

Study of Intrinsic Properties of HII Galaxies at High Redshift

by

Ana Luisa González Morán

Thesis submitted as partial requirement for obtaining the degree of

MASTER OF SCIENCE IN ASTROPHYSICS

at the

Instituto Nacional de Astrofísica, Óptica y Electrónica

> July 2015 Tonantzintla, Puebla

> > Directed by:

Dr. Elena Terlevich Tenured Researcher INAOE, Mexico

Dr. Roberto Terlevich Tenured Researcher INAOE, Mexico; IoA, UK

Dr. Manolis Plionis Tenured Researcher INAOE, Mexico; AUTh, Greece

©INAOE, 2015 The author hereby grants to INAOE permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

To my Family

Acknowledgements

For the realization of this thesis I had the help of many people to whom I would like to thank.

To my advisors Dra. Elena Terlevich, Dr. Roberto Terlevich and Dr. Manolis Plionis, thank you very much for being so patient and support me in everything necessary. From you I learned a lot and your help was of great importance for the realization of this work. I am also very grateful to Ricardo Chávez and David Fernández for their help and many useful comments, specifically to Ricardo Chávez for the work done in collaboration. I also would like to thank to Ricardo Amorín for providing me private data for this work.

To my thesis examiners, thanks for your comments. They helped me to improve the work presented.

I especially appreciate all the help from my husband, companion and friend Emmanuel Ríos López. You and I know the great work that has cost us to be in this academic status, thank you very much for supporting me and love me forever.

To my friends Gisela, Leticia, Raúl, Eric, Carlos, Alán and Emmanuel, you have taught me that science is more enjoyable when you argue with friends. I hope that in the future we become collaborators in many articles.

I also want to thank my parents, brothers and nephews since day to day they made an effort to give me the best education, always supporting me in my decisions with so much love. All my accomplishments will be always thanks to you.

I thank God because he has never left me and has given me the spiritual tranquillity to be happy in life. I thank also my little dog 'Doki' who every day makes me smile with his antics.

Finally, I thank CONACyT for the financial support provided, which gave me the opportunity to work on what I like in life.

Declaration

This work comes from the idea of my advisors Dra. Elena Terlevich, Dr. Roberto Terlevich and Dr. Manolis Plionis. It contains data which are the outcome of work done in collaboration with Ricardo Chávez. My work consisted in compiling and analysing a sample of possible candidates of HII galaxies at high redshift according to the equivalent widths in their emission lines with data existing from the literature in order to assess the validity of the $L(H\beta)$ - σ relation at high redshift and its use as an accurate distance estimator. The results obtained indicate a flattening or the existence of an upper limit in the luminosity for HII Galaxies, which has not been reported before in the literature.

Abstract

I have selected a sample of 504 HII like-starburst galaxies according to the equivalent widths in their emission lines in a range of redshift of 0.1 < z < 3.4 from the literature, in order to assess the validity of the L(H β) - σ relation at high redshift and its use as an accurate distance estimator. The physical parameters for the sample at high redshift, within the uncertainties, are consistent with the ones for the HIIGx at low redshift. This suggests that the physical properties for HIIGx at low and high redshift are similar.

By combining our sample at high redshift with the local sample of HIIGx from Chávez et al. (2014), I find an evident flattening that starts at approximately $\log(\sigma) = 1.8$ km s⁻¹ in the L(H β) - σ relation. This flattening has an interesting application since it leads to a kind of standard candle for those HIIGx with $\log(\sigma) > 1.8$ km s⁻¹. This flattening or the existence of an upper limit in the luminosity of HIIGx has not been reported before. Applying this new HIIGx standard candle method to the high redshift sample we obtain good restrictions on the cosmological parameters solution space. The combination of our sample at high redshift with the local sample of 156 (HIIGx and GEHRs) dramatically improves the constraints on the plane { Ω_m, w_0 }, which are consistent with the results from SNeIa.

These results are surprisingly good considering the high uncertainties in the data at high redshift, therefore we expect better constraints on the plane $\{\Omega_m, w_0\}$ using high quality data from high resolution spectrographs at 8 m class telescopes.

Resumen

Se ha seleccionado una muestra de 504 Galaxias HII en base a los anchos equivalentes en sus líneas de emissión en un rango de redshift 0.1 < z < 3.4 de la literatura. Esto con el objetivo de evaluar la validez de la relación $L(H\beta)$ - σ a alto corrimiento al rojo y su uso como un estimador de distancia preciso. Los parámetros físicos de la muestra a alto corrimiento al rojo, dentro de sus incertidumbres, son consistentes con los de las Galaxias HII locales. Esto sugiere que las propiedades físicas para las Galaxias HII a bajo y alto corrimiento al rojo son similares.

Combinando nuestra muestra a alto corrimiento al rojo con la muestra local de Galaxias HII dada en Chávez et al. (2014), se encontró un aplanamiento evidente que comienza aproximadamente en $\log(\sigma) = 1.8 \text{ km s}^{-1}$ en la relación $L(H\beta) - \sigma$. Este aplanamiento tiene una interesante aplicación, ya que conduce a una especie de candela estándar para aquellas Galaxias HII con $\log(\sigma) > 1.8 \text{ km s}^{-1}$. Este aplanamiento o la existencia de un límite superior en la luminosidad de las Galaxias HII nunca antes ha sido reportado en la literatura. Aplicando este nuevo método de candela estándar para las Galaxias HII, nosotros obtenemos buenas restricciones al espacio de solución de parámetros cosmológicos. La combinación de la muestra a alto corrimiento al rojo con la muestra local de 156 objetos (Galaxias HII y Regiones HII Extragalácticas Gigantes) mejora notablemente las restricciones en el plano $\{\Omega_m, w_0\}$, las cuales son consistentes con los resultados de SNeIa.

Los resultados obtenidos son sorprendetemente buenos considerando las altas incertidumbres en los datos a alto corrimiento al rojo, por lo tanto nosotros esperamos mejores restricciones en el plano { Ω_m, w_0 } usando datos de alta calidad obtenidos con espectrógrafos de alta resolución en telescopios de 8 metros.

Contents

Α	cknov	wledge	ments					Π	Ι							
Abstract																
List of Figures																
1	Intr 1.1		_			-	1 3									
	1.2	Struct	ure of this Work	•	•	•		, 4	4							
2	Ger	General Properties of HII Galaxies														
	2.1	Giant	Extragalactic HII Regions and HII Galaxies in the Local	U	ni	ve	rs	e k	5							
		2.1.1	Morphology and Structure					. (6							
		2.1.2	Age HII Galaxies					. '	7							
		2.1.3	Metallicity HII Galaxies					. 8	8							
	2.2	$L(H\beta)$	- σ Relation for HII Galaxies					. 1	0							
	2.3	The P	hysics of the $L(H\beta)$ - σ Relation					. 12	3							
		2.3.1	Age effects					. 14	4							
		2.3.2	Extinction effects					. 1.	5							
		2.3.3	Metallicity effects					. 1	6							
		2.3.4	Size effects					. 1	6							
		2.3.5	Multiparametric effects					. 1	6							
	2.4	HII G	alaxies as Cosmological Probes	•		•		. 1'	7							
3	San	ple ar	nd Methodology					2	5							
	3.1	Sampl	e Selection					. 2.	5							
	3.2	Prope	rties of the Selected Sample at High Redshift					. 30	0							
		3.2.1	Velocity Dispersion					. 3	0							
		3.2.2	Size					. 3	0							
		3.2.3	Dynamical Masses					. 3	1							
		3.2.4	Extinction and Fluxes					. 3	2							
		3.2.5	Luminosity Distance					. 3	4							
		3.2.6	Luminosities					. 3	4							

		3.2.7	St	ar I	For	mati	on	Ra	tes					•														•	35
		3.2.8	Т	he (Эху	gen	Ab	uno	lar	nce				•	•	•		•						•		•	•		36
4	Ana	lysis a	and	R	esu	\mathbf{lts}																							65
	4.1	$L(H\beta)$) - (σR	elat	ion																							65
	4.2	Lumin	nosi	ty v	vs R	leds	hift																						67
	4.3	Cosmo	olog	rica	l Pe	aram	lete	rs s	Sol	utio	on	Sp	bac	e															68
	4.4	Lumin	nosi	.ty -	Ra	dius	s an	d V	/el	ocit	y i	Di	$^{\mathrm{sp}}$	ers	sio	n -	- F	la	liu	lS	Re	ela	tic	on	\mathbf{s}				69
	4.5	Dynan	mic	al N	las	s vs	Ste	llar	·M	lass																			71
	4.6	Metall	lici	ty -	Mə	uss R	lela	tio	ı.																				73
	4.7	Metall	lici	ty-L	Jum	inos	ity	Re	lat	ion																			74
	4.8	Starbu	urst	or	AG	N?	•••	•						•	•	•		•						•					75
5	Con	clusio	\mathbf{ns}	and	d fu	ıtur	e v	vor	k																				79
	5.1	Future	e w	ork				•			•	•		•	•	•		•		•				•	•	•	•		81
Bi	bliog	raphy	7																										83

List of Figures

2.1	Spectrum of a HIIGx	6
2.2	Light profiles	7
2.3	${ m H}eta$ equivalent width vs. time	8
2.4	Distribution of oxygen abundances	9
2.5	$L(H\beta)$ - σ relation for GEHRs and HIIGx	11
2.6	$L(H\beta)$ - σ relation for HIIGx at a wide range of redshifts	12
2.7	L - σ relation	13
2.8	$M(B)_0$ - σ relation for GEHRs	14
2.9	The fundamental plane of HIIGx	15
2.10	Multiparametric effects in the $L(H\beta)$ - σ relation	17
2.11	Distance Modulus Differences	18
2.12	$L(H\beta)$ - σ relation from Terlevich et al. (2015)	20
2.13	Hubble diagram from Terlevich et al. (2015)	21
2.14	Comparison of restrictions on the plane (Ω_m, \mathbf{w}_0)	22
2.15	Cosmological Parameters Solution Space from Monte-Carlo Analysis	22
2.16	The 'reduction' parameter S as a function of the number of high-z tracers	23
3.1	Equivalent width distribution of the [OIII] line for the sample at low	
_	redshift from Chávez et al. 2014	26
3.2	Redshift distribution for the sample at high redshift	27
3.3	Sample position on the sky	28
3.4	Rest-frame equivalent width distribution of the H α , H β and [OIII] emis-	
	sion lines for the sample at high redshift	29
3.5	Velocity dispersion distribution for the sample at high redshift	31
3.6	Dynamical mass distribution for the sample at high redshift	32
3.7	${ m H}eta$ flux distribution for the sample at high redshift $\ldots \ldots \ldots \ldots$	33
3.8	${ m H}eta$ luminosity distribution for the sample at high redshift $\ldots \ldots \ldots$	35
3.9	Oxygen abundance distribution for the sample at high redshift	38
4.1	$L(H\beta)$ - σ relation	66
4.2	$H\beta$ luminosity vs redshift	67
		. .
4.3	H β luminosity vs redshift for objects with $\log \sigma > 1.8 \text{ km s}^{-1}$	68

4.4	Distance moduli as a function of redshift for HIIGx at high redshift with	
	$\log(\sigma) > 1.8 \text{ km s}^{-1}$.	70
4.5	Cosmological Parameters Solution Space for the sample at high redshift	
	with $\log(\sigma) > 1.8 \text{ km s}^{-1}$.	70
4.6	Luminosity - Radius and Velocity Dispersion - Radius Relations	71
4.7	Dynamical Mass vs Stellar Mass Relation	72
4.8	Metallicity - Stellar Mass Relation	74
4.9	Metallicity vs <i>B</i> -band Luminosity	75
4.10	BPT Diagram	77

Chapter 1 Introduction

The identification of a class of isolated dwarf emission-line galaxies, which showed them to be indistinguishable in their observed properties from giant HII regions in nearby galaxies, was made by Sargent & Searle (1970). They called them *Isolated Extragalactic* HII Regions. Although the compact galaxies with strong emission lines had already been discovered by Haro (1956) utilizing the technique of objective prism. Later, Searle & Sargent (1972) reported the properties of two extragalactic objects with very low heavy element abundance, IZw18 and IIZw40, they emphasised that they could be young galaxies in the process of formation, because of their extreme metal underabundance, more then 10 times less than solar. These two galaxies are HII Galaxies (HIIGx) prototypes, the HIIGx have the advantage of being gas-rich, with spectra dominated by strong emission lines due to the presence of O, B type stars in HII regions. So they can be observed in the optical as narrow and intense emission lines superimposed on a blue stellar continuum favouring their detection at great distance. The HIIGx are interesting for understanding the processes of galaxy formation. Besides, as they are gas-rich and have an active star formation they can help us to understand the processes of massive star formation in low metallicity gas (Kunth & Östlin, 2000).

A relation between the luminosity of H β emission line, L(H β), and the velocity dispersion, σ , from ionized gas in HII regions was found and investigated by Terlevich & Melnick (1981). Later, Melnick, Terlevich, & Moles (1988) presented a detailed study of the global properties of a sample of HIIGx, selected from the *Spectrophotometric Catalogue of HII galaxies* which was published by (Terlevich et al., 1991). They found that the L- σ relation can be applied to HIIGx and they proposed this method as a distance indicator (Melnick et al., 1987; Siegel et al., 2005; Bordalo & Telles, 2011; Plionis et al., 2011; Chávez et al., 2012; Chávez et al., 2014; Terlevich et al., 2015)

On the other hand, it is known that type Ia supernovae (SNeIa) provide a standard candle that can be used to accurately measure distances of galaxies at redshifts just beyond $z\sim1$ (Riess et al., 1998; Perlmutter et al., 1999; Amanullah et al., 2010; Hicken

et al., 2009; Riess et al., 2011; Suzuki et al., 2012). The combination of SNeIa results with other independent cosmological probes, such as the cosmic microwave background (CMB) fluctuations from WMAP or baryon acoustic oscillation (BAO), allows to measure cosmological parameters with high precision (Aubourg et al., 2014). Due to the fact that the maximum difference in cosmological models occurs at z = 2 - 3, it becomes crucial to investigate alternative methods to determine distances to galaxies at z > 2. Alternatives include Gamma-Ray Bursts (GRB), explored e.g. by (Schaefer, 2007); other types of supernovae, particularly Type IIP (for Plateau) explosions (e.g. Poznanski et al., 2009) and other methods. However observing SNeIa at redshifts above the current limit appears challenging even with the next generation of space telescopes being that SNeIa could be very rare at z > 2. In contrast, due to the fact that HIIGx spectra are dominated by intense emission lines, they can be observed at great distances, this makes them powerful tools for studying galaxies at high redshift.

To demonstrate the potential of HIIGx for cosmology, in (Chávez et al., 2012) they used a sample of 89 HIIGx together with a re-calibration of the $L(H\beta)$ - σ relation for 23 Giant HII regions in 9 nearby galaxies and obtained a value for the Hubble constant of 74.3 ± 3.1 (random) ± 2.9 (systematic) km s⁻¹ Mpc⁻¹, in excellent agreement with, and independently confirming, the most recent SNeIa-based results (Riess et al., 2011) and Cepheid-based results (Freedman et al., 2012). And in Plionis et al. (2011) they estimated that similar-quality observations of 60-80 HIIGx at redshifts between 0.8 and 3 can constrain w(z), the parameter of the dark energy equation of state, to about 10%. Therefore, this method provides constraints on Ω_m and Ω_{Λ} as good as other methods (SNeIa and CMB).

Also in Terlevich et al. (2015), they present the result of high-dispersion spectroscopy of nine HII galaxies at redshifts between 0.6 and 2.33, obtained at the VLT using XShooter. Using six of these HII galaxies they obtained broad constraints on the plane $\Omega_m - w_0$. The addition of 19 HIIGx at high redshift from the literature, in total 25 HIIGx at high redshift, plus their local compilation of 107 HIIGx up to z = 0.16were used to impose further constraints, which are consistent with other recent studies. Although such constraints are weaker than those for SNeIa, this is not surprising since they have a small observed sample as well as poor quality data taken from the literature of HIIGx at high redshift. Besides, in their sample most of objects are in a region of space where differences between cosmological models are almost negligible, vs. 580 SNeIa with a maximum redshift of ~ 1.5. The strength of their results is that their sample includes 19 objects with z > 1.5 where the differences between models reach maximum values. Therefore competitive constraints can be obtained using a larger sample (from 100 to 300) HIIGx at high redshift as was proposed by (Plionis et al., 2011).

1.1 Motivation and Aims of this Work

To have a precise cosmological model it is necessary to constrain cosmological parameters and confirm the results through different and independent methods.

It is known that SNeIa provide a standard candle that can be used to accurately measure distances of galaxies. However, due to the fact that SNIa are believed to be the result of a mass transfer process into a white dwarf thus exceeding its Chandrasekhar limit, so its core will reach the ignition temperature for carbon fusion giving as a result a supernova explosion. Thus because the time it takes to develop a binary system with a white dwarf (the star progenitor has to have less than 8 M_{\odot}) and the low mass star has to reach the giant branch, it is expected that the number of SNIa should be small at high z. The more distant SNeIa so far discovered is 'SN1997ff' at $z\sim1.7$ (Gilliland & Phillips, 1998; Gilliland et al., 1999; Riess et al., 2001).

Therefore it is important to investigate alternative methods to determine distances to galaxies at z > 1.5. As was previously mentioned, the giant extragalactic HII regions (GEHR) and HIIGx display a correlation between the luminosity in the recombination lines, e.g. $H\beta L(H\beta)$, and the velocity dispersion, σ , (Terlevich & Melnick, 1981; Melnick et al., 1988; Chávez et al., 2014). Due to the fact that HIIGx spectra are dominated by intense emission lines, they can be observed at great distances, this makes them powerful tools for studying galaxies at high redshift. Therefore, if we extrapolate a link between nearby HIIGx and HII-like starburst galaxies at high redshift, we can use such objects as standard candles once obtained the calibration of the $L(H\beta)$ - σ relation. As a consequence, we can obtain luminosities for HII galaxies to intermediate and high redshift and hence luminosity distances (Terlevich et al., 2015). This method has the advantage that it can be used up to $z\sim3$, since so far these HII-like starburst galaxies have been observed with the present instrumentation up to this redshift. This opens the important possibility of applying the distance estimator and map the Hubble flow up to extremely high redshifts and simultaneously to study the behaviour of starbursts of similar luminosities over a huge redshift range.

Plionis et al. (2011) using extensive Monte Carlo simulations found that using only a few tens of HIIGx at high redshift, even with a large distance modulus uncertainty, reduce significantly the cosmological parameters solution space. In fact, they found that an expected reduction (\sim 20-40 per cent) of the current level of HIIGx-based distance modulus uncertainty does not provide a significant improvement in the derived cosmological constraints. It is far more efficient to increase the number of tracers than to reduce their individual uncertainties.

There are catalogues with available data in the literature, in which we can obtain candidates to HIIGx in order to compare the intrinsic properties between low and high HIIGx, this can help us to have a better understanding of the nature of these starforming galaxies at high redshift and their possible relation with similar objects nearby. However, the high redshift candidates need more complete and homogeneous data.

The aims of this work are:

• To build a large sample of HII-like starburst galaxies at high redshift.

• To investigate the physical properties of high redshift HII galaxies and compare them with those of nearby HIIGx.

• To critically assess the use of the $L(H\beta)$ - σ distance estimator for high redshift HII galaxies.

1.2 Structure of this Work

The organization of this thesis is as follows:

Chapter II describes the fundamental physical properties of HII galaxies in the local universe as young massive bursts of star formation. The relationship between the luminosity of H β in emission and ionised gas velocity dispersion (L- σ) for HII Galaxies and the effect that different intrinsic physical parameters of the star-forming regions could have on this relation are also presented. The potential use of HII galaxies as distance indicators is discussed as well in this chapter.

Chapter III describes the different parameters that characterize the sample and selection parameters that were used to select HII-like starburst galaxies at high red-shift from the literature.

Chapter IV gives a global comparison between HIIGx at high and low redshift. I analyse the relationships Luminosity vs Velocity Dispersion; Luminosity vs Redshift; Stellar Mass vs Dynamical Mass; Luminosity vs Effective Radius; Velocity Dispersion vs Effective Radius; Metallicity vs Stellar Mass; Metallicity vs Luminosity and the excitation mechanism using BPT diagrammes. Besides, we explore the application of the HIIGx $L(H\beta)$ - σ relation as a distance estimator. We use a sample of 103 HII-like starburst galaxies at high redshift with the required data from the literature combined with the local sample of 156 HIIGx to obtain constraints on the plane { Ω_m, w_0 }.

Chapter V presents the general conclusions of this thesis and delineates the future work that I plan to do.

Chapter 2

General Properties of HII Galaxies

2.1 Giant Extragalactic HII Regions and HII Galaxies in the Local Universe

GEHR and HIIGx are characterized by a large star-forming region, which due to the presence of O and B spectral type stars that ionize the gas surrounding them, their spectra are dominated by nebular emission lines. As a result, they can be observed in the optical as narrow and intense emission lines, mainly H and He recombination and forbidden lines like [OIII], [NII], [SII], superimposed on a blue stellar continuum (see Figure 2.1).

But, if both are bursts of star formation, what is the difference between GEHRs and HIIGx? Well, GEHR are massive bursts of star formation located at the outer regions of the disk of the late type galaxies. Their sizes are in the range of few hundred parsecs (Kennicutt et al., 1989; Bosch et al., 2002) and the content of ionized gas of low density (Ne ~ 10 - 100 cm³) reaches up to $10^5 M_{\odot}$ (García-Benito, 2009). However, the largest ones are generally composed of various knots, only distinguishable with high spatial resolution for nearby galaxies. Some examples of GEHR are 30 Dor in the Large Magellanic Cloud (LMC) and NGC 604 in the spiral galaxy M33.

HIIGx are also massive bursts of star formation located at dwarf irregular galaxies and almost completely dominating the total luminosity output (up to 10^{43} erg s⁻¹ in H α line luminosity); with total masses that are less than 10^9 M_{\odot}, radius that are less than 2 kpc and a surface brightness $\mu_{\rm v} \geq 19$ mag arcsec² (García-Benito, 2009). An example of HIIGx is IZw18. The HII galaxies also are known as BCDs (Blue Compact Dwarfs), however the term HII galaxy is used for the objects that have been selected by their intense and narrow emission lines (Terlevich et al., 1991), while BCDs are selected by their blue color and for being compact. Another important aspect is that not all BCDs are dominated by HII regions in their spectra, therefore not all BCDs are

Figure 2.1: Spectrum of a HIIGx (IZw18) with the most important emission lines labelled. In this spectrum you can see the very blue continuum. Taken from Kunth & Östlin (2000).

HII galaxies. Hence, both GEHRs and HIIGx offer an important opportunity to study violent and intense episodes of star formation. Besides as they are gas-rich with active star formation, one motivation to study them has been the hope to better understand the processes of massive star formation in low metallicity gas.

2.1.1 Morphology and Structure

Earlier morphological studies have suggested that a large proportion of the HII galaxies observed are compact and isolated (Melnick, 1987). Nevertheless, when we study the morphological properties of HII galaxies is very important to remember that, although all HIIGx have at least one giant region of star formation which may or may not be in the center, HIIGx present a variety of morphologies. On the basis of the shape of outer isophotes, Telles, Melnick, & Terlevich (1997) have classified HIIGx in two types: Type I and Type II. The type I objects have disturbed morphologies and irregular outer structure, also tend to be more luminous than type II objects. The type II objects are symmetric and regular HII galaxies regardless of the multiplicity of the starburst regions. This classification is only applicable to HIIGx at low redshift due to the fact that individual star-forming regions can only be resolved in nearby galaxies, while morphological details can not be appreciated at high redshift.

Regarding the structural properties of HII Galaxies, Telles, Melnick, & Terlevich (1997) found three main types of light profiles illustrated in Figure 2.2: d. A single exponential

fit represents well the whole range of radii of the profile. **dd.** Double profile with a platform due to the double morphology. An exponential law is well fitted to the outer regions. **bd.** A steep bright central region and a disk-like component. The exponential fit represents well the outer component only. Therefore, the outer parts of the luminosity profiles of HII galaxies are well represented by an exponential scaling law.

Figure 2.2: Light profiles taken from Telles, Melnick, & Terlevich (1997).

2.1.2 Age HII Galaxies

Dottori (1981) investigated the variation of the equivalent width of H β , EW(H β), as a function of the evolution of the ionizing stars in HII regions. Subsequently, measurements of the EW(H β) and age determinations in 29 HII regions of the LMC and 2 of SMC, respectively, were made by Dottori & Bica (1981). They found that the age maximum frequency in HII regions corresponds to the range 6.2 to 7.2 Myr, but older HII regions are practically undetectable.

In general two models for the star formation time evolution are used to estimate the age of young bursts of star formation: An instantaneous starburst model, which assumes that all stars are formed simultaneously in a short-living starburst episode, and a continuous starburst model, which assumes active star formation being constant in time. The first model is generally applied to individual low mass star clusters, whereas the second model is assumed to be a galaxy wide average properties. The continuous star formation could also be understood as a sequence of very small bursts localized within another small region in space and separated by short time intervals. Anyway, both models describe the evolution of the EW(H β) as a function of time, as can be seen in Figure 2.3. From this figure, it can be seen that the *Starburst99* models (Leitherer et al., 1999) with a defined Salpeter IMF, gives as results that an instantaneous burst with EW(H β) > 50 Å has to be younger than about 5 Myr. However, Terlevich et al. (2003) have showed that HII galaxies have a star formation history that is closer

to that predicted by a continuous starburst model, indicating that while the observed emission lines track the present burst, the underlying continuum contains the whole star formation history of the HIIGx.

Figure 2.3: H β equivalent width vs. time; Left: Instantaneous star formation law: solid line α =2.35, M_{up}=100 M_☉; long-dashed line, α =3.30, M_{up}=100 M_☉; short-dashed line, α =2.35, M_{up}=30 M_☉. Right: Same characteristics but for a continuous star formation law.

2.1.3 Metallicity HII Galaxies

While it is true that the average metallicity of the Universe must have increased as it evolved, the situation is more complex than a simple thought where high redshift means metal-poor, and low redshift metal-rich. Objects with high and low metallicities are found at all redshifts. Surely we expect objects that in the local Universe appear as metal deficient to be even more deficient at high redshift, if we could observe their precursors. As HII galaxies are metal-poor systems with abundances of metals in the range between $1/2 Z_{\odot}$ and $1/50 Z_{\odot}$, they are the survivors who form the local metal-poor galaxies population. As a consequence, they may be the principal building blocks of the Universe on large scales (Kunth & Östlin, 2000).

Observationally the HII galaxies have an advantage of being gas-rich, with spectra dominated by strong emission lines superimposed on a blue stellar continuum. From the analysis and interpretation of the ratios of two or more bright nebular emission lines, it is possible to estimate several parameters such as the electron density and temperature, the chemical abundances for different species, ionizing conditions, etc. It is also possible to characterize the ages, masses and temperature of the ionizing star cluster. In HII regions, the oxygen is the most abundant of the metals that constitute them and it is the most reliably determined element, since the most important ionisation stages can all be observed. Therefore, the oxygen abundance is normally considered as representative of the metallicity of HII galaxies. Also, the oxygen has the property that the [OIII] λ 4363 line allows an accurate determination of the electron temperature (Pagel et al., 1979). For other species apart from Sulphur, in general, one does not observe all the ionisation stages expected to be present in the photoionization region and an ionisation correction factor must be applied to derive the total abundance of the element in question.

When the electron temperature cannot be determined, empirical relations for estimating the oxygen abundance are used. These empirical relations use the line ratios between the strengths of $[OII]\lambda 3727$ and $[OIII]\lambda \lambda 4959$, 5007 lines relative to H β , though with lower accuracy (Pagel et al., 1979). A detailed discussion on these empirical relations is given in subsection 3.3.7.

Nowadays there are good quality data for more than 100 HIIGx, which show abundance in the range $7.1 \le 12 + \log(O/H) \le 8.3$. Pérez-Montero & Díaz (2003) analysed 12 HIIGx whose oxygen abundance are in a range of $7.68 \le 12 + \log(O/H) \le 8.20$. Chávez et al. (2014) calculated the oxygen abundance for a sample of 100 HIIGx and GEHR at 0.02 < z < 0.2, finding a median value of $12 + \log(O/H) = 8.08$. The distribution of oxygen abundances for the Chávez et al. (2014) sample is shown in Figure 2.4.

Figure 2.4: Distribution of oxygen abundances for 100 HIIGx and GEHR at low redshift. The dashed line shows the median (Chávez et al., 2014).

2.2 $L(H\beta)$ - σ Relation for HII Galaxies

Melnick (1978) found a correlation between the average turbulent velocity of HII regions in spirals and irregular galaxies and the parent galaxy absolute magnitude. However, the physics of this relationship was not clear. Terlevich & Melnick (1981) analysed the relation between H β luminosity, linewidth, metallicity and size for GEHRs and HII galaxies finding the following correlations:

$$luminosity \propto (linewidth)^4 \tag{2.1}$$

$$size \propto (linewidth)^2$$
 (2.2)

which are valid for stellar systems supported by pressure as elliptical galaxies, bulbs of spiral galaxies, globular clusters. Therefore, they concluded that HII galaxies and GEHRs are self-gravitating systems in which the observed emission-line profile widths represent the velocity dispersion of gas clouds in the gravitational potential well. They also found that the scatter in the $L(H\beta)$ - σ relation is correlated with the metallicity.

An analysis of properties of GEHRs was made by Melnick et al. (1987) in which they found that de H β emission line luminosity, velocity dispersion and core radii of giant HII regions are strongly correlated as:

$$R_c \sim \sigma^{2.5 \pm 0.5} \tag{2.3}$$

$$L(H\beta) \sim \sigma^{5.0 \pm 0.5} \tag{2.4}$$

where part of the scatter in the relations is due to a metallicity effect and that such relationships provide a powerful method to determine distances to GEHRs. Also they found that the relationships are best explained by a model in which GEHRs are assumed to be virialized clusters of large numbers of discrete gas fragments ionized by a central star cluster that contains most of the mass.

Subsequent work by Melnick, Terlevich, & Moles (1988) was devoted to obtain a calibration of the $L(H\beta)$ - σ relation for HII galaxies in order to make it suitable for distance measurements. The relation found for HII galaxies alone is:

$$logL(H\beta) = (4.70 \pm 0.30)log\sigma + (33.61 \pm 0.50)$$
 with $\delta logL(H\beta) = 0.29$ (2.5)

which is represented by a dashed line in Figure 2.5. A Hubble constant of $H_0 = 100$ km s⁻¹ Mpc⁻¹ was selected for the calculation of L(H β).

Figure 2.5: $L(H\beta) - \sigma$ relation for GEHRs and HIIGx. The solid line shows a least squares fit to GEHRs and the dashed line, the corresponding fit for HIIGx (Melnick, Terlevich, & Moles, 1988).

Also Melnick, Terlevich, & Moles (1988) found that the metallicity is effectively an important component of the scatter in the $L(H\beta)$ - σ relation. Therefore, the distance indicator defined as

$$M_z = \frac{\sigma^5}{O/H} \tag{2.6}$$

with O/H, the oxygen abundance of the nebular gas, provides the predicted luminosity from the relation

$$logL(H\beta) = (1.0 \pm 0.04) logM_z + (41.32 \pm 0.08)$$
 with $\delta logL(H\beta) = 0.271$ (2.7)

where a Hubble constant of $H_0 = 90 \text{ km s}^{-1} \text{ Mpc}^{-1}$ was selected for the calculation of $L(H\beta)$.

Melnick, Terlevich, & Terlevich (2000) showed that HII-like starburst galaxies up to z ~ 3 , albeit for a small sample, satisfy the L(H β) - σ relation, opening the possibility of using the relation to measure cosmological parameters (see Figure 2.6). The relation derived was:

$$loqL(H\beta) = loqM_z + 29.5 \tag{2.8}$$

from which the distance modulus relation for HII galaxies was:

$$\mu = 2.5 \log[\sigma^5 / F(H\beta)] - 2.5 \log(O/H) - A(H\beta) + Z_0$$
(2.9)

where $F(H\beta)$ and $A(H\beta)$ are the flux and extinction in H β , respectively. The determined zero-point was $Z_0 = -26.44$ and the rms scatter in the distance modulus was

found to be ~ 0.52 mag. Although, such rms scatter is larger than what is obtained with SNeIa, the advantage of using HII galaxies is that we can reach a much larger redshift limit, $z \sim 3$ versus $z \sim 1.5$ (Siegel et al., 2005) where the maximum difference in cosmological models occurs.

Figure 2.6: $L(H\beta) - \sigma$ relation for HIIGx at a wide range of redshifts. The solid line shows the maximum-likelihood fit to the young HII galaxies in the local Universe. The dashed line shows the predicted $L(H\beta) - \sigma$ relation for an evolved population of HII galaxies. A cosmology with $H_0 = 65$; q0 = 0 and $\Lambda = 0$ is assumed in this figure. (Melnick, Terlevich, & Terlevich, 2000).

Using recent galaxy distance determinations Plionis et al. (2011) determined the zeropoint of the distance indicator, Z_0 repeating the original analysis of Melnick, Terlevich, & Moles (1988, 2000), using Cepheid and RR Lyrae distance determinations and indeed the rms scatter of the distance indicator relation was reduced by ~ 7% while P₀ = 29.44.

A sample of 128 local HII galaxies, with high equivalent widths of their Balmer emission lines, was constructed by Chávez et al. (2014) with the objective of assessing the validity of the L(H β) - σ relation and its use as an accurate distance estimator. To this end they obtained high S/N high-dispersion ESO VLT and Subaru echelle spectroscopy, in order to accurately measure the ionized gas velocity dispersion. Additionally, they obtained integrated H β fluxes from low dispersion wide aperture spectrophotometry, using the 2.1m telescopes at Cananea and San Pedro Mártir Mexico. They found that L(H β) - σ relation for 107 HIIGx, since they only included those systems with log σ < 1.8 and remove objects with low quality data, is:

$$logL(H\beta) = 4.65 \ log\sigma + 33.71 \tag{2.10}$$

with rms scatter of $\delta \log L(H\beta) = 0.332$ (see Figure 2.7).

Figure 2.7: $L(H\beta) - \sigma$ relation for the sample of 107 HIIGx with good determination of Luminosity and σ . The inset shows the distribution of the residuals of the fit. Taken from Chávez et al. (2014).

2.3 The Physics of the $L(H\beta)$ - σ Relation

The physics that holds the $L(H\beta)$ - σ relation for HII galaxies stems from the fact that as one increases the mass of the young stellar component not only the ionizing output increases but also the turbulent velocity of the gas, which is indicative of supersonic motions in the gas in the stellar gravitational potential, becomes larger. This effect induces a correlation between the integrated luminosity in a hydrogen recombination line, e.g. $L(H\beta)$, which is proportional to the number of ionizing photons, and the velocity dispersion, σ , obtained through the linewidth.

The first ones to propose a model in which the nature of such relation is gravitation were Terlevich & Melnick (1981). They analysed the correlations between H β luminosities, linear diameters and the widths of the global emission-line profiles of GEHRs and found that the correlations L(H β) $\propto \sigma^4$ and R $\propto \sigma^2$ observed in HIIGx are similar to those valid for elliptical galaxies, bulges of spiral galaxies and globular clusters. These results strongly suggest that GEHRs are self-gravitating systems where the emission-line profile widths reflect the motions in the gravitational potential well. Terlevich & Melnick (1981) compared the relationship between luminosity and velocity dispersion of GEHRs with gravitationally bound systems (as elliptical galaxies, bulges of spiral galaxies and globular clusters). They evolved ionising stellar clusters as closed systems (i.e at constant mass) until their M/L ratios become similar to M/L ratios of gravitationally bound systems. As can be seen in Figure 2.8, the resulting M(B)₀ - σ relation for GEHRs is consistent with the corresponding to virialized systems, which gives a strong support to the gravitational origin of velocity dispersion in GEHRs.

Figure 2.8: Correlation between absolute blue magnitude and velocity dispersion for elliptical galaxies, bulges of spiral galaxies and globular clusters with GEHRs. The dashed line represents the linear fit to all the data. The solid line represents a fit for elliptical galaxies alone. And the dotted line represents the fit to the GEHRs. Taken from Terlevich & Melnick (1981).

Telles (1995) showed that HIIGx define a fundamental plane that is similar to that defined by normal elliptical galaxies (see Figure 2.9). This result lends strong support to the interpretation of Terlevich & Melnick (1981) and Melnick, Terlevich, & Moles (1988) that the emission-line profile widths of GEHRs directly measure the total mass of these systems within the measuring radius. Therefore, besides systematic effects, the scatter in the $L(H\beta)$ - σ relation depends on the existence of a second parameter. For example, on possible variations of the initial mass function (IMF), on the presence of additional sources of broadening (e.g. rotation), and on the duration of the burst of star formation that powers the emission lines (Melnick, Terlevich, & Terlevich, 2000).

2.3.1 Age effects

In order to minimize systematic effects caused by the rapid evolution of the ionizing stars, Melnick, Terlevich, & Moles (1988) restricted their sample to galaxies with $EW(H\beta) > 25$ Å. In fact, this restriction has a double purpose, which is particularly relevant for objects at high redshift: it selects the youngest starbursts, and eliminates

Figure 2.9: The fundamental plane of HIIGx and normal elliptical galaxies. The radii and magnitudes of HIIGx are measured from continuum images. The velocity dispersions are the widths of the emission lines. Taken from Telles (1995).

objects with significant underlying old stellar populations. The latter is critical because an old stellar population may widen the emission lines in a way that is uncorrelated with the luminosity of the young component.

The luminosity evolution of a young starburst during the first 10^7 yr proceeds as a rapid decay of the emission line flux after the first 3 Myr at roughly constant continuum flux until about 6 Myr. Thus, in this range of ages the age-dimming in L(H β) can be directly estimated from the change in equivalent widths (Terlevich & Melnick, 1981; Copetti et al., 1986). Chávez et al. (2014) studied the age effect in the L(H β) - σ relation, from their results it was clear that age should play a role in the scatter but very small.

2.3.2 Extinction effects

The dust present in the interstellar medium strongly attenuates rest-frame ultraviolet and optical fluxes in a wavelength-dependent manner. Therefore, the extinction have a systematic effect for the $L(H\beta) - \sigma$ relation. Two possible sources of extinction must be considered: dust in our galaxy and dust in the HII galaxies themselves. In practice, the most reliable technique to estimate interstellar extinction is to measure the flux ratio of two nebular Balmer emission lines such as $H\alpha/H\beta$ (i.e., the Balmer decrement). Extinction corrections for local HII galaxies are determined in a straightforward manner from the Balmer decrements (Melnick, Terlevich, & Moles, 1988). While in HIIGx at intermediate and high-redshift it is rather difficult to measure the Balmer decrement because of low signal-to-noise ratio (S/N). This is now possible with observations using 8-m class telescopes which ideally include weaker Balmer lines permitting direct estimates of the reddening in HIIGx at high redshift (Erb et al., 2006a,b).

2.3.3 Metallicity effects

Terlevich & Melnick (1981) showed that other possible parameter that has an effect over the $L(H\beta)$ - σ relation is the metallicity. Nevertheless the HIIGx, due to their nature, have a very low metallicity whose dynamical range is very narrow (see Figure 2.4). Chávez et al. (2014) showed that the metallicity plays a role as a second parameter although relatively small.

