
Ωt
)]

+ ice(0)ΩR

Ω
sin

(1
2

Ωt
)

ce(s) = icg(0)ΩR

Ω
sin

(1
2

Ωt
)

+ ce(0)
[
cos

(1
2

Ωt
)

− i
∆
Ω

sin
(1

2
Ωt
)]

In exact resonance this quantity is denoted as Ω0 = ΩR.
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