2.3.4 Size effects

If the $L(H\beta)$ - σ correlation is a consequence of young massive clusters being in virial equilibrium, then the strongest candidate for a second parameter is the size of the star forming region (Terlevich & Melnick, 1981; Melnick et al., 1987). Chávez et al. (2014) explored this possibility using the SDSS measured radii at the u, g, r, i and z bands. They used the SDSS measured effective Petrosian radii and corrected for seeing also available from SDSS. In particular, using as second parameter either size, oxygen abundance O/H (using the empirical methods N2 or R23), EW or continuum colour, they found that the scatter in the $L(H\beta)$ - σ relation is considerably reduced. Being the size in the u-band which more reduces scattering,

$$logL(H\beta) = 3.08 \, log\sigma + 0.76 logR_u + 34.04 \tag{2.11}$$

with rms scatter of $\delta \log L(H\beta) = 0.261$.

2.3.5 Multiparametric effects

Chávez et al. (2014) also investigated which parameters in addition to the size can further reduce the scatter in the $L(H\beta)$ - σ relation. They found, using multiparametric fits, that including as a third parameter the (u - i) colour or the equivalent width of a Balmer emission line, and as a fourth parameter the metallicity does significantly reduce further the scatter. Therefore, their best multiparametric distance estimator is: $logL(H\beta) = 2.79 \ log\sigma + 0.95 logR_u + 0.63 logEW(H\beta) + 0.28 logN_2 + 33.15$ (2.12) with rms scatter of $\delta logL(H\beta) = 0.233$ (see Figure 2.10).

Figure 2.10: Observed $L(H\beta)$ [$L(H\beta)_o$] vs. $L(H\beta)$ calculated using the best Bayesian multiparametric fitting corresponding to the expression displayed on the top of the figure. The 1:1 line is shown (Chávez et al., 2014).

2.4 HII Galaxies as Cosmological Probes

As mentioned before HII galaxies, compact extragalactic objects experiencing massive bursts of star formation, have a high-luminosity per unit mass, in large part concentrated in a few strong emission lines in the optical rest frame. This ensures that the requirement for a standard candle to be usable at very large distances is met. The potential use of HII galaxies as distance indicators, as an alternative to the traditionally used SNeIa, is based on the following facts:

(a) Local and HIIGx at high redshift define a relationship between H β luminosity and velocity dispersion which remains valid at cosmological distances. Thus, HIIGx at high redshift can be used as alternative tracers of the Hubble expansion.

(b) HIIGx can be observed at much larger redshifts than those currently probed by SNeIa samples.

(c) It is at higher redshifts in which the differences between the predictions of the different cosmological models are stronger, as is showed in Figure 2.11.

Figure 2.11: Left-hand panel: the expected distance modulus difference between the dark energy models shown and the reference model (w = -1) with $\Omega_m = 0.27$. Right-hand panel: the expected distance modulus differences once the w(z) degeneracy is broken (imposing the same Ω_m value as in the comparison model). Plot taken from Plionis et al. (2011).

In Figure 2.11 we can see the difference between some cosmological models for which their parameters are indicated. Such difference is obtained when we compare different models to one taken as reference. We define:

$$\Delta \mu = \mu_{\Lambda} - \mu_{model} \tag{2.13}$$

where μ_{Λ} is the distance modulus given by the reference model using concordance Λ CDM cosmology and μ_{model} is the one given by any other model.

The distance modulus is defined as:

$$\mu = 5log D_L + 25 \tag{2.14}$$

where D_L is the luminosity distance expressed in Mpc, for a flat universe ($\Omega_k = 0$) and an insignificant value of Ω_r is given by:

$$D_L = \frac{c(1+z)}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)(1+z)^{3(1+w_0+w_1)} \exp(\frac{-3w_1z}{1+z})}},$$
 (2.15)

for which it has been used the CPL (Chevallier & Polarski, 2001; Linder, 2003) model to parametrize the value of the dark energy equation of state parameter w(z),

$$w(z) = w_0 + w_1 f(z) \tag{2.16}$$

being $w_0 = w(z = 0)$ and f(z) an increasing function of redshift, such as f(z) = z/(1+z) (Chevallier & Polarski, 2001; Linder, 2003; Peebles & Ratra, 2003; Dicus & Repko, 2004; Wang & Mukherjee, 2006).

Taking the concordance Λ CDM cosmology as the reference model, Terlevich et al. (2015) calculated the distances and hence the luminosities for local and high redshift HIIGx. Figure 2.12 shows the L(H β) - σ relation for the 25 high-z sample of HIIGx [6 high-z HIIGx observed with XShooter (red stars) and 19 high-z HIIGx from the literature (green triangles)], and the local sample of GHIIRs and HIIGx from Chávez et al. (2014). The result is a remarkably tight correlation that justifies the use of the L(H β) - σ relation as a distance estimator over a wide range of redshift, basically from the local group of galaxies (LMC, SMC, NGC 6822, M 33) up to at least z ~ 2.3.

The L(H β) - σ relation found, for the joint local HIIGx (107 objects) and GEHRs (24 objects) samples, is

$$logL(H\beta) = (5.05 \pm 0.097)log\sigma(H\alpha) + (33.11 \pm 0.145)$$
(2.17)

Although here they are only considering the two dimensional $L(H\beta) - \sigma$ relation, the scatter can be substantially reduced if additional observables in the $L(H\beta) - \sigma$ relation are included. According to Chávez et al. (2014), observables like the size of the ionized gas region, the equivalent width of either H β or H α and the ionized gas metallicity or the continuum colour reduce substantially the scatter (from a rms ~ 0.35 to a rms ~ 0.23) in the $L(H\beta) - \sigma$ relation. The importance of this reduction in the scatter of the distance estimator can not be neglected.

Figure 2.13 shows the Hubble diagram for the combined sample of local and high-z systems from Terlevich et al. (2015). The distance moduli were obtained from:

$$\mu^{obs} = 2.5 log L(H\beta)_{\sigma} - 2.5 log F(H\beta) - 100.2$$
(2.18)

where $L(H\beta)_{\sigma}$ was estimated from equation (2.17).

The continuous lines show the behaviour of the theoretical distance modulus with redshift computed for three different cosmological models using the equation (2.14). This is a remarkable and unique Hubble diagram in the sense that it covers a huge dynamical range with a single distance estimator. It connects galaxies in the local group to galaxies at $z \sim 2.3$, a range of almost 30 magnitudes in distance modulus or

Figure 2.12: $L(H\beta) - \sigma$ relation for the combined local (131 HIIGx and GEHRs) and high-z (25 HIIGx) samples, the fit corresponds only to the local sample of 131 objects. Blue squares: GEHRs. Blue dots: local HIIGx. Red stars: HIIGx at high z with XShooter observations. Green triangles: data from the literature. Plot taken from Terlevich et al. (2015).

more than 5 dex in redshift.

To restrict the set of cosmological parameters they minimised the Likelihood function,

$$\chi^{2}(\mathbf{p}) = \sum_{i=1}^{n} \frac{[\mu_{i}^{obs}(\sigma_{i}, f_{i}) - \mu_{i}^{th}(\mathbf{p}, z_{i})]^{2}}{\sigma_{\mu_{i}^{obs}}^{2}}$$
(2.19)

where $\mu^{obs}(\sigma_i, f_i)$ are 'observed' distance moduli obtained from equation (2.18); σ_i are the measured velocity dispersions and f_i are the measured H β fluxes for each object. μ^{th} (**p**, z_i) are the 'theoretical' distance moduli from equation (2.14) obtained from the measured redshifts by using a particular set of cosmological parameters, **p**. $\sigma_{\mu_i^{obs}}$ are the errors in 'observed' distances moduli propagated from the uncertainties in σ_i and f_i and the slope and intercept of the distance estimator in equation (2.17). The summation is over the combined sample of HIIGx.

Figure 2.14 shows the comparison for the space $p = (\Omega_m, w_0)$ obtained in Terlevich et al. (2015) joining the high-z with the local HIIGx samples (see left panel), using the

Figure 2.13: Hubble diagram for our sample of low and high-z HIIG for three different cosmologies. The solid red line indicates the concordance Λ CDM cosmology with $\Omega_m = 0.3$; $w_0 = -1.0$ and $H_0 = 74.3$. The solid green line shows a cosmology with $\Omega_m = 0.3$ and $w_0 = -2.0$. The solid blue line corresponds to $\Omega_m = 1.0$. In all three cases $\Omega_k = 0$. Residuals are plotted in the bottom panel. Note the huge dynamical range in distance modulus of almost 30 magnitudes covered with the L(H β) - σ distance estimator. Taken from Terlevich et al. (2015).

value of $H_0 = 74.3 \pm 3.1$ calculated in Chávez et al. (2012) and $w_1 = 0$, with recent results from SNeIa, CMB and BAO (right panel). The figure shows the constrains of the properties of dark energy using SNeIa alone (Amanullah et al., 2010), the Wilkinson Microwave Anisotropy Probe data of the CMB (Komatsu et al., 2011) and the position of the BAO peak from the combined analysis of the SDSS Data Release 7 and 2dFGRS data Percival et al. (2010). The combined restrictions from SNeIa, CMB and BAO and the measurement of the Hubble constant (H₀) from Cepheids (Riess et al., 2011) are also shown.

From the comparison of the figures it can be seen that there are no systematic shifts between the HII galaxies and SNeIa solutions. The figure shows also that with a larger sample of HII galaxies with high quality data it becomes possible to achieve at least similar and probably even better results to those obtained with SNeIa (Plionis et al., 2011).

Figure 2.14: Comparison of restrictions on the plane (Ω_m, w_0) . Panel (a) shows the results, obtained for the combined 25 high-z HIIGx and the local sample (131 HIIGx and GEHRs). 1 and 2σ contours are shown. Panel (b) after Suzuki et al. (2012) shows the recent results for 580 SNeIa, CMB and BAO, the 1, 2 and 3σ contours are shown. Taken from Terlevich et al. (2015).

The results shown in Figure 2.14 are consistent with simulation predictions in Plionis et al. (2011) in which they showed that a more efficient strategy to decrease the uncertainties of the cosmological parameters, based on the Hubble relation, is to use standard candles which trace also the redshift range 2 < z < 3.5 (see Figure 2.15).

Figure 2.15: Comparison of the model Constitution SNIa constraints (black contours) with those (filled contours) derived by reducing to half their uncertainties (left-hand panel), with those derived by adding a sample of 76 high-z tracers (2 < z < 3.5) with a distance modulus mean uncertainty of $\sigma_{\mu} \simeq 0.5$ and no lensing degradation (central panel), and with those by including statistically the expected lensing degradation (right-hand panel). contours corresponding to the 1 and 3σ confidence levels are plotted. Taken from Plionis et al. (2011).

In order to study the relation between the number of high-z tracers used and the corresponding reduction of the cosmological parameter solution space, Plionis et al. (2011) used the figure of merit (FoM; Bassett, 2005; Albrecht et al., 2006; Bueno Sanchez et al., 2009), defined as the reciprocal area of the 2σ contour in the parameter space of any two degenerate cosmological parameters [e.g. (Ω_m, w) for the quintessence dark energy (QDE) model. In this way a larger FoM indicates better constrains to the cosmological parameters.

Here they use the parameter S or 'reduction factor', defined as the ratio of the FoM of the SNIa+high-z tracers Hubble relation solution to that of only the SNIa in order to study the question of how best it can be constrained the cosmological parameter space, when adding N_{high-z} high-z tracers of the Hubble relation, with respect to the best current SNIa data set as a function of the number of high-z tracers. In their results is interesting to note that the HII galaxies at high redshift could constrain cosmological parameters with the level of accuracy provided by current SNIa data sets (for $N_{high-z} >$ 200) and relax the constraint that SNeIa are the only reliable tracers of the Hubble relation as has been used to-date (see Figure 2.16).

Figure 2.16: The 'reduction' parameter S, indicating the factor by which we reduce the 2σ contour area of the cosmological parameters (Ω_m , w) solution space (QDE model) as a function of the number of high-z tracers (2 < z < 3.5) of the Hubble relation and for two different values of the mean intrinsic distance modulus scatter (as indicated in the plot). Circular points correspond to using the high-z tracers together with the current best SNIa data set, while the squares to using only the high-z tracers (and a local z < 0.2 calibration sample). Inset panel: the 'reduction' parameter for the case of using 100 high-z tracers as a function of the mean distance modulus uncertainty, σ_{μ} . The lines correspond to logarithmic fits to the data. Taken from Plionis et al. (2011).

HII Galaxies as Cosmological Probes

Chapter 3 Sample and Methodology

Large databases containing HII galaxies at high redshifts already exist and we have the possibility of selecting appropriate candidates for follow-up observations in order to achieve our scientific goals. In this chapter I will describe the parameters that characterize the sample and the selection criteria for choosing HII-like starburst galaxies at high redshift from the literature.

As already mentioned, the aim is to obtain a sample of HII-like starburst galaxies at high redshift and investigate their properties to compare them with nearby HIIGx in order to assess the L- σ relation for HIIGx as a distance estimator.

3.1 Sample Selection

The candidates were identified according to the equivalent widths (EW) in their emission lines. Synthesis models for star-forming galaxies in bursting episodes, predict that if the EW(H β)>50 Å or EW(H α)>200 Å then the sample is composed by systems in which a single starburst younger than 5 Myr (Leitherer et al., 1999) dominates the total luminosity. But to account for uncertainties in the measurements of EWs reported in the literature, we relaxed the conditions so that the candidates have EW(H β) > 25 Å or EW(H α) > 150 Å.

On the other hand, as the galaxies at the peak of cosmic star formation at $z \sim 2$ have their emission lines shifted into the near-infrared, some objects in samples at high redshift don't have measurements of H α . Sometimes, the H β line is more difficult to measure than other emission lines, for example, the [OIII] λ 5007Å line. For this reason, we also need selection criteria that involve the [OIII] emission line. Now, if we suppose that rest-frame EW[OIII] in HIIGx at high redshift behaves in the same way as rest-frame EW[OIII] in HIIGx at low redshift, we can use the F[OIII]/F(H β) distribution of a sample of HIIGx at low redshift in order to calculate statistically the

EW[OIII] distribution through the relation:

$$EW[OIII] = \frac{F[OIII]}{F(H\beta)} \times EW(H\beta).$$
(3.1)

Figure 3.1 presents the equivalent width distribution obtained for $[OIII]\lambda 5007\text{\AA}$ using the Equation (3.1) for a sample of 95 HIIGx at low redshift with F[OIII] and F(H β) data from Chávez et al. (2014) whose median value is 474.93 Å. Therefore, I defined a new selection criterion as EW[OIII] > 474 Å.

Figure 3.1: Equivalent width distribution of $[OIII]\lambda 5007$ Å line for the sample at low redshift from Chávez et al. (2014).

Once defined the selection parameters, EW(H α) > 150 Å, EW(H β) > 25 Å or EW[OIII] > 474 Å, I found in the literature 504 HIIGx candidates in a range of redshift 0.1 < z < 3.4. Figure 3.2 shows the redshift distribution for the total sample where the dashed line represents the median value of 1.44. The purple band shows a population which was selected through broad-band photometry at 1.6 < z < 1.8 and the orange band shows an overdense region at z = 2.23 selected through narrow-band photometry.

The sample position on the sky is shown in Figure 3.3. From this we can see that the HIIGx at high redshift are distributed over the whole sky. Specifically, most of the HIIGx belong to the Ultra Deep Survey (UDS) in the CANDELS field, GOODS-South Deep (GSD) field and zCOSMOS survey in the COSMOS field. This has great advantages, since with the use of multiples IFUs at large telescopes, e.g. VLT-KMOS and KECK-MOSFIRE, we can observe simultaneously several objects in the same cosmological field. This increases notably the observation efficiency and in this way we take advantage of the high number density of the HIIGx.

Figure 3.2: Histogram for the total sample of 504 HIIGx candidates with high rest-frame equivalent widths in their emission lines in a redshift range of 0.1 < z < 3.4. The dashed line represents the median; the purple band shows a population which was selected through broad-band photometry at 1.6 < z < 1.8 and the orange band shows an overdense region at z = 2.23 selected through narrow-band photometry

The total sample of 504 HII-like starburst galaxies at high redshift was obtained from the following sources as:

- 52 candidates at 1.4 < z < 2.6 were selected from Erb et al. (2006a) and Erb et al. (2006b) as having EW(H α)> 150 Å (Table 1, labelled 1 and 2 respectively).

- 16 candidates at 0.5 < z < 0.9 were selected from Hoyos et al. (2005), as having EW(H β)> 25 Å (Table 1, labelled 3).

- 11 candidates at 2.1 < z < 3.3 were selected from Siegel et al. (2005), Erb et al. (2003) and Pettini et al. (2001) as having EW(H β)> 25 Å (Table 1, labelled 4,5 and 6 respectively).

- 39 candidates were selected from Matsuda et al. (2011) as having EW(H α)> 150 Å (Table 1, labelled 7).

- 16 candidates at 1.4 < z < 2.3 were selected from Maseda et al. (2013, 2014) as having EW[OIII] λ 5007 > 474 Å (Table 1, labelled 9 and 10 respectively).

- 26 candidates (13 at $z\sim2.2$ and 13 at $z\sim1.5$) were selected from Masters et al. (2014) as having EW(H α)> 150 Å and high value of EW[OIII] (Table 1, labelled 11).

Figure 3.3: Sample position on the sky.

- 30 candidates at 0.3 < z < 0.9 were selected from Kobulnicky & Kewley (2004) and Weiner et al. (2006) as having EW(H β) > 25 Å (Table 1, labelled 12 and 16 respectively).

- 6 candidates at 0.6 < z < 2.1 were selected from Xia et al. (2012) as having EW(H β)> 25 Å (Table 1, labelled 14).

- 69 candidates at 1.6 < z < 1.8 were selected from van der Wel et al. (2011) as having EW[OIII] λ 5007 > 474 Å (Table 1, labelled 17).

- 26 candidates at 1.5 < z < 2.6 were selected from Förster Schreiber et al. (2009) as having EW(H α)> 150 Å (Table 1, labelled 18).

- 17 objects at 1.4 < z < 2.5 were selected from Mancini et al. (2011) as having EW(H α) > 150 Å (Table 1, labelled 19).

- 165 candidates at 0.1 < z < 0.92 were selected from Amorín et al. (2015) as having EW(H α)> 150 Å, EW(H β)> 25 Å and high values of EW[OIII] (Table 1, labelled 20).

- 31 candidates at 0.21 < z < 0.86 were selected from Amorín et al. (2014) as having EW(H β)> 25 Å and high values of EW[OIII] (Table 1, labelled 21).

Figure 3.4: Rest-frame equivalent width distribution of the H α , H β and [OIII] emission lines for the total sample. Top left panel: Histogram of the H α emission line for 224 objects in a range of redshift 0.10 < z < 2.58. Top right panel: Histogram of the H β emission line for 249 objects in a range of redshift 0.15 < z < 3.39. Bottom panel: Histogram of the [OIII] line for 336 objects in a range of redshift 0.10 < z < 2.32. The dashed lines represent the median in each distribution.

Due to the fact that the 504 HII-like galaxies at high redshift could satisfy just one of the three selection criteria, each one of the EWs histograms from Figure 3.4 does not have 504 objects. Therefore, those objects with $EW(H\alpha) < 150$ Å present in the

left top panel from Figure 3.4 satisfy any of the other two selection criteria. The same occurs for the objects with $EW(H\beta) < 25$ Å and EW[OIII] < 474 Å seen in the right top histogram and central bottom histogram from Figure 3.4, respectively.

3.2 Properties of the Selected Sample at High Redshift

It is well known that the rest-frame optical spectra of star-forming galaxies at all redshifts exhibit emission lines from which detailed physical properties can be inferred. These intrinsic properties will be described in this section. Some of them were taken from the literature and others were calculated with the purpose of characterizing the sample of HII-like starburst galaxies at high redshift.

The general properties of this sample will be compared with a sample of HIIGx at low redshift from the literature in order to assess a possible connection between HIIGx at low and high redshift (see Chapter 4).

3.2.1 Velocity Dispersion

The line emission velocity dispersion (σ) reflects the dynamics of the gas in the galaxies' potential well. And because it requires only a measurement of the line width, it is therefore our most useful kinematic quantity. The velocity dispersion is calculated by:

$$\sigma = \frac{FWHM}{2\sqrt{2ln(2)}},\tag{3.2}$$

where FWHM is the full width at half-maximum after subtraction of the nominal instrumental resolution. The values of velocity dispersions were taken from the literature and can be seen in column (7) from Table 1 in km s⁻¹. Their distribution is presented in Figure 3.5 where the dashed line represents the median value of $\sigma = 70.25$ km s⁻¹.

3.2.2 Size

The sizes of the HIIGx are defined as twice the half-light radius. The half-light radius is determined using the curves-of-growth extracted from circular apertures centered on the centroid of the line emission (i.e carried out from the spectra integrated in aperture radii that best fit to find the shape of each HIIGx), and then adjusting the radius of circular aperture until it encompasses half of the total H α luminosity. The half-light radii also are corrected for the respective PSF FWHM¹. The values of half-light radii

¹The PSF FWHM corresponds to the effective spatial resolution of all observations for a given object and instrument setup. It is estimated from the combined images of the acquisition star taken regularly during the observations of a science target.

Figure 3.5: Velocity dispersion distribution for 184 sample galaxies in a range of redshift of 0.32 < z < 3.39. The dashed line shows the median of the distribution.

were taken from the literature and can be seen in column (5) of Table 2 in kpc.

3.2.3 Dynamical Masses

If the emission-line widths reflect the relative motions of HII regions within the gravitational potential of the galaxies, dynamical masses can be calculated from the line widths via the relation:

$$M_{dyn} = \frac{C\sigma^2 r}{G} \tag{3.3}$$

where the factor C depends on the galaxy's mass distribution and therefore on the mass density profile, also on the velocity anisotropy, on random motions or rotation and finally on the assumption of a spherical or disk-like system.

The definition of the radius r is very important in the determination of dynamical masses. In most calculations of dynamical masses at high redshift C = 5 which is the ideal case of a sphere of uniform density has been used (Pettini et al., 2001; Erb et al., 2003, 2004; Shapley et al., 2004; Swinbank et al., 2004). Erb et al. (2006b) have used C \simeq 3.4, instead of C = 5, under the assumption of a disk geometry.

In this thesis, I have selected the case of a sphere of uniform density, i.e. C = 5, therefore, the Equation (3.3) can be written as:

$$M_{dyn} = 1.16 \times 10^6 M_{\odot} \frac{\sigma^2}{[km/s]^2} \frac{r}{[kpc]},$$
(3.4)

Taking the value of half-light radius and the velocity dispersion explained above, the dynamical masses were calculated using the Equation (3.4) and they are shown M_{\odot} in column (6) from Table 2. Their distribution is presented in Figure 3.6 where the dashed line represents the median value of $\log(M_{dyn}) = 10.47 M_{\odot}$.

Figure 3.6: Dynamical mass distribution for 124 HII-like starburst galaxies with data on σ and radii the redshift range 0.68 < z < 2.57. The dashed line represents the median.

3.2.4 Extinction and Fluxes

Following the empirical extinction relation found in Calzetti et al. (1994), the intrinsic fluxes at the wavelength λ , $F(\lambda)$, are given by:

$$F(\lambda) = F_{obs}(\lambda) 10^{0.4k(\lambda)E(B-V)} = F_{obs}(\lambda) 10^{0.4A(\lambda)}$$
(3.5)

where F_{obs} are the observed fluxes, $A(\lambda)=k(\lambda)E(B-V)$ is the extinction in magnitudes at the wavelength λ , E(B-V) is the color excess and $k(\lambda)$ is the reddening curve. We will use the reddening curve $k(\lambda)$ found in Calzetti et al. (2000) for our analysis, therefore:

$$k(\lambda) = 2.659(-1.857 + 1.040/\lambda) + \text{Rv}$$
 for $0.63 \le \lambda \le 2.20\mu m$ (3.6)

$$k(\lambda) = 2.659(-2.156 + 1.509/\lambda - 0.198/\lambda^2 + 0.011/\lambda^3) + \text{Rv} \text{ for } 0.12 \le \lambda \le 0.63\mu m$$
(3.7)

where Rv=Av/E(B-V) is the optical total-to-selective extinction ratio. We use the value of $Rv=4.05\pm0.80$ selected from Calzetti et al. (2000). The extinction in magnitudes for H α and H β is:

$$A(H\alpha) = (3.32 \pm 0.80)E(B - V). \tag{3.8}$$

$$A(H\beta) = (4.60 \pm 0.80)E(B - V).$$
(3.9)

The values of E(B - V), $A(H\alpha)$ and $A(H\beta)$ can be seen in columns (8), (9) and (10) of Table 2, respectively.

In some cases, the H β observed fluxes aren't available in the literature, so we estimate them by using the Equation (3.5) for H α and H β . Then dividing both equations we obtain:

$$\frac{F(H\alpha)}{F(H\beta)} = \frac{F_{obs}(H\alpha)}{F_{obs}(H\beta)} 10^{0.4[A(H\alpha) - A(H\beta)]}$$
(3.10)

Assuming the intrinsic value of $F(H\alpha)/F(H\beta)=2.86$, corresponding to a temperature $T=10^4$ K and an electron density $n_e=10^2$ cm⁻³ for Case B recombination Osterbrock (1989), we obtain that:

$$F_{obs}(H\beta) = \frac{1}{2.86} F_{obs}(H\alpha) 10^{0.4[A(H\alpha) - A(H\beta)]}$$
(3.11)

Once the H β and H α observed fluxes are obtained, Equation (3.5) is used to calculate the H β and H α intrinsic fluxes, respectively. The results are presented in columns 8, 9, 11 and 12 of Table 1, where the uncertainties for the fluxes have been estimated propagating the error. The H β flux distribution is presented in Figure 3.7, where the dashed line represents the median value of log F(H β) = - 16.23 erg s⁻¹ cm⁻².

Figure 3.7: H β flux distribution for 202 HII-like starburst galaxies from our total sample in a range of redshift of 0.21 < z < 3.39. From these 202 objects, 132 have corrected H β flux as described in the text and the rest of them have observed H β flux. The dashed line represents the median.

3.2.5 Luminosity Distance

In the matter dominated era, the Hubble relation depends on the cosmological parameters via the following expression (derived from Friedmann's equation):

$$\frac{\dot{R}}{R} = H_0 [\Omega_m (1+z)^3 + \Omega_r (1+z)^4 + \Omega_k (1+z)^2 + \Omega_\Lambda]^{1/2}, \qquad (3.12)$$

then

$$H(z) = H_0 E(z),$$
 (3.13)

where

$$H(z) = \frac{R}{R}, \qquad \Omega_{\Lambda} \equiv \frac{\Lambda c^2}{3H_0^2}, \qquad \Omega_k \equiv \frac{-kc^2}{R_0^2 H_0^2}.$$
(3.14)

It is evident that at the present epoch we obtain from (3.13) that E(0)=1 and thus $\Omega_m + \Omega_r + \Omega_k + \Omega_{\Lambda}=1$.

In order to calculate the H β luminosity using the H β measured fluxes it is necessary to determine the luminosity distance, which is given by the following expression for a flat universe ($\Omega_k = 0$):

$$d_L = (1+z) \int_0^z \frac{c}{H(z)dz}$$
(3.15)

To obtain the luminosity distance I used the task *lumdist* from Python, which calculates the luminosity distance once the redshift and cosmological parameters, H_0 and Ω_m , are specified. The same results are obtained for the luminosity distance whether I use the task *lumdist* or Equation (3.15) to calculate it.

A cosmology with $H_0 = 74.3 \pm 4.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Chávez et al., 2012), $\Omega_m = 0.27$ and $\Omega_{\Lambda} = 0.73$ is assumed in the calculation of luminosity distance.

3.2.6 Luminosities

The H α and H β intrinsic luminosities were computed using the equations:

$$L(H\beta) = 4\pi d_L^2 F(H\beta), \qquad (3.16)$$

and

$$L(H\alpha) = 4\pi d_L^2 F(H\alpha), \qquad (3.17)$$

where d_L is the luminosity distance and $F(H\beta)$ and $F(H\alpha)$ are the reddening corrected $H\beta$ and $H\alpha$ fluxes, both parameters previously calculated. The $H\beta$ luminosities estimated this way can be seen in column (3) of Table 2 in erg s⁻¹. Their distribution is presented in Figure 3.7, where the dashed line represents the median value of log $L(H\beta) = 42.124$ erg s⁻¹.

3.2.7 Star Formation Rates

In the calculation of star formation rate (SFR) we need calibrations based on evolutionary synthesis models, in which the emergent SEDs are derived for synthetic stellar populations with a prescribed age mix, chemical composition and IMF.

The extinction-corrected values of H β luminosities previously calculated were converted into Star Formation Rates (SFR) following the relation (cf. Kennicutt & Evans, 2012):

$$\frac{SFR}{[M_{\odot}/yr]} = 1.54 \times 10^{-41} \frac{L_{H\beta}}{[ergs^{-1}]}$$
(3.18)

where an IMF of Kroupa & Weidner (2003) with a Salpeter slope of $\alpha_* = -2.35$ from 1 to 100 M_{\odot} and $\alpha_* = -1.3$ from 0.1 to 1 M_{\odot} were used.

It is important to bear in mind that the concept of SFR is normally applied to whole galaxies, where the SFR does not suffer rapid changes. In general, a definition of SFR for an instantaneous burst is more difficult. Nevertheless, the SFR is useful to make comparisons with other star-forming galaxies. The SFR for the objects in our sample are presented in column (4) of Table 2. Their distribution is presented in Figure 3.8, where the dashed line represents the median value of $\log(SFR)=1.31 M_{\odot} \text{ yr}^{-1}$.

Figure 3.8: H β luminosity (and SFR as labelled on the top of the figure) distribution for 202 HII-like starburst galaxies from the sample in the redshift range 0.21 < z < 3.39. From this 202 objects, 132 have corrected H β luminosity and the rest of them have observed H β luminosity. The dashed line shows the median of the distribution

3.2.8 The Oxygen Abundance

The calculation of the oxygen abundance for HIIGx at high redshift is made under the assumption that the integrated spectra of these HIIGx can be treated in the same way as the spectra of individual local HII regions. The latter are used to calibrate the strong-line abundance indicators (see e.g. Erb et al., 2010).

In order to obtain the gas-phase oxygen abundance in HII regions it is necessary to measure the relative strengths of strong emission lines. The lines typically used are $[OII]\lambda 3727$, H β , $[OIII]\lambda\lambda 4959$, 5007, H α , and $[NII]\lambda 6584$. Different metallicity calibrators based on emission-line strengths exist (see e.g. Kewley & Ellison, 2008, for an overview). These empirical relations between strong-line ratios and chemical abundance have been calibrated using local HII regions with measured electron temperatures, in which the direct method is used to obtain the chemical abundance.

Direct Method

The direct method uses the temperature-sensitive ratio of two transitions of the same ion to determine the electron temperature. Most commonly, the auroral line $[OIII]\lambda 4363$ is used. The total oxygen abundance is obtained as:

$$12 + \log\left(\frac{O}{H}\right) = 12 + \log\left(\frac{O^+}{H^+}\right) + 12 + \log\left(\frac{O^{++}}{H^+}\right), \qquad (3.19)$$

where the ionic oxygen abundances can be calculated from Pagel et al. (1992):

$$12 + \log(O^{++}/H^{+}) = \log \frac{I(4959) + I(5007)}{H\beta} + 6.174 + \frac{1.251}{t} - 0.55 \log(t)$$
 (3.20)

and

$$12 + \log(O^+/H^+) = \log \frac{I(3726) + I(3729)}{H\beta} + 5.890 + \frac{1.676}{t_2} - 0.40 \log(t) + \log(1 + 1.35x),$$
(3.21)

being t the electron temperature:

$$t = 1.432 [log R - 0.85 + 0.03 log t + log(1 + 0.0433 x t^{0.06})]^{-1},$$
(3.22)

in units of 10⁴ K; $x=10^{-4}$ Ne t², where Ne is the electron density in cm⁻³ obtained using the [SII] $\lambda 6716/\lambda 6731$ line ratio; Finally R and t_2 are defined as

$$R = \frac{I(4959) + I(5007)}{I(4363)},\tag{3.23}$$

$$t_2^{-1} = 0.5(t^{-1} + 0.8). ag{3.24}$$

The direct method is useful in a restricted range of abundances, since in systems with oxygen abundance between $0.2(O/H)_{\odot}$ and $0.5(O/H)_{\odot}$ the [OIII] λ 4363 Å auroral line becomes extremely weak, requiring high S/N observations to be detected (Kennicutt et al., 2003). As a consequence of this, empirical methods using strong line ratios have been developed (see e.g. Kewley & Ellison, 2008).

R₂₃ Method

The R₂₃ method is an empirical method that is based on the ratio R23=([OIII] λ 4959, 5007 + [OII] λ 3727)/H β , this was first proposed by Pagel et al. (1979). Several calibrations have also been produced for the parameter R23 in an effort to compensate for the effect of the stellar temperature and ionization parameter (Edmunds & Pagel, 1984; Zaritsky, Kennicutt, & Huchra, 1994; Kobulnicky, Kennicutt, & Pizagno, 1999; Pilyugin, 2001a,b,c).

A difficulty with R_{23} is that it is double-valued with (O/H). For each value of R_{23} there is a low metallicity value corresponding to the lower branch of the relation and a high metallicity estimate corresponding to the upper branch. This makes necessary to determine in which branch of the R_{23} curve is located the oxygen abundance. Other problem is that most of the observational points tend to lay close to the knee of the relation, i.e., in the region in which there is no dependence of the R_{23} parameter on metallicity. The R_{23} method is in practice a reliable abundance estimator only for the metal rich or very metal poor systems.

To break the R₂₃ degeneracy the [NII] λ 6584/[O II] λ 3727 ratio is used as an initial guess of metallicity helping in the selection of the appropriate R₂₃ branch (McCall, Rybski, & Shields, 1985). This ratio shows a weak dependence on the ionization parameter and a strong correlation with metallicity (Kewley & Dopita, 2002). Another empirical indicator based on the R23 method was proposed by Pilyugin (2001a,b,c) where the excitation parameter P is introduced to compensate for R23 variations along the region produced by differences in the ionization parameter. The upper branch applies to 12 + log (O/H) > 8.2 and the lower branch to 12 + log (O/H) < 8.2. Another diagnostic ratio used to distinguish the appropriate R₂₃ branch is [NII] λ 6584/H α , called the N2 index (Raimann et al., 2000), calibrated in [O/H] by Denicoló, Terlevich, & Terlevich (2002) and is described below.

N2 Method

The derivation of oxygen abundance in terms of N2 method is:

$$12 + \log(O/H) = 9.12 + 0.73 \times N2, \tag{3.25}$$

where the N2 index, defined by Denicoló, Terlevich, & Terlevich (2002) as N2 $\equiv \log([\text{NII}]\lambda 6584/\text{H}\alpha)$, was previously used by Storchi-Bergmann, Calzetti, & Kinney

(1994) as an empirical abundance estimator for star-forming galaxies. It is valid for HII regions with -2.5 < N2 < -0.3 or according with the N2 ratio from $7.50 < 12 + \log(O/H) < 8.75$. This estimator has the advantage of increasing monotonically with metallicity below $12 + \log(O/H) \sim 9.2$, but above this value it is not an ideal metallicity indicator, being sensitive to the ionization parameter (Kewley & Dopita, 2002).

O3N2 Method

Pettini & Pagel (2004) calibrated the O3N2 ratio (Alloin et al., 1979) as an abundance estimator, giving the relation

$$12 + \log(O/H) = 8.73 - 0.32 \times O3N2, \qquad (3.26)$$

where $O3N2 \equiv \log[([OIII]\lambda 5007/H\beta)/([N II]\lambda 6584/H\alpha)]$. This relation is valid for HII regions with -1 < O3N2 < 1.9 or according to the O3N2 ratio from $8.12 < 12 + \log(O/H) < 9.05$. Due to the fact that the pair of ratios are closely spaced emission lines, this method is independent of flux calibrations and uncertainties in dust extinction.

Due to the lack of spectra of the sample I can not apply any of the methods discussed above. For this work, the oxygen abundances were taken from the literature and they are presented in column (15) of Table 2, indicating in each case the method applied. Their distribution is presented in Figure 3.9, where the dashed line represents the median value of $12 + \log(O/H) = 8.18$.

Figure 3.9: Oxygen abundance distribution for 268 HII-like starburst galaxies from the sample at high redshift in a range of redshift of 0.10 < z < 3.39. The dashed line represents the median of the distribution

e	EW/Hay	EW/H B)	EWfOIII	ł	$E(H_{\alpha})$	E(HB)	F[OIII] \5007 Å	$E(H_{\alpha})$	F(HR)	A B	DEC	Beference
리	w(па) (Å)	$E_{\rm W}({\rm n}_{ m D})$	Ewloud (Å)	σ (km s ⁻¹)	$r(\pi \alpha)$ Observed	r (<i>np)</i> Observed	F [U111]ABUUA	$r(\pi \alpha)$ Corrected	F(<i>np</i>) Corrected	(J2000)	UEU. (J2000)	Relerence
	308	:	:	:	$2.6^{+0.5}_{-0.5}$	$0.81^{+0.34}_{-0.34}$ a	:	$3.53^{+1.05}_{-1.05}$	$1.23_{-0.65}^{+0.65}$	12 37 11.20	+62 11 18.67	1,2
	266	:	:	96^{+22}_{-24}	$2.2_{-0.2}^{+0.2}$	$0.71_{-0.20}^{+0.20}$ a	:	$2.73_{-0.50}^{+0.50}$	$0.95_{-0.34}^{+0.34}$	$12 \ 36 \ 52.96$	+64 15 45.55	1,2
	265	:	:	140^{+21}_{-21}	$5.8^{+0.5}_{-0.5}$	$1.47^{+1.51}_{-1.51}$ a	:	$13.06^{+7.95}_{-7.95}$	$4.57^{+5.93}_{-5.93}$	12 36 44.84	+64 17 15.84	1,2
	207	:	:	158^{+18}_{-18}	$8.5^{+0.6}_{-0.6}$	$2.12^{+2.34}_{-2.34}$ a	:	$20.66^{+13.66}_{-13.66}$	$7.22^{+10.24}_{-10.24}$	$12 \ 36 \ 47.41$	+64 17 28.70	1,2
	219	:		57^{+22}_{-27}	$5.1^{+0.5}_{-0.5}$	$1.55_{-0.72}^{+0.72}$ a		$7.36^{+2.13}_{-2.13}$	$2.58^{+1.53}_{-1.53}$	$16\ 25\ 48.65$	$+26\ 45\ 14.47$	1,2
	427	72	:	54^{+15}_{-16}	$5.4_{-0.3}^{+0.3}$	$1.76^{+0.41}_{-0.41}$ a	:	$6.49_{-0.95}^{+0.95}$	$2.27^{+0.68}_{-0.68}$	$16\ 25\ 48.73$	$+26\ 46\ 47.28$	1, 2, 4, 5
	1172	:	:	187^{+15}_{-15}	$18.8^{+1.1}_{-1.1}$	$4.82^{+4.88}_{-4.88}$ a	:	$42.33^{+25.62}_{-25.62}$	$14.80^{+19.21}_{-19.21}$	$16\ 25\ 51.66$	$+26\ 46\ 54.88$	1,2
	1536	:	:	75^{+8}_{-8}	$13.2_{-0.4}^{+0.4}$	$3.57^{+2.99}_{-2.99}$ a	:	$25.90^{+12.94}_{-12.94}$	$9.05_{-9.72}^{+9.72}$	$16\ 25\ 54.38$	+26 44 09.25	1,2
	325	:	:	152^{+34}_{-36}	$3.4_{-0.3}^{+0.3}$	$0.90^{+0.81}_{-0.81}$ a	:	$6.98^{+3.76}_{-3.76}$	$2.44^{+2.80}_{-2.80}$	$16\ 25\ 56.11$	+26 44 44.57	1,2
	229	:	:	148^{+24}_{-26}	$8.6^{+0.7}_{-0.7}$	$2.10^{+2.44}_{-2.44}$ a	:	$21.89^{+15.21}_{-15.21}$	$7.65^{+11.38}_{-11.38}$	$16\ 25\ 57.70$	+265008.59	1,2
	303	:	:	162^{+8}_{-8}	$18.1^{+0.4}_{-0.4}$	$5.47^{+2.62}_{-2.62}$ a	:	$26.54^{+7.58}_{-7.58}$	$9.28^{+5.69}_{-5.69}$	$16\ 26\ 02.54$	$+26\ 45\ 31.90$	1,2
	858	21	:	< 43	$3.7^{+0.4}_{-0.4}$	$1.21^{+0.30}_{-0.30}$ a	:	$4.45_{-0.77}^{+0.77}$	$1.55_{-0.48}^{+0.48}$	$16\ 25\ 53.87$	$+26\ 45\ 15.46$	1, 2, 4, 5
	482	:	:	120^{+4}_{-4}	$19.7^{+0.3}_{-0.3}$	$5.23^{+4.66\ a}_{-4.66\ a}$:	$40.47^{+21.51}_{-21.51}$	$14.15^{+16.18}_{-16.18}$	$16\ 25\ 40.39$	+265008.88	1,2
	310	:	:	110^{+9}_{-9}	$17.7^{+0.6}_{-0.6}$	$4.43^{+4.82}_{-4.82}$ a	:	$42.38^{+27.48}_{-27.48}$	$14.82^{+20.66}_{-20.66}$	17 01 14.83	$+64 \ 09 \ 51.69$	1,2
	208	:	:	< 37	$12.2_{-0.7}^{+0.7}$	$4.05^{+0.74}_{-0.74}$ a	:	$14.00^{+1.66}_{-1.66}$	$4.90^{+1.13}_{-1.13}$	$17 \ 00 \ 36.86$	+64 10 17.38	1,2
	257	:	:	170^{+14}_{-14}	$7.7^{+0.3}_{-0.3}$	$2.32^{+1.12}_{-1.12}$ a	:	$11.29^{+3.25}_{-3.25}$	$3.95_{-2.43}^{+2.43}$	17 01 06.00	+64 12 10.27	1,2
	410	25	:	< 47	$3.8_{-0.4}^{+0.4}$	$1.20^{+0.43}_{-0.43}$ a	:	$5.01^{+1.15}_{-1.15}$	$1.75_{-0.79}^{+0.79}$	$17 \ 00 \ 56.99$	+64 12 23.76	1, 2, 4, 5
	246	:	:	93^{+24}_{-26}	$8.9_{-0.7}^{+0.7}$	$2.53^{+1.69}_{-1.69}$ a	:	$15.21_{-6.13}^{+6.13}$	$5.32^{+4.54}_{-4.54}$	17 01 04.48	+64 12 09.29	1,2
	2245	:	:	55^{+4}_{-6}	$28.7^{+0.8}_{-0.8}$	$8.77^{+3.87}_{-3.87}$ a	:	$40.82^{+10.76}_{-10.76}$	$14.27_{-8.06}^{+8.06}$	$23\ 46\ 16.18$	$+12 \ 48 \ 09.31$	1,2
	231	:	:		$4.0^{+0.6}_{-0.6}$	$1.09^{+0.89}_{-0.89}$ a	:	$7.61_{-3.80}^{+3.80}$	$2.66^{+2.76}_{-2.76}$	$23 \ 46 \ 23.24$	+64 47 07.97	1,2
	606	:	:	:	$4.5^{+1.0}_{-1.0}$	$1.30^{+0.87}_{-0.87}$ a	:	$7.46^{+3.26}_{-3.26}$	$2.61^{+\overline{2.19}}_{-2.19}$	$23 \ 46 \ 33.90$	$+64\ 47\ 26.20$	1,2
	253	:	:	$111\substack{+8\\-8}$	$12.0_{-0.4}^{+0.4}$	$3.13^{+2.98}_{-2.98}$ a	:	$25.81^{+14.65}_{-14.65}$	$9.02^{+11.01}_{-11.01}$	$23 \ 46 \ 28.90$	$+64\ 47\ 33.55$	1,2
	293	:	:	78^{+21}_{-24}	$4.9^{+0.5}_{-0.5}$	$1.44^{+0.83}_{-0.83}$ a	:	$7.76_{-2.75}^{+2.75}$	$2.71^{+2.00}_{-2.00}$	$23 \ 46 \ 24.72$	$+64\ 47\ 33.80$	1,2
	537	:	:	:	$4.2^{+0.2}_{-0.2}$	$1.17^{+0.86}_{-0.86}$ a	:	$7.63_{-3.38}^{+3.38}$	$2.67^{+2.53}_{-2.53}$	$23 \ 46 \ 28.07$	$+64\ 47\ 31.82$	1,2
	1639	:	:	90^{+6}	$8.0^{+0.2}_{-0.2}$	$2.68^{+0.36}_{-0.36}$ a	:	$8.91^{+0.73}_{-0.73}$	$3.11_{-0.53}^{+0.53}$	$23 \ 46 \ 18.57$	+64 47 47.38	1,2
	632	:	:	51^{+16}_{-20}	$4.8^{+0.3}_{-0.3}$	$1.35^{+0.96}_{-0.96}$ a	:	$8.46^{+3.60}_{-3.60}$	$2.96^{+2.68}_{-2.68}$	$23 \ 46 \ 25.25$	$+64\ 47\ 51.20$	1,2
	200	:	:	60^{+12}_{-14}	$8.1^{+0.4}_{-0.4}$	$2.18^{+1.87}_{-1.87}$ a	:	$16.14_{-8.29}^{+8.29}$	$5.64_{-6.22}^{+6.22}$	$23 \ 46 \ 26.36$	$+64\ 47\ 55.06$	1,2
	345	:	:	63^{+10}_{-12}	$7.2^{+0.4}_{-0.4}$	$2.32^{+0.63}_{-0.63}$ a	:	$8.92^{+1.50}_{-1.50}$	$3.12^{+1.08}_{-1.08}$	$23 \ 46 \ 09.06$	$+64\ 47\ 56.00$	1,2
	160	:		139^{+22}_{-24}	$7.0^{+0.7}_{-0.7}$	$1.83^{+1.75}_{-1.75}$ a		$15.05^{+8.66}_{-8.66}$	$5.26^{+6.44}_{-6.44}$	$23 \ 46 \ 32.96$	$+64 \ 48 \ 08.15$	1,2
	497	:	:	155^{+39}_{-42}	$5.3^{+0.9}_{-0.9}$	$1.37^{+1.35}_{-1.35}$ a	:	$11.57_{-6.96}^{+6.96}$	$4.05^{+5.07}_{-5.07}$	$23 \ 46 \ 14.46$	$+64 \ 48 \ 21.64$	1,2
	230	:	:	:	$3.5_{-0.5}^{+0.5}$	$1.03^{+0.59}_{-0.59}$ a	:	$5.46^{+1.96}_{-1.96}$	$1.91^{+1.38}_{-1.38}$	$23 \ 46 \ 09.72$	$+64 \ 48 \ 40.33$	1,2
	365	:	:	:	$5.2^{\pm 0.3}_{-0.3}$	$1.56^{+0.78}_{-0.78}$ a	:	$7.74_{-2.32}^{+2.32}$	$2.71^{+1.72}_{-1.72}$	$23 \ 46 \ 25.55$	$+64 \ 48 \ 44.54$	1,2
	488	:	:	< 40	$9.4_{-0.4}^{+0.4}$	$3.25^{+0.18}_{-0.18}$ a	:	$9.69_{-0.47}^{+\overline{0.47}}$	$3.39_{-0.22}^{+0.22}$	$23 \ 46 \ 29.43$	+64 49 45.54	1,2
	206			74^{+16}_{-16}	$3.2_{-0.3}^{+0.3}$	$1.09^{+0.13}_{-0.13}$ a	:	$3.40_{-0.35}^{+0.35}$	$1.19_{-0.16}^{+0.16}$	$23 \ 46 \ 10.79$	$+64 \ 48 \ 33.24$	1,2
	482	:	:	143^{+14}_{-14}	$10.3_{-0.6}^{+0.6}$	$3.38_{-0.72}^{+0.72}$ a	:	$12.19^{+1.66}_{-1.66}$	$4.26^{+1.16}_{-1.16}$	$23 \ 48 \ 46.10$	$+00\ 22\ 20.95$	1,2
	273		:	102^{+3}	$13.9_{-0.3}^{+0.3}$	$4.35^{+1.56}_{-1.56}$ a	:	18.59 ± 100	$6.50^{+3.00}$	$23 \ 48 \ 21.40$	$+00\ 24\ 43.07$	1,2
	358	:		50^{+4}	$14.0^{+0.2}_{-0.3}$	$4.84_{-0.20}^{+0.20}$ a	:	$14.44_{-0.39}^{+0.39}$	$5.05_{-0.26}^{+0.26}$	$23 \ 48 \ 21.22$	$+00\ 24\ 45.46$	1,2
	287		:	126^{+12}_{-14}	$12.1_{-0.7}^{+0.7}$	$3.37^{+2.50}_{-2.50}$ a	:	$21.99^{+9.77}_{-9.77}$	$7.69^{+7.30}_{-7.30}$	$23 \ 48 \ 18.21$	$+00\ 24\ 55.30$	1,2
	197.00		:	< 47	$2.0^{+0.2}_{-0.2}$	$0.63^{+0.22}_{-0.22}$ a	:	$2.59_{-0.57}^{+0.57}$	$0.91_{-0.39}^{+0.39}$	$12 \ 37 \ 06.54$	$+62\ 12\ 24.94$	1,2
	308.00			961 ± 54	c 9+0.7	1 F1+1.02 a		0 00+378	0.1010			

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Table 1 (Continued						
$ \begin{array}{c ccccc} Q (025 \mbox{HM} M \ 2 \mbox{LM} M \ 2 \mbox{LM}$		Name	8	$EW(H\alpha)$ (Å)	$EW(H\beta)$ (Å)	EW[OIII] (Å)	$\sigma_{\rm (km~s^{-1})}$	$F(H\alpha)$ Observed	$F(H\beta)$ Observed	F[OIII]A5007A Observed	$F(H\alpha)$ Corrected	$F(H\beta)$ Corrected	A.R (J2000)	DEC. (J2000)	Reference
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Q1623-BX447	2.1481	154.00			174^{+15}	$5.6^{+0.3}$	$1.85^{+0.36}_{-0.26}$ a	:	$6.53_{-0.82}^{+0.82}$	$2.28^{+0.57}_{-0.57}$	16 25 50.37	$+26\ 47\ 14.28$	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1623-BX449	2.4185	196.00	:	:	$< 72^{-1.0}$	$3.5_{-0.9}$	$1.08^{+0.53}_{-0.53}$ a	•	$4.90^{+1.76}_{-1.76}$	$1.71^{+1.02}_{-1.02}$	$16\ 25\ 50.53$	$+26\ 46\ 59.97$	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1623-BX453	2.1816	187.00	:	:	61^{+4}_{-4}	$13.8_{-0.2}^{+0.2}$	$3.50^{+3.65}_{-3.65}$ a	:	$32.04^{+19.94}_{-19.94}$	$11.20^{+15.00}_{-15.00}$	$16\ 25\ 50.84$	$+26\ 49\ 31.40$	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1623-BX586	2.1045	192.00	:	:	124^{+18}_{-20}	$5.1^{+0.4}_{-0.4}$	$1.42^{+1.05}_{-1.05}$ a	:	$9.27^{+4.15}_{-4.15}$	$3.24^{+3.08}_{-3.08}$	$16\ 26\ 01.52$	$+26\ 45\ 41.58$	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1700-BX523	2.4756	171.00	:	:	130^{+26}_{-26}	$4.7_{-0.5}^{+0.5}$	$1.21^{+1.21}_{-1.21}$ a	:	$10.42_{-6.24}^{+6.24}$	$3.64_{-4.64}^{+4.64}$	$17 \ 00 \ 41.71$	+64 10 14.88	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1700-BX536	1.9780	150.00	:	:	89^{+14}_{-15}	$11.3_{-0.7}^{+0.7}$	$3.45^{+1.53}_{-1.53}$ a	:	$16.07^{+4.33}_{-4.33}$	$5.62^{+3.19}_{-3.19}$	$17 \ 01 \ 08.94$	+64 10 24.95	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1700-BX794	2.2473	183.00	:	:	80^{+14}_{-14}	$6.8^{+0.4}_{-0.4}$	$2.04^{+1.02}_{-1.02}$ a	:	$10.13^{+3.04}_{-3.04}$	$3.54_{-2.26}^{+2.26}$	17 00 47.30	+64 13 18.70	1,2
		Q2343-BX169	2.2094	152.00	:	:	:	$4.7_{-0.3}^{+0.3}$	$1.42^{+0.68}_{-0.68}$ a		$6.89^{+2.01}_{-2.01}$	$2.41^{+1.49}_{-1.49}$	$23 \ 46 \ 05.03$	+12 45 40.77	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q2343-BX182	2.2879	168.00	:	:	:	$2.4_{-0.3}^{+0.3}$	$0.75_{-0.30}^{+0.30}$ a	:	$3.26_{-0.84}^{+0.84}$	$1.14_{-0.57}^{+0.57}$	$23 \ 46 \ 18.04$	+12 45 51.11	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q2343-BX236	2.4348	150.00	:		148^{+40}_{-42}	$3.1_{-0.6}^{+0.6}$	$0.98^{+0.37}_{-0.37}$ a	•	$4.02^{+1.10}_{-1.10}$	$1.41_{-0.65}^{+0.65}$	$23 \ 46 \ 18.71$	+12 46 15.97	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q2343-BX513	2.1092	192.00	:		150^{+9}_{-0}	$10.1_{-0.4}^{+0.4}$	$3.01^{+1.54}_{-1.54}$ a	•	$15.27_{-4.69}^{+4.69}$	$5.34_{-3.51}^{+3.51}$	$23 \ 46 \ 11.13$	$+12\ 48\ 32.14$	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q2343-BX601	2.3769	199.00			105^{+12}_{-13}	$7.4_{-0.4}^{+0.4}$	$2.23^{+1.08}_{-1.08}$ a		$10.85^{+3.15}_{-3.15}$	$3.79_{-2.34}^{+2.34}$	$23 \ 46 \ 20.40$	+12 49 12.91	1,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-1	0.8510	:	98 ± 5	:	40 ± 14	:		:			23 29 08.20	$+00\ 20\ 40.70$	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-2	0.7300	:	90 ± 5	:	25 ± 6	:		:	:	:	02 29 33.65	$+00\ 26\ 08.00$	ę
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-3	0.7490	:	96 ± 5	:	$30{\pm}14$:	:	:	:	:	$16\ 53\ 03.49$	+34 58 48.90	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-4	0.6310	:	88 ± 5	:	32 ± 4	:	:	:	:	:	$23 \ 28 \ 47.84$:	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-5	0.6360	÷	96 ± 5	:	28 ± 4	:		:	:	:	$23 \ 28 \ 41.65$	$+00\ 18\ 20.00$	က
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-6	0.5300	:	160 ± 20	:	34 ± 5	:	:	:	:	:	:	:	က
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-7	0.7060	÷	70 ± 5	:	41 ± 4	:	:	:	:	:	16 50 05.43	$+35\ 06\ 30.40$	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-8	0.6590	÷	70 ± 10	:	50 ± 10	:	:	:	:	:	$02 \ 31 \ 17.32$	$+00\ 37\ 28.20$	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-9	0.7500	:	91 ± 5	:	40 ± 10	÷	:	:	:	:	$02 \ 30 \ 20.03$	$+00\ 42\ 49.70$	ი
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-10	0.6570	:	$60{\pm}10$:	$60{\pm}16$	÷	:	:	:	:	$02 \ 28 \ 38.46$	$+00\ 28\ 52.30$	e S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-11	0.5510	:	81 ± 9	:	20 ± 20	:	:	:	:	:	$02 \ 28 \ 40.39$	+00 36 07.70	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-12	0.6800	:	110 ± 15	:	32 ± 2	:	:	:	:	:	$02 \ 28 \ 45.05$	$+00\ 41\ 32.80$	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-13	0.7020	:	91 ± 3	:	$30{\pm}16$:	:	:	:	:	$02 \ 30 \ 02.06$	$+00\ 47\ 34.70$	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DEEP2-14	0.7250	:	59 ± 5	:	37 ± 5	÷	:	:	:	:	$02 \ 30 \ 12.32$	$+00\ 36\ 52.50$	e C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TKRS-1	0.8550	:	150 ± 20	:	57 ± 6	:	:	:	:	:	$02 \ 36 \ 42.83$	$+62 \ 20 \ 01.58$	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TKRS-2	0.6810	:	100 ± 15	:	48 ± 4	:		:	:	:	$02 \ 36 \ 33.02$	+62 15 37.52	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q0201-B13	2.1663	:	23	:	62 ± 29	$2.54^{+0.56}_{-0.56}$ c	$0.88^{+0.20}_{-0.20}$ c	:	$2.57\substack{+0.57\\-0.57}$	$0.90^{+0.20}_{-0.20}$	$02 \ 03 \ 49.25$	$+11 \ 36 \ 10.58$	4,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1700-MD103	2.3148	:	47	:	75 ± 21	$3.46^{+1.31}_{-1.31}$ c	$0.93^{+0.29}_{-0.29}$ c	:	$6.86^{+2.84}_{-2.84}$	$2.4_{-0.60}^{+0.60}$	$17 \ 01 \ 00.20$	+64 44 56.00	4,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CDFaC1	3.1110	:	28	:	≤ 63	$6.94^{+1.00}_{-1.00}$ c	$2.13^{+0.18}_{-0.18}$ c	:	$9.72^{+1.60}_{-1.60}$	$3.40^{+0.10}_{-0.10}$	005334.07	$+12 \ 30 \ 30.00$	4,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q0347-383C5	3.2360	:	≤ 27	:	69 ± 4	$4.15_{-0.28}^{+0.28}$ c	$1.36^{+0.05}_{-0.05}$ c	:	$4.86_{-0.37}^{+0.37}$	$1.70_{-0.00}^{+0.00}$	$03 \ 49 \ 43.05$	$-38\ 10\ 05.00$	4,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SSA22a-MD46	3.0810	:	≤ 31	:	67 ± 6	$6.11^{+0.19}_{-0.19}$ c	$2.08^{+0.04}_{-0.04}$ c	:	$6.58_{-0.23}^{+0.23}$	$2.30_{-0.00}^{+0.00}$	$22 \ 17 \ 27.03$	$+00\ 18\ 10.00$	4,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B20902 + 343C6	3.0800	:	40	:	55 ± 15	$7.10^{+2.43}_{-2.43}$ c	$2.31^{+0.78}_{-0.78}$ c	:	$8.58_{-2.96}^{+2.96}$	$3.00^{+1.00}_{-1.00}$	$09 \ 05 \ 20.05$	$+34 \ 09 \ 08.00$	4,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B20902+343C12	3.3866	:	37	:	$87{\pm}12$:	:	:	$7.72_{-0.86}^{+0.86}$	$2.70_{-0.30}^{+0.30}$	$09 \ 05 \ 43.80$	+34 11 08.00	4,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q1422 + 231D81	3.1037	:	43	:	116 ± 8	÷	:	:	$11.73^{+1.14}_{-1.14}$	$4.10\substack{+0.40\\-0.40}$	$14 \ 24 \ 31.40$	+22 59 52.00	4,6
$ \begin{array}{cccccccc} \text{DSF2237+116aC2} & 3.3176 & \ldots & 25 & \ldots & 100\pm4 & \ldots & \ldots & \ldots & 10.01\pm1.14 \\ \text{MS1512-cB58} & 2.7290 & \ldots & 26 & \ldots & 81.00 & \ldots & \ldots & \ldots & \ldots & 3.86\pm0.57 & 1.35\pm0.20 & 151422.30 & +36.3626.00 & +4.666666666666666666666666666666666666$		SSA22aD3	3.0687	:	25	:	113 ± 7	:	:	:	$3.72_{-0.86}^{+0.86}$	$1.30_{-0.30}^{+0.30}$	$22 \ 17 \ 32.40$	$+00\ 11\ 33.00$	4,6
$ \begin{array}{ccccccc} MS1512-cB58 & 2.7290 & \dots & 26 & \dots & 81.00 & \dots & \dots & 3.86^{+0.57}_{-0.27} & 1.35^{+0.20}_{-0.20} & 151422.30 & +363626.00 & +4.60 & 0.202 & 0.00 &$		DSF2237+116aC2	3.3176	÷	25	:	100 ± 4	:	:	:	$10.01^{+1.14}_{-1.14}$	$3.50_{-0.40}^{+0.40}$	$22 \ 40 \ 08.30$	+11 49 05.00	4,6
2QZCCI-HAE19 2.2300 1311.76 08.71 08.71 7. 08.71 7.		MS1512-cB58	2.7290	:	26		81.00	:		•	$3.86_{-0.57}^{+0.57}$	$1.35_{-0.20}^{+0.20}$	$15 \ 14 \ 22.30$	$+36\ 36\ 26.00$	4,6
		2QZC-C1-HAE19	2.2300	1311.76	:	÷	:	08.71		:			$10 \ 03 \ 24.89$	$+00\ 08\ 31.80$	2

Properties of the Selected Sample at High Redshift

							Table 1 Co	ontinued						
Index	Name	z	$EW(H\alpha)$	$EW(H\beta)$	EW[OIII]	ο	$F(H\alpha)$	$F(H\beta)$	F[OIII]λ5007Å	$F(H\alpha)$	$F(H\beta)$	A.R	DEC.	Reference
			(Å)	(Å)	(Å)	$({\rm km \ s^{-1}})$	Observed	Observed	Observed	Corrected	Corrected	(J2000)	(J2000)	
081	2QZC-C1-HAE20	2.2300	230.65	:	:	:	06.46	:	:	:	:	$10 \ 04 \ 16.74$	$+00\ 18\ 33.00$	7
082	2QZC-C1-HAE21	2.2300	980.5	:	:	:	07.58	:	:	:	:	$10 \ 04 \ 02.90$	$+00\ 18\ 52.50$	7
083	2QZC-C2-HAE1	2.2300	255.11	:	:	:	123.03	:	:	:	:	$10 \ 05 \ 11.82$	$+00\ 14\ 18.30$	7
084	2QZC-C2-HAE3	2.2300	454.8	:	:	:	18.62	:	:	:	:	$10\ 05\ 36.81$	$+00\ 14\ 19.40$	7
0.85	2QZC-C2-HAE4	2.2300	328.48	:	:	:	15.85	:	:	:	:	$10 \ 05 \ 34.17$	$+00\ 19\ 32.40$	7
086	2QZC-C2-HAE13	2.2300	210.53	:	:	:	07.24		:	:	:	$10 \ 05 \ 12.95$	$+00\ 09\ 10.20$	7
087	2QZC-C2-HAE14	2.2300	335.6	:	:	:	07.41	:	:	:	:	$10 \ 05 \ 14.51$	$+00\ 17\ 36.50$	7
0.88	2QZC-C2-HAE15	2.2300	444.58	:	:	:	07.58	:		:	:	$10 \ 05 \ 51.55$	+00 13 16.40	7
089	2QZC-C2-HAE16	2.2300	406.19	:	:	:	06.76	:	:	:	:	$10 \ 05 \ 10.98$	$+00\ 19\ 55.60$	7
060	2QZC-C2-HAE17	2.2300	348.3	:	:	:	06.61	:	:	:	:	$10 \ 05 \ 18.32$	+00 14 21.00	7
091	2QZC-C2-HAE18	2.2300	886.07	:	÷	:	07.24	:	:	:	:	$10 \ 05 \ 19.23$	$+00\ 15\ 01.50$	7
092	2QZC-C3-HAE8	2.2300	220.74	:	:	:	10.23	:	:	:	:	$10\ 06\ 00.01$	$+00\ 42\ 33.60$	7
093	2QZC-C3-HAE9	2.2300	4199.69	÷	•		12.59	:	•	:	:	$10 \ 05 \ 36.99$	+00~46~20.20	7
094	2QZC-C3-HAE11	2.2300	698.76	÷	•		10.72	:	•	:	:	$10\ 06\ 02.53$	$+00\ 43\ 34.80$	7
0.95	2QZC-C3-HAE12	2.2300	706.19	:	:	:	10.72	:		:	:	$10\ 06\ 03.90$	$+00\ 41\ 06.30$	7
000	2QZC-C3-HAE14	2.2300	185.45	:	•	:	06.92	:		:	:	$10 \ 05 \ 49.59$	+00 39 53.20	7
260	2QZC-C3-HAE15	2.2300	289.16	:	:	:	07.58	:	:	:	:	$10 \ 05 \ 16.28$	$+00\ 41\ 50.40$	2
860	2QZC-C3-HAE19	2.2300	196.28	:	:	:	06.46	:	:	:	:	$10 \ 05 \ 22.24$	$+00\ 37\ 38.40$	7
660	2QZC-C4-HAE3	2.2300	366.87	:	:	:	09.12	:	:	:	:	10 03 53.81	+00 36 05.70	7
100	2QZC-C4-HAE4	2.2300	185.76	:	:	:	07.08	:	:	:	:	$10 \ 04 \ 08.44$	+00 43 09.80	7
101	2QZC-C4-HAE6	2.2300	901.86	:	:	:	07.24	:	:	:	:	$10 \ 04 \ 08.45$	+00 34 58.30	7
102	0200-C1-HAE4	2.2300	205.57	:	:	:	16.98	:	:	:	:	$02 \ 01 \ 06.09$	$+01 \ 23 \ 30.80$	7
103	0200-C1-HAE6	2.2300	182.66	:	:	:	12.02	:	:	:	:	$02 \ 00 \ 36.58$	$+01 \ 19 \ 53.70$	7
104	0200-C1-HAE7	2.2300	506.19	:	:	:	14.12	:	:	:	:	02 00 57.57	$+01 \ 19 \ 39.20$	7
105	0200-C1-HAE8	2.2300	459.75	:	:	:	13.18	:	:	:	:	$02 \ 00 \ 43.94$	$+01\ 26\ 14.80$	7
106	0200-C1-HAE9	2.2300	186.38	:	:	:	10.96	:	:	:	:	$02 \ 00 \ 33.53$	$+01\ 21\ 28.70$	2
107	0200-C1-HAE10	2.2300	1217.03	:	:	:	13.49	:	:	:	:	$02 \ 01 \ 05.81$	$+01 \ 23 \ 50.30$	7
108	0200-C1-HAE11	2.2300	267.18	:	:	:	10.23	:	:	:	:	$02 \ 00 \ 40.04$	+01 19 22.00	2
109	0200-C1-HAE12	2.2300	1064.4	:	:	:	11.48	:	:	:	:	$02 \ 01 \ 07.72$	$+01\ 28\ 22.60$	7
110	0200-C2-HAE7	2.2300	569.35	:	÷	:	17.38	:	:	:	:	$02 \ 02 \ 46.26$	$+01\ 21\ 46.20$	7
111	0200-C2-HAE9	2.2300	235.91	:	÷	:	11.75	:	:	:	:	$02 \ 03 \ 05.95$	$+01\ 28\ 22.90$	7
112	0200-C2-HAE11	2.2300	197.83	:	:	:	10.96	:	:	:	:	$02 \ 02 \ 19.56$	$+01 \ 30 \ 54.00$	7
113	0200-C2-HAE12	2.2300	308.98	:	•	:	11.22	:		:	:	$02 \ 02 \ 19.72$	$+01\ 21\ 32.20$	7
114	0200-C2-HAE13	2.2300	1066.56	:	•	:	11.48	:		:	:	$02 \ 02 \ 40.64$	$+01 \ 30 \ 18.20$	7
115	0200-C2-HAE16	2.2300	323.84	:	:	:	09.55	:	:	:	:	$02 \ 03 \ 04.90$	$+01 \ 29 \ 38.80$	2
116	0200-C4-HAE7	2.2300	313.31	:	:	:	11.75	:	:	:	:	$02 \ 01 \ 07.59$	+01 44 34.10	7
117	0200-C4-HAE8	2.2300	467.18	:	:	:	12.02	:	:	:	:	$02 \ 01 \ 05.52$	+01 48 03.10	7
118	0200-C4-HAE11	2.2300	191.02	:	•	:	08.51	:		:	:	$02 \ 00 \ 51.62$	+01 47 20.20	4
119	COSMOS-15144	1.4120	325 ± 230	:	1130 ± 274	43.3 ± 8.9	÷	:	16.3 ± 3.58	:	:	$10 \ 00 \ 37.62$	+02 21 38.88	9,10
120	COSMOS-13848	1.4440	41 ± 345	:	888±351	46.7 ± 14.4	:	:	8.76 ± 3.46	:	:	10 00 42.48	+02 20 43.40	9,10

	leference	010	9,10 0.10	9,10 0.10	9.10	9,10	9,10	9,10	9,10	9,10	9,10	9,10	9,10	10	10	11	: 11	11	= :	= =	: 11	11	11	: 11	11	11 :	11	: 11	11	11	11	11	11	11	= :	11
	DEC. F	(0007010)	+02 19 59.88	-05 14 03.24 +02 22 22 61	-05 15 19.14	$-05\ 15\ 20.77$	-27 45 32.92	-27 42 20.89	$-05\ 12\ 43.63$	+02 18 49.22	+02 17 14.09	$-05\ 11\ 43.12$	$-05\ 15\ 02.89$	+02 18 09.07	$+02\ 21\ 14.76$	-04 47 56.3 -68 58 37 4	+09 36 47.1	-09 03 10.2	+07 48 35.9	-07 22 28.6 +07 10 20 4	-18 42 46.1	+05 03 06.2	+03 09 19.4 +03 08 45 9	$-01\ 50\ 51.4$	$-02\ 23\ 06.5$	+09 33 30.0	-10 20 33.0 -01 49 54 4	$+04\ 10\ 30.8$	+03 28 27.0	$-10\ 14\ 48.7$	+02 25 54.0	$-05\ 37\ 19.5$	$-20 \ 33 \ 17.1$	$-04\ 43\ 29.0$	+09 34 26.7	+063638.0
	A.R (19000)	(0002C)	10 00 38.29	02 17 53.73 10 00 43 94	02 17 42.86	$02 \ 17 \ 42.36$	$03 \ 32 \ 41.26$	$03 \ 32 \ 17.11$	$02 \ 17 \ 43.54$	10 00 29.82	10 00 22.88 -	$02 \ 17 \ 33.93$	$02 \ 17 \ 33.78$	10 00 23.35	$10\ 00\ 36.27$	$20\ 56\ 30.91$ 18 49 33 91	22 22 15.86	01 55 23.64	$12 \ 29 \ 43.35$	21 04 06.18 10 08 44 89	22 37 56.48	$13 \ 41 \ 49.16$	08 52 46.09 08 52 46 29	$14\ 37\ 30.20$	$01 \ 10 \ 06.69$	15 45 31.03	00 12 20.10 14 37 28 34	11 19 46.37	$11 \ 33 \ 08.67$	23 58 22.06	$01 \ 00 \ 56.20$	$04 \ 02 \ 02.50$	$03 \ 42 \ 19.72$	$02 \ 09 \ 26.37$	$15\ 45\ 36.29$	$16 \ 16 \ 50.44$
	$F(H\beta)$	Corrected	:	:		:	:	:	:	:	:	:	:	:		$5.61_{-1.59}^{+1.59}$	$35.86_{-80.37}^{+86.95}$	$4.29^{+1.47}_{-0.91}$	$16.39^{+7.70}_{-7.70}$	$15.89^{+12.26}_{-12.26}$ 5.94 $^{+1.09}_{-100}$	$5.54^{+5.26}_{-1.97}$		$2.65_{-0.06}^{+2.00}$ $3.35_{-0.92}^{+0.92}$	9T'0-000	:	$21.36^{+24.02}_{-24.02}$	$747^{+4.73}$	$1.26_{-0.12}^{+0.12}$	$11.18_{-5.47}^{+5.47}$:	$11.23_{-4.59}^{+4.59}$	$1.18\substack{+0.04\\-0.04}$		$9.26^{+11.48}_{-11.48}$	$7.36_{-5.15}^{+0.19}$	$3.60_{-0.56}$
	$F(H\alpha)$	Corrected	:	:			:		:	:	:	:	:	:		$16.05_{-2.32}^{+2.31}$	$102.57_{-110.77}^{+118.89}$	$12.28^{+2.01}_{-1.33}$	$46.87^{+12.02}_{-12.02}$	$45.45_{-16.99}^{+1.54}$	$15.85_{-2.99}^{+0.99}$		$7.58_{-0.16}^{+0.16}$ $0.58_{1.26}^{+1.26}$	0.40	:	$61.10^{+35.83}_{-35.83}$ 17 $07^{+6.13}_{-13}$	21.35 ± 6.98	$3.61_{-0.36}^{+0.36}$	$31.98^{+8.51}_{-8.51}$:	$32.12_{-6.96}^{+6.96}$	$3.38_{-0.13}^{+0.13}$		$26.50^{+16.05}_{-16.05}$	$21.06^{+0.80}_{-6.86}$	$10.3_{-1.60}$
	F[OIII]A5007Å	Cusei e 21	10.5±99.6	205+0.77		•	7.36 ± 2.99	16.9 ± 0.88	21.5 ± 2.82	11.5 ± 2.94	11.8 ± 0.89	21.9 ± 3.09	13.7 ± 2.76	49.4 ± 2.28	12.3 ± 4.22	• •		:	:	• •	• •	:	• •		:	:		 	:	:	:	:	•	•	•	::
Continued	$F(H\beta)$ Observed	ODSet ven	:	÷	•		:		:	:	:	:		:	· 20 / + · · · ·	$4.74_{-1.06}^{+4.91}$	$1.44^{+2.73}_{-2.53}$ a	$3.78^{+1.02}_{-0.64}$ a	$4.60^{+1.74}_{-1.74}$ a	$8.78^{+0.32}_{-5.32}$ a $5.94^{+0.86}$ a	$4.48^{+3.32}_{-1.27}$ a		$2.65_{-0.05}^{+2.22}$ a $3.35_{-0.72}^{+0.72}$ a	9T-0-0000	:	$1.61^{+1.45}_{-1.45}$ a 1.70+0.96 a	$1.70_{-0.96}$ 1 84 $^{+0.93}$ a	$1.26^{+0.12}_{-0.12}$ a	$2.88^{+0.14}_{-0.14}$ a	:	$4.06^{+1.33}_{-1.33}$ a	$1.18^{+0.04}_{-0.04}$ a		$1.21^{+1.18}_{-1.18}$ a	$3.9^{+2.13}_{-2.13}$ a	$3.60_{-0.56}^{+0.56}$
Table 1	$F(H\alpha)$ Observed	Onserved	:	÷		:	:	:	:	:	:	:	:	:		$14.2_{-1.0}^{+1.2}$ 22 60 ^{+0.78}	$10.0^{+0.9}_{-0.9}$	$11.2^{+0.6}_{-0.6}$	$18.7^{+0.8}_{-0.8}$	$29.6_{-3.7}^{+0.7}$	$13.6^{+1.3}_{-1.3}$		$7.58_{-0.16}^{+0.46}$ $9.58_{-0.46}^{+0.46}$	$7.68_{-0.17}^{+0.17}$	$1.14_{-0.01}^{+0.01}$	$9.43^{+0.78}_{-0.78}$	$777^{+0.32}_{-0.32}$	$3.61_{-0.36}^{+0.36}$	$12.0^{+0.2}_{-0.2}$	$8.27^{+0.29}_{-0.29}$	$15.4_{-0.4}^{+0.4}$	$3.38_{-0.13}^{+0.13}$	$9.53_{-0.33}^{+0.33}$	$6.09^{+0.25}_{-0.25}$	$13.3^{+0.1}_{-0.1}$	$10.3_{-1.6}$
	$\sigma_{(hm e^{-1})}$	(S IIIN)	38.2 ± 10.0	71.1 ± 5.7	48.2 ± 5.9	54.7 ± 6.1	52.3 ± 5.7	54.4 ± 4.5^{a}	54.2 ± 9.4	40.3 ± 8.9	30.9 ± 9.0	61.0 ± 10.8	57.8 ± 9.7	230.8 ± 14.7	46.5 ± 8.8	64.9 ± 4.3 71 5 ±2.1	145.5 ± 3.8	61.3 ± 1.4	79.0 ± 1.0	${750+19}$	69.4 ± 3.9	$78.1{\pm}1.5$	68.3 ± 1.9 48.9 ± 1.7	58.5 ± 1.9	:	60.5 ± 6.4	74.5 ± 4.7	54.9 ± 11.2	109.6 ± 3.0	186.7 ± 7.24	111.9 ± 2.9	51.2 ± 3.2	85.1 ± 4.5	50.7 ± 3.2	56.5 ± 0.8	84.0 ± 23.3
	EW[OIII]	(V)	0.78±152	713 ± 42 536 ± 20	731+86	01 ± 95	3土47	1 ± 66	3 ± 95	生189	i±85	3土34	± 162	0土29	± 169	·· 4+6		:146	6				പ്ര	, ,	11	1 IS	14	: 4	14	:16	=4	± 23	± 18	± 10	6±4	2 ± 13
	$\widehat{\mathbf{m}}$					1-	69	86	72	598	714	50:	803	63(493	. 1		$982\pm$	233±	:	: :	:	1741 1404		$122\pm$	286年5	143+ 143+	$226\pm$	$150\pm$	$131\pm$	714	257:	271	238	Ξ į	20
	EW(H/	(Y)	:	:		7	69	86	72	598	714	50:	803	63(493			982±	2334	•		:	$ 87\pm 1$		122±	286±2	143+ 143+	226±	$ 150\pm$	131±	F12	257:	271	238		37
	$EW(H\alpha) = EW(H\beta)$	(V) (V)	:	•		7	66	86	72	598	714	50:	803	360±18 630	493	314 ± 36 19. 266+11	202±15	603±42 982±	221±12 2334	137 ± 14	245±28		$ 87\pm 1$		122±	286±5	1041 143+	226±	$\dots 150\pm$	131±	F12	257	271	238		37
	z $EW(H\alpha) EW(H)$	(V) (V)	1.5830	1.6210 1.6490	1.6640	1.6870 7	1.6870 65	1.7380 86	2.1850 72	2.1990 598	2.2200 714	2.2970 50:	2.2980 803	$1.4630 360 \pm 18 \dots 630$	$1.6560 \dots 493$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4370 202 ± 15	1.4440 603±42 982±	1.4540 221±12 2334	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5040 245±28	1.5360	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6100	1.6770 $1.22\pm$	2.1580 286±2	2.1020 10342 2.1770 1434	2.1910 226±	2.1920 150±	2.1960 131±	2.2120 71 ⁻	2.2150 257:	2.2160 271	2.2340 238	2.2640 11	2.3040 37
	Name z $EW(H\alpha) EW(H)$ (A) (A)		CUSMUS-12807 1.5830	UDS-7444 1.6210 COSMOS-16907 1.6400	UDS-3760 1.6640	UDS-3646 1.6870 7	GOODS-S-17892 1.6870 69	GOODS-S-26816 1.7380 86	UDS-11484 2.1850 72	COSMOS-11212 2.1990 598	COSMOS-8991 2.2200 714	UDS-14655 2.2970 50:	UDS-4501 2.2980 803	COSMOS-12102 1.4630 360±18 630	COSMOS-17118 1.6560 493	WISP159-134 1.3000 314±36 WISP134-171 1.3540 266+11 12	WISP50-65 1.4370 202±15	WISP173-205 1.4440 603±42 982±	WISP9-73 1.4540 221±12 2334	WISP43-75 1.4820 137±14 WISP25_53 1.4860 130+7	WISP46-75 1.5040 245±28	WISP126-90 1.5360	WISP22-111 1.5410 87±1 WISP92-216 1.5420 00+	WISP64-2056 1.6100	WISP81-83 1.6770 122±	WISP138-173 2.1580 286±2	WISP64-210 2.1050 1434	WISP204-133 2.1910 226±	WISP27-95 2.1920 150±	WISP147-72 2.1960 131±	WISP90-58 2.2120 71	WISP70-253 2.2150 257:	WISP175-124 2.2160 271	WISP96-158 2.2340 238	WISP138-160 2.2640 11	WISP56-210 2.3040 37

Reference		9,10	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	12,16	14	14	14	14	14	14	17	17	17	17
DEC.	(J2000)	$+02\ 19\ 59.88$	62 8 18.9888	$62 \ 13 \ 18.7788$	$62 \ 9 \ 12.5604$	$62 \ 15 \ 30.06$	$62 \ 19 \ 16.0284$	$62 \ 11 \ 28.2588$	$62 \ 15 \ 59.4216$	$62 \ 19 \ 9.8004$	62 13 30.99	62 12 29.3112	$62 \ 13 \ 10.5492$	$62 \ 15 \ 48.5784$	$62 \ 12 \ 36.2988$	$62 \ 12 \ 25.6212$	62 8 8.0484	$62\ 18\ 24.5088$	$62 \ 12 \ 9.2016$	$62\ 17\ 33.3996$	$62 \ 14 \ 52.9908$	$62\ 12\ 51.7896$	$62\ 15\ 19.7712$	$62 \ 16 \ 45.0192$	$62 \ 16 \ 1.5312$	$62 \ 10 \ 44.3316$	$62 \ 16 \ 28.74$	$62 \ 19 \ 50.6784$	$62 \ 15 \ 18$	$62 \ 15 \ 49.2012$	$62 \ 14 \ 58.8588$	$62\ 16\ 32.5308$	-27 42 29.51	-27 42 59.72	-27 42 40.82	-27 42 32.72	-27 43 38.22	-27 42 49.52	-27 51 32.17	-27 51 02.06	-27 50 14.36	-27 49 11.91
A.R	(J2000)	$10\ 00\ 38.29$	$12\ 36\ 17.737$	$12\ 37\ 27.348$	12 36 24.9581	$12\ 37\ 19.177$	$12\ 36\ 58.951$	$12\ 37\ 8.688$	12 37 15.8201	12 36 52.3459	$12 \ 36 \ 5.4941$	12 36 19.843	$12\ 36\ 16.638$	$12\ 36\ 58.385$	$12\ 36\ 31.158$	$12\ 36\ 5.0359$	$12 \ 36 \ 15.293$	$12\ 36\ 55.044$	12 37 13.027	$12 \ 37 \ 0.5081$	$12 \ 36 \ 13.704$	$12\ 36\ 19.813$	$12\ 37\ 20.603$	$12 \ 37 \ 2.479$	$12 \ 36 \ 18.45$	$12 \ 37 \ 14.149$	$12 \ 36 \ 50.6741$	$12\ 37\ 5.5411$	$12 \ 37 \ 6.3$	12 37 14.0441	$12\ 37\ 27.599$	$12 \ 37 \ 15.431$	$03 \ 32 \ 18.56$	$03 \ 32 \ 16.80$	$03 \ 32 \ 20.57$	$03 \ 32 \ 16.64$	$03 \ 32 \ 15.20$	$03 \ 32 \ 19.71$	$03 \ 32 \ 40.10$	$03 \ 32 \ 19.28$	$03 \ 32 \ 11.04$	$03 \ 32 \ 25.22$
$F(H\beta)$	Corrected	:	•	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	:		$684.10^{+451.90}_{-451.90}$	$229.00^{+52.20}_{-52.20}$	$736.30^{+357.40}_{-357.40}$	$503.50^{+72.40}_{-72.40}$	$98.40^{+78.10}_{-78.10}$	$133.90^{+85.70}_{-85.70}$	•	:	÷	
$F(H\alpha)$	Corrected	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	$1956.53^{+4608.89}_{-4608.89}$	$654.94^{+327.87}_{-210.28}$	$2105.82^{+1387.70}_{-1127.63}$	$1440.01^{+1928.14}_{-385.87}$	$281.42^{+351.62}_{-257.08}$	$382.95_{-550.58}^{+550.58}$:	:	:	
F[O111]λ5007Å	Observed	5.99 ± 3.61	:	:	:			:	:	:	: :	:		:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	23739.5 ± 562.4^{b}	1219.1 ± 69.2^{b}	2419.1 ± 474.8^{b}	3086.1 ± 95.9	528.3 ± 103.3	794.6 ± 111.9	:	:	:	
$\mathrm{F}(Heta)$	Observed	:	:	:	:			:	:	:	: :	:	:	:	: :	: :	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	:		$192.02^{+278.22}_{-278.22}$ c	$201.68^{+68.99}_{-52.82}$	$648.45^{+355.57}_{-325.68}$ c	$443.43^{+344.12}_{-85.65}$ c	$76.32^{+73.80}_{-63.69}$ c	$59.89^{+58.29}_{-58.29}$ c	:	:	:	
$F(H\alpha)$	Observed	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		$780.53^{+1684.16}_{-1684.16}$ c	$597.44^{+277.88}_{-183.32}$ c	$1920.93^{+1214.89}_{-1012.47}$ c	$1313.58^{+1602.54}_{-329.37}$ c	$234.18^{+277.14}_{-209.29}$ c	$213.99^{+285.19}_{-285.19}$ c	:	:	:	
α	$(\rm km \ s^{-1})$	38.2 ± 10.0	45.39	52.60	47.86	42.27	40.83	69.02	43.65 ± 1.21	25.12 ± 1.58	46.88 ± 1.23	36.48 ± 1.20	25.12 ± 1.58	52.6 ± 1.07	55.46 ± 1.14	25.12 ± 1.58	35.81 ± 1.09	36.90 ± 1.09	59.57 ± 1.09	$52.84{\pm}1.07$	40.36 ± 1.11	54.08 ± 1.08	66.37 ± 1.09	36.48 ± 1.07	55.59 ± 1.07	52.48 ± 1.10	$36.14{\pm}1.16$	93.54 ± 1.12	88.10 ± 1.07	43.85 ± 1.09	73.11 ± 1.09	$82.04{\pm}1.07$	•	:	:	•	:	:	:	:	÷	
EW[OIII]	(A)	628 ± 152	178.9 ± 1.3	373.0 ± 2.9	387.2 ± 2.7	131.4 ± 4.3	168.0 ± 6.7	173.0 ± 2.8	255.3 ± 3.2	141.8 ± 3.4	61.9 ± 4.0	135.9 ± 1.3	169.4 ± 2.2	97.7 ± 1.3	58.9 ± 1.8	88.4±2.8	109.1 ± 1.5	184.3 ± 1.5	56.0 ± 3.1	100.6 ± 3.1	197.3 ± 16.9	102.0 ± 0.8	95.1 ± 3.3	108.4 ± 3.7	142.2 ± 4.0	130.1 ± 0.9	113.5 ± 2.6	104.0 ± 1.9	74.1 ± 1.9	133.4 ± 2.9	91.0 ± 4.5	28.1 ± 2.5	334	1605	729	248	193	143	459 ± 40	569 ± 67	507土75	760 ± 143
$EW(H\beta)$	(Y)	:	50.4 ± 1.0	48.9 ± 2.0	63.1 ± 2.5	54.4 ± 4.0	49.8 ± 3.1	50.7 ± 1.9	33.9 ± 2.3	33.2 ± 2.8	31.9 ± 3.7	31.0 ± 1.4	30.1 ± 1.8	30.9 ± 0.7	25.1 ± 0.9	29.6 ± 1.6	$27.4{\pm}1.1$	28.2 ± 1.0	25 ± 2.4	28.6 ± 1.2	38.4 ± 2.7	28.4 ± 0.8	24.2 ± 1.9	38.9 ± 5.2	42.3 ± 2.7	28.2 ± 1.0	30.5 ± 2.9	33.0 ± 2.9	25.2 ± 1.6	29.7 ± 2.6	31.3 ± 3.1	23.0 ± 2.9	61	352	525	38	45	25	:	:	÷	
$EW(H\alpha)$	(A)	:	÷	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	÷	:	:	:	:	:	
z		1.5830	0.51241	0.51309	0.59449	0.84173	0.87506	0.90716	0.32930	0.38741	0.38990	0.39740	0.43720	0.45652	0.45694	0.45724	0.50858	0.51604	0.55639	0.66031	0.68536	0.69442	0.69780	0.74411	0.79803	0.82058	0.83567	0.83571	0.83977	0.83987	0.84092	0.85182	0.6020	0.6960	0.9980	0.6420	1.6820	2.0700	1.6 - 1.8	1.6 - 1.8	1.6 - 1.8	2-9-1-2-
Name		COSMOS-12807	TKRS7889	TKRS10625	TKRS7887	TKRS7878	TKRS2882	TKRS10350	TKRS7105	TKRS2246	TKRS2336	TKRS4648	TKRS3741	TKRS5621	TKRS5634	TKRS3272	TKRS7843	TKRS3130	TKRS10183	TKRS4375	TKRS1953	TKRS4389	TKRS8126	TKRS5167	TKRS1468	TKRS11643	TKRS4332	TKRS3021	TKRS6786	TKRS7075	TKRS9211	TKRS6596	PEARS123301	PEARS119341	PEARS122206	PEARS-364	PEARS-103	PEARS-242	GSD1	GSD2	GSD3	GSD4
Index		121	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

							Tabl	e 1 Continue	pe					
Index	Name	z	$EW(H\alpha)$	$EW(H\beta)$	EW[OIII]	υ	$F(H\alpha)$	$F(H\beta)$	F[OIII]A5007Å	$F(H\alpha)$	$F(H\beta)$	A.R	DEC.	Reference
			(Å)	(Å)	(Å)	$({\rm km \ s^{-1}})$	Observed	Observed	Observed	Corrected	Corrected	(J2000)	(J2000)	
201	GSD5	1.6 - 1.8	:	:	566 ± 74	:	:	:	:	:	:	$03\ 32\ 16.20$	$-27\ 46\ 24.94$	17
202	GSD6	1.6 - 1.8	:	:	700 ± 53	:	:	:	:	:	:	$03\ 32\ 23.40$	$-27\ 45\ 50.11$	17
203	GSD7	1.6 - 1.8	:	:	535 ± 99	:	:	:	:	:	:	$03\ 32\ 29.31$	$-27\ 45\ 34.35$	17
204	GSD8	1.6 - 1.8	:	:	693 ± 45	:	:	:	:	:	:	$03 \ 32 \ 41.26$	$-27\ 45\ 32.92$	17
205	GSD9	1.6 - 1.8	:	:	468 ± 32	:	:	:	:	:	:	$03\ 32\ 18.90$	$-27\ 45\ 01.04$	17
206	GSD10	1.6 - 1.8	:	:	759 ± 134	:	:	:	:	:	:	$03 \ 32 \ 15.28$	$-27\ 44\ 45.07$	17
207	GSD11	1.6 - 1.8	:	:	$534{\pm}76$:	:	÷	:	:	:	$03\ 32\ 01.80$	$-27\ 44\ 30.72$	17
208	GSD12	1.6 - 1.8	:	:	641 ± 139	:	:	÷	:	:	:	$03\ 32\ 27.51$	$-27\ 43\ 19.12$	17
209	GSD13	1.6 - 1.8	:	:	490 ± 29	:	:	÷	:	:	:	$03\ 32\ 24.36$	$-27\ 43\ 15.18$	17
210	GSD14	1.6 - 1.8	÷	:	501 ± 65	÷	:	:	•	:	•	$03\ 32\ 13.42$	-27 43 07.69	17
211	GSD15	1.6 - 1.8	:	:	820 ± 288	÷	:	:	•	:	:	$03\ 32\ 35.89$	-27 42 37.03	17
212	GSD16	1.6 - 1.8	:	:	582 ± 80	÷	:	:	•	:	:	$03\ 32\ 35.43$	-27 42 25.52	17
213	GSD17	1.6 - 1.8	:	:	465 ± 43	:	:	:	:	:	:	$03 \ 32 \ 15.41$	-27 42 23.48	17
214	GSD18	1.6 - 1.8	:	:	861 ± 66	:	:	:	:	:	:	$03 \ 32 \ 17.11$	$-27\ 42\ 20.89$	17
215	GSD19	1.6 - 1.8	:	:	1002 ± 245	:	:	:	:	:	:	$03 \ 32 \ 43.67$	$-27\ 42\ 18.14$	17
216	GSD20	1.6 - 1.8	:	:	496 ± 82	:	:	:	:	:	:	$03\ 32\ 33.80$	$-27\ 41\ 32.60$	17
217	GSD21	1.6 - 1.8	:	÷	935 ± 139	:	:	:	:	:	:	$03 \ 32 \ 24.22$	$-27\ 40\ 36.13$	17
218	GSD22	1.6 - 1.8	:	:	870 ± 198	:	:	:	:	:	:	$03 \ 32 \ 28.43$	$-27 \ 49 \ 11.71$	17
219	GSD23	1.6 - 1.8			1512 ± 338	:		•		:	•	$03 \ 32 \ 18.62$	$-27\ 48\ 46.06$	17
220	GSD24	1.6 - 1.8	:	:	698 ± 318	:	:	:	:	:	:	$03\ 32\ 31.91$	-27 44 24.37	17
221	GSD25	1.6 - 1.8	:	:	562 ± 164	:	:	:	:	:	:	$03 \ 32 \ 20.25$	$-27\ 43\ 40.51$	17
222	GSD26	1.6 - 1.8	:	:	650 ± 106	:	:	:	:	:	:	$03\ 32\ 33.96$	-27 43 29.57	17
223	GSD27	1.6 - 1.8	:	:	$954{\pm}262$:	:	:	:	:	:	$03 \ 32 \ 27.02$	$-27\ 42\ 25.52$	17
224	GSD28	1.6 - 1.8	:	:	1009 ± 293	:	:	:	:	:	:	$03 \ 32 \ 11.07$	$-27\ 42\ 20.17$	17
225	GSD29	1.6 - 1.8	:	:	1314 ± 557	:	:	:	:	:	:	$03\ 32\ 33.59$	$-27\ 40\ 30.50$	17
226	UDS1	1.6 - 1.8	:	:	576 ± 90	:	:	:	:	:	:	$02\ 17\ 06.07$	$-05\ 16\ 28.18$	17
227	UDS2	1.6 - 1.8	÷	÷	1081 ± 147	÷	:	:	:	:	:	$02\ 17\ 45.78$	$-05\ 15\ 45.24$	17
228	UDS3	1.6 - 1.8	:	:	507 ± 95	÷	:	:	•	:	:	$02\ 17\ 55.72$	$-05\ 15\ 41.04$	17
229	UDS4	1.6 - 1.8	:	:	614 ± 83	÷	:	:	•	:	:	$02\ 17\ 04.48$	$-05\ 15\ 36.23$	17
230	UDS5	1.6 - 1.8	:	:	701 ± 95	:	:	:	:	:	:	$02\ 17\ 42.36$	$-05\ 15\ 20.77$	17
231	UDS6	1.6 - 1.8	:	:	731 ± 86	:	:	:	:	:	:	$02\ 17\ 42.86$	$-05\ 15\ 19.14$	17
232	UDS7	1.6 - 1.8	:	:	656 ± 43	:	:	:	:	:	:	$02\ 17\ 18.16$	$-05\ 15\ 06.27$	17
233	UDS8	1.6 - 1.8	:	:	728 ± 153	:	:	:	:	:	:	$02\ 17\ 15.36$	$-05\ 15\ 03.77$	17
234	UDS9	1.6 - 1.8	:	:	478 ± 64	:	:	:	:	:	:	$02\ 17\ 31.82$	$-05\ 14\ 40.63$	17
235	UDS10	1.6 - 1.8	÷	:	541 ± 64	:	:	:	:	:	:	$02\ 17\ 03.25$	$-05\ 14\ 21.96$	17
236	UDS11	1.6 - 1.8	:	:	735 ± 94	:	:	:	:	:	:	$02\ 17\ 14.71$	$-05\ 14\ 20.24$	17
237	UDS12	1.6 - 1.8	:	:	713 ± 42	:	:	:	:	:	:	$02\ 17\ 53.73$	$-05\ 14\ 03.23$	17
238	UDS13	1.6 - 1.8	:	:	716 ± 68	:	:	:	:	:	:	$02\ 17\ 16.35$	$-05\ 13\ 56.28$	17
239	UDS14	1.6 - 1.8	:	:	602 ± 96	:	:	:	:	:	:	$02\ 17\ 55.58$	$-05\ 13\ 21.00$	17
240	UDS15	1.6 - 1.8	:	:	843 ± 111	:	:	:	:	:	:	$02\ 17\ 29.08$	$-05\ 12\ 53.29$	17
Contin	uation on	the next	t page.											
			0.4											

$ \mbox{ kman } \mbox{ kma } \mbox{ kma } \mbox{ kma } \mbox{ kman } \mbox{ kma } \mbox } \mbox{ kma } \mbox{ kma } \mbox{ kma } \mbox } km$								Table :	1 Continued						
	×	Name	z	$EW(H\alpha)$ (Å)	$EW(H\beta)$ (Å)	EW[OIII] (Å)	$\stackrel{\sigma}{(\mathrm{km~s}^{-1})}$	$F(H\alpha)$ Observed	$F(H\beta)$ Observed	F[OIII] $\lambda 5007 Å$ Observed	$F(H\alpha)$ Corrected	$F(H\beta)$ Corrected	A.R (J2000)	DEC. (J2000)	Reference
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS6	1.6-1.8	:	:	662±87	:	:	:	:	:	:	02 17 55.90	-05 12 51.07	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS17	1.6 - 1.8	:	:	469 ± 63	:	:	:	:	:	:	$02 \ 16 \ 59.40$	$-05\ 12\ 19.19$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS18	1.6 - 1.8	:	:	739 ± 136	:	:	:		:	:	$02 \ 17 \ 15.71$	$-05\ 12\ 03.25$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS19	1.6 - 1.8	:	:	543 ± 106	:	:	:		:	:	$02 \ 17 \ 11.73$	$-05\ 11\ 30.48$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS20	1.6 - 1.8	:	:	648 ± 55	:	:	:	:	:	:	$02 \ 16 \ 55.70$	$-05\ 11\ 25.40$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS21	1.6 - 1.8	:	:	99 ± 609	:	:	:		:	:	$02 \ 17 \ 14.14$	$-05\ 11\ 24.32$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS22	1.6 - 1.8			1070 ± 307			:	•			$02 \ 17 \ 40.02$	$-05\ 10\ 49.59$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS123	1.6 - 1.8			591 ± 74			:	•			$02 \ 17 \ 32.88$	$-05\ 10\ 38.06$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS24	1.6 - 1.8		:	779 ± 140			:	:	:	:	$02 \ 17 \ 00.68$	$-05\ 10\ 34.90$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS25	1.6 - 1.8			507 ± 39							$02 \ 17 \ 36.51$	$-05\ 10\ 31.27$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS26	1.6 - 1.8			552 ± 59							$02 \ 17 \ 50.21$	$-05\ 10\ 28.01$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS27	1.6 - 1.8			576 ± 139							02 17 08.21	$-05\ 09\ 50.70$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS28	1.6-1.8			519 ± 100							02 18 00.06	-05 09 20.14	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS29	1.6 - 1.8			1003 ± 150							02 17 03.18	-05 09 07.83	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS30	1.6 - 1.8			533 ± 103			:			:	$02 \ 17 \ 54.66$	$-05\ 08\ 51.08$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS31	1.6 - 1.8	:	:	546 ± 88		:	:	:	:	:	$02 \ 17 \ 11.12$	-05 08 39.90	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS32	1.6 - 1.8		:	721 ± 138			:			:	$02 \ 17 \ 40.62$	$-05\ 08\ 34.41$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS33	1.6 - 1.8		:	553 ± 85			:	:	:	:	$02 \ 16 \ 59.23$	-05 08 20.83	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS34	1.6 - 1.8	:	:	586 ± 50	:	:	:	:	:	:	$02 \ 17 \ 29.26$	-05 08 14.18	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS35	1.6 - 1.8			1125 ± 315			:		:	•	$02 \ 17 \ 15.53$	-05 08 01.23	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS36	1.6 - 1.8	÷	:	$658{\pm}76$:	:	:	:	:	:	$02 \ 17 \ 02.82$	-05 08 04.82	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS37	1.6 - 1.8	:	:	832 ± 249	:	:	:	:	:	:	$02 \ 17 \ 31.34$	$-05\ 16\ 05.18$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS38	1.6-1.8	:	:	912 ± 208	:	:	:	:	:	:	$02 \ 17 \ 45.95$	$-05\ 12\ 57.47$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS39	1.6 - 1.8	:	:	594 ± 145	:	:	:	:	:	:	$02 \ 17 \ 20.37$	$-05\ 10\ 37.79$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		UDS40	1.6 - 1.8	:	:	677 ± 157	:	:	:	:	:	:	$02 \ 17 \ 45.14$	$-05\ 09\ 36.25$	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GMASS-167	2.5730	353^{+88}_{-85}	:	:	68^{+14}_{-17}	$6.6^{+1.1}_{-0.0}$	$1.94^{+0.73}_{-0.70}$ a	:	$10.38^{+2.75}_{-2.66}$	$3.63^{+1.66}_{-1.66}$:	:	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	GMASS-2562	2.5400	161^{+52}_{-62}			87^{+27}_{22}	$3.0^{+0.7}_{-0.7}$	$0.74^{+0.41}_{-0.40}$ a		$7.43^{+2.94}_{-2.90}$	$2.60^{+1.76}_{-1.76}$			18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	01623-BX528	2.2683	132 ± 26	:	:	141 ± 8	$11.4^{+0.4}_{-0.4}$	$3.35^{+1.13}_{-1.13}$ a	:	$17.94^{+3.75}_{-3.75}$	$6.27^{+2.69}_{-2.69}$	$16\ 25\ 56.44$	$+26\ 50\ 15.44$	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	01623-BX663	2.4332	309 ± 62	:	:	172 ± 22	$16.7_{-0.9}^{+0.9}$	$4.63^{+1.82}_{-1.82}$ a	:	$30.63^{+7.59}_{-7.50}$	$10.71^{+5.32}_{-5.32}$	$16\ 25\ 04.58$	$+26\ 48\ 00.20$	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	SA22a-MD41	2.1704	512 ± 170	:	:	118^{+6}_{-7}	$14.4_{-0.6}^{+0.6}$	$3.77^{+1.68}_{-1.68}$ a	:	$30.69^{+8.65}_{-8.65}$	$10.73_{-6.04}^{+6.04}$	22 17 39.97	$+00\ 17\ 11.04$	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	02343-BX610	2.2103	268^{+53}_{-53}	:	:	176^{+10}	$30.5^{+1.3}$	$8.46^{+3.31}$ a		$55.94^{+13.74}$	$19.56_{0.69}^{+9.69}$	$23 \ 46 \ 09.43$	+12 49 19.21	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		K20-ID5	2.2243	641 ± 128		•	281^{+29}_{-30}	$26.9^{+1.5}_{-1.5}$	$5.27^{+4.06}_{-4.06}$ a		$122.16^{+60.72}_{-60.72}$	$42.71_{-41.37}^{+41.37}$	•	•	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		K20-ID6	2.2345	150 ± 31	:	:	91^{+14}_{-7}	$5.4_{-0.4}^{+0.4}$	$1.41^{+0.64}_{-0.64}$ a	:	$11.51^{+3.32}_{-3.32}$	$4.02^{+2.28}_{-2.28}$:	:	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		K20-ID7	2.2241	313 ± 61		•	173_{-9}^{+8}	$19.7_{-0.7}^{+0.7}$	$5.16^{+2.29}_{-2.20}$ a	•	$41.98^{+11.80}_{-11.80}$	$14.68_{-8.25}^{+8.25}$:	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		K20-ID8	2.2235	179 ± 36	:	:	132^{+10}	$10.7^{+0.6}_{-0.6}$	$2.97^{+1.16}_{-1.16}$ a	:	$19.62^{+4.87}_{-4.87}$	$6.86^{+3.41}$:	:	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		K20-ID9	2.0343	420 ± 88			167^{+15}_{-15}	$9.4^{+0.6}$	$2.19^{+1.25}_{-1.25}$ a		$27.13_{+9.98}^{+9.98}$	$9.49^{+6.83}_{-6.83}$			18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Deep3a-4751	2.2656	147^{+34}_{-33}			86^{+13}_{-13}	$6.8^{+0.6}_{-0.6}$	$1.78^{+0.80}_{-0.80}$ a		$14.49^{+4.24}$	$5.07^{+2.88}_{-2.67}$			18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Deen3a-6004	2.3867	354 ± 71			129+7	$19.5^{+0.8}_{-0.8}$	$4.05^{+2.85}_{-2.85} a$		75.98 + 34.35	$26.57^{+23.53}_{-2.86}$			8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Deen3a-15504	2.3826	274 + 55			148+9	$24.9^{+0.9}$	$6.52^{+2.90}_{-2.90}a$		53.06 + 14.92	18.55 + 10.43			8
	_	GMASS-1084	1.5521	223^{+48}_{-47}			114^{+16}	$2.1^{+0.2}_{-0.3}$	$0.31^{+0.34}_{-0.34}$ a		$20.32^{+14.79}_{-14.79}$	$7.11^{+9.99}_{-0.00}$			18

									COMMITTATION						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Index	Name	я	$EW(H\alpha)$ (Å)	$EW(H\beta)$ (Å)	EW[OIII] (Å)	$\sigma_{\rm (km~s^{-1})}$	$F(H\alpha)$ Observed	$F(H\beta)$ Observed	F[OIII]λ5007Å Observed	$F(H\alpha)$ Corrected	$F(H\beta)$ Corrected	A.R (J2000)	DEC. (J2000)	Reference
	981	CMASS-1146	1 5385	30.4+73	~		122+23	5 0 ^{+0.6}	$0.08 \pm 0.76 a$		99 71+11.54	7 QA+7.74		~	8[
000 0000000 0000000 00000000 0000000000000 000000000000000000000000000000000000	107	CMASS-9113W	1 6190	118^{+29}	•		0.07 + 208	$1^{-0-0.4}_{-1.2}$	0.30-0.76 0 30+0.27 a	•	10.49 ± 6.21	2 64+4.18	03 39 99 00	-97 49 43 50	2 2
0 0	202	CMASS-2959	9 4085	017^{+47}	•		$^{-11}_{-65}$	$7^{+1}_{-1+0.6}$	$1.86 \pm 0.84 a$	•	$15 12^{+4.41}$	5 90+3.00	00.77 70 00	00.0F 7F 17-	18
8 COMASS-300 2.416 1.167 1.024	207		1001 C		•		07 1 1 1 1 1 1 1 1	6 6+0.5	A DE +0.62 a	•	0.04+1.68	0.40-2.99	•		2
90 CAMASS-138 Link	107	CUCZ-CCAIND	1004.2	220-47 	:	:	OT ADT	0.0-0.4	2.00-0.62	:	0.34_1.68	$0.12_{-1.20}$:	:	10
	285	GMASS-2363	2.4518	171_{-43}^{+13}	:	:	135_{-49}^{+9}	$2.9_{-0.4}^{+0.4}$	$0.72_{-0.38}^{+0.38}$		$7.18_{-2.51}^{+2.51}$	$2.51_{-1.65}$:	:	18
SF CIAMSS-530 LiM Mode	286	GMASS-2438	1.6135	245 ± 50	:	:	170^{+16}_{-18}	$7.6^{+0.3}_{-0.3}$	$1.67^{+1.06}_{-1.06}$ a		$25.48^{+10.37}_{-10.37}$	$8.91^{+7.12}_{-7.12}$	$03 \ 32 \ 26.41$	-27 42 28.40	18
State CONSIONS-NERT 1060 111-10 22.5 111-10 22.5 111-10 12.5 111-10 12.5 111-10 12.5 111-10 12.5 111-10 12.5 11.5 11.5 11.5 11.5 12.5 <	287	GMASS-2540	1.6146	127^{+29}_{-38}	:	:	80^{+12}_{-9}	$10.5_{-0.8}^{+1.1}$	$3.09^{+1.08}_{-1.06}$ a	:	$16.52^{+3.82}_{-3.63}$	$5.78_{-3.51}^{+2.54}$	$03 \ 32 \ 30.33$	-27 42 40.30	18
Bit CONNON-STATE District District <thdistrict< th=""> District District</thdistrict<>	288	GMASS-2550	1.6030	115^{+31}			$64^{+132.5}_{-50}$	$4.1^{+0.7}$	$1.14^{+0.48}_{-0.48}$ a		$7.52^{+2.23}$	$2.63^{+1.37}_{-1.37}$	$03 \ 32 \ 30.08$	-27 42 12.20	18
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	080	POSTICE 222250	9 1 7 2 3	F.00+133			10^{6+18}	15 4+2.0	2 K0+2.09 a		AA AA+17.10	15 5A + 11.32	10 00 45 10	+03 07 05 20	2 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	209	2000M00-112139	21011	030 -126	:	:	140-15 171+12	10.4-1.4	0.09-2.06 r r0+2.83 a	:	77 11 + 18 04	10.04 - 11.23 10.40 + 12.51	10 00 40.10	07.00 10 70 40	0
201 CODRSANGS-40038 Superior	067	zCUSMUS-782941	2.1814	444 ± 88	:	:	1/1-8-	2.2.0-0.22	0.00 - 2.83	:	55.71 - 18.01	19.48_{-1251}	00.06 86 80	$+0.2 \ 0.0 \ 0.1.30$	18
202 $COSMOS-600053$ 23465 1441 110 $2303, 147$ 110 100 <	291	GDDSSA12-6339	2.2969	849^{+276}_{-275}	:	:	93^{+7}_{-6}	$12.2_{-0.6}^{+0.7}$	$2.39^{+1.84}_{-1.84}$ a	:	$55.40^{+27.55}_{-27.50}$	$19.37^{+18.76}_{-18.76}$	12 05 32.70	-07 23 38.00	18
203 2008 1577 $207-31$ $161-75$ $307-31$	292	zCOSMOS-400528	2.3876	144^{+14}_{-10}	:	:	221^{+72}_{-63}	$15.6_{-9.0}^{+1.5}$	$3.93^{+1.36}_{-1.36}$ a	:	$36.78^{+9.03}_{-0.55}$	$12.86^{+5.42}_{-5.53}$	09 59 47.60	+01 44 19.00	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	293	zCOSMOS-400569	2.2405	157^{+15}			207^{+34}_{-34}	$16.1^{+1.5}$	$3.65^{+1.56}$		$50.01^{+15.12}$	$17.48^{+9.13}_{-0.13}$	10 01 08.70	+01 44 28.30	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204	₇ COSMOS-403741	1 4455	186+8			86+7	$12.0^{+0.1}$	$9.56^{+1.19}$ a		43 $44^{+14.03}$	15 10 + 8.70	10 00 18 40	+01 55 08 10	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205	TOSMOS 404991	9 9901	331+25			06+37	8 66+0.60	2.00-1.19 3.6+0.57 a		1.9 QD+1.93	A 51+1.22	10 01 41 30	$\pm 01.56.42.80$	10
270 $2.003005-40050$ 2.344	007	TASEDE COMOOOS	1022.2	201-29 000+63		:		1 0 4+1.02		•	1 4 0 4 + 3 43	1.00-1.26	00'TE 10 01	00.44 00 10+	01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	067	zCUSMUS-404987	2.1239	332_{-94}	:	:	131_{-61}	1.04	1.88-0.72 °	:	$14.24_{-4.56}$	$4.98_{-2.18}$	10 00 40.40	07.72.66.10+	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	297	zCOSMOS-405081	2.2344	248^{+30}_{-58}	:	:	64^{+24}_{-21}	$5.01_{-0.93}^{+0.01}$	$1.44_{-0.48}^{+0.44}$ a	:	$8.43^{+1.90}_{-2.15}$	$2.95^{+1.10}_{-1.16}$	$10 \ 00 \ 22.70$	+01 59 46.20	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	298	zCOSMOS-405501	2.1543	300^{+52}_{-46}	:	:	124_{-18}^{+32}	$11.2^{+1.6}_{-1.3}$	$3.13^{+0.91}_{-0.87}$ a	:	$20.04^{+4.41}_{-4.08}$	$7.01^{+2.43}_{-2.36}$	09 59 53.70	$+02\ 01\ 08.80$	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	299	zCOSMOS-406690	2.1949	391^{+13}_{-19}	:	:	138 ± 4	$61.5^{+1.4}_{-1.4}$	$16.62^{+4.63}_{-6.63}$ a	:	$120.66^{+22.65}_{-22.58}$	$42.19^{+14.62}_{-14.61}$	09 58 59.10	$+02\ 05\ 04.20$	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	zCOSMOS-407928	2.4309	371^{+83}_{-83}			178^{+185}_{-86}	$7.94^{+1.52}$	$1.95^{+0.82}_{-0.82}$ a		$19.90^{+6.31}$	$6.96^{+3.52}$	09 59 53.40	$+02\ 08\ 41.50$	19
302 z COSMOS-41157 z 4443 z 87-143 z 95 54.70 z 21.72-143 z 200	301	zCOSMOS-410041	2.4530	0.88 + 268			154 + 80	$13 \ 4^{+2.9}$	$370^{+1.24}$ a		$23.26^{+6.28}$	$813^{+3.05}$	10 00 44 30	+02 15 58 40	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	302	zCOSMOS-410542	1 4049	187^{+14}			286^{+39}	$18.4^{+1.4}$	$3 80^{+1.87}$ a		68.68 ^{+23.25}	$94.02^{+14.16}$	09 59 54 70	+02 17 48 30	10
301 $\mathbb{C}(0SMOS-41230)$ $\mathbb{C}(14S^{-1}16)$ $\mathbb{C}(14S^{-1}16)$ $\mathbb{C}(14S^{-1}16)$ $\mathbb{C}(12S^{-1}23)$ </td <td>303</td> <td>~COSMOS-411737</td> <td>9 4443</td> <td>301+66</td> <td></td> <td></td> <td>106 + 30</td> <td>0.63+0.95</td> <td>9 76 +0.71 a</td> <td></td> <td>$16.91^{+2.98}_{-23.80}$</td> <td>5.67 + 1.77</td> <td>10 00 32 40</td> <td>+03 21 20 00</td> <td>10</td>	303	~COSMOS-411737	9 4443	301+66			106 + 30	0.63+0.95	9 76 +0.71 a		$16.91^{+2.98}_{-23.80}$	5.67 + 1.77	10 00 32 40	+03 21 20 00	10
305 z COSMOS-3113507 z^{-10} z^{-1}	200	POCOMOS 119360	011117	001-00 071+170	:		122-L0	0.00-0.69 0.1 $7+1.0$	τ 00+1.99 a		61 48+16.65	01 50+10.33	10 01 46 00	0.02 21 20.30	10
30b $z COSMIOS-413501$ 24794 $200^{-3}{10}$ $1.12.222$ 41.32 1.02423 $1.022750.10$ $1.027276.10$ $1.022750.10$ $1.022750.10$ $1.022750.10$ $1.022750.10$ $1.022750.10$ $1.022750.10$ $1.027276.10$ $1.02726.10$ $1.02726.10$	100 100	200211-00100002	07070-7	21 I - 16	:	:	100-134	0.1 - 1.2	0.03-1.99	:	10.00 ± 0.00	400-10.33	10 01 40.90	TU2 23 24.00	13
306 $zCOSMOS-413507$ 2.4498 $310^{-12}{-18}$ \cdots 73^{-25}_{-128} 7.07^{-116}_{-128} 1.27^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-218} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221} 1.28^{-216}_{-221}	305	zCOSMOS-413507	2.4794	208-39	:	:	63_{-35}	$4.73_{-0.75}$	$1.15_{-0.45}^{+0.00}$:	$12.22_{-3.58}$	$4.27_{-2.02}$	10 00 24.20	+02.2741.30	19
307 $zCOSMOS-411507$ 2.2986 102^{+41}_{-10} 96^{+42}_{-10} 2.44^{+408}_{-108} 0.64^{+428}_{-108} 0.64^{+428}_{-108} 0.64^{+428}_{-108} 0.64^{+428}_{-108} 1.03240 1002340 1002340 10238 40.02340 102388 1000340 102388 100240 12923657 1292163294 202 310 $zCOSMOS-701631$ 0.3440 \cdots 9.85^{+238}_{-2388} 300240 1003240 102388 1021388 1021388 1021348 1023240 1292394 202 311 $zCOSMOS-70161$ 0.34460 128 3.52^{-104} 0.87^{-1023} 10012388 1021348 1013576 1223444105 202 311 $zCOSMOS-701631$ 0.53460 100 328 120123326 12372612329 202 202 311 $zCOSMOS-80194$ 0.5460 1104 317 1104 317 1104 12372617 1021346 101365633 101356561 123642344105 2033365	306	zCOSMOS-413597	2.4498	310^{+01}_{-59}	:	:	73_{-48}^{+22}	$7.07_{-1.16}^{+1.22}$	$1.72_{-0.68}^{+0.08}$ a	:	$18.27_{-5.41}^{+0.49}$	$6.39_{-3.03}^{+3.04}$	09 59 36.40	$+02\ 27\ 59.10$	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	307	zCOSMOS-415087	2.2986	102^{+41}_{-32}	:	:	96^{+29}_{-42}	$2.44_{-0.69}^{+0.93}$	$0.64^{+3.32}_{-3.32}$ a	:	$5.25^{+2.31}_{-1.88}$	$1.83^{+1.04}_{-0.93}$	$10 \ 00 \ 32.40$	+02 33 40.60	19
309 zCOSMOS-700882 0.4640 98 475 10 12.388 +02 16 32.94 20 310 zCOSMOS-701882 0.4640 98 475 10 12.388 +02 16 32.94 20 311 zCOSMOS-701741 0.5040 228 423 10 13.456 +02 13.456 +02 13.456 +03 36.51 20 311 zCOSMOS-80094 0.5540 280 1506 136 10 13.756.12 20 313 zCOSMOS-80094 0.5540 89 296 10 137 26.12 20 314 zCOSMOS-80034 0.5400 75 387 10 16 137 26.12 20 314 zCOSMOS-803226 0.5700 75 387	308	zCOSMOS-415876	2.4362	118^{+24}_{-19}	:	:	116^{+28}_{-23}	$3.52_{-0.44}^{+0.62}$	$0.87^{+0.34}_{-0.32}$ a	:	$8.82^{+2.62}_{-2.38}$	$3.08^{+1.44}_{-1.39}$	$10 \ 00 \ 09.40$	$+02\ 36\ 58.30$	19
310 zCOSMOS-701051 0.3450 400 78 252 09 59 25.67 +02 14 45.54 20 311 zCOSMOS-701741 0.5040 228 423 01 34.56 +02 34 405 20 311 zCOSMOS-701741 0.5040 228 423 10 01 34.56 +03 34 405 20 312 zCOSMOS-80094 0.5950 280 1506 10 10 18.75 +01 37 20 313 zCOSMOS-80194 0.5560 280 1506 10 01 8.75 +01 37 50.12 20 313 zCOSMOS-80126 0.5700 104 317 10 05 8.53 20 20 314 zCOSMOS-80120 0.430 300 48 21 66 40 41 41 41 41 41 4	309	zCOSMOS-700882	0.4640	:	98	475	:	:	:	:	:	:	10 01 23.88	$+02\ 16\ 32.94$	20
311 zCOSMOS-701741 0.5040 228 423 10 13.456 +02 34.405 20 312 zCOSMOS-800984 0.5950 280 1506 10 10 13.75 +01 37 26.12 20 313 zCOSMOS-800984 0.5950 280 1506 10 0.8.75 +01 37 26.12 20 313 zCOSMOS-801094 0.5460 89 296 10 0.8.75 +01 37 26.12 20 314 zCOSMOS-801094 0.5700 104 317 10 0.8.75 +01 37 20 315 zCOSMOS-80129 0.5700 104 317 10 02 49.31 +01 47 41 42 315 zCOSMOS-801290 300 348 164 10 02 49.31 +01 47 41 40 <td< td=""><td>310</td><td>zCOSMOS-701051</td><td>0.3450</td><td>400</td><td>78</td><td>252</td><td>:</td><td>:</td><td>:</td><td>:</td><td>:</td><td>:</td><td>09 59 25.67</td><td>+02 14 45.54</td><td>20</td></td<>	310	zCOSMOS-701051	0.3450	400	78	252	:	:	:	:	:	:	09 59 25.67	+02 14 45.54	20
312 zCOSMOS-800984 0.5950 280 1506 280 1506 201 26.12 20 20 26.12 20 26.12 20 26.13 26.12 20 26.13 26.12 20 26 20 21 20 20 21 20 20 21 20 <td>311</td> <td>zCOSMOS-701741</td> <td>0.5040</td> <td>:</td> <td>228</td> <td>423</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>$10 \ 01 \ 34.56$</td> <td>+02 34 44.05</td> <td>20</td>	311	zCOSMOS-701741	0.5040	:	228	423	:	:	:	:	:	:	$10 \ 01 \ 34.56$	+02 34 44.05	20
313 zCOSMOS-801094 0.5460 89 296 10 00 58.08 +01 36.51 20 314 zCOSMOS-801275 0.6350 104 317 10 05 55.083 +01 36.51 20 314 zCOSMOS-802275 0.6350 104 317 10 05 55.083 +01 41 401 41 401	312	zCOSMOS-800984	0.5950	:	280	1506	:	:	:	:	:	:	10 01 08.75	$+01\ 37\ 26.12$	20
314 zCOSMOS-802275 0.6350 104 317 09 58 50.83 +01 36 35 20 315 zCOSMOS-803226 0.5700 75 387 10 02 49.30 +01 43 109 20 316 zCOSMOS-803226 0.5700 75 387 10 02 49.30 +11 43 109 20 316 zCOSMOS-803320 0.4390 300 48 237 10 02 49.43 +01 47 420 20 317 zCOSMOS-804391 0.44200 303 36 164 10 02 65.51 20 318 zCOSMOS-804791 0.6403 164 10 136 401 36.51 20 318 zCOSMOS-804881 0.6403 163 163	313	zCOSMOS-801094	0.5460		89	296	:	:		:	:		10 00 58.08	+01 36 36.51	20
315 zCOSMOS-803226 0.5700 75 387 10 249.30 +11.43 01.09 20 316 zCOSMOS-8033226 0.5700 75 387 10 02 49.30 +11.43 01.09 20 316 zCOSMOS-804391 0.4290 303 36 164 10 01 48.58 +01 47 144 20 317 zCOSMOS-804130 0.4290 303 36 164 10 01 48.58 +01 47 44 20 318 zCOSMOS-804791 0.6030 78 2655 10 01 48.58 +01 46 56.38 20 319 zCOSMOS-804791 0.6030 78 265 10 01 48.58 +01 45 56.51 20 319 zCOSMOS-8055200 0.4720 815	314	zCOSMOS-802275	0.6350		104	317				-			09 58 50 83	$\pm 01.36.58.35$	20
316 zCOSMOS-803892 0.4390 300 48 237 10 02.64.3 +01.47 14.44 20 317 zCOSMOS-804130 0.4290 303 36 164 10 01.48.58 +01.37 56.51 20 318 zCOSMOS-804791 0.6030 78 265 10 01.48.58 +01.37 56.51 20 318 zCOSMOS-804791 0.6030 78 265 10 01.48.58 +01.37 56.51 20 319 zCOSMOS-805200 0.4720 815 153 820 10 08.77 +01.46 56.38 20 320 zCOSMOS-806881 0.7710 163 520 10 04.9.35 +01.46 56.38 20 320 zCOSMOS-806881 0.7710 163 520 <	315	zCOSMOS-803226	0.5700		75	387							10 02 49.30	+01 43 01.09	20
317 ZCOSMOS-804130 0.4730 300 40 2.01 11.1 2.0 317 ZCOSMOS-804130 0.4730 303 36 164 10 16.55 401 17.11 17.11 2.0 318 ZCOSMOS-804791 0.6030 78 265 10 10.45.55 401 37 401 36.55 20 319 ZCOSMOS-804791 0.6030 78 265 10 08.77 +01 36 0.02 20 319 ZCOSMOS-806881 0.4720 815 153 820 10 00 49.35 +01 46 56.38 20 320 ZCOSMOS-806881 0.7510 163 520 10 10 49.35 +01 46 56.38 20	216		0.1200	300	. 4	0.07							10 09 06 43	+01 47 14 44	
317 ZCOSMOS-804130 0.4290 303 36 164 10 01 48.58 +01.37 56.51 20 318 zCOSMOS-804791 0.6030 78 265 10 01 08.77 +01 38 00.02 20 319 zCOSMOS-805200 0.4720 815 153 820 10 00 49.35 +01 46 56.38 20 320 zCOSMOS-806881 0.7510 163 520 09 59 20.15 +01 41 03.54 20	010		0.4090	000	0 0	107	:	:	:	:	:	:	01 07 07 07 01	+01 4/ 14.44	70
318 zCOSMOS-804791 0.6030 78 265 20 319 zCOSMOS-805200 0.4720 815 153 820 20 320 zCOSMOS-806881 0.7510 163 520 20 959 20.15 +01 41 03.54 20	317	zCOSMOS-804130	0.4290	303	36	164	:	:	:	:	:	:	$10\ 01\ 48.58$	$+01\ 37\ 56.51$.50
319 zCOSMOS-805200 0.4720 815 153 820 10 00 49.35 +01 46 56.38 20 320 zCOSMOS-806881 0.7510 163 520 09 59 20.15 +01 41 03.54 20	318	zCOSMOS-804791	0.6030	÷	78	265	÷	÷	÷	:	:	÷	$10 \ 01 \ 08.77$	+01 38 00.02	20
320 zCOSMOS-806881 0.7510 163 520 163 520 09 59 20.15 +01 41 03.54 20	319	zCOSMOS-805200	0.4720	815	153	820	:	:	:	:	:	:	$10 \ 00 \ 49.35$	$+01 \ 46 \ 56.38$	20
	320	zCOSMOS-806881	0.7510	:	163	520		:	:	:	:	:	09 59 20.15	$+01 \ 41 \ 03.54$	20

							Table 1 C	ontinued						
Index	Name	z	$EW(H\alpha)$	$EW(H\beta)$	EW[OIII]	σ	$F(H\alpha)$	$F(H\beta)$	F[OIII]A5007Å	$F(H\alpha)$	$\mathrm{F}(Heta)$	A.R	DEC.	Reference
			(Å)	(Å)	(Å)	$(\rm km \ s^{-1})$	Observed	Observed	Observed	Corrected	Corrected	(J2000)	(J2000)	
321	zCOSMOS-806958	0.5310	:	85	409	:	:	:	:	:	:	09 59 15.89	$+01 \ 44 \ 30.38$	20
322	zCOSMOS-807965	0.8030	:	198	840	:			:	:	:	09 58 22.05	$+01 \ 45 \ 23.66$	20
323	zCOSMOS-807990	0.5690	:	53	324	÷		:	:	:	:	095820.20	$+01 \ 39 \ 36.77$	20
324	zCOSMOS-809215	0.1240	1270	:	1236	:	:	:	:	:	:	$10 \ 02 \ 54.02$	$+01\ 47\ 54.15$	20
325	zCOSMOS-809399	0.4460	272	57	261	:	:	:	:	:	:	$10 \ 02 \ 42.07$	+01 56 49.18	20
326	zCOSMOS-809463	0.6450	:	90	406	:	:	:	:	:	:	$10 \ 02 \ 38.44$	+01 51 48.54	20
327	zCOSMOS-809944	0.1230	332	:	209	:	:	:	:	:	:	$10 \ 02 \ 15.08$	+01 51 49.55	20
328	zCOSMOS-810153	0.5400	:	110	527	:	:	:	:	:	:	$10 \ 02 \ 04.13$	+01 52 34.12	20
329	zCOSMOS-810220	0.7000	:	75	300	:	:	:	:	:	:	$10\ 02\ 00.13$	$+01 \ 48 \ 40.68$	20
330	zCOSMOS-810304	0.3740	219	37	168	:	:	:	:	:	:	$10 \ 01 \ 55.81$	+01 55 45.64	20
331	zCOSMOS-810646	0.1750	163	39	125	:	:	:	:	:	:	$10 \ 01 \ 40.30$	+01 52 45.71	20
332	zCOSMOS-811012	0.8390	:	98	558	÷		:	:	:	:	$10 \ 01 \ 19.44$	+01 52 47.07	20
333	zCOSMOS-811024	0.8110	:	133	315	÷		:	:	:	:	$10 \ 01 \ 18.88$	$+01 \ 49 \ 36.67$	20
334	zCOSMOS-811075	0.7240	:	128	292	:	:	:	:	:	:	$10\ 01\ 16.23$	+01 55 21.08	20
335	zCOSMOS-811415	0.6210	:	85	402	:	:	:	:	:	:	$10 \ 00 \ 58.10$	+01 49 35.82	20
336	zCOSMOS-811842	0.6710	:	54	203	:	:	:	:	:	:	$10 \ 00 \ 36.90$	+01 50 58.86	20
337	zCOSMOS-812047	0.2650	708	122	637	:	:	:	:	:	:	$10 \ 00 \ 27.76$	+01 57 04.05	20
338	zCOSMOS-812087	0.3220	292	50	184	:	:	:	:	:	:	$10 \ 00 \ 25.36$	+01 54 18.72	20
339	zCOSMOS-812195	0.4380	146	42	175	:			:	:	:	$10 \ 00 \ 19.16$	+015614.34	20
340	zCOSMOS-812207	0.1680	306	85	360	:				•	:	10 00 18.56	+01 55 47.75	20
341	zCOSMOS-812599	0.2200	166	35	197	÷		:	:	:	:	095956.99	+01 53 12.37	20
342	zCOSMOS-812879	0.2510	435	120	595	÷		:	:	:	:	09 59 40.28	+01 51 21.61	20
343	zCOSMOS-812971	0.1330	204	:	204	:	:	:	:	:	:	09 59 35.47	+01 56 06.24	20
344	zCOSMOS-813334	0.4190	420	80	380	:		:	:	:	:	09 59 14.38	+01 52 50.82	20
345	zCOSMOS-813400	0.4370	154	46	162	:	:	:	:	:	:	09 59 10.95	+01 56 36.76	20
346	zCOSMOS-813444	0.1260	550	:	401	:	:	:	:	:	:	09 59 08.52	$+01 \ 49 \ 14.92$	20
347	zCOSMOS-813723	0.3540	248	64	243	:	:	:	:	:	:	0958533.35	$+01 \ 48 \ 10.95$	20
348	zCOSMOS-813894	0.3620	508	86	424	:	:	:	:	:	:	09 58 44.53	$+01 \ 48 \ 46.19$	20
349	zCOSMOS-814092	0.4030	821	225	1396	:	:	:	:	:	:	095833.03	+01 55 59.36	20
350	zCOSMOS-814148	0.2610	213	39	198	÷	•	:		:	:	095829.88	+015659.92	20
351	zCOSMOS-814386	0.1850	246	47	210	:		:	:	:	:	09 58 16.87	+01 55 44.37	20
352	zCOSMOS-815797	0.6570	:	71	359	:		:		•	:	$10\ 02\ 35.77$	+02 03 32.32	20
353	zCOSMOS-815800	0.8400	:	333	793	:	:	:	:	:	:	$10\ 02\ 35.56$	$+02\ 01\ 24.87$	20
354	zCOSMOS-815804	0.5740	:	106	260	:	:	:	:	:	:	$10\ 02\ 35.36$	$+02\ 04\ 15.11$	20
355	zCOSMOS-816839	0.3000	150	67	277	:	:	:	:	:	:	$10 \ 01 \ 46.25$	$+02\ 06\ 43.20$	20
356	zCOSMOS-817226	0.5630	:	105	520	:	:	:	:	:	:	$10 \ 01 \ 31.56$	+01 59 53.25	20
357	zCOSMOS-817306	0.3730	124	47	184	:	:	:	:	:	:	10 01 27.98	$+02 \ 02 \ 09.76$	20
358	zCOSMOS-817804	0.9080	:	170	422	:	:	:	:	:	:	$10 \ 01 \ 03.52$	+02 03 00.96	20
359	zCOSMOS-817820	0.6380	:	47	150	:	:	:	:	:	:	$10 \ 01 \ 02.71$	$+02\ 01\ 14.72$	20
360	zCOSMOS-819298	0.1860	450	20	335	÷		:	:	:	:	09 59 43.34	$+02\ 05\ 02.24$	20

ndex Na	ne	ы	$\mathop{\rm EW}_{({\rm \AA})}^{\rm (H\alpha)}$	$EW(H\beta)$ (Å)	EW[OIII] (Å)	$\stackrel{\sigma}{(\mathrm{km~s}^{-1})}$	$F(H\alpha)$ Observed	$F(H\beta)$ Observed	F[OIII]λ5007Å Observed	$F(H\alpha)$ Corrected	$F(H\beta)$ Corrected	A.R (J2000)	DEC. (J2000)	Reference
61 zCOSMO	S-819574	0.7660		118	720	:			:	:	:	09 59 29.02	$+02 \ 00 \ 04.66$	20
62 zCOSMO	S-820061	0.6940	:	111	380					:		09 58 56.76	+015808.84	20
63 zCOSMO	S-820087	0.6470	:	84	248					:		09 58 55.40	$+02\ 00\ 57.04$	20
64 ZCOSMO	S-820163	0.7500		85	289							09 58 50.28	+02.06.00.68	20
NECOSMO	S-890494	0.3410	206	67	190						:	00 58 34 65	$\pm 02 00 00.33 35$	00
	1-020424	0140.0	007	151 701	1100	:	:	:	:	:	:	09 70 94.00	102 00 00 01 01	07 00
66 ZUUSMU	S-820575	0.5010	:	185	1180	:	:	:	:	:	:	09 58 26.26	$+02\ 03\ 27.21$	07.
67 zCOSMO	S-820600	0.6470	:	20	370	:	:	:	:	:	:	09 58 24.57	$+02\ 00\ 26.49$	20
68 zCOSMO	S-821098	0.2090	191	38	129	:	:	:	:	:	:	09 57 57.85	$+02 \ 02 \ 04.58$	20
69 zCOSMO	S-821693	0.6050	:	142	622	:	:	:	:	:	:	$10 \ 03 \ 01.86$	$+02\ 14\ 18.90$	20
70 zCOSMO	S-822429	0.5560	:	52	254					:		$10\ 02\ 21.06$	+02 14 46.97	20
71 ×COSMO	S-822504	0.8200		92	510							10 02 17 66	+02 14 02 20	20
OMSOD ² 1	C 800703	0.0000	с л/с	10	170		:			:	:	10 00 08 01	1 02 13 02:20	2 C
	071770-0	0.2230	047	77	101	:	:	:	:	:	:	10.00 20 01	-00 00 20 20 4	07
73 ZUUSMU	2-822900	0.8390	:	00	191	:	:	:	:	:	:	10 01 98.93	+02 08 90.97	07
74 zCOSMO	S-823087	0.8150	:	116	401	:	:	:	:	:	:	$10 \ 01 \ 53.20$	$+02\ 15\ 49.40$	20
75 zCOSMO	S-823693	0.5920	:	64	282	:	:	:		:	:	10 01 23.78	$+02\ 17\ 01.83$	20
76 zCOSMO	S-823694	0.5930	:	<u>66</u>	230	:	:	:	:	:	:	10 01 23.78	$+02\ 17\ 02.86$	20
77 zCOSMO	S-824210	0.1140	340	:	410				:	:		10 00 55.22	+02 14 13.22	20
78 zCOSMO	S-824225	0.1900	484	110	464							10 00 54.65	$+02\ 09\ 00.41$	20
	C 894503	0.6700		40	317			•		•	•	10 00 41 86	102 00 12 56	06
	000120-0	0.4750	[0-	150	•	•		•	•	:	00 11 00 01 10 01	1 00 00 46 76	010
	1-0747045	0.11.10	041	001	100	:	:	:	:	:	:	10 00 01 51	- 00 00 00 00 00	04
	0170700	0.1040	670	100	400	:	•	:	•	:	:	10 00 04.00	+02 08 09.22	70
82 ZCUSMU	S-825921	0.6340	:	45	194	:	:	:	:	:	:	09 59 34.09	$+02\ 07\ 43.12$.50
83 zCOSMO	S-825959	0.6900	:	99	190	:	:	:	÷	:	:	09 59 32.33	$+02\ 09\ 55.39$	20
84 zCOSMO	S-826050	0.8840	:	99	200	:	:	:	:	:	:	09 59 28.15	+02 11 41.72	20
85 zCOSMO	S-826076	0.1650	195	40	160	:	:	:	:	:	:	095926.63	+02 09 49.57	20
86 zCOSMO	S-826191	0.3550	270	74	196	:	:	:	:	:	:	09 59 21.68	$+02\ 09\ 06.04$	20
87 zCOSMO	S-826195	0.8900	:	147	288	:	:	:	:	:	:	09 59 21.52	+02 11 17.78	20
88 zCOSMO	S-827073	0.2520	515	06	500	•	•				:	09 58 38.87	+02 16 51.94	20
89 zCOSMO	S-827326	0.8390	:	141	268	:	:	:	:	:	:	09 58 27.56	+02 14 57.07	20
90 zCOSMO	S-828338	0.8220	:	126	283	:		:	:	:	:	$10 \ 03 \ 03.61$	+02 25 02.73	20
91 zCOSMO	S-829725	0.7440		119	462					:		$10 \ 01 \ 57.12$	+02 27 15.74	20
92 zCOSMO	S-829868	0.5790	:	310	1610	:			:	:	:	$10\ 01\ 50.09$	$+02\ 21\ 05.38$	20
93 zCOSMO	S-829923	0.2160	180	40	156	:	:		:	:	:	10 01 47.90	$+02\ 24\ 44.28$	20
94 zCOSMO	S-830132	0.4010	431	65	323	:		:	:	:	:	10 01 39.18	+02 25 22.96	20
95 zCOSMO	S-830321	0.8500	:	130	805	:	:	:	:	:	:	$10\ 01\ 32.01$	+02 22 19.17	20
96 zCOSMO	S-830751	0.2490	730	148	805		•	:			:	$10 \ 01 \ 10.72$	$+02\ 20\ 49.08$	20
97 zCOSMO	S-831158	0.1900	206	54	184	:	:	:	:	:	:	$10 \ 00 \ 51.53$	$+02\ 27\ 28.96$	20
98 zCOSMO	S-831178	0.2650	400	70	444	:	:	:	:	:	:	$10 \ 00 \ 50.62$	$+02\ 26\ 57.39$	20
99 zCOSMO	S-831397	0.9130	:	173	852	:	:	:	:	:	:	$10 \ 00 \ 39.44$	$+02\ 26\ 31.94$	20
00 zCOSMO	S-831498	0.5380	:	170	917	:	:	:	:	:	:	$10 \ 00 \ 34.66$	+02 24 48.46	20

							Table 1 Co	ontinued						
Index	Name	z	$ \substack{ EW(H\alpha) \\ (Å) } $	$\mathop{\rm EW}_{({\rm \AA})}^{({\rm H}\beta)}$	EW[OIII] (Å)	$\stackrel{\sigma}{(\mathrm{km~s}^{-1})}$	$F(H\alpha)$ Observed	$F(H\beta)$ Observed	F[OII1] $\lambda 5007 \text{Å}$ Observed	$F(H\alpha)$ Corrected	$F(H\beta)$ Corrected	A.R (J2000)	DEC. (J2000)	Reference
401	zCOSMOS-831622	0.8370	:	84	533	:	:	:	:	:	:	10 00 28.45	+02 24 56.07	20
402	zCOSMOS-831713	0.4180	229	64	239	:	:	:	:	:	:	$10 \ 00 \ 24.36$	+02 27 14.88	20
403	zCOSMOS-831791	0.2600	220	46	237	:	:	:	:	:	:	$10 \ 00 \ 21.92$	+02 25 07.66	20
404	zCOSMOS-831824	0.6880	÷	107	504	:	:	:	:	:	:	$10 \ 00 \ 20.90$	+02 18 32.43	20
405	zCOSMOS-831940	0.1200	150	:	150	:	:	:	:	:	:	$10 \ 00 \ 16.12$	+02 19 18.25	20
406	zCOSMOS-832077	0.5960	:	66	276	:	•	:	•	:	:	$10 \ 00 \ 10.78$	$+02\ 20\ 24.43$	20
407	zCOSMOS-832097	0.1340	278	:	243	:	:	•		:	:	$10 \ 00 \ 09.99$	+02 24 36.63	20
408	zCOSMOS-832539	0.7310	:	118	376	:	•	:	•	:	:	09 59 49.42	$+02\ 17\ 38.60$	20
409	zCOSMOS-832898	0.4070	356	89	272	:	:	:	:	:	:	09 59 32.22	+02 24 24.24	20
410	zCOSMOS-833022	0.4270	:	105	467	:	:	:	:	:	:	09 59 26.77	+02 18 59.32	20
411	zCOSMOS-833044	0.3130	196	75	174	:	:	:	:	:	:	09 59 25.48	$+02\ 21\ 20.73$	20
412	zCOSMOS-833222	0.4800	:	69	300	:	:	:	:	:	:	09 59 17.52	$+02\ 27\ 30.09$	20
413	zCOSMOS-834100	0.8680	:	191	323	:	:	:	:	:	:	09 58 37.36	$+02\ 21\ 44.83$	20
414	zCOSMOS-834172	0.5010	:	62	225	:	:	:	:	:	:	09 58 34.33	$+02\ 20\ 15.82$	20
415	zCOSMOS-834906	0.3360	590	09	345	:	:	:	:	:	:	09 57 55.26	$+02\ 27\ 16.60$	20
416	zCOSMOS-836042	0.6780		81	200	:	•	•			:	10 02 31.60	+02 36 41.36	20
417	zCOSMOS-836108	0.3510	490	74	457	:	•	•			:	10 02 28.30	+02 34 04.48	20
418	zCOSMOS-836228	0.1680	259	71	259	:	:	:	:	:	:	10 02 22.31	$+02\ 31\ 37.21$	20
419	zCOSMOS-836232	0.3300	290	44	188	:	:	:	:	:	:	$10 \ 02 \ 22.19$	+02 35 08.43	20
420	zCOSMOS-836338	0.7610	:	103	219	:	•	•			:	$10\ 02\ 18.06$	$+02 \ 32 \ 14.37$	20
421	zCOSMOS-836632	0.4710	351	92	352	:	•	•			:	$10\ 02\ 04.93$	$+02\ 37\ 27.78$	20
422	zCOSMOS-837240	0.3830	441	16	515	:	:	:	:	:	:	$10 \ 01 \ 39.15$	$+02 \ 33 \ 48.60$	20
423	zCOSMOS-837330	0.2200	220	39	141	:	:	:	:	:	:	$10\ 01\ 35.13$	$+02 \ 30 \ 55.02$	20
424	zCOSMOS-837582	0.7310	:	103	625	:	:	:	:	:	:	$10 \ 01 \ 23.77$	+02 34 30.06	20
425	zCOSMOS-837610	0.4920	:	80	402	:	:	:	:	:	:	$10 \ 01 \ 22.27$	$+02 \ 36 \ 59.88$	20
426	zCOSMOS-838357	0.7790	:	108	551	:	:	:	:	:	:	$10 \ 00 \ 49.23$	$+02 \ 29 \ 17.29$	20
427	zCOSMOS-838843	0.3690	273	55	202	:	:	:	:	:	:	10 00 29.23	$+02\ 27\ 41.34$	20
428	zCOSMOS-839293	0.1090	207	÷	163	:	:	÷	:	:	:	$10 \ 00 \ 10.32$	$+02\ 28\ 09.75$	20
429	zCOSMOS-839458	0.7480	:	86	289	÷	•	•	•	:		$10 \ 00 \ 02.68$	$+02 \ 31 \ 40.37$	20
430	zCOSMOS-839488	0.2190	320	63	209	:	:	:	:	:	:	$10 \ 00 \ 01.01$	+02 36 34.81	20
431	zCOSMOS-839539	0.3800	321	63	269	:	:	:	:	:	:	09 59 58.88	+02 29 47.49	20
432	zCOSMOS-840004	0.4070	330	50	182	:	:	:	:	:	:	09 59 40.94	+02 29 17.12	20
433	zCOSMOS-840051	0.2500	418	84	345	:	:	:	:	:	:	095939.63	+02 28 38.14	20
434	zCOSMOS-840109	0.2470	:	35	150	:	:	:	:	:	:	09 59 37.95	+02 36 34.94	20
435	zCOSMOS-840247	0.7630	÷	89	280	:	:	÷	:	:	:	09 59 31.68	+02 36 51.22	20
436	zCOSMOS-840599	0.4800	:	49	144	:	:	:	:	:	:	09 59 13.52	$+02\ 29\ 59.35$	20
437	zCOSMOS-840688	0.3200	280	50	182	:	:	:	:	:	:	09 59 08.74	$+02 \ 30 \ 29.54$	20
438	zCOSMOS-840845	0.2470	294	20	327	:	:	:	:	:	:	09 58 59.14	+02 35 22.79	20
439	zCOSMOS-840962	0.1200	2780	:	2700	:	:	:	:	:	:	09 58 53.40	+02 34 37.32	20
440	zCOSMOS-840971	0.4400	387	121	568	:	:	:	:	:	:	095853.08	+02 35 39.93	20
Contin	uation on the next p	age.												

	Reference		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	21	21	21	21	21	21	21
	DEC.	(J2000)	+02 34 33.65	+02 29 08.70	+02 28 43.87	+02 28 37.24	+02 33 56.48	$+02 \ 34 \ 19.00$	+02 28 08.60	+02 29 39.10	+02 45 01.11	+02 41 32.20	+02 39 53.92	+02 39 42.83	+02 40 01.16	+02 45 24.28	+02 38 33.51	+02 40 02.45	+02 40 36.12	+02 41 38.12	+02 45 18.72	+02 38 49.26	+02 37 45.71	+02 41 59.23	+02 39 26.11	$+02\ 47\ 22.46$	+02 45 32.12	$+02\ 47\ 20.81$	+02 39 38.93	+02 41 18.47	+02 37 43.27	$+02\ 48\ 30.19$	$+02\ 47\ 41.83$	$+02\ 48\ 55.31$	+02 50 13.65	$-04 \ 30 \ 01.49$	$-04\ 29\ 34.12$	$-04\ 28\ 36.83$	-04 33 08.01	$-04\ 24\ 51.78$	$-04\ 18\ 37.75$	-04 15 16.54
	A.R	(J2000)	095853.02	095846.53	09 58 44.10	095826.03	09 58 21.20	09 58 21.46	09 58 17.70	09 58 14.85	$10 \ 03 \ 01.91$	$10 \ 02 \ 51.35$	$10 \ 02 \ 36.89$	$10 \ 02 \ 31.44$	$10 \ 02 \ 19.60$	$10 \ 02 \ 02.59$	$10 \ 01 \ 37.20$	$10 \ 01 \ 36.54$	$10 \ 01 \ 23.36$	$10 \ 01 \ 12.78$	$10 \ 01 \ 08.16$	$10 \ 00 \ 32.62$	$10 \ 00 \ 31.86$	09 59 58.54	09 59 52.10	09 59 49.06	09 59 24.90	09 59 24.66	09 59 16.38	09 58 59.44	095833.42	$10 \ 03 \ 04.20$	$10 \ 03 \ 00.34$	$10 \ 02 \ 33.23$	$10 \ 01 \ 33.28$	$02 \ 25 \ 09.25$	$02 \ 25 \ 19.84$	02 25 33.71	$02 \ 25 \ 56.55$	$02 \ 26 \ 22.22$	$02 \ 26 \ 28.28$	02 26 34.42
	$\widetilde{F}(H\beta)$	Corrected	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	$\widetilde{F}(H\alpha)$	Corrected	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	F[OIII]A5007Å	Observed	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	33.5 ± 1.1	55.9 ± 1.1	35.2 ± 0.7	22.6 ± 1.3	34.6 ± 1.7	55.7 ± 1.8	116.9 ± 1.6
ontinued	$F(H\beta)$	Observed	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	$7.8^{+1.7}_{-1.7}$	$13.2^{+0.7}_{-0.7}$	$8.4_{-0.7}^{+0.7}$	$7.4_{-0.8}^{+0.8}$	$8.9^{+1.7}_{-1.7}$	$13.0^{+1.4}_{-1.4}$	$17.9^{+1.2}_{-1.2}$
Table 1 C	$F(H\alpha)$	Observed	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	$36.8^{+0.6}_{-0.6}$:	:	:	•	:
	α ,	(km s^{-1})	:	:	:	:	:	:	:	:	:	:	:		•	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:
	EW[OIII]	(A)	298	174	440	208	202	171	208	1105	247	409	271	815	231	295	200	240	285	481	286	214	269	1087	218	209	450	625	316	160	171	601	475	152	450	119 ± 19	160 ± 15	305 ± 47	103 ± 13	162 ± 30	198 ± 23	1086 ± 100
	$EW(H\beta)$	(A)	62	49	125	51	39	43	74	188	62	:	66	144	115	78	60	76	06	128	80	57	74	150	58	85	108	108	83	50	65	165	116	40	113	45 ± 20	37 ± 5	86 ± 25	30 ± 9	37 ± 25	$44{\pm}10$	145 ± 30
	$EW(H\alpha)$	(A)	287	190	905	170	252	187	:	:	306	290	187	:	:	:	:	:	:	:	314	278	:	:	352	:	:	:	:	269	:	:	:	177	:	:	:	:	:	:	:	:
	z		0.2000	0.1700	0.3140	0.1880	0.2750	0.1670	0.8520	0.4820	0.1700	0.1250	0.4720	0.5060	0.8510	0.6760	0.6670	0.6110	0.5280	0.6210	0.2290	0.3610	0.7260	0.7280	0.2250	0.7960	0.4800	0.5980	0.7550	0.3810	0.8620	0.8490	0.6110	0.2170	0.8160	0.8614	0.4033	0.7411	0.6177	0.7065	0.5270	0.5550
	Name		zCOSMOS-840973	zCOSMOS-841104	zCOSMOS-841150	zCOSMOS-841493	zCOSMOS-841554	zCOSMOS-841564	zCOSMOS-841642	zCOSMOS-841690	zCOSMOS-842700	zCOSMOS-842947	zCOSMOS-843208	zCOSMOS-843329	zCOSMOS-843573	zCOSMOS-843933	zCOSMOS-844465	zCOSMOS-844480	zCOSMOS-844783	zCOSMOS-844972	zCOSMOS-845045	zCOSMOS-845785	zCOSMOS-845804	zCOSMOS-846604	zCOSMOS-846749	zCOSMOS-846799	zCOSMOS-847264	zCOSMOS-847277	zCOSMOS-847434	zCOSMOS-847735	zCOSMOS-848170	zCOSMOS-849222	zCOSMOS-849272	zCOSMOS-849619	zCOSMOS-850262	VUDS520276545	VUDS520281627	VUDS520290391	VUDS520246239	VUDS520327062	VUDS520388031	VUDS520420821
	Index		441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480

Properties of the Selected Sample at High Redshift

							Table 1 C	Continued						
Index	Name	z	$EW(H\alpha)$	$EW(H\beta)$	EW[OIII]	σ	$F(H\alpha)$	$F(H\beta)$	F[OIII]λ5007Å	$F(H\alpha)$	$F(H\beta)$	A.R	DEC.	Reference
			(Å)	(Å)	(Å)	$(\mathrm{km}~\mathrm{s}^{-1})$	Observed	Observed	Observed	Corrected	Corrected	(J2000)	(J2000)	
481	VUDS520349673	0.5183	:	29 ± 6	132 ± 30	:	:	$14.3^{+1.2}_{-1.2}$	50.9 ± 6.1	:	:	$02\ 26\ 39.93$	$-04\ 22\ 34.80$	21
482	VUDS520316717	0.6935	:	45 ± 9	$258{\pm}50$:	:	$10.2^{+0.5}_{-0.5}$	41.2 ± 1.4	:	:	$02\ 26\ 52.60$	$-04\ 25\ 57.40$	21
483	VUDS520433508	0.8464	:	:	326 ± 130	:	:	$7.4^{+1.8}_{-1.8}$	36.2 ± 2.8	:	:	$02\ 27\ 07.88$	$-04\ 13\ 51.39$	21
484	VUDS520344687	0.8011	:	68 ± 20	269 ± 65	:	:	$9.0^{+2.7}_{-2.7}$	35.1 ± 2.0	:	:	$02\ 27\ 15.16$	$-04\ 23\ 03.16$	21
485	VUDS530076899	0.3400	:	$55{\pm}16$	$140{\pm}10$:	$5.8^{+0.8}_{-0.8}$	$2.0^{\pm 0.4}_{-0.4}$	9.5 ± 0.5	:	:	$03\ 31\ 55.47$	$-27\ 35\ 02.27$	21
486	VUDS530076254	0.2500	:	$31{\pm}7$	102 ± 14	:	$20^{+1.5}_{-1.5}$	$5.7^{+0.9}_{-0.9}$	17.6 ± 1.2	:	:	$03\ 32\ 13.64$	$-27\ 35\ 17.58$	21
487	VUDS530080539	0.8400	:	54 ± 8	161 ± 26	:	:	$18.4^{+1.8}_{-1.8}$	68.0 ± 5.5	:	:	$03 \ 32 \ 15.09$	$-27\ 33\ 39.18$	21
488	VUDS530053182	0.3750	:	172 ± 30	1002 ± 20	:	$160.9^{+5.5}_{-5.5}$	$57.8^{+2.8}_{-2.8}$	342.4 ± 5.5	:	:	$03\ 32\ 15.82$	$-27\ 43\ 51.24$	21
489	VUDS530046029	0.6700	:	:	124 ± 20	:	:	$5.8^{+1.2}_{-1.2}$	25.0 ± 1.8	:	:	$03 \ 32 \ 20.50$	$-27 \ 46 \ 21.05$	21
490	VUDS530048721	0.5700	:	40 ± 10	168 ± 15	:	:	$2.6^{+0.8}_{-0.8}$	14.5 ± 0.9	:	:	$03\ 32\ 40.38$	$-27\ 45\ 23.42$	21
491	VUDS530043711	0.6200	:	:	125 ± 7	:	:	$17.1_{-8.1}^{+8.1}$	55.2 ± 1.6	:	:	$03\ 32\ 59.02$	$-27\ 47\ 10.57$	21
492	VUDS530079125	0.3800	:	59 ± 6	264 ± 30	÷	$13.4^{+1.1}_{-1.1}$	$5.8_{-0.6}^{+0.6}$	24.2 ± 0.7	:	:	$03 \ 33 \ 01.56$	-27 34 09.70	21
493	VUDS510830468	0.6745	:	340 ± 30	1650 ± 151	÷	:	$26.0^{+1.7}_{-1.7}$	149.5 ± 3.5	:	:	095909.27	$+02\ 01\ 52.50$	21
494	VUDS510146174	0.4781	:	106 ± 30	456 ± 43	:	:	$3.0^{+0.9}_{-0.9}$	13.9 ± 1.2	:	:	095909.66	+01 59 17.71	21
495	VUDS511475480	0.6634	:	329 ± 25	1595 ± 300	:	:	$15.1^{+1.5}_{-1.5}$	93.2 ± 1.7	:	:	095943.09	+02 33 56.89	21
496	VUDS510573089	0.5472	:	$50{\pm}7$	397 ± 35	:	:	$20.1^{+1.5}_{-1.5}$	147.0 ± 3.1	:	:	09 59 44.22	+01 56 14.25	21
497	VUDS510809459	0.6614	:	$85{\pm}12$	349 ± 25	:	:	$2.0^{+0.2}_{-0.2}$	10.0 ± 0.4	:	:	095952.20	$+02 \ 00 \ 03.82$	21
498	VUDS510352169	0.6282	:	233 ± 15	957 ± 25	:	:	$28.3^{+0.8}_{-0.8}$	133.5 ± 2.4	:	:	095959.59	$+01\ 47\ 12.63$	21
499	VUDS510229076	0.2197	:	$37{\pm}13$	163 ± 27	:	$22^{+3.7}_{-3.7}$	$5.6^{+1.2}_{-1.2}$	19.5 ± 1.5	:	:	$10 \ 00 \ 11.84$	$+02\ 08\ 15.63$	21
500	VUDS510997797	0.2837	:	46 ± 12	148 ± 26	:	$28.2^{\pm 1.5}_{-1.5}$	$7.8^{+1.3}_{-1.3}$	28.2 ± 1.5	:	:	$10\ 00\ 20.21$	$+02\ 15\ 58.80$	21
501	VUDS510175664	0.5018	:	115 ± 30	656 ± 45	:	:	$9.0^{+3.0}_{-3.0}$	39.8 ± 2.0	:	:	$10\ 00\ 27.14$	$+02\ 02\ 34.63$	21
502	VUDS5120568170	0.3389	:	$48{\pm}10$	133 ± 15	:	:	$3.3_{-0.7}^{+0.7}$	13.2 ± 0.9	:	:	$10\ 00\ 42.66$	$+01 \ 48 \ 11.25$	21
503	VUDS5101659094	0.6782	:	22 ± 4	188 ± 30	:	:	$2.9_{-0.7}^{+0.7}$	13.8 ± 1.7	:	:	$10\ 01\ 18.50$	+02 38 50.43	21
504	VUDS5101657178	0.5633	:	62 ± 11	228 ± 15	:	:	$8.0^{+0.9}_{-0.9}$	$36.6{\pm}1.3$:	:	$10\ 01\ 33.13$	+02 39 38.69	21
Noton.	All accession last midt		the second in the	and from a	Eline mite	10-17		Trite of a	icht crossion of	aine onnod o	ntoo and acc	inn bud	to of declinetion	do do
PTCPS. A	reminutes and arese	eonds.			Sum vni i		- 6 og		12117 aovennou au	unn (emon o	nae nitre eann	um nue, enuo	TO PARTICIPATION TO SAL	
^a Obser	ved flux of $H\beta$ emis	sion line	calculated	from observ	ved flux of H_i	β emission	line once th	nat they hav	re been corrected	by extinctio	n.			
p Como	atod Anne of [OIII] an	l noinninn	ine token fr	am literetur	~~									

Properties of the Selected Sample at High Redshift

^b Corrected flux of [OIII] emission line taken from literature. ^c Observed flux of H α and H β emission lines calculated from corrected fluxes of H β emission line taken from literature. ^c Observed flux of H α and H β emission lines calculated from corrected fluxes of H β emission line taken from literature. **References.** (1) Erb et al. 2006a; (2) Erb et al 2006b; (3) Hoyos et al. 2005; (4) Siegel et al. 2005; (5) Erb et al. 2003; (6) Pettini et al. 2001; (7) Matsuda et al. 2011; (9) Maseda et al. 2013; (10) Maseda et al. 2014; (11) Masters et al. 2014; (12) Kobulnicky & kewley 2004; (14) Xia et al. 2012; (16) Weiner et al. 2006; (17) Van der Well et al. 2011; (18) Föster Schreiber et al. 2009; (19) Mancini et al. 2011; (20) Amorin et al. 2014a (private data); (21) Amorin et al. 2014b (private data).

) Method	:	:	:	:	:	R23	:	:		:	:	R23	:	:	:	:	R23	:	÷	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:
$12 + \log(O/H)$	•	:	:	:	:	~ 8.55	:	:		:	:	~ 8.55	:	: :	:	:	~ 8.55	:	:	:	:	:	:	:	•	:	•	:	:	:	:	•	•	•	:	:	:	:	:	:
$^{K}_{\mathrm{(AB)}}$	÷	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	÷	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	20.95^{c}	20.84^{c}
$^{H}_{\mathrm{(AB)}}$	÷	÷	÷	÷	÷	:	÷	:	:	÷	:	:	÷	:	:	÷	:	÷	÷	÷	:	:	÷	÷	:	:	:	:	÷	÷	:	÷	:	:	÷	:	:	÷	÷	÷
$^{R}_{\rm (AB)}$	24.72	24.48	24.55	24.66	23.63	24.58	24.80	24.35	25.37	23.11	23.44	25.35	23.95	22.88	23.05	25.33	24.78	25.46	22.59	24.21	24.80	24.85	24.36	24.51	23.99	25.12	24.23	23.07	24.40	23.03	24.42	24.44	24.30	24.81	23.57	23.39	23.36	23.49	23.72	23.31
\mathcal{M}_B (mag)	÷	:	:	:	:	:	÷	:	:	:	:	:	÷	:	:	÷	:	:	÷	÷	:	:	÷	÷	÷	:	:	:	÷	:	:	:	:	:	:	:	:	:	÷	:
$A(H\beta)$	$0.46_{-0.33}^{+0.33}$	$0.32^{+0.23}_{-0.23}$	$1.22_{-0.88}^{+0.00}$	$1.33_{-0.96}^{+0.96}$	$0.55_{-0.40}^{+0.40}$	$0.28_{-0.20}^{+0.20}$	$1.22_{-0.88}^{+0.88}$	$1.01_{-0.73}^{+0.73}$	$1.08_{-0.78}^{+0.78}$	$1.40^{+1.01}_{-1.01}$	$0.57_{-0.42}^{+0.42}$	$0.28_{-0.20}^{+0.20}$	$1.08^{+0.78}_{-0.78}$	$1.31_{-0.95}^{+0.95}$	$0.21_{-0.15}^{+0.15}$	$0.57^{+0.42}_{-0.42}$	$0.41_{-0.30}^{+0.30}$	$0.80^{+0.58}_{-0.58}$	$0.53^{+0.38}_{-0.38}$	$0.96^{+0.70}_{-0.70}$	$0.76_{-0.55}^{+0.33}$	$1.15_{-0.83}^{+0.83}$	$0.69^{+0.50}_{-0.50}$	$0.90^{+0.04}_{-0.64}$	$0.16^{+0.11}_{-0.11}$	$0.85^{+0.62}_{-0.62}$	$1.03_{-0.75}^{+0.75}$	$0.32_{-0.23}$	$1.15_{-0.83}^{+0.83}$	L.L/_0.84	0.07 - 0.48 0.00+0.43	0.00-0.43	0.00 - 0.03	0.09-00.0	$0.25_{-0.18}^{+0.18}$	$0.44_{-0.31}^{+0.31}$	$0.05_{-0.03}$	$0.90^{+0.04}_{-0.64}$	$0.39_{-0.28}^{+0.28}$	$0.81^{+0.58}_{-0.58}$
$A(H\alpha)$	$0.33_{-0.25}^{+0.25}$	$0.23_{-0.17}^{+0.17}$	$0.88^{+0.03}_{-0.65}$	$0.96^{+0.71}_{-0.71}$	$0.40_{-0.30}^{+0.30}$	$0.20_{-0.15}^{+0.15}$	$0.88_{-0.65}^{+0.65}$	$0.73_{-0.54}^{+0.54}$	$0.78_{-0.58}^{+0.58}$	$1.01^{+0.75}_{-0.75}$	$0.42^{+0.31}_{-0.31}$	$0.20_{-0.15}^{+0.15}$	$0.78_{-0.58}^{+0.58}$	$0.95_{-0.70}^{+0.70}$	$0.15_{-0.11}^{+0.11}$	$0.42^{+0.31}_{-0.31}$	$0.30^{+0.22}_{-0.22}$	$0.58_{-0.43}^{+0.43}$	$0.38^{+0.28}_{-0.28}$	$0.70^{+0.52}_{-0.52}$	$0.55_{-0.41}^{+0.41}$	$0.83^{+0.62}_{-0.62}$	$0.50_{-0.37}^{+0.37}$	$0.65_{-0.48}^{+0.48}$	$0.12^{+0.08}_{-0.08}$	$0.62^{+0.46}_{-0.46}$	$0.75_{-0.56}^{+0.20}$	$0.23_{-0.17}^{+0.17}$	$0.83_{-0.62}^{+0.02}$	0.50 - 0.63	$0.48_{-0.36}$	$0.43_{-0.32}$	$0.03_{-0.05}$	0.07 - 0.05 0.10+0.13	$0.18_{-0.13}$	$0.32_{-0.23}^{+0.23}$	$0.03_{-0.02}^{+0.02}$	$0.65_{-0.48}^{+0.48}$	$0.28^{+0.21}_{-0.21}$	$0.58_{-0.43}^{+0.43}$
$\mathop{\mathrm{E}}_{(\mathrm{mag})} (\mathrm{mag})$	$0.10^{+0.07}_{-0.07}$	$0.07^{+0.05}_{-0.05}$	$0.26_{-0.19}^{+0.19}$	$0.29_{-0.20}^{+0.20}$	$0.120_{-0.08}^{+0.08}$	$0.06^{+0.04}_{-0.04}$	$0.26_{-0.19}^{+0.19}$	$0.22_{-0.15}^{+0.15}$	$0.24_{-0.16}^{+0.16}$	$0.31_{-0.21}^{+0.21}$	$0.12^{+0.09}_{-0.09}$	$0.06^{+0.04}_{-0.04}$	$0.24_{-0.16}^{+0.16}$	$0.28_{-0.20}^{+0.20}$	$0.04^{+0.03}_{-0.03}$	$0.12^{+0.09}_{-0.09}$	$0.09^{+0.06}_{-0.06}$	$0.18_{-0.12}^{+0.12}$	$0.12^{+0.08}_{-0.08}$	$0.21^{+0.15}_{-0.15}$	$0.16^{+0.12}_{-0.12}$	$0.25_{-0.18}^{+0.18}$	$0.15_{-0.11}^{+0.11}$	$0.20^{+0.14}_{-0.14}$	$0.04_{-0.02}^{+0.02}$	$0.18^{+0.13}_{-0.13}$	$0.22^{+0.10}_{-0.16}$	$0.07_{-0.05}$	$0.25_{-0.18}^{+0.18}$	$0.20_{-0.18}^{-0.18}$	$0.14_{-0.10}$	$0.13_{-0.09}$	0.01_0.01	$0.02_{-0.01}$	$0.06_{-0.04}$	$0.10^{+0.07}_{-0.07}$	$0.01_{-0.01}$	$0.20_{-0.14}^{+0.14}$	$0.08^{+0.06}_{-0.06}$	$0.18^{+0.12}_{-0.12}$
$\mathop{\rm M_*}\limits_{(10^8~{\rm M_\odot})}$	$02.16\substack{+01.15\\-01.15}$	$02.11_{-00.76}^{+00.76}$	06.50 ± 08.47	$15.38_{-21.83}^{+21.83}$	$04.21_{-02.53}^{+02.53}$	$02.71_{-00.84}^{+00.84}$	$08.63^{+11.22}_{-11.22}$	$02.45_{-02.64}^{+02.64}$	$03.85_{-04.42}^{+04.42}$	$20.84_{-31.03}^{+31.03}$	$17.32^{+10.73}_{-10.73}$	$01.33_{-00.43}^{+00.43}$	$14.10^{+16.17}_{-16.17}$	$28.61_{-39.96}^{+39.96}$	$07.30^{+01.82}_{-01.82}$	$07.21_{-04.47}^{+04.47}$	$02.86_{-01.31}^{+01.31}$	$10.89_{-09.35}^{+09.35}$	$00.85^{+00.49}_{-00.49}$	$07.63^{+01.92}_{-07.92}$	$01.95_{-01.64}^{+01.64}$	$16.14^{+19.75}_{-19.75}$	$04.55_{-03.38}^{+03.38}$	$02.52_{-02.41}^{+02.41}$	$00.90^{+00.17}_{-00.17}$	$02.47_{-02.25}^{+02.25}$	$11.40^{+12.01}_{-12.61}$	$05.21_{-01.86}^{+01.86}$	$05.56_{-06.82}^{+0.02}$	$04.99_{-06.27}$	03.37 - 02.46 04.97 + 02.80	$04.30_{-02.80}$	$03.49_{-00.38}$	$01.94_{-00.32}$	03.58_01.03	$09.22_{-04.33}$	$05.72_{-00.60}$	$13.56_{-12.94}$	$02.62_{-01.15}^{+01.15}$	$06.20^{+05.36}_{-05.36}$
$\stackrel{\mathrm{M}_{dyn}}{(10^{10}~\mathrm{M}_{\odot})}$		$03.11_{-01.55}^{+01.42}$	$18.00^{+05.40}_{-05.40}$	$20.31_{-04.63}^{+04.63}$	$02.53_{-02.40}^{+01.95}$	$01.56_{-00.92}^{+00.87}$	$20.32_{-03.26}^{+03.26}$	$04.05^{+00.86}_{-00.86}$	$16.65_{-07.45}^{+07.45}$	$18.84_{-06.62}^{+06.11}$	$17.69_{-01.75}^{+01.75}$	< 0.77	$08.87^{+00.59}_{-00.59}$	$07.74_{-01.26}^{+01.26}$	< 00.99	$22.51_{-03.71}^{+03.71}$	< 01.23	$04.12_{-02.30}^{+02.13}$	$02.71_{-00.59}^{+00.39}$	÷		$14.46_{-02.08}^{+02.08}$	$07.64_{-04.70}^{+04.11}$		$01.82^{+00.33}_{-00.33}$	$02.84_{-02.23}^{+01.78}$	$03.72_{-01.74}^{+01.48}$	$04.20_{-01.60}$	$17.29_{-05.97}^{+00.14}$	18.10-01.84	:	1 	< 01.15	$01.00_{-00.72}$	$15.45_{-03.02}$	$04.35_{-00.26}^{+00.26}$	$01.68_{-00.27}^{+00.27}$	$07.94_{-01.76}^{+01.76}$	< 01.18	$55.43_{-22.94}^{+22.94}$
$_{(\rm kpc)}^{\rm r_e}$	3.40	2.90	7.90	7.00	6.70	4.60	5.00	6.20	6.20	7.40	5.80	3.60	5.30	5.50	6.20	6.70	4.80	4.10	7.70	2.40	7.40	10.10	10.80	6.00	3.60	9.40	8.90	9.10	7.70	0.00	1.91.9	0.00	0.20	2.00	6.50	3.60	5.80	4.30	4.60	7.00
$SFR(H\beta)$ Corrected	$07.26^{+03.86}_{-03.86}$	$06.41_{-02.33}^{+02.33}$	$19.78_{-25.76}^{+20.10}$	$40.03^{+56.81}_{-56.81}$	$10.94_{-06.57}^{+06.57}$	$11.71_{-03.64}^{+03.64}$	$97.32^{+126.53}_{-126.53}$	$45.39^{+48.91}_{-48.91}$	$13.48^{+15.51}_{-15.51}$	$56.34^{+83.91}_{-83.91}$	$56.34^{+34.90}_{-34.90}$	$11.62_{-03.75}^{+03.75}$	$67.08^{+76.94}_{-76.94}$	$96.29^{+134.48}_{-134.48}$	$18.99^{+04.72}_{-04.72}$	$20.56^{+12.76}_{-12.76}$	$11.84_{-5.44}^{+5.44}$	$31.07^{+20.08}_{-26.68}$	$28.03^{+16.14}_{-16.14}$	$20.62^{+21.42}_{-21.42}$	$11.47_{-09.67}^{+09.67}$	$46.06^{+56.35}_{-56.35}$	$14.80^{+11.01}_{-11.01}$	$13.66^{+13.02}_{-13.02}$	$18.41_{-03.50}^{+03.50}$	$15.16^{+13.83}_{-13.83}$	$26.89^{+29.73}_{-29.73}$	$18.88_{-06.73}$	$40.46_{-49.63}^{+49.63}$	$24.51_{-31.14}$	U9. IU_06.65	10.00_10.66	17.33_01.91	$05.04_{-00.83}$	17.06-0490	$28.04_{-13.18}^{+13.18}$	$21.82_{-02.30}$	$42.37_{-40.42}^{+10.42}$	$06.19_{-02.71}^{+02.71}$	$20.85^{+18.03}_{-18.03}$
$L(H\beta)$ Corrected	$00.47^{+00.25}_{-00.25}$	$00.42_{-00.15}^{+00.15}$	$01.28^{+01.0}_{-01.67}$	$02.60_{-03.69}^{+03.69}$	$00.71^{+00.43}_{-00.43}$	$00.76_{-00.24}^{+00.24}$	$06.32^{+08.22}_{-08.22}$	$02.95^{+03.18}_{-03.18}$	$00.88_{-01.01}^{+01.01}$	$03.66_{-05.45}^{-05.45}$	$03.66_{-02.27}^{+02.27}$	$00.75_{-00.24}^{+00.24}$	$04.36_{-05.00}^{+05.00}$	$06.25_{-08.73}^{+08.73}$	$01.23^{+00.31}_{-00.31}$	$01.34_{-00.83}^{+00.83}$	$00.77_{-00.35}^{+00.35}$	$02.02_{-01.73}^{+01.73}$	$01.82_{-01.05}^{+01.05}$	$01.34_{-01.39}^{+01.39}$	$00.74_{-00.63}^{+00.63}$	$02.99_{-03.66}^{+03.66}$	$00.96_{-00.72}^{+00.72}$	$00.89^{+00.84}_{-00.84}$	$01.20_{-00.23}^{+00.23}$	$00.98^{+00.90}_{-00.90}$	$01.74_{-01.93}^{+01.93}$	$01.23_{-00.44}^{+00.44}$	$02.63_{-03.22}^{+03.22}$	$01.01_{-02.02}$	$00.59_{-00.43}$	01.00_00.69	$01.12_{-00.12}$	$00.33_{-00.05}$	$01.11_{-00.35}$	$01.82_{-00.86}^{+00.86}$	$01.42_{-00.15}^{+00.15}$	$02.75_{-02.62}^{+02.02}$	$00.40^{+00.18}_{-00.18}$	$01.35_{-01.17}^{+01.17}$
Name	HDF-BX1303	HDF-BX1376	HDF-BX1388	HDF-BX1409	Q1623-BX429	Q1623-BX432	Q1623-BX455	Q1623-BX502	Q1623-BX511	Q1623-BX543	Q1623-BX599	Q1623-MD107	Q1623-MD66	Q1700-BX490	Q1700-BX530	Q1700-BX691	Q1700-BX717	Q1700-MD109	Q2343-BM133	Q2343-BX341	Q2343-BX378	Q2343-BX389	Q2343-BX390	Q2343-BX391	Q2343-BX418	Q2343-BX429	Q2343-BX435	Q2343-BX436	Q2343-BX461 08948 DX469	UZ343-BA493 00949 DV700	UZ343-BA529 Oos 12 DV727	U2343-BA337	UZ343-BA000	Q2343-MD80	Q2346-BX220	Q2346-BX404	Q2346-BX405	Q2346-BX416	HDF-BX1322	Q1623-BX376
Index	001	002	003	004	005	900	200	008	600	010	011	012	013	014	015	0.16	017	018	019	020	021	022	023	024	0.25	0.26	027	0.28	029	030	0.31	0.02 0.00	033	034	035	036	037	038	039	040

	Method		:	:	:	:	:			:		:		:	Te	Te	Te	Te	Te	Te	Te	Ē	e E	e E	e E	- Le	Te	Te	Te	Te	R23	:										
	$12 + \log(O/H)$:	:	:	:			•			:	•	8.10 ± 0.10	7.90 ± 0.10	7.80 ± 0.10	8.00 ± 0.15	$8.20{\pm}0.15$	8.10 ± 0.15	8.10 ± 0.15	8.10 ± 0.15	8 10+0 10	8.30 ± 0.15	8 00+0.15	8.20 ± 0.15	8.30 ± 0.15	7.80 ± 0.15	8.00 ± 0.10	7.80 ± 0.10	~ 8.55	8.70 ± 0.08	8.62 ± 0.07	8.39 ± 0.16	:	8.49 ± 0.10	:					
	Κ	(AB)	20.55^{c}	21.35^{c}	19.76^{c}	20.84^{c}	20.93°	19.71^{c}	20.53°	20.75^{c}	21.60^{c}	21.25^{c}	20.10^{c}	20.55^{c}	:	:	:	:	:	:	:						:	:	:	:	:	:	:	:	:	:	22.89	22.67	22.97	:	23.30	> 22.15
	Η	(AB)	÷	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:							:	:	:	:	÷	÷	:	:	:	:	:	÷	÷	:	÷	:
	R	(AB)	24.48	24.86	23.38	24.58	24.51	23.00	23.60	23.11	23.74	24.28	23.93	23.48	:	:	÷	:	:	:								:	:	:	23.34	24.23	23.53	23.82	23.30	24.13	23.63	23.41	23.37	23.55	24.10	÷
	\mathbf{M}_B	(mag)	:	÷	:	÷	:	:	:	:			:	:	-19.90	-19.24	-19.23	-19.27	-19.24	:	-20.10	19.97	20.55	20.00	-18.48	-21.00	-19.94	-19.53	:	-19.35	÷	÷	÷	÷	÷	÷	-22.84	-22.91	-22.59	÷	-22.04	÷
	$A(H\beta)$		$0.23^{+0.16}_{-0.16}$	$0.51_{-0.36}^{+0.36}$	$1.26\substack{+0.91\\-0.91}$	$0.90_{-0.64}^{+0.64}$	$1.20_{-0.86}^{+0.86}$	$0.53_{-0.38}^{+0.38}$	$0.60^{+0.43}$	$0.57_{-0.42}^{+0.42}$	$0.46_{-0.33}^{+0.33}$	$0.39_{-0.28}^{+0.28}$	$0.62_{-0.44}^{+0.44}$	$0.57_{-0.42}^{+0.42}$:				:								:	:	:	:	$0.02^{+0.00}_{-0.00}$	$1.03_{-0.18}^{+0.18}$	$0.51_{-0.09}^{+0.09}$	$0.24_{-0.04}^{+0.04}$	$0.11_{-0.02}^{+0.02}$	$0.28^{+0.05}_{-0.05}$:	:	:	:	:	:
	$A(H\alpha)$		$0.17^{+0.12}_{-0.12}$	$0.37_{-0.27}^{+0.27}$	$0.91^{+0.68}_{-0.68}$	$0.65_{-0.48}^{+0.48}$	$0.86_{-0.64}^{+0.64}$	$0.38_{-0.38}^{+0.28}$	$0.43_{-0.32}^{+0.32}$	$0.42_{-0.31}^{+0.31}$	$0.33_{-0.25}^{+0.25}$	$0.28_{-0.21}^{+0.21}$	$0.45_{-0.33}^{+0.33}$	$0.42_{-0.31}^{+0.31}$:	:	:		:								:	:	:	:	$0.01^{+0.00}_{-0.00}$	$0.74_{-0.18}^{+0.18}$	$0.37_{-0.09}^{+0.09}$	$0.17_{-0.04}^{+0.04}$	$0.08^{+0.02}_{-0.02}$	$0.21_{-0.05}^{+0.05}$:	:	:	:	:	:
le 2	E(B - V)	(mag)	$0.05^{+0.04}_{-0.04}$	$0.11_{-0.08}^{+0.08}$	$0.28_{-0.19}^{+0.19}$	$0.20_{-0.14}^{+0.14}$	$0.26^{+0.18}_{-0.18}$	$0.12_{-0.08}^{+0.08}$	$0.13_{-0.09}^{+0.09}$	$0.12^{+0.09}_{-0.09}$	$0.10^{+0.07}_{-0.07}$	$0.08^{+0.06}_{-0.06}$	$0.14_{-0.09}^{+0.09}$	$0.12_{-0.09}^{+0.09}$:	:		:								:	:	:	:	0.004	0.224	0.110	0.052	0.024	0.062	:	:	:	:	:	:
Tab	\mathbf{M}_{*}	$(10^8 {\rm M}_{\odot})$	$06.07^{+01.61}_{-01.61}$	$04.83_{-02.90}^{+02.90}$	$25.07^{+33.63}_{-33.63}$	$06.49_{-06.20}^{+06.20}$	$12.08^{+15.41}_{-15.41}$	$12.61_{-07.26}^{+07.26}$	$08.84_{05.68}^{+05.68}$	$07.11_{-04.42}^{+04.42}$	$03.14_{-01.61}^{+01.61}$	$05.26_{-02.46}^{-01.01}$	$10.75_{-07.13}^{+07.13}$	$10.25_{-06.37}^{+06.37}$:	:	:	:									:	:	:	$02.44_{-00.58}^{+00.58}$	$03.95_{-01.04}^{+01.04}$	$17.69_{-01.42}^{+01.42}$	$09.73_{-00.71}^{+00.71}$	$10.20^{+00.76}_{-00.76}$	$11.05_{-03.77}^{+03.77}$	$13.38_{-01.77}^{+01.77}$	$14.87_{-01.82}^{+01.82}$	$06.94^{+01.68}_{-01.68}$	$22.55_{-03.05}^{+03.05}$	$05.23^{+00.88}_{-00.88}$	$01.30_{-00.11}^{+00.11}$ ^b
	M_{dyn}	$(10^{10} M_{\odot})$	$18.65^{+03.22}_{-03.22}$	< 01.14	$01.77^{+00.23}_{-00.23}$	$09.47_{-03.06}^{+02.75}$	$15.13_{-06.05}^{+06.05}$	$07.27_{-02.29}^{+02.29}$	03.57 ± 01.25			$12.22^{+06.61}_{-06.04}$	$10.72_{-01.29}^{+01.29}$	$06.79^{+01.55}_{-01.55}$:	:		:										$00.38^{+00.08}_{-00.08}$	$00.19^{+00.03}_{-00.03}$:	:	:	:	:	:	:	:	:	:	:	:
	\mathbf{r}_e	(kpc)	5.30	< 1.9	4.10	5.30	7.70	7.90	4.80	3.10	2.60	4.80	4.10	5.30	:	:	:	:	:	:							:	:	1.00	0.70	÷	÷	÷	÷	:	:	:	:	÷	÷	÷	÷
	$SFR(H\beta)$	Corrected	$11.34_{-03.01}^{+03.01}$	$11.40^{+06.85}_{-06.85}$	$57.83^{+77.58}_{-77.58}$	$15.31^{+14.63}_{-14.63}$	$25.66^{+32.73}_{-32.73}$	$22.78^{+13.11}_{-13.11}$	$19.66^{+12.64}$	$12.83_{-07.99}^{+07.99}$	$06.61^{+03.38}_{-03.38}$	$09.51_{-04.45}^{+04.45}$	$25.37^{+16.81}_{-16.81}$	$24.18^{+15.02}_{-15.02}$:	:		:	:					• •			•	•	:	$04.57^{+01.09}_{-01.09}$	$14.33_{-03.79}^{+03.79}$	$41.74_{-03.34}^{+03.34}$	$22.95^{+01.68}_{-01.68}$	$27.58^{+02.06}_{-02.06}$	$35.94^{+12.28}_{-12.28}$	$40.68^{+05.38}_{-05.38}$	$50.04^{+06.14}_{-06.14}$	$15.44_{-03.74}^{+03.74}$	$50.18_{-06.78}^{+06.78}$	$12.06_{-02.02}^{+02.02}$	$16.59_{-01.46}^{+01.46}$ a
	$L(H\beta)$	Corrected	$00.74^{+00.20}_{-00.20}$	$00.74_{-00.44}^{+00.44}$	$03.76_{-05.04}^{+05.04}$	$00.99_{-00.95}^{+00.95}$	$01.67_{-02.12}^{+02.12}$	$01.48_{-00.85}^{+00.85}$	$01.28^{+00.82}$	$00.83^{+00.52}_{-00.52}$	$00.43_{-00.22}^{+00.22}$	$00.62^{+00.29}_{-00.29}$	$01.65_{-01.09}^{+01.09}$	$01.57_{-00.98}^{+00.98}$:	:	:	:	:	:							:	:	:	$00.30^{+00.07}_{-00.07}$	$00.93_{-00.25}^{+00.25}$	$02.71_{-00.22}^{+00.22}$	$01.49_{-00.11}^{+00.11}$	$01.79^{+00.13}_{-00.13}$	$02.33^{+00.80}_{-00.80}$	$02.64_{-00.35}^{+00.35}$	$03.25_{-00.40}^{+00.40}$	$01.00^{+00.24}_{-00.24}$	$03.26_{-00.44}^{+00.44}$	$00.78_{-00.13}^{+00.13}$	$01.08^{+00.09}_{-00.09}$ a
	Name		Q1623-BX447	Q1623-BX449	Q1623-BX453	Q1623-BX586	Q1700-BX523	Q1700-BX536	O1700-BX794	Q2343-BX169	O2343-BX182	Q2343-BX236	Q2343-BX513	Q2343-BX601	DEEP2-1	DEEP2-2	DEEP2-3	DEEP2-4	DEEP2-5	DEEP2-6	DEEP2-7	DEEP2-8	DEEP9-0	DERP9-10	DEEP2-11	DEEP2-12	DEEP2-13	DEEP2-14	TKRS-1	TKRS-2	Q0201-B13	Q1700-MD103	CDFaC1	Q0347-383C5	SSA22a-MD46	B20902 + 343C6	B20902 + 343C12	$Q_{1422+231D81}$	SSA22aD3	DSF2237+116aC2	MS1512-cB58	2QZC-C1-HAE19
	Index		041	042	043	044	045	046	047	048	049	050	051	052	053	054	055	056	057	058	059	060	061	100	063	064	065	066	2000	068	690	020	071	072	073	074	075	076	277	078	620	080

	Method	:	:	÷	:	÷	:	÷	:	•	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:					:	÷	:	÷	:	:	•	÷	÷	:
	$12 + \log(O/H)$:	:		•		:	•	:	•	:	:		:		:	÷	:	:	•	:	:	:	:	:						:	:	:	•	:				:	:
	(AB)	21.25	> 22.15	18.14	20.67	20.58	CU.12	21.43	10.12	00.12	21.59	> 22.15	20.71	> 22.15	21.56	21.59	20.99	21.28	21.11	21.27	20.95	> 22.15	20.09	20.36	CO.12	21.00 20.12	91.63	20.88	> 22.75	20.90	20.61	20.54	20.90	> 22.75	21.12	20.87	21.15	20.77	:	:
	(AB)		÷	:	÷	÷	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:					:	:	:	÷	:	:	:	:	:	:
	R (AB)		:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		: :			:	:	:	:	:	:	:	:	:	:
	M_B (mag)	(9mm)	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:					:	:	:	:	:	:	:	:	:	:
	$A(H\beta)$:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:					:	:	:	÷	:	:	:	:	÷	:
	$A(H\alpha)$:	:	:	:	÷	:	:	:	÷	÷	÷	÷	:	:	:	÷	:	:	÷	÷	:	:	:	÷	÷		: :			:	:	:	÷	:	÷	:	:	÷	:
	$\mathbb{E}(B-V)$.	(9000)	:	÷	:	:	:	•	:	•	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:					:	÷	:	÷	:	÷		÷	÷	:
Table 2	M_{*} (10 ⁸ M_{\odot})	(10^{-100})	$1.52^{+00.13}_{-00.13}$ b	$2.15^{+07.21}_{-07.21}$ b	$7.68^{+00.67}_{-00.67}$	8.61 -00.76	10.30 - 00.46	$14.03_{-00.35}^{+00.35}$	03.12_{-0027}^{-0027}	$03.11_{-00.27}$	$03.47_{-00.30}^{+00.14}$	$01.58_{-00.14}^{+00.14}$	$07.49^{+00.066}_{-00.66}$		$03.04^{+00.27}_{-00.27}$ b	$02.94^{\pm 00.26}_{-00.26}$	$05.72_{-00.50}^{+00.50}$	$04.62^{+00.41}_{-00.41}$ b	$05.22_{-00.46}^{+00.46}$	$04.56^{+00.40}_{-00.40}$	$05.85_{-00.51}^{+00.51}$	$01.58_{-00.14}^{+0.14}$	$13.71_{-01.20}^{+01.20}$	$10.29_{-00.90}^{+00.30}$	$0.0.41_{-00.47}$	$00.43 - 00.48 \\ 00.05 + 00.79 b$	0.00000000000000000000000000000000000	$06.41^{+00.56}$ b	02.18 ± 00.19 b	$05.94^{+00.52}_{-00.52} b$	$08.23^{+00.72}_{-00.72}$ b	$8.85^{+00.78}_{-00.78}$ b	$6.35_{-00.56}^{+00.56}$ b	$2.18^{+00.19}_{-00.19}$ b	$5.19^{+00.46}_{-00.46}$ b	$96.65_{-00.58}^{+00.58}b$	$04.81^{+00.42}_{-00.42}$ b	$07.03^{+00.62}_{-00.62}$ ^b	:	:
		10	0	x	0	<u> </u>		_																								\cup	0	0	ö	<u> </u>				
	${ m M}_{dyn}^{dyn}$ (10 ¹⁰ ${ m M}_{\odot}$)	(Otat 01)			0 	:	:	:	:	•	÷	:	:	:	:	:	:	÷	:		:	:	:	:	:	:					:	:			::		:	:	$00.22^{+00.09}_{-00.09}$	$00.28_{-00.17}^{+00.17}$
	$\mathrm{r}_e \mathrm{M}_{dyn}^{\mathrm{I}}$ (knc) (10 ¹⁰ M $_\odot$)			∞ ::	0 	:	:	· · ·	•	•			:	•		: : :	: : : : : : : : : : : : : : : : : : : :		: : : :	•	••••				•		•		 				0			· · ·			0.99 ± 0.06 $00.22^{+00.09}_{-00.09}$	1.10 ± 0.13 $00.28_{-00.17}^{+00.17}$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$14.44^{+01.27}_{-01.27}$ a 0	$234.38^{+20.56}_{-20.56} a \cdots 8$	$35.47^{+03.11}_{-03.11}$ a 0	$30.19_{-02.65}^{+02.65}$	13.79_{-0121}^{0121} 13.79_{-0121}^{0121}	14.12_{-0124}^{+0124} (14.44 ± 01.27	12.88_0113 1. r. r 10 10 .		$13.79_{-01.21}^{-01.21}$	$10.49^{+0.71}_{-01.71}$ a	$23.98_{-02.10}^{+02.10}$ a	$20.42^{+01.79}_{-01.79}$ a	$20.42^{+0.179}_{-01.79}$ a	$13.18^{+01.16}_{-01.16}$ <i>a</i>	$14.44^{+01.27}_{-01.27}$ a	$12.31_{-01.08}^{+01.08}$ a	$17.37^{+01.52}_{-01.52}$	$13.49_{-01.18}^{+01.18}$ a	$13.79^{+01.21}_{-01.21}$	$32.35_{-02.84}^{-02.84}$	$22.90 - 02.01 \ a$	Z0.30_02.36	$20.11_{-02.20}^{-02.20}$	25 70 + 02.25 a	$19.49^{+01.71}_{-01.21}$ a	$21 87^{+01.92} a$	$33.11_{-02.90}^{-0.02}a$	$22.38^{+01.36}_{-01.96}$ a	$20.88^{+01.83}_{-01.83} a \dots $	$21.37^{+01.88}_{-01.88} a \cdots 0$	$21.87^{+01.92\ a}_{-01.92\ a}$ 0	$18.19^{+01.60\ a}_{-01.60\ a}$ 00	$22.38^{+01.96}_{-01.96}a$ ($22.90^{+02.01}_{-02.01}$ a (($16.21^{+01.42\ a}_{-01.42\ a}$	0.99 ± 0.06 00.22 $^{+00.09}_{-00.09}$	$\dots 1.10\pm0.13 00.28_{-00.17}^{+00.17}$
	$\begin{array}{ccc} \mathrm{L}(\mathrm{H}\beta) & \mathrm{SFR}(\mathrm{H}\beta) & \mathrm{r}_e & \mathrm{M}_{dyn} \\ \mathrm{Corrected} & \mathrm{Corrected} & (\mathrm{knc}) & (10^{10} \ \mathrm{M_{\odot}}) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$00.94^{+00.08}_{-00.08}$ a $14.44^{+01.27}_{-01.27}$ a 0	$15.22^{+01.34}_{-01.34}$ a $234.38^{+20.56}_{-20.56}$ a 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$01.96_{\pm 00.17}^{\pm 00.17}$ $30.19_{\pm 02.65}^{\pm 02.65}$	$0.0.90^{-0.008}_{-0.008}$ 13.79 $^{-0.121}_{-0.121}$	$0.0.92_{-0.008}^{+0.08}$ 14.12 $_{-0.124}^{+0.124}$	$0.0.94_{-00.07}^{+0.08}$ 14.44 $_{-01.27}^{+0.012}$	$00.54_{-00.07}^{-00.07}$ 12.58 $_{-01.13}^{-01.13}$	$00.82_{-00.07}^{-0.07}$ 12.59 $_{-01.10}^{-0.10}$	$00.90_{-00.08}^{+0.08}$ I 3.79 $_{-01.21}^{+01.21}$	$01.26^{+00.11}_{-00.11}$ a $19.49^{+01.71}_{-01.71}$ a	$01.56_{-00.14}^{+0.14}$ $23.98_{-02.10}^{+0.210}$ \cdots \cdots	$01.33_{-00.12}^{+00.12}$ a $20.42_{-01.29}^{+01.79}$ a	$01.33_{-00.12}^{+00.12}$ a $20.42_{-01.79}^{+0.12}$ a	$00.86_{-00.08}^{+00.08}$ a $13.18_{-01.16}^{+01.16}$	$00.94^{+00.08}_{-00.08}$ a $14.44^{+01.27}_{-01.27}$ a	$00.80^{+00.07}_{-00.07}$ a $12.31^{+01.08}_{-01.08}$ a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$00.88^{+00.08}_{-0.08}$ 13.49 $^{+01.18}_{-01.18}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02.10_{\pm 00.18}^{\pm 00.18}$ $32.35_{\pm 02.84}^{\pm 00.18}$	$01.49^{+00.13}_{-0.15}$ " $22.90^{+00.11}_{-0.01}$ " \cdots \cdots \cdots	$0.1.0_{-00.15}^{-0.15}$ $20.90_{-02.36}^{-0.23}$	$01.03_{-00.14}^{+0.14}$ 2.0.11_02.20 01.36+00.12 a 90.82+01.83 a	01.67+00.12 -00.12 -0.133	$01.26^{+00.11}$ a $19.49^{+01.71}$ a $01.26^{+00.11}$ a $19.49^{+01.71}$ a $001.26^{+00.11}$ b $10.40^{+01.71}$ b $001.26^{+00.11}$ b 1000^{-000}	$0149^{+00.12}a 2187^{+01.92}a$	02.15 ± 00.19 33.11 ± 02.90 a 33.11 ± 02.90 a	$01.45_{-00.13}^{+00.13}$ a $22.38_{-01.96}^{+01.36}$ a	$01.36^{+00.12}_{-00.12} \ a \ 20.88^{+01.83}_{-01.83} \ a \qquad \dots \qquad \qquad$	$01.39^{+00.12}_{-00.12}$ a $21.37^{+01.88}_{-01.88}$ a 0	$01.42^{+00.12}_{-00.12} \ ^a \ 21.87^{+01.92}_{-01.92} \ ^a \qquad \dots \qquad 0$	$01.18^{+00.10}_{-00.10}$ a $18.19^{+01.60}_{-01.60}$ a 00	$01.45^{+00.13}_{-00.13}$ a $22.38^{+01.96}_{-01.96}$ a	$01.49^{+00.13}_{-00.13}$ a $22.90^{+02.01}_{-02.01}$ a ($01.05^{+00.09}_{-00.09}$ a $16.21^{+01.42}_{-01.42}$ a	0.99 ± 0.06 00.22 ±0.09	$\dots 1.10\pm0.13 00.28_{-00.17}^{+00.17}$
	Name $L(H\beta)$ SFR(H β) r_e M_{dyn} Corrected Corrected (knc) (10 ¹⁰ M $_{\odot}$)	$\frac{20 \text{ZC-C1-HAE20} 00.78^{+0.07} \text{a} 12.31^{+0.08} \text{a} \dots \text{b}}{12.31^{+0.08} \text{a} \dots \text{b}} $	2QZC-CI-HAE21 00.94 ^{+00.08} a 14.44 ^{+01.27} a 0	$2QZC-C2-HAE1$ 15.22 $^{+01.34}_{-01.34}$ a 234.38 $^{+20.56}_{-20.56}$ a 8	$2QZC-C2-HAE3 = 02.30^{+00.20}_{-00.20} = 35.47^{+00.11}_{-00.31} = \dots 0$	$2QZC-C2-HAE4 01.96_{-00.17}^{+00.17} = 30.19_{-02.65}^{+02.65} = \dots $	$2QZC-CZ-HAEI3 00.90_{0008}^{-0008} 13.79_{-0121}^{-0121}$	$2U_{ACC-UZ-HAE14} = 00.92_{-0008}^{-0008} = 14.12_{-0124}^{-0124} = \dots $	$2\sqrt{2}C-C2-HAELO 00.94_{-00.08}^{-0.08} = 14.44_{-01.27}^{-0.127} = \dots = $	$2V_{2}C_{-}C_{-}HAEIO 00.84_{-00.07}^{-0.07} 12.88_{-01.13}^{-0.13}$	$202C-C2-HAE17 = 00.82_{-0007}^{-0007} = 12.59_{-0110}^{-0110} = \dots $	$202C-C2-HAE18 00.90 - 00.08 13.79 - 01.21 \dots$	$20ZC-C3-HAE8 01.26^{+0.11}$ a 19.49 $^{+0.71}_{-0.17}$ a	$202C-C3-HAE9 01.56_{-00.14}^{+0.14}$ $23.98_{-02.10}^{+0.210}$	$2QZC-C3-HAE11 = 01.33^{+00.12}_{-00.12}$ a $20.42^{+01.79}_{-01.29}$ a	$2QZC-C3-HAE12 01.33_{-00.12}^{+0.12} 20.42_{-01.79}^{+0.12} \dots$	2QZC-C3-HAE14 00.86+00.08 = 13.18+01.16 = 0.008 = 13.18+01.16 = 0.008 = 0.00	$2QZC-C3-HAE15 00.94^{+00.08}_{-00.08} a 14.44^{+01.27}_{-01.27} a$	$2QZC-C3-HAE19 00.80^{+0.07}_{-00.07}$ a $12.31^{+0.08}_{-01.08}$ a	20ZC-C4-HAE3 01.13+0.10 a 17.37+0.52 a a a a a a a a a	$202C-C4-HAE4 = 00.88 \pm 00.08 = 13.49 \pm 0.018 = 0.0118 = 0.0018 = 0.0118 = 0.0118 = 0.0018 =$	20ZC-C4-HAE6 00.90 ^{+00.08} a 13.79 ^{+0.121} a	$0200-CI-HAE4 = 02.10_{-00.18}^{-0.18} = 32.35_{-02.84}^{-02.84}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U2UU-U-HAE& U1.03_0014 29.41-02.20 0200-C1 HAEQ 01 36+00.12 a 20 88+01.83 a	$0.900_{\text{C11}-\text{HAE10}} 0.167^{+00.15} = 26.00_{-01.83} 0.18 0.18$	0200-C1-HAE11 01.26+00.11 a 19.49+0.71 a	0.000-C1-HAE12 0.142+00.12 a 2.187+01.92 a	$0200-C2-HAE7$ $02.15+00.19$ $03.11+02.90$ a $33.11+02.90$ a \dots	$0200-C2-HAE9 \qquad 01.45+0.13 = 22.38+01.96 = \dots$	$0200-C2-HAE11$ $01.36^{+00.12}_{-00.12}$ a $20.88^{+01.83}_{-01.83}$ a (0	$0200-C2-HAE12$ $01.39^{+00.12}_{-00.12}$ $21.37^{+01.88}_{-01.88}$ \ldots 0	$0200-C2-HAE13$ $01.42^{+00.12}_{-00.12}$ a $21.87^{+01.92}_{-01.92}$ a 0	$0200-C2-HAE16$ $01.18^{+00.10}_{-00.10}$ a $18.19^{+01.60}_{-01.60}$ a 0!	$0200-C4-HAE7 01.45_{-00.13}^{+00.13} \ a 22.38_{-01.96}^{+01.96} \ a \dots$	$0200-C4-HAE8 01.49^{+00.13}_{-00.13} \ a 22.90^{+02.01}_{-02.01} \ a \dots \qquad 0$	$0200-C4-HAE11$ $01.05^{+00.09}_{-00.09}$ a $16.21^{+01.42}_{-01.42}$ a	$COSMOS-15144$ 0.99 ± 0.06 00.22	$COSMOS-13848$ 1.10 ± 0.13 $00.28^{+0.17}_{-00.17}$

	Method		:	:	:	:	:	÷	:	:	:	:	:	:	:	N2	N_2	R23	:	R23	N2	R23	R23	N2	N2	N2	N2	÷	R23	R23	R23	R23	R23	:	R23	R23	N2	R23	N2	R23	R23
	$12 + \log(O/H)$		÷			:	:		:	:	:	:	÷	:	÷	< 8.04	8.35 ± 0.04	~ 8.4	:	8.44 ± 0.04	8.57 ± 0.08	$8.81 {\pm} 0.02$	8.87 ± 0.09	8.67 ± 0.04	8.56 ± 0.05	< 7.82	< 8.09		~ 8.4	~ 8.4	~ 8.4	8.00 ± 0.11	~ 8.4	:	8.62 ± 0.03	7.96 ± 0.03	8.33 ± 0.05	~ 8.4	8.29 ± 0.02	~ 8.4	8.37 ± 0.06
	K (AB)	÷	:	:	÷	:	:	÷	÷	÷	:	÷	÷	÷	÷	:	:	÷	:	÷	:	:	:	:	:	:	÷	÷	÷	÷	÷	:	:	:	:	÷	:	:	÷	:	:
	$_{(\mathrm{AB})}^{H}$	÷	:	:	÷	:	:	÷	:	:	:	÷	:	÷	:	:	:	÷	÷	÷	:	:	:	:	÷	:	÷	÷	÷	÷	÷	:	:	:	:	:	:	:	÷	:	:
	$^{R}_{\rm (AB)}$	÷	:	:	:	:	:	÷	:	:	:	:	:	:	:	÷	:	:	÷	:	:	:	:	:	:	:	÷	÷	:	:	:	:	:	:	:	:	:	:	:	:	:
	\mathbf{M}_B (mag)	÷	:	:	:	:	:	÷	:	:	:	÷	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	÷	÷	:	:	:	:	:	:	:	:	:	:	÷	:	:
	${ m A}({ m H}eta)$:	:	:	:	:	:		:	:	:	:	:	:		$0.18_{-0.19}^{+0.92}$:	$3.49^{+1.63}_{-1.51}$	$0.14_{-0.14}^{+0.23}$	$1.38_{-0.30}^{+0.30}$	$0.64_{-0.52}^{+0.52}$	$0.00^{+0.14}_{-0.00}$	$0.23^{+0.64}_{-0.23}$:	$0.00^{+0.74}_{-0.00}$	$0.00^{+0.18}_{-0.00}$			$2.80^{+0.74}_{-0.74}$	$1.38_{-0.48}^{+0.48}$	$1.52\substack{+0.42\\-0.42}$	$0.00^{+0.00}_{-0.00}$	$1.47^{+0.32}_{-0.32}$		$1.10^{+0.26}_{-0.26}$	$0.00^{+0.00}_{-0.00}$:	$2.21_{-0.83}^{+0.83}$	$0.69^{+0.48}_{-0.48}$	$0.00^{+0.74}_{-0.00}$	$1.38_{-0.36}^{+0.30}$
	$A(H\alpha)$:	:	:	÷	:	:		:	:	:	÷	:	÷		$0.13_{-0.14}^{+0.00}$:	$2.53^{+1.25}_{-1.17}$	$0.10^{+0.17}_{-0.10}$	$1.00^{+0.27}_{-0.27}$	$0.46^{+0.38}_{-0.38}$	$0.00^{+0.10}_{-0.00}$	$0.17\substack{+0.47\\-0.17}$	0.17	$0.00^{+0.53}_{-0.00}$	$0.00^{+0.13}_{-0.00}$		•	$2.03^{+0.63}_{-0.63}$	$1.00^{+0.38}_{-0.38}$	$1.10\substack{+0.35\\-0.35}$	$0.00^{+0.00}_{-0.00}$	$1.06^{+0.29}_{-0.29}$		$0.80^{+0.23}_{-0.23}$	$0.00^{+0.00}_{-0.00}$:	$1.60\substack{+0.66\\-0.66}$	$0.50_{-0.35}^{+0.35}$	$0.000^{+0.532}_{-0.000}$	$1.00^{+0.31}_{-0.31}$
le 2	E(B-V) (mag)	:	:	:	:	:	:	:	:	:	:	÷	:	÷		$0.04_{-0.04}^{+0.20}$:	$0.76_{-0.30}^{+0.33}$	$0.03_{-0.03}^{+0.05}$	$0.30_{-0.04}^{+0.04}$	$0.14\substack{+0.11\\-0.11}$	$0.00^{+0.03}_{-0.00}$	$0.05_{-0.05}^{+0.14}$	$0.61\substack{+0.15\\-0.15}$	$0.00^{+0.16}_{-0.00}$	$0.00^{+0.04}_{-0.00}$:	:	$0.61\substack{+0.12\\-0.12}$	$0.30_{-0.09}^{+0.09}$	$0.33_{-0.07}^{+0.07}$	$0.00^{+0.00}_{-0.00}$	$0.32_{-0.04}^{+0.04}$:	$0.24_{-0.04}^{+0.04}$	$0.00^{+0.00}_{-0.00}$:	$0.48\substack{+0.16\\-0.16}$	$0.15_{-0.10}^{+0.10}$	$0.00^{+0.16}_{-0.00}$	$0.30^{+0.00}_{-0.06}$
Tab	${ m M_{*}} m (10^8 ~M_{\odot})$:	:	:	:	:	:	:	:	:	:	÷	:	÷		$02.38_{-00.73}^{+03.22}$:	$27.87_{-62.53}^{+67.63}$	$01.35^{+00.49}_{-00.33}$	$11.89^{+05.75}_{-05.75}$	$19.11^{+14.90}_{-14.90}$	$06.83_{-00.83}^{+01.61}$	$03.99^{+03.81}_{-01.48}$:	:	:	:	:	:	:	:	:	:	:		:	:	:	•	:	:
	$\stackrel{\mathrm{M}_{dyn}}{(10^{10}~\mathrm{M}_{\odot})}$	$00.13^{+00.07}_{-00.07}$:	$00.42^{+00.17}_{-00.17}$	$00.18^{+00.04}_{-00.04}$	$00.49^{+00.11}_{-00.11}$	$00.22^{+00.05}_{-00.05}$	$00.12^{+00.02}_{-00.02}$	$00.38^{+00.13}_{-00.13}$	$00.10^{+00.04}_{-00.04}$	$00.07^{+00.04}_{-00.04}$	$00.78^{+00.28}_{-00.28}$	$00.20_{-00.07}^{+0.01}$	$09.91^{+01.26}_{-01.26}$	$01.21_{-00.46}^{+00.46}$		$01.43^{+00.08}_{-00.08}$	$06.64_{-00.35}^{+00.35}$	$00.66^{+00.03}_{-00.03}$	$01.09^{+00.03}_{-00.03}$:	$01.47^{+00.05}_{-00.05}$:	$01.70^{+00.06}_{-00.06}$	$01.41^{+00.08}_{-00.08}$	$00.59^{+00.04}_{-00.04}$			$00.94^{+00.20}_{-00.20}$	$00.57^{+00.06}_{-00.06}$	$01.03^{+00.13}_{-00.13}$	$00.60^{+00.24}_{-00.24}$	$02.79_{-00.15}^{+00.15}$	$06.48^{+00.50}_{-00.50}$	$02.33_{-00.12}^{+00.12}$	$00.49^{+00.06}_{-00.06}$	$01.68^{+00.18}_{-00.18}$	$00.72^{+00.09}_{-00.09}$	$00.59^{+00.02}_{-00.02}$	$01.72^{+00.96}_{-00.96}$	$00.34_{-00.03}^{+00.03}$
	\mathbf{r}_e (kpc)	0.75 ± 0.11	:	1.60 ± 0.05	0.67 ± 0.04	1.40 ± 0.42	0.68 ± 0.62	0.35 ± 0.06	1.10 ± 0.20	0.53 ± 0.10	0.67 ± 0.16	1.80 ± 0.16	0.51 ± 0.08	1.60 ± 0.08	4.80 ± 0.33	:	2.40	2.70	1.50	1.50	3.20	2.20	:	2.40	2.60	2.20		2.80	2.20	1.60	1.60	1.70	2.00	1.60	1.60	1.60	2.00	2.40	1.60	2.10	1.90
	$SFR(H\beta)$ Corrected	:	:	•	:	:	:	:	:	:	:	:	:	:		$08.01^{+10.84}_{-02.47}$:	$65.73^{+159.52}_{-147.48}$	$07.96^{+02.88}_{-01.92}$	$30.93^{+14.95}_{-14.95}$	$31.45^{+24.52}_{-24.52}$	$10.45_{-01.26}^{+2.46}$	$11.38^{+10.87}_{-04.24}$:	$05.78_{-00.64}^{+6.26}$	$07.33^{+02.16}_{-00.87}$:	:	$107.36^{+121.11}_{-121.11}$	$30.59^{+22.11}_{-22.11}$	$38.34_{-24.51}^{+24.51}$	$06.58^{+00.88}_{-0.88}$	$58.40^{+29.04}_{-29.04}$:	$59.98^{+25.07}_{-25.07}$	$06.33_{-00.61}^{+00.61}$:	$50.70^{+62.98}_{-62.98}$	$41.63_{-29.35}^{+29.35}$	$21.26_{-03.78}^{+23.19}$	$29.16^{+10.44}_{-16.44}$
	$L(H\beta)$ Corrected		:	:	:	:	:	•	:	:	:	:	÷	÷		$00.52_{-00.16}^{+00.70}$:	$04.27^{+10.36}_{-09.58}$	$00.52^{+00.19}_{-00.12}$	$02.01^{+00.97}_{-00.97}$	$02.04_{-01.59}^{+01.59}$	$00.68^{+00.16}_{-00.08}$	$00.74^{+00.71}_{-00.28}$:	$00.38^{+00.41}_{-00.04}$	$00.48^{+00.14}_{-00.06}$	•		$06.97^{+07.86}_{-07.86}$	$01.99^{+01.44}_{-01.44}$	$02.49^{+01.59}_{-01.59}$	$00.43^{+00.06}_{-00.06}$	$03.79_{-01.88}^{+01.88}$:	$03.90^{+01.63}_{-01.63}$	$00.41_{-00.04}^{+00.04}$:	$03.29^{+04.09}_{-04.09}$	$02.70^{+01.91}_{-01.91}$	$01.38^{+01.51}_{-00.24}$	$01.89_{-01.07}^{+01.07}$
	Name	COSMOS-12807	UDS-7444	COSMOS-16207	UDS-3760	UDS-3646	GOODS-S-17892	GOODS-S-26816	UDS-11484	COSMOS-11212	COSMOS-8991	UDS-14655	UDS-4501	COSMOS-12102	COSMOS-17118	WISP159-134	WISP134-171	WISP50-65	WISP173-205	WISP9-73	WISP43-75	WISP25-53	WISP46-75	WISP126-90	WISP22-111	WISP22-216	WISP64-2056	WISP81-83	WISP138-173	WISP170-106	WISP64-210	WISP204-133	WISP27-95	WISP147-72	WISP90-58	WISP70-253	WISP175-124	WISP96-158	WISP138-160	WISP56-210	WISP206-261
	Index	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160

55

							Table 2								
Index	Name	$L(H\beta)$ Corrected	$SFR(H\beta)$ Corrected	$\mathop{\mathrm{r}_{e}}_{(\mathrm{kpc})}$	${ m M}_{dym} \ (10^{10} { m ~M}_{\odot})$	${ m M_{*}} \ (10^8 { m ~M_{\odot}})$	$\begin{array}{c} \mathcal{E}(B-V) \\ (\mathrm{mag}) \end{array}$	$A(H\alpha)$	$A(H\beta)$	\mathcal{M}_B (mag)	$^{R}_{\rm (AB)}$	$_{(AB)}^{H}$	(AB)	$(2 + \log(O/H))$	Method
161	TKRS7889	:	:	:	:	:	:	:	:	-19.52	22.68	:	:	$8.74{\pm}0.15$	R23
162	TKRS10625	:	:	:	:	:	:	:	:	-19.69	22.44	:	:	8.44 ± 0.15	R23
163	TKRS7887	:	:	:	:	:	:	:	:	-18.87	22.95	:	:	8.52 ± 0.15	R23
164	TKRS7878	:	:	:	:	:	:	:	:	-20.06	23.54	:	:	8.84 ± 0.15	R23
165	TKRS2882	•	:	÷	:	•	:	÷	:	-20.10	23.61	•	÷	8.83 ± 0.15	R23
166	TKRS10350		:	÷	:	:	:	÷	:	-20.86	22.89	:	÷	8.75 ± 0.15	R23
167	TKRS7105	•	:	÷	:	•	:	÷	:	-17.33	23.58	•	÷	8.51 ± 0.15	R23
168	TKRS2246	:	:	:	:	:	:	:	:	-17.73	23.84	:	:	$8.16 {\pm} 0.20$	R23
169	TKRS2336	:	:	:	:	:	:	:	:	-17.27	24.15	:	:	$8.23 {\pm} 0.19$	R23
170	TKRS4648	:	:	:	:	:	:	:	:	-18.30	23.20	:	:	$8.64{\pm}0.15$	R23
171	TKRS3741	:	:	:	:	:	:	:	:	-17.87	24.08	:	:	8.59 ± 0.15	R23
172	TKRS5621	:	:	:	:	:	:	:	:	-20.16	21.69	:	:	$8.74{\pm}0.15$	R23
173	TKRS5634	:	:	:	:	:	:	:	:	-19.69	22.20	:	:	8.74 ± 0.15	R23
174	TKRS3272	:	:	:	:	:	:	:	:	-18.15	23.89	:	:	8.40 ± 0.15	R23
175	TKRS7843		:	÷	:	:	:	÷	÷	-19.37	22.76	:	÷	8.65 ± 0.15	R23
176	TKRS3130	:	:	:	:	:	:	:	:	-19.02	23.19	:	:	8.46 ± 0.15	R23
177	TKRS10183	:	:	:	:	:	:	÷	:	-18.93	23.51	:	:	8.73 ± 0.15	R23
178	TKRS4375	:	:	:	:	:	:	÷	:	-19.95	23.05	:	:	$8.64{\pm}0.15$	R23
179	TKRS1953	:	:	:	:	:	:	:	:	-19.08	23.97	: .	:	8.61 ± 0.15	R23
180	TKRS4389	:	:	÷	:	:	:	÷	:	-21.84	21.15	:	÷	8.76 ± 0.15	R23
181	TKRS8126	:	:	:	:	:	:	:	:	-19.46	23.69	:	:	8.65 ± 0.15	R23
182	TKRS5167	:	:	÷	:	:	:	÷	:	-19.34	24.06	:	÷	8.77 ± 0.16	R23
183	TKRS1468	:	:	:	÷	:	÷	:	:	-20.34	23.18	:	:	8.77 ± 0.15	R23
184	TKRS11643	:	:	÷	:	:	÷	:	:	-20.44	23.15	:	:	8.52 ± 0.15	R23
185	TKRS4332	:	:	÷	:	:	÷	:	:	-19.68	24.01	:	:	8.66 ± 0.15	R23
186	TKRS3021	:	:	÷	:	:	:	÷	÷	-20.80	22.97	:	:	$8.74{\pm}0.15$	R23
187	TKRS6786	:	:	:	:	: :	:	:	:	-21.10	22.52	: :	:	8.81 ± 0.15	R23
188	TKRS7075	:	:	÷	:	:	:	÷	÷	-19.66	24.00	:	:	8.61 ± 0.15	R23
189	TKRS9211	:	:	÷	:	:	:	÷	:	-20.04	23.81	:	÷	8.83 ± 0.15	R23
190	TKRS6596			÷	:	:				-20.50	23.37	:	÷	8.99 ± 0.15	R23
191	PEARS123301	$09.36_{-06.52}^{+06.52}$	$144.09^{+100.38}_{-100.38}$	8.10	:	$31.18^{+21.72}_{-21.72}$	$0.30_{-0.30}^{+0.30}$	$1.00^{+1.03}_{-1.03}$	$1.38^{+1.40}_{-1.40}$	-19.74	:	:	÷	$8.10_{-0.16}^{+0.20}$	R23
192	PEARS119341	$04.47_{-01.34}^{+01.34}$	$68.91^{+20.72}_{-20.72}$	1.97	÷	$01.95^{+00.59}_{-00.59}$	$0.03^{+0.06}_{-0.03}$	$0.10^{+0.20}_{-0.10}$	$0.14_{-0.14}^{+0.28}$	-17.57	:	:	÷	$7.71_{-0.27}^{+0.28}$	R23
193	PEARS122206	$35.24^{+17.88}_{-17.88}$	$542.64^{+275.30}_{-275.30}$	2.20	÷	$16.85_{-08.55}^{+08.55}$	$0.03_{-0.03}^{+0.06}$	$0.10^{+0.20}_{-0.10}$	$0.14_{-0.14}^{+0.28}$	-18.99	:	:	:	$7.49_{-0.17}^{+0.00}$	R23
194	PEARS-364	$08.06^{+02.05}_{-02.05}$	$124.18^{+31.56}_{-31.56}$	1.72	÷	$39.76_{-10.11}^{+10.11}$	$0.03^{+0.18}_{-0.03}$	$0.10^{+0.60}_{-0.10}$	$0.14_{-0.14}^{+0.83}$	-19.19	:	:	÷	$8.22_{-0.13}^{+0.16}$	R23
195	PEARS-103	$17.33_{-13.87}^{+13.87}$	$266.91_{-213.63}^{+213.03}$	1.07	:	$76.15_{-60.95}^{+00.30}$	0.06 ± 0.06	$0.20_{-0.21}^{+0.44}$	$0.28_{-0.28}^{+0.00}$	-19.41	:	:	÷	$7.97_{-0.22}^{+0.00}$	R23
196	PEARS-242	$39.44^{+25.50}_{-25.50}$	$607.31_{-392.64}^{+392.64}$	2.09	:	$272.95^{+176.47}_{-176.47}$	$0.19_{-0.17}^{+0.17}$	$0.63_{-0.58}^{+0.58}$	$0.87^{+0.80}_{-0.80}$	-21.42	:	:	:	$8.32_{-0.29}^{+0.00}$	R23
197	GSD1	:	:	:	÷	:	:	:	:	:	:	24.67 ± 0.07	:	:	:
198	GSD2	:	:	:	:	:	:	:	:	:	:	25.63 ± 0.07	÷	:	:
199	GSD3	:	:	÷	÷	:	÷	÷	:	:	:	25.88 ± 0.11	÷	:	÷
200	GSD4	:	:	:	:	:	:	:	:	:	:	26.20 ± 0.11	:	:	:
сх	Name	$L(H\beta)$ Corrected	$SFR(H\beta)$ Corrected	$\mathop{\mathrm{r}}_{e}^{\mathrm{r}_{e}}$	${ m M}_{dyn}^{dyn}$ $(10^{10}~{ m M}_{\odot})$	${ m M}_{*} m (10^8 \ M_{\odot})$	E(B-V) (mag)	$A(H\alpha)$	$A(H\beta)$	M_B (mag)	R (AB)	H (AB)	(AB)	$12 + \log(O/H)$	Meth
----	-------	--------------------------	----------------------------	--	---	------------------------------------	--------------	--------------	-------------	-------------	--------	--------------------	------	------------------	------
	GSD5	:	:	:	:	:	:	:	:	:	:	25.05 ± 0.08	:		:
	GSD6	:	:	:	:	:	:	:	:	:	:	24.99 ± 0.05	:	:	:
	GSD7	:	:	:	:	:	:	:	:	:	:	25.44 ± 0.12	:	:	:
	GSD8	:	:	:	:	:	:	:	:	:	÷	24.26 ± 0.04	:	:	:
	GSD9	:	:	:	:	:	:	:	:	:	:	24.86 ± 0.04	:		:
	GSD10	:	:	:	:	:	:	:	:	:	:	26.37 ± 0.09	:	:	:
	GSD11	:	:	:	:	:	:	:	:	:	:	25.97 ± 0.09	:	:	:
	GSD12	:	:	:	:	:	:	:	:	:	:	25.80 ± 0.12	:	:	:
	GSD13	:	:	÷	:	:	:	:	:	:	÷	24.77 ± 0.03	:	:	:
	GSD14	:	:	:	:	:	:	:	:	:	:	26.00 ± 0.08	:	:	:
	GSD15	:	:	:	:	:	:	:	:	:	:	26.64 ± 0.15	:	:	:
	GSD16	:	:	:	:	:	:	:	:	:	:	26.10 ± 0.08	:	:	:
	GSD17	:	:	:	:	:	:	:	:	:	:	25.41 ± 0.05	:	:	:
	GSD18	:	:	:	:	:	:	:	:	:	:	25.24 ± 0.04	:	:	:
	GSD19	:	:	:	:	:	:	:	:	:	:	$25.71 {\pm} 0.06$:	:	:
	GSD20	:	:	:	:	:	:	:	:	:	:	26.23 ± 0.10	:	:	:
	GSD21	:	÷	:	:	:	:	:	:	:	÷	24.76 ± 0.10	:	:	:
	GSD22	:	÷	:	:	:	:	:	:	:	:	26.76 ± 0.13	:	:	:
	GSD23	:	:	:	:	:	•	:	:	:	÷	26.81 ± 0.17	:	•	:
	GSD24	:	:	:	:	:	:	:	:	:	:	27.77 ± 0.30	:	:	:
	GSD25	:	:	:	:	:	•	:	:	:	÷	27.29 ± 0.15	:	•	:
	GSD26	:	:	:	:	:	:	:	:	:	:	26.65 ± 0.10	:		:
	GSD27	:	:	:	:	:	:	:	:	:	÷	26.91 ± 0.13	:	:	:
	GSD28	:	:	:	:	:	:	:	:	:	:	27.13 ± 0.16	:	:	:
	GSD29	:	:	÷	:	:	:	:	:	:	÷	27.79 ± 0.21	:	:	:
	UDS1	:	:	:	:	:	:	:	:	:	:	25.38 ± 0.09	:	:	:
	UDS2	:	:	:	:	:	:	:	:	:	:	25.74 ± 0.09	:	:	:
	UDS3	:	:	÷	:	:	:	:	÷	:	:	25.28 ± 0.08	÷	:	:
	UDS4	:	:	÷	:	:	:	:	:	:	÷	25.44 ± 0.10	:	:	:
	UDS5	:	:	÷	:	:	:	:	÷	:	:	25.69 ± 0.11	÷	:	:
	UDS6	:	:	:	:	:	:	:	:	:	:	25.10 ± 0.07	:	:	:
	UDS7	:	:	:	:	:	:	:	:	:	:	24.32 ± 0.04	:	:	:
	UDS8	:	:	:	:	:	:	:	:	:	:	26.44 ± 0.17	÷	:	:
	UDS9	:	:	:	:	:	:	:	:	:	:	25.94 ± 0.09	:	:	:
	UDS10	÷	:	:	:	÷	:	:	:	:	÷	25.48 ± 0.07	:	:	:
	UDS11	÷	:	:	:	:	:	:	:	:	÷	26.36 ± 0.10	:	:	:
	UDS12	:	:	÷	:	:	:	:	÷	:	:	24.15 ± 0.03	÷	:	:
	UDS13	:	:	÷	:	:	:	:	÷	:	:	25.35 ± 0.07	÷	:	:
	UDS14	:	:	:	:	:	:	:	:	÷	÷	25.69 ± 0.11	:	:	:
	00S15										:	25.45 ± 0.09	-	:	-

58

Continuation on the next page.

	Method		:	:	:	:	:	:			-		:	:	:	:	:	:	:	:	:	:	:	:	:	:		::	:	:	:	:	:	Te	Te	R23	R23	Te	:	N2	R23	Te-Z calibration	Te
	$12 + \log(O/H)$:	:	:	:	:	:			-		:	:	:	:	:	:	:	:	:		:	:	:	:		:	:	: :	:	:		$7.46_{-0.15}^{+0.15}$	$7.95_{-0.07}^{+0.07}$	$8.14_{-0.10}^{+0.10}$	$8.18_{-0.06}^{+0.06}$	$7.87_{-0.10}^{+0.10}$:	$8.53_{-0.12}^{+0.12}$	$8.29^{+0.16}_{-0.16}$	$8.01_{-0.09}^{+0.09}$	$8.21_{-0.05}^{+0.05}$
	K (AR)	(nv)	20.01^{c}	19.84^{c}	20.29^{c}	20.92^{c}	20.81^{c}	20.02^{c}	19.94^{c}	20.60°	20.00	10.650	-00'AT	~GT.02	21.08±0.03	20.69 ± 0.02	21.02 ± 0.02	22.44 ± 0.09	22.77 ± 0.13	22.91 ± 0.16	22.25 ± 0.11	20.81 ± 0.03	22.63 ± 0.13	23.16 ± 0.18	20.60 ± 0.02	22.81 ± 0.15	21.39 ± 0.05	22.52 ± 0.11	22.58 ± 0.11	22.87 ± 0.16	22.38 ± 0.11	:	:	:	:	:	:	:	:	:	•	:	:
	(A R)		:	:	:	:	:	:			-		:		21.75±0.04	21.29 ± 0.03	21.30 ± 0.02	22.83 ± 0.08	23.19 ± 0.11	23.40 ± 0.15	23.12 ± 0.14	21.11 ± 0.02	23.25 ± 0.12	22.77 ± 0.08	20.86 ± 0.02	23.00 ± 0.12	21.85 ± 0.04	22.77 ± 0.08	22.96 ± 0.09	22.94 ± 0.11	22.73 ± 0.08	:	:	:	:	:	:	:	:	:	:	:	:
	R (AB)	(my)	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	M_B	(gpm)	:	:	:	:	:	:				:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	-18.90	-18.06	-18.94	-19.04	-19.27	-19.93	-19.50	-18.96	-20.08	-20.65	-19.30	-20.38
	$A(H\beta)$		$2.27^{+0.64}_{-0.64}$	$2.72_{-0.75}^{+0.75}$	$1.14_{-0.37}^{+0.37}$	$0.46^{+0.26}_{-0.26}$	$1.36\substack{+0.42\\-0.42}$	$1.82_{-0.53}^{+0.53}$	$0.68^{+0.29}$	0.91 + 0.33	1 F0+0.48	1.02 - 0.48 1.96 + 0.42	1.30 - 0.42	2.21-0.64	$1.29_{-0.26}$	$1.70_{-0.33}^{+0.33}$	$1.93^{+0.36}_{-0.36}$	$0.60_{-0.17}^{+0.17}$	$1.06^{+0.23}_{-0.23}$	$0.78^{+0.23}_{-0.23}$	$0.87^{+0.21}_{-0.21}$	$1.01^{+0.22}_{-0.22}$	$1.38_{-0.30}^{+0.30}$	$0.83_{-0.20}^{+0.20}$	$1.98_{-0.37}^{+0.37}$	$0.78_{-0.19}^{+0.19}$	$1.56_{-0.30}^{+0.30}$	$1.42_{-0.28}^{+0.28}$	$1.42_{-0.28}^{+0.28}$	$1.15_{-0.27}^{+0.27}$	$1.38_{-0.28}^{+0.28}$:	:	:	:	:	:	:	:	:	:	÷	:
	$A(H\alpha)$		$1.64_{-0.54}^{+0.54}$	$1.97^{+0.63}_{-0.63}$	$0.82_{-0.30}^{+0.30}$	$0.33_{-0.19}^{+0.19}$	$0.98^{+0.35}_{-0.35}$	$1.31_{-0.44}^{+0.44}$	$0.49^{+0.22}$	0.66 + 0.26	1.15 ± 0.39	0.00+0.35	0.90-0.35	$1.04_{-0.54}$	$0.93_{-0.24}$	$1.23_{-0.31}^{+0.31}$	$1.40^{+0.35}_{-0.35}$	$0.43^{+0.14}_{-0.14}$	$0.76^{+0.21}_{-0.21}$	$0.56_{-0.19}^{+0.19}$	$0.63_{-0.18}^{+0.18}$	$0.73_{-0.20}^{+0.20}$	$1.00^{+0.27}_{-0.97}$	$0.60^{+0.18}_{-0.18}$	$1.43_{-0.36}^{+0.36}$	$0.56_{-0.17}^{+0.17}$	$1.13_{-0.30}^{+0.30}$	$1.03_{-0.27}^{+0.27}$	$1.03_{-0.27}^{+0.27}$	$0.83_{-0.24}^{+0.24}$	$1.00^{+0.26}_{-0.26}$:	:	:	÷	:	:	:	:	÷	:	÷	:
Table 2	E(B-V)	(gpm)	$0.49_{-0.11}^{+0.11}$	$0.59_{-0.13}^{+0.13}$	$0.25_{-0.07}^{+0.07}$	$0.10^{+0.05}_{-0.05}$	$0.30^{+0.08}_{-0.08}$	$0.40^{+0.09}_{-0.09}$	$0.15^{+0.06}_{-0.06}$	0.20 + 0.06	0.35+0.08	0.0-000 0.00+0.08	0.00-00.08	$0.49_{-0.11}$	$0.49_{-0.03}$	$0.37_{-0.03}^{+0.03}$	$0.42_{-0.03}^{+0.03}$	$0.13^{+0.03}_{-0.03}$	$0.23_{-0.03}^{+0.03}$	$0.17^{+0.04}_{-0.04}$	$0.19_{-0.03}^{+0.03}$	$0.22_{-0.03}^{+0.03}$	$0.30_{-0.04}^{+0.04}$	$0.18_{-0.03}^{+0.03}$	$0.43_{-0.03}^{+0.03}$	$0.17^{+0.03}_{-0.03}$	$0.34_{-0.03}^{+0.03}$	$0.31_{-0.03}^{+0.03}$	$0.31^{+0.03}_{-0.03}$	$0.25_{-0.04}^{+0.04}$	$0.30_{-0.03}^{+0.03}$:	:	:	:	:	:	:	:	:	:	:	:
	M* (10 ⁸ M_)	(OIM OI)	$04.92^{+04.82}_{-04.81}$	$06.51_{-07.50}^{+07.50}$	$13.38^{+07.05}_{-07.65}$	$08.25^{+03.23}_{-03.23}$	$08.13^{+05.44}_{-05.37}$	$07.64_{-06.16}^{+06.16}$	$09.59^{+04.34}$	04.81 + 02.56	12 01 + 10.21	01 75+14.11	21.70 - 14.10	$13.90_{-13.51}$	$48.78_{-21.37}$	$50.32^{+20.03}_{-26.81}$	$12.25_{-07.15}^{+07.15}$	$08.99^{+02.55}_{-02.63}$	$06.86^{+02.71}_{-03.07}$	$05.66^{+02.17}_{-02.27}$	$10.78_{-03.75}^{+03.86}$	$55.95^{+20.01}_{-19.99}$	$12.29_{-06.30}^{+06.30}$	$05.92^{+02.27}_{-02.27}$	$18.04^{+10.84}_{-10.03}$	$09.79_{-03.09}^{+03.16}$	$30.50^{+14.93}_{-14.93}$	$11.61_{-05.56}^{+06.87}$	$13.03^{+06.30}_{-06.26}$	$09.48_{-04.85}^{+05.42}$	$15.30_{-07.01}^{+07.20}$:	:	:	:	÷	:	:	:	:	:	:	:
	M_{dyn}^{dyn}	(0m nt)	< 09.66	$07.12^{+13.64}_{-04.26}$	$08.55_{-03.03}^{+03.03}$	$02.48^{+00.36}_{-00.36}$	$04.87^{+04.40}_{-03.54}$	$09.74_{-02.06}^{+01.83}$	$05.58^{+01.67}$	$02.52^{+10.45}$	013.94	10 E 4+01.48	00-10.01	$02.41_{-00.31}$	13.03-07.64	$28.89^{+09.49}_{-10.88}$	$02.66^{+00.43}_{-00.25}$	$02.46^{+01.90}_{-00.98}$	$02.99^{+01.96}_{-02.79}$	$02.62^{+01.96}_{-01.72}$	$07.86^{+04.06}_{-02.28}$	10.85 ± 00.63	$10.31^{+21.44}_{-00.06}$	$16.26^{+16.90}_{-12.67}$	$38.98^{+10.63}_{-17.45}$	$02.61_{-00.74}^{+01.48}$	$04.73^{+00.64}_{-00.64}$	$01.89^{+07.45}_{-02.10}$	$01.55_{-02.04}^{+00.93}$	< 02.36	$04.22_{-01.67}^{+02.04}$:	:	:	:	:	:	:	:	:	:	:	:
	r _e (boo)	(pdg)	< 4.7	1.30 ± 1.20	3.70 ± 1.30	1.80 ± 0.40	2.30 ± 1.20	2.90 ± 1.30	7.50 ± 1.80	5.30 + 1.10		04 UTUL 6	0/.U±U1.6	2.40±0.70	2.40 ± 1.00	5.80 ± 1.40	3.10 ± 1.10	2.30 ± 1.70	1.50 ± 1.30	5.50 ± 1.40	4.40 ± 1.00	4.90 ± 1.40	2.80 ± 0.90	5.90 ± 1.50	4.10 ± 1.50	2.00 ± 0.80	2.30 ± 1.00	4.10 ± 1.00	2.50 ± 1.00	< 2.2	2.70 ± 0.90	1.02	1.48	:	1.54	:	2.22	1.72	1.43	2.21	2.02	0.48	1.00
	$SFR(H\beta)$	Collected	$17.25^{+16.91}_{-16.84}$	$08.89^{+10.24}_{-10.24}$	$34.82^{+19.97}_{-19.91}$	$21.46_{-08.42}^{+08.42}$	$17.26^{+11.55}_{-11.41}$	$21.80^{+17.57}_{-17.57}$	14.15 + 06.41	06.33 + 03.37	70.47 + 58.35	100 c 9+65.19	100.00_65.16	(13.50 - 110.33	82.80-36.31	$96.37_{-51.35}^{+0.00}$	$28.25^{+16.50}_{-16.50}$	$24.30^{+06.91}_{-07.11}$	$24.06^{+09.50}_{-10.77}$	$16.14_{-06.49}^{+06.19}$	$35.07^{+12.54}_{-12.20}$	$221.05^{+79.06}_{-79.00}$	$46.86^{+24.01}_{-24.13}$	$56.03^{+21.50}_{-21.00}$	$41.60^{+25.00}_{-25.21}$	$38.68^{+12.50}_{-12.23}$	$92.73_{-45.40}^{+45.40}$	$30.21^{+17.88}_{-14.46}$	$43.84_{-21.08}^{+21.21}$	$10.77_{-05.51}^{+06.16}$	$20.88^{+09.91}_{-09.57}$:	:	:	:	:	:	:	:	:	•	:	:
	$L(H\beta)$	Corrected	$01.12^{+01.10}_{-01.09}$	$00.58_{-00.66}^{+00.66}$	$02.26_{-01.29}^{+01.30}$	$01.39^{+00.55}_{-00.55}$	$01.12^{+00.75}_{-00.74}$	$01.42_{-01.14}^{+01.14}$	00.92 + 00.42	00.41 ± 00.22	05 16+03.79	00.10-03.76	00.00-04.23	01.31 - 07.16	$00.38_{-02.36}$	$06.26_{-03.32}^{+03.31}$	$01.83_{-01.07}^{+01.07}$	$01.58^{+00.45}_{-00.46}$	$01.56^{+00.62}_{-00.70}$	$01.05^{+00.40}_{-00.42}$	$02.28_{-00.79}^{+00.81}$	$14.35_{-05.13}^{+05.13}$	$03.04_{-01.56}^{+01.56}$	$03.64_{-01.37}^{+01.40}$	$02.70^{+01.62}_{-01.64}$	$02.51_{-00.79}^{+00.81}$	$06.02^{+02.95}_{-02.95}$	$01.96^{+01.16}_{-00.94}$	$02.85_{-01.37}^{+01.38}$	$00.70_{-00.36}^{+00.40}$	$01.36_{-00.62}^{+00.64}$:	:	:	:	:	:	:	:	:	:	:	:
	Name		GMASS-1146	GMASS-2113W	GMASS-2252	GMASS-2303	GMASS-2363	GMASS-2438	GMASS-2540	GMASS-2550	accornes 779750	-COEVEOR 70001	146201-CUMCUUZ	GDD55A12-0339	zCU5MU5-400528	zCOSMOS-400569	zCOSMOS-403741	zCOSMOS-404221	zCOSMOS-404987	zCOSMOS-405081	zCOSMOS-405501	zCOSMOS-406690	zCOSMOS-407928	zCOSMOS-410041	zCOSMOS-410542	zCOSMOS-411737	zCOSMOS-412369	zCOSMOS-413507	zCOSMOS-413597	zCOSMOS-415087	zCOSMOS-415876	zCOSMOS-700882	zCOSMOS-701051	zCOSMOS-701741	zCOSMOS-800984	zCOSMOS-801094	zCOSMOS-802275	zCOSMOS-803226	zCOSMOS-803892	zCOSMOS-804130	zCOSMOS-804791	zCOSMOS-805200	zCOSMOS-806881
	Index		281	282	283	284	285	286	287	288	080	000	290	167	7.67	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320

Continuation on the next page.

100		L(H/3)	$SFR(H\beta)$	ŕ	M_{dom}	M	F(B-V)	$A(H\alpha)$	$A(H\beta)$	M	2	Н	Х	$12 + \log(O/H)$	Method
100		Corrected	Corrected	(kpc)	$(10^{10} { m M}_{\odot})$	$(10^8 M_{\odot})$	(mag)			(mag)	(AB)	(AB)	(AB)		
170	zCOSMOS-806958	:	:	1.17	:	:	:	:	:	-20.82	:	:	:	$8.11_{-0.03}^{+0.03}$	Te
322	zCOSMOS-807965	:	:	:	:	:	:	:	:	:	:	:	:	$8.33_{-0.14}^{+0.14}$	R23
323	zCOSMOS-807990	:	:	1.86	:	:	:	:	:	-19.19	:	:	:	$8.14_{-0.20}^{+0.20}$	R23
324	zCOSMOS-809215	:	:	1.49	:	:	:	:	:	-17.18	:	:	:	$7.65_{-0.07}^{+0.07}$	N2
325	zCOSMOS-809399	:	:	1.04	:	:	:	:	÷	-20.08	:	:	:	$7.99^{+0.08}_{-0.08}$	Te-Z calibration
326	zCOSMOS-809463	:	:	2.06	:	:	:	:	÷	-20.89	:	:	:	$8.22_{-0.08}^{+0.08}$	Te
327	zCOSMOS-809944	:		1.06		•		:	:	-16.51	:	:	:	$8.09_{-0.07}^{+0.07}$	N2
328	zCOSMOS-810153			0.70	:	:	:			-19.82		:		$8.10^{+0.08}_{-0.08}$	Te
329	zCOSMOS-810220			1.76						-20.35				$8.14^{+0.09}$	R23
330	zCOSMOS-810304			1.24						-18.62				$8.44^{+0.07}_{-0.07}$	N2
331	zCOSMOS-810646			2.58						-17.91				$8.14^{+0.04}$	N2
100	aCOSMOS 811019			0 4 C			-			91 16			-	8 AD+0.10	E03
200	ZIULIO-GUMGUUZ	:	:	71.0	:	:	:	:	:	01.12-	:	:	:	$0.40_{-0.10}$ $0.17_{-0.24}$	07/J
555	ZUU5MU5-811024	:	:	1.13	:	:	:	:	:	-20.00	:	:	:	8.17 - 0.24	K23
334	zCOSMOS-811075	:	:	1.71	:	:	:	:	:	-20.47	:	:	:	$8.18_{-0.21}^{+0.21}$	R23
335	zCOSMOS-811415	:	:	1.46	:	:	:	:	:	-20.29	:	:	:	$8.15_{-0.10}^{+0.10}$	R23
336	zCOSMOS-811842	:	:	0.64	:	:	:	:	:	-20.70	:	:	:	$8.27_{-0.10}^{+0.10}$	Te
337	zCOSMOS-812047			3.30					:	-19.87				7.85 ± 0.04	N2
338	zCOSMOS-812087			2.80						-18.05				8 18 ^{+0.13}	N9
000		:		0010				:		00.00			:	0.1 <i>C</i> +0.08	To 7 colibration
200	COUNCOUS CONCOUS	:	:	00.7	:	:	:	:	:	-20.02-	:	:	:	0.10-01.08	Te-Z Calibration
340	zCOSMOS-812207	:	:	1.18	:	:	:	:	:	-10.07	:	:	:	8.00-007	ZN
341	zCOSMOS-812599	:	÷	1.25	:	:	:	:	÷	-17.56	:	:	:	$8.27_{-0.08}^{+0.08}$	N2
342	zCOSMOS-812879	:	:	1.80	:	:	:	:	÷	-19.80	:	:	:	$8.30_{-0.02}^{+0.02}$	N2
343	zCOSMOS-812971	:	:	3.84	:	:	:	:	:	-17.51	:	:	:	$7.89_{-0.04}^{+0.04}$	N2
344	zCOSMOS-813334		:	1.38	:		:	:	:	-20.15	:	:	:	$8.18_{-0.07}^{+0.07}$	Te-Z calibration
345	zCOSMOS-813400	:	:	0.67				:	:	-19.09	:	:	:		
346	zCOSMOS-813444	:	:	0.66	:	:	:	:	:	-16.19	:	:	:	$7.93_{-0.10}^{+0.10}$	N2
347	zCOSMOS-813723	:	:	1.23	:	:	:	:	:	-19.00	:	:	:	$8.23_{-0.07}^{+0.07}$	N2
348	zCOSMOS-813894	:	:	1.56	:	:	:	:	:	-19.57	:	:	:	$8.08_{-0.07}^{+0.07}$	Te-Z calibration
349	zCOSMOS-814092	:	:	0.66	:	:	:	:	:	-19.47	:	:	:	$8.07_{-0.07}^{+0.07}$	Te-Z calibration
350	zCOSMOS-814148	:	:	2.17	:	:	:	:	:	-18.79	:	:			:
351	zCOSMOS-814386	:	:	0.52	:	:	:	:	:	-17.30	:	:	:	$8.19_{-0.05}^{+0.05}$	N2
352	zCOSMOS-815797	:	:	2.10				:	:	-20.30	:	:	:	$7.93_{-0.06}^{+0.06}$	Te
353	zCOSMOS-815800	:	:	0.98				:	:	-20.74	:	:	:	$8.46_{-0.05}^{+0.05}$	R23
354	zCOSMOS-815804	:	:	0.81	:	:	:	:	÷	-19.38	:	:	:	$8.33_{-0.05}^{+0.05}$	R23
355	zCOSMOS-816839	:	:	3.09	:	:	:	:	:	-18.69	:	:	:	:	:
356	zCOSMOS-817226	:	:	1.47	:	:	:	:	:	-19.46	:	:	:	$8.38_{-0.05}^{+0.05}$	R23
357	zCOSMOS-817306	:	:	1.81	:	:	:	:	:	-18.66	:	:	:	$8.37_{-0.08}^{+0.08}$	N_2
358	zCOSMOS-817804	:	:	0.50	:	:	:	:	:	-20.86	:	:	:	$8.36_{-0.03}^{+0.03}$	R23
359	zCOSMOS-817820	:	:	1.80	:	:	:	:	:	-19.98	:	:	:	$8.20_{-0.15}^{+0.15}$	R23
360	zCOSMOS-819298	:	:	1.40	:	:	:	:	:	-18.44	:	:	:	$7.82_{-0.07}^{+0.07}$	N2

							Table 2								
Index	Name	$L(H\beta)$ Corrected	$SFR(H\beta)$ Corrected	$\stackrel{\mathrm{r}_e}{(\mathrm{kpc})}$	$\substack{\mathrm{M}_{dyn}}{(10^{10}~\mathrm{M}_{\odot})}$	$\mathop{\rm M}_*_{\rm (10^8~M_\odot)}$	$\begin{array}{c} \mathcal{E}(B-V) \\ (\mathrm{mag}) \end{array}$	$A(H\alpha)$	$A(H\beta)$	$\mathop{\rm M}_B^{}({\rm mag})$	$^R_{\rm (AB)}$	$^{H}_{ m (AB)}$	$\stackrel{K}{(AB)}$	$12 + \log(O/H)$	Method
361	zCOSMOS-819574	:	:	0.80	:	:	:	:	:	-20.86	:	:	:	$8.13_{-0.05}^{+0.05}$	Te
362	zCOSMOS-820061	:	:	2.16	:	:	:	:	:	-20.10	:	:	:	$8.15_{-0.10}^{+0.10}$	R23
363	zCOSMOS-820087	:	:	2.79	:	:	:	:	:	-20.44	:	:	:	$8.16_{-0.10}^{+0.10}$	R23
364	zCOSMOS-820163	:	:	1.22	:	:	:	:	:	-20.44	:	:	:	$8.40_{-0.05}^{+0.05}$	R23
365	zCOSMOS-820424	:	:	1.13	:	:	:	:	:	-19.22	:	:	:	$8.00^{+0.08}_{-0.08}$	N2
366	zCOSMOS-820575	:	:	0.88	:	:	:	:	:	-18.85	:	:	:	$7.93_{-0.06}^{+0.06}$	Te
367	zCOSMOS-820600	:	:	1.17	:	:	:	:	:	-19.64	:	:	:	$8.17^{+0.12}_{-0.12}$	R23
368	zCOSMOS-821098	:	:	0.65	:	:	:	:	:	-18.39	:	:	:	$8.26_{-0.03}^{+0.03}$	N2
369	zCOSMOS-821693	:	:	:	:	:	:	:	:	-20.24	:	:	:	$8.14_{-0.03}^{+0.03}$	Te
370	zCOSMOS-822429	:	:	1.31	÷	÷	:	:	:	-19.93	÷	:	:	$8.18_{-0.14}^{+0.14}$	R23
371	zCOSMOS-822504	:	:	1.03	:	÷	:	:	:	-20.61	:	:	:	$8.19^{+0.18}_{-0.18}$	R23
372	zCOSMOS-822723	:	:	2.46	:	÷	:	:	:	-17.68	:	:	:	$8.10^{+0.05}_{-0.05}$	N2
373	zCOSMOS-822960	:	:	1.74	÷	:	:	:	:	-20.75	:	:	:	$8.18_{-0.10}^{+0.10}$	R23
374	zCOSMOS-823087	:	:	1.14	:	:	:	:	:	-20.77	:	:	:	$8.16^{+0.11}_{-0.11}$	R23
375	zCOSMOS-823693	:	:	0.37	:	:	:	:	:	-21.14	:	:	:	$8.16\substack{+0.04\\-0.04}$	R23
376	zCOSMOS-823694	:	:	:	:	:	:	:	÷	:	:	:	:	$8.17_{-0.05}^{+0.05}$	R23
377	zCOSMOS-824210		:	1.50	:	:	•	:	:	-15.53	:	:	:	$7.90^{+0.06}_{-0.06}$	N2
378	zCOSMOS-824225		:	2.00		:	•	:	:	-17.94	:	:	:	$8.10^{+0.04}_{-0.04}$	N2
379	zCOSMOS-824503	•	:	1.35	:		•	:	:	-20.40	:	:	:	$8.18_{-0.19}^{+0.12}$	R23
380	zCOSMOS-824584	:	:	1.15	:	:	:	:	:	-19.27	:	:	:		:
381	zCOSMOS-825278			2.30	:	:	:			-16.49				$8.00^{+0.11}_{-0.11}$	N2
382	zCOSMOS-825921			0.98						-20.01				$7.75_{-0.08}^{-0.08}$	Te
383	zCOSMOS-825959			0.89						-20.04				7.56 ± 0.12	e E
384	zCOSMOS-826050			0.73						-20.75				$8.16^{+0.16}_{-0.16}$	R.23
385	zCOSMOS-826076			2.58						-17.37				$7.91^{+0.07}_{-0.07}$	N2
386	zCOSMOS-826191	:	:	0.75	:		:	:	:	-19.66	:	:	:	$8.03^{+0.06}_{-0.06}$	N2
387	zCOSMOS-826195	:	:	1.14	:	:	:	:	:	-20.54	:	:	:	$8.34_{-0.05}^{+0.05}$	R23
388	zCOSMOS-827073	•	:	1.64	:		:	:	:	-17.59	:	:	:	$8.22_{-0.05}^{+0.05}$	N2
389	zCOSMOS-827326	:	:	1.60	:	:	:	:	:	-20.75	:	:	:	$8.40_{-0.04}^{+0.04}$	R23
390	zCOSMOS-828338	:	:	2.53	:	÷	:	:	:	-20.36	:	:	:	$8.47^{+0.03}_{-0.03}$	R23
391	zCOSMOS-829725	:	:	0.74	:	:	:	:	:	-20.50	:	:	:	$8.39^{+0.13}_{-0.13}$	R23
392	zCOSMOS-829868	:	:	0.17	:	:	:	:	:	-18.63	:	:	:	$7.79^{+0.03}_{-0.03}$	Te
393	zCOSMOS-829923	:	:	1.27	:	÷	:	:	:	-17.80	:	:	:	$8.29^{+0.06}_{-0.06}$	N2
394	zCOSMOS-830132	:	:	2.42	:	:		:	÷	-20.52	:	÷	:	$7.89^{+0.12}_{-0.12}$	Te-Z calibration
395	zCOSMOS-830321	:	: :	1.04	:	÷	:	:	:	-20.79	:	:	:	$8.11_{-0.12}^{+0.12}$	R23
396	zCOSMOS-830751	:	:	0.68	:	:	:	:	÷	-18.91	:	:	:	$7.88_{-0.04}^{+0.04}$	N2
397	zCOSMOS-831158	:	: .	1.23	:	:	:	:	:	-18.56	:	:	:	$8.49^{+0.02}_{-0.02}$	N2
398	zCOSMOS-831178	:	:	0.77	:	:	:	:	:	-17.65	:	:	:		•
399	zCOSMOS-831397	:	: .	1.30	÷	÷	:	:	:	-20.77	:	:	:	$8.30_{-0.10}^{+0.10}$	R23
400	zCOSMOS-831498	:	:	1.56	:	÷	:	:	:	-19.56	:	:	:	$7.96_{-0.06}^{+0.06}$	Te
Contir	uation on the next p	ige.													

401 2COSM 401 2COSM 404 2COSM 404 2COSM 405 2COSM 406 2COSM 406 2COSM 407 2COSM 410 2COSM 411 2COSM 411 2COSM 413 2COSM 413 2COSM	ame OS-831622 OS-831622 OS-831713 OS-831713 OS-831940 OS-831940 OS-832097 OS-832097 OS-832097 OS-833024 OS-833024 OS-833024 OS-833024 OS-833024 OS-833024 OS-833024 OS-833028 OS-833008 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83308 OS-83008 OS-83008 OS-83008 OS-83008 OS-83008 OS-8300	Corrected 	Sr A(Hp) Corrected 	$r_e^{ m Te}$ (kpc) 2.10 2.26 4.05	$(10^{10} M_{\odot})$	$(10^8 M_{\odot})$	E(B - V) (mag)	А(ПА)	(dn)A	(mag)	(AB)	n (AB)	AB)	$12 \pm \log(0/\Pi)$	Method
401 2COSM 401 2COSM 402 2COSM 403 2COSM 404 2COSM 405 2COSM 406 2COSM 406 2COSM 406 2COSM 406 2COSM 407 2COSM 408 2COSM 409 2COSM 409 2COSM 411 2COSM 413 2COSM 413 2COSM 413 2COSM	OS 831622 OS 831622 OS 831791 OS 831791 OS 8318940 OS 8318940 OS 8318940 OS 83207 OS 83207 OS 83207 OS 832390 OS 833044 OS 833044 OS 833044 OS 833044 OS 833044 OS 836420 OS 836400 OS 8364000 OS 8364000 OS 8364000 OS 8364000 OS 83640000 OS 8364000000000000000000000000000000000000			2.10 2.26 4.05	:			:							
402 2COSM 403 2COSM 403 2COSM 405 2COSM 405 2COSM 406 2COSM 406 2COSM 409 2COSM 410 2COSM 411 2COSM 411 2COSM 413 2COSM	05-831713 05-831791 05-831824 05-831824 05-83207 05-83207 05-83207 05-83207 05-83207 05-83207 05-83204 05-83204 05-83204 05-834100 05-834100 05-834100 05-834100 05-836020 05-832020 05-832020 05-832007 05-836000 05-836000 05-836000 05-836000 05-836000 05-836000 05-836000 05-836000000000000000000000000000000000000			$2.26 \\ 4.05$:	:		:	-21.74	:	:	:	$7.76_{-0.09}^{+0.09}$	Te
403 2COSM 404 2COSM 405 2COSM 405 2COSM 406 2COSM 407 2COSM 409 2COSM 410 2COSM 411 2COSM 413 2COSM 413 2COSM	05-831791 05-831824 05-831824 05-831940 05-83207 05-832397 05-832392 05-833044 05-833044 05-833044 05-834170 05-834170 05-834100 05-836420 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-832220 05-8322320 05-8322320 05-8322320 05-8322320 05-8322320 05-8322320 05-8322320 05-8322320 05-8322320 05-832320 05-832320 05-832320 05-832320 05-832320 05-832320 05-832320 05-832320 05-832320 05-8323220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-8322220 05-832620 05-832620 05-8322220 05-832220 05-832620 05-83620 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-85600 05-856000 05-850000 05-85000000000000000000000			4.05	:	:	:	:	÷	-19.00	:	:	:		:
404 2COSM 405 2COSM 405 2COSM 406 2COSM 407 2COSM 409 2COSM 410 2COSM 411 2COSM 411 2COSM 413 2COSM 413 2COSM	05-831824 05-831940 05-832077 05-832097 05-832097 05-83283 05-833044 05-833044 05-833044 05-834170 05-834100 05-834100 05-834100 05-836108 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-832097 05-83208 05-85080000000000				:	:	:	:	:	-18.52	:	:	:	$8.33_{-0.04}^{+0.04}$	N2
405 2COSM 405 2COSM 406 2COSM 407 2COSM 409 2COSM 410 2COSM 411 2COSM 411 2COSM 413 2COSM 413 2COSM	05-831940 05-832077 05-832097 05-832097 05-83283 05-833024 05-833024 05-833024 05-834170 05-834170 05-834100 05-834100 05-836108 05-83208 05-83608 05-8560800800000000000000000000000000000			0.88	•	:	:	:	÷	-20.89	÷	:	:	$8.17_{-0.07}^{+0.07}$	R23
406 zCOSM 407 zCOSM 407 zCOSM 409 zCOSM 410 zCOSM 411 zCOSM 411 zCOSM 413 zCOSM 413 zCOSM	05-832077 05-832097 05-832097 05-832838 05-833024 05-833044 05-833044 05-834100 05-834100 05-834100 05-836108 05-83208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85208 05-85080000000000			0.78	•	:	:	:	÷	-16.34	÷	÷	÷	$8.00^{+0.07}_{-0.07}$	N2
407 zCOSM 408 zCOSM 409 zCOSM 410 zCOSM 411 zCOSM 411 zCOSM 413 zCOSM 414 zCOSM	05-832097 05-832639 05-832638 05-833022 05-833042 05-833042 05-834100 05-834100 05-834100 05-834206 05-836108 05-836108 05-836128 05-836128 05-836128 05-836128 05-836128 05-836128		: : : : : : :	1.09	•	:	:	:	÷	-19.50	÷	÷	÷	$8.17_{-0.07}^{+0.07}$	R23
408 2COSM 409 2COSM 410 2COSM 411 2COSM 411 2COSM 412 2COSM 413 2COSM 414 2COSM	05-832539 05-832898 05-833022 05-833044 05-833044 05-834100 05-834102 05-83406 05-83406 05-83602 05-83602 05-83602 05-83602 05-83602 05-83602 05-83602 05-83602 05-83602 05-83602 05-83602 05-83200 05-83220 05-83220 05-83220 05-83220 05-83220 05-83220 05-83220 05-83210 05-83220 05-83220 05-83220 05-83220 05-83220 05-83220 05-83220 05-83220 05-83220 05-8320 05-83220 05-83220 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-8320 05-83200 05-80000 05-8000000000000000000000000		: : : : :	9.31	÷	:	:	:	:	-18.66	:	:	:	$8.11_{-0.07}^{+0.07}$	N_2
409 zCOSM 410 zCOSM 411 zCOSM 412 zCOSM 413 zCOSM 413 zCOSM 414 zCOSM	OS-832898 OS-833022 OS-833044 OS-833044 OS-834172 OS-834172 OS-834172 OS-834020 OS-836022 OS-836022 OS-836022 OS-8360228 OS-8360228		::::	0.52	:			:	:	-20.44	:	:	:	$8.41_{-0.10}^{+0.10}$	R23
410 zCOSM 411 zCOSM 412 zCOSM 413 zCOSM 414 zCOSM	OS-833022 OS-833044 OS-833044 OS-834100 OS-834172 OS-834172 OS-834906 OS-834906 OS-836042 OS-836042 OS-836108 OS-836108		: : :	1.22	:	:	:	:	:	-19.53	:	:	:	$7.86_{-0.11}^{+0.11}$	Te-Z calibration
411 zCOSM 412 zCOSM 413 zCOSM 414 zCOSM	OS-833044 OS-833222 OS-834100 OS-834172 OS-834906 OS-834906 OS-836042 OS-836042 OS-836108 OS-836108		: :	0.11	÷	:	:	:	:	-18.91	:	:	÷	:	:
412 zCOSM 413 zCOSM 414 zCOSM	OS-833222 OS-834170 OS-834172 OS-834906 OS-836042 OS-836108 OS-836108 OS-836108	: : : : : :	:	2.83	:	:	:	:	:	-19.42	:	:	:	$8.03_{-0.08}^{+0.08}$	N2
413 zCOSM 414 zCOSM	OS-834100 OS-834172 OS-834906 OS-836042 OS-836108 OS-836108 OS-836228	:::::		1.51	:	:	:	:	:	-19.01	:	:	:	$8.28_{-0.15}^{+0.15}$	R23
414 zCOSM	OS-834172 OS-834906 OS-836042 OS-836108 OS-836228	::::	:	0.20	:	:	:	:	÷	-20.73	:	:	:	$8.44_{-0.03}^{+0.03}$	R23
	OS-834906 OS-836042 OS-836108 OS-836228	: : :	:	2.22	:	:	:	:	÷	-20.38	:	÷	:	$8.15_{-0.11}^{+0.11}$	R23
415 zCOSM	OS-836042 OS-836108 OS-836228	: :	:	1.17	:	:	:	:	÷	-18.19	:	÷	:	$7.91_{-0.09}^{+0.09}$	Te-Z calibration
416 zCOSM	OS-836108 OS-836228	:		1.46	•	•		:	:	-20.63	:	:	:	$8.17_{-0.10}^{+0.10}$	R23
417 zCOSM	OS-836228			1.72	•	•		:	:	-18.46	:	:	:	$7.47_{-0.10}^{+0.10}$	Te-Z calibration
418 zCOSM		:		0.67	•	•		:	:	-17.11	:	:	:	$8.19_{-0.03}^{+0.03}$	N2
419 zCOSM	OS-836232			1.30	•	•		:	:	-18.33	:	:	:	$8.07_{-0.08}^{+0.08}$	Te-Z calibration
420 zCOSM	OS-836338		:	1.18	:	:		:	:	-20.42	:	:	:		:
421 zCOSM	OS-836632			1.11						-20.53				$7.77^{+0.09}_{-0.00}$	Te-Z calibration
422 zCOSM	OS-837240			2.25						-20.47				$8.02^{+0.07}_{-0.07}$	Te-Z calibration
423 zCOSM	OS-837330			2.77						-18.53				$7.76_{-0.12}^{+0.12}$	N2
424 zCOSM	OS-837582		:	0.96	:	:	:	:	:	-20.43	:	:	:	$8.13_{-0.12}^{+0.12}$	R23
425 zCOSM	OS-837610	:	:	1.17	:	:		:	:	-19.21	:	:	÷	$7.93_{-0.09}^{+0.09}$	Te
426 zCOSM	OS-838357			0.89	•	•		:	:	-20.35	:	:	:	$8.18_{-0.19}^{+0.19}$	R23
427 zCOSM	OS-838843	:	:	:	:	:	:	:	:	:	:	:	÷	$7.99_{-0.08}^{+0.08}$	Te-Z calibration
428 zCOSM	OS-839293	:	:	2.49	:	:	:	:	:	-17.36	:	:	:	$8.08_{-0.03}^{+0.03}$	N2
429 zCOSM	OS-839458	:	:	0.90	:	÷	:	:	:	-20.78	:	:	:	$8.43_{-0.04}^{+0.04}$	R23
430 zCOSM	OS-839488	:	:	2.20	:	:	:	:	:	-18.40	:	:	:	$8.33_{-0.06}^{+0.06}$	N2
431 zCOSM	OS-839539	:	: .	1.29	÷	÷	:	:	:	-18.62	÷	:	÷	$8.34_{-0.06}^{+0.06}$	N2
432 zCOSM	OS-840004	:	:	2.36	:	:	:	:	:	-19.55	:	:	:	$8.06_{-0.08}^{+0.08}$	Te-Z calibration
433 zCOSM	OS-840051	:	:	1.36	÷	÷	:	:	:	-17.79	:	:	÷	$7.69_{-0.08}^{+0.08}$	R23
434 zCOSM	OS-840109	:	:	0.35	÷	÷	:	:	:	-17.14	:	:	:		:
435 zCOSM	OS-840247	:	:	0.38	:	:	:	:	÷	-20.51	:	:	:	$7.87_{-0.13}^{+0.13}$	Te
436 zCOSM	OS-840599	:	:	:	:	:	:	:	÷	-19.12	:	÷	:		:
437 zCOSM	OS-840688	:	:	:	:	:	:	:	÷	-19.47	:	:	:	$7.96_{-0.10}^{+0.10}$	Te-Z calibration
438 zCOSM	OS-840845	:	:	1.99	:	:	:	÷	:	-18.29	:	:	:	$7.78_{-0.08}^{+0.08}$	N2
439 zCOSM	OS-840962	:	:	0.73	÷	:	:	:	:	-16.51	:	:	:	$7.35_{-0.11}^{+0.11}$	N2
440 zCOSM	OS-840971	:	:	0.97	:	:	:	÷	:	-19.38	:	:	÷	$8.11_{-0.08}^{+0.08}$	Te-Z calibration

	Method	N2	•	Te-Z calibration	N2	N2	N2	R23	Te	N2	N2	N2	Te	Te	R23	R23	R23	Te	Te	N2	:	R23	Te	N2	R23		R23	R23	Te-Z calibration	R23	R23	Te	N2	R23	R23	R23	R23	R23	R23	R23	Te
	$12 + \log(O/H)$	$8.13_{-0.07}^{+0.07}$	•	$8.16_{-0.07}^{+0.07}$	$8.24_{-0.06}^{+0.06}$	$8.33_{-0.05}^{+0.05}$	$8.12^{+0.08}_{-0.08}$	$8.34_{-0.14}^{+0.14}$	$8.17_{-0.07}^{+0.07}$	$8.07_{-0.08}^{+0.08}$	$7.93_{-0.10}^{+0.10}$	$8.52^{+0.08}_{-0.08}$	$8.11_{-0.02}^{+0.02}$	$7.92^{+0.08}_{-0.08}$	$8.16_{-0.04}^{+0.04}$	$8.31_{-0.09}^{+0.09}$	$8.16_{-0.05}^{+0.05}$	$8.15_{-0.03}^{+0.03}$	$7.96^{+0.05}_{-0.05}$	$8.16_{-0.10}^{+0.10}$:	$8.16_{-0.05}^{+0.05}$	$8.02^{+0.07}_{-0.07}$	$8.07_{-0.12}^{+0.12}$	$8.45^{+0.06}_{-0.06}$:	$8.37_{-0.16}^{+0.16}$	$8.33_{-0.22}^{+0.22}$	$7.90^{+0.08}_{-0.08}$	$8.20_{-0.15}^{+0.15}$	$8.31_{-0.09}^{+0.09}$	$8.17_{-0.05}^{+0.05}$	$8.28^{+0.03}_{-0.03}$	$8.17_{-0.11}^{+0.11}$	$8.06_{-0.23}^{+0.23}$	$8.21_{-0.14}^{+0.14}$	$7.79_{-0.15}^{+0.15}$	$8.22_{-0.16}^{+0.16}$	$7.96^{+0.16}_{-0.16}$	$8.24_{-0.16}^{+0.16}$	$8.03_{-0.08}^{+0.08}$
	(AB)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	24.90^{d}	23.59^{d}	24.93^{d}	24.24^{d}	23.93^{d}	24.19^{d}	23.54"
	$^{H}_{(AB)}$:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	$^{R}_{ m (AB)}$	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	\mathcal{M}_B (mag)	-17.12	-16.86	-21.23	-17.28	-17.79	-16.50	-21.49	-20.62	-16.85	-17.47	-19.39	-20.99	-21.41	-21.51	-20.12	-20.98	-20.66	-19.79	-18.10	-19.04	-20.30	-21.00	-16.88	-20.81	-19.66	-19.44	-20.34	-20.22	-21.80	-21.05	-20.13	-18.51	-20.62	-17.90	-17.30	-17.50	-17.70	-18.20	-17.10	-17.50
	$A(H\beta)$:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	$A(H\alpha)$:	÷	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	÷	:	:
ble 2	E(B-V) (mag)	:	•	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	•	:	•	:	:	:	:	:	:	:	•	:	:
Ë	${ m M}_{*}$ $(10^8~{ m M}_{\odot})$:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	$01.14^{+00.31}_{-00.31}$ b	$00.35^{+00.11}_{-00.11}$ b	$00.48^{+00.10}_{-00.10}$ b	$00.64^{+00.15}_{-00.15}$ b	$00.91^{+00.25}_{-00.25}$ ^b	$00.56_{-00.15}^{+00.15} b$	$00.31_{-00.08}^{+00.08}$
	$\stackrel{\mathrm{M}_{dyn}}{(10^{10}\ \mathrm{M}_{\odot})}$	÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	÷	:	÷	:	÷	÷	:	:	:	:	:	:	:	:	÷	÷	:	:	:
	$\mathbf{r}_{e} \\ (\mathrm{kpc})$	1.66	2.29	6.21	2.57	1.18	0.97	2.64	0.54	2.04	1.26	1.30	0.93	1.57	1.76	1.28	2.70	1.45	0.67	2.00	1.91	2.26	0.47	:	1.01	0.60	1.85	0.46	1.22	1.42	:	:	1.62	1.80	:	:	:	:	:	:	:
	$SFR(H\beta)$ Corrected	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	÷	:	÷	:	÷	÷	:	:	:	:	:	:	$03.98^{+01.09}_{-01.09}$ a	$01.06^{+00.34}_{-00.34}$ a	$02.95^{+00.60}_{-00.60}$ a	$01.66^{+00.40}_{-00.40}$ a	$02.78^{+00.76}_{-00.76}$ a	$01.98^{+00.54}_{-00.54}$ a	$03.09_{-00.76}^{+00.76}$
	$L(H\beta)$ Corrected		:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	÷	:	÷	:	÷	÷	:	:	:	:	:	:	$00.26^{+00.07}_{-00.07}$ a	$00.07^{+00.02}_{-00.02}$ a	$00.19^{+00.04}_{-00.04}$ a	$00.11^{+00.03}_{-00.03}$ a	$00.18^{+00.05}_{-00.05}$ a	$00.13^{+00.03}_{-00.03}$ a	$00.20_{-00.05}^{+00.05}$
	Name	zCOSMOS-840973	zCOSMOS-841104	zCOSMOS-841150	zCOSMOS-841493	zCOSMOS-841554	zCOSMOS-841564	zCOSMOS-841642	zCOSMOS-841690	zCOSMOS-842700	zCOSMOS-842947	zCOSMOS-843208	zCOSMOS-843329	zCOSMOS-843573	zCOSMOS-843933	zCOSMOS-844465	zCOSMOS-844480	zCOSMOS-844783	zCOSMOS-844972	zCOSMOS-845045	zCOSMOS-845785	zCOSMOS-845804	zCOSMOS-846604	zCOSMOS-846749	zCOSMOS-846799	zCOSMOS-847264	zCOSMOS-847277	zCOSMOS-847434	zCOSMOS-847735	zCOSMOS-848170	zCOSMOS-849222	zCOSMOS-849272	zCOSMOS-849619	zCOSMOS-850262	VUDS520276545	VUDS520281627	VUDS520290391	VUDS520246239	VUDS520327062	VUDS520388031	VUDS520420821
	Index	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480

Continuation on the next page.

	Method		Te	R23	R23	R23	R23	R23	R23	Te	R23	R23	R23	R23	Te	R23	Te	Te	R23	R23	R23	R23	R23	R23	R23	Te	
	$12 + \log(O/H)$		$7.79_{-0.17}^{+0.17}$	$7.96_{-0.16}^{+0.16}$	$8.06_{-0.21}^{+0.21}$	$7.92_{-0.21}^{+0.21}$	$8.23_{-0.23}^{+0.23}$	$8.32_{-0.16}^{+0.16}$	$8.31_{-0.20}^{+0.20}$	$7.66_{-0.08}^{+0.08}$	$8.30_{-0.27}^{+0.27}$	$7.97_{-0.28}^{+0.28}$	$8.22_{-0.34}^{+0.34}$	$7.86_{-0.20}^{+0.20}$	$7.58_{-0.09}^{+0.09}$	$7.80_{-0.26}^{+0.26}$	$7.55_{-0.14}^{+0.14}$	$8.00_{-0.14}^{+0.14}$	$7.81_{-0.13}^{+0.13}$	$7.63_{-0.08}^{+0.08}$	$8.33_{-0.24}^{+0.24}$	$8.23_{-0.22}^{+0.22}$	$7.82_{-0.24}^{+0.24}$	$8.18_{-0.27}^{+0.27}$	$8.24_{-0.27}^{+0.27}$	$7.76_{-0.12}^{+0.12}$	
	K	(AB)	23.62^{d}	24.21^{d}	24.78^{d}	24.97^{d}	25.39^{d}	24.54^{d}	24.43^{d}	24.33^{d}	24.58^{d}	25.19^{d}	24.14^{d}	25.20^{d}	24.30^{d}	25.00^{d}	24.34^{d}	23.33^{d}	24.45^{d}	23.79^{d}	24.87^{d}	24.55^{d}	24.98^{d}	24.98^{d}	24.18^{d}	24.23^{d}	
	H	(AB)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	R	(AB)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	M_B	(mag)	-17.80	-18.10	-18.00	-17.60	-15.60	-15.10	-18.80	-16.50	-17.30	-16.70	-18.10	-15.90	-17.00	-15.60	-16.70	-17.90	-17.20	-17.40	-14.50	-15.20	-15.90	-15.20	-17.90	-17.40	
	$A(H\beta)$:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	
	$A(H\alpha)$		÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
2	$\mathbf{E}(B-V)$	(mag)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
Table	M*	$(10^8 M_{\odot})$	$00.80^{+00.21}_{-00.21}$ b	$00.87^{+00.18}_{-00.18}$ b	:	$00.77^{+00.27}_{-00.27}$ b	$00.02^{+00.01}_{-00.01}$ b	$00.06^{+00.03}_{-00.03}$ b	$02.13^{+00.42}_{-00.42}$ b	$00.33^{+00.11}_{-00.11}$ b	:	$00.15^{+00.06}_{-00.06}$ b		$00.09^{+00.03}_{-00.03}$ b	$00.21_{-00.04}^{+00.04}$ b	$00.05^{+00.02}_{-00.02}$ b	$00.14^{+00.03}_{-00.03}$ b	$00.88^{+00.22}_{-00.22}$ b	$00.09^{+00.02}_{-00.02}$ b	$00.35^{+00.07}_{-00.07}$ b	$00.04^{+00.02}_{-00.02}$ b	$00.08^{+00.04}_{-00.04}$ b	$00.15^{+00.06}_{-00.06}$ b	$00.04^{+00.02}_{-00.02}$ ^b	$00.45_{-00.14}^{+00.14}$ b	$00.31^{+00.08}_{-00.08}$ b	
	M_{dyn}	$(10^{10} {\rm M}_{\odot})$	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		vr^{-1} .
	\mathbf{r}_{e}	(kpc)	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	in M _☉
	$SFR(H\beta)$	Corrected	$02.09^{+00.55}_{-00.55}$ a	$03.04^{+00.62}_{-00.62}$ a	$03.62^{+01.07}_{-01.07}$ a	$03.84^{+01.33}_{-01.33}$ a	$00.11^{+00.04}_{-00.04}$ a	$00.15^{+00.08}_{-00.08}$ a	$08.82^{+01.72}_{-01.72}$ a	$03.89^{+01.32}_{-01.32}$ a	$01.59^{+00.46}_{-00.46}$ a	$00.48^{+00.18}_{-00.18}$ a	$03.87^{+02.02}_{-02.02}$ a	$00.40^{+00.14}_{-00.14}$ a	$07.24^{+01.53}_{-01.53}$ a	$00.36^{+00.14}_{-00.14}$ a	$04.04^{+00.92}_{-00.92}$ a	$03.35^{+00.84}_{-00.84}$ a	$00.53^{+00.12}_{-00.12}$ a	$06.62^{+01.42}_{-01.42}$ a	$00.11^{+00.06}_{-00.06}$ a	$00.27^{+00.13}_{-00.13}$ a	$01.22^{+00.51}_{-00.51}$ a	$00.18^{+00.07}_{-00.07}$ a	$00.82^{+00.26}_{-00.26}$ a	$01.43^{+00.37}_{-00.37}$ a	and SFR units
	$L(H\beta)$	Corrected	$00.14^{+00.04}_{-00.04}$ a	$00.20^{+00.04}_{-00.04}$ a	$00.23^{+00.07}_{-00.07}$ a	$00.25^{+00.09}_{-00.09}$ a	$00.01^{+00.00}_{-00.00}$ a	$00.01^{+00.00}_{-00.00}$ a	$00.57^{+00.11}_{-00.11}$ a	$00.25^{+00.08}_{-00.08}$ a	$00.10^{+00.03}_{-00.03}$ a	$00.03^{+00.01}_{-00.01}$ a	$00.25^{+00.13}_{-00.13}$ a	$00.03^{+00.01}_{-00.01}$ a	$00.47^{+00.10}_{-00.10}$ a	$00.02^{+00.01}_{-00.01}$ a	$00.26^{+00.06}_{-00.06}$ a	$00.22^{+00.05}_{-00.05}$ a	$00.03^{+00.01}_{-00.01}$ a	$00.43^{+00.09}_{-00.09}$ a	$00.01^{+00.00}_{-00.00}$ a	$00.02^{+00.01}_{-00.01}$ a	$00.08^{+00.03}_{-00.03}$ a	$00.01^{+00.00}_{-00.00}$ a	$00.05^{+00.02}_{-00.02}$ a	$00.09^{+00.02}_{-00.02}$ a	$_{1} 10^{42} \text{ erg s}^{-1}$
	Name		VUDS520349673	VUDS520316717	VUDS520433508	VUDS520344687	VUDS530076899	VUDS530076254	VUDS530080539	VUDS530053182	VUDS530046029	VUDS530048721	VUDS530043711	VUDS530079125	VUDS510830468	VUDS510146174	VUDS511475480	VUDS510573089	VUDS510809459	VUDS510352169	VUDS510229076	VUDS510997797	VUDS510175664	VUDS5120568170	VUDS5101659094	VUDS5101657178	Luminosity units in
	Index		481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	Notes:

^a Observed luminosity or observed SFR of $H\beta$ emission line. ^b Stellar mass deduced from *Starburst*99 model using the rest-frame EW(H α) or EW(H β) and L(H β) observed. ^c *K*-band magnitudes in the Vega system. ^d *I*-band magnitudes in the AB system.

Properties of the Selected Sample at High Redshift

Chapter 4 Analysis and Results

Physical differences in HII regions with extreme star formation rates may have a deep impact on the star formation process and stellar IMF (Stolte et al., 2005). Therefore, to characterize the buildup of the stellar mass in the universe, we must have a full understanding of the physical conditions in star-forming regions in distant galaxies. Measurements of the redshift evolution in the observed relationships among metallicity, luminosity and stellar mass provide powerful constraints on models of galaxy formation and star formation feedback.

This chapter presents the results obtained using the different physical parameters previously deduced. Also, it presents a global comparison between HIIGx at high and low redshift, which is obtained combining our sample at high redshift with the local sample from Chávez et al. (2014). Such comparison is derived by analysing the different relationships: Luminosity vs Velocity Dispersion; Luminosity vs Redshift; Dynamical Mass vs Stellar Mass; Metallicity vs Stellar Mass and Metallicity vs Luminosity. The first one presents a remarkable flattening for HII-like Galaxies at high redshift with log $\sigma > 1.8 \text{ km s}^{-1}$. Finally a BPT Diagram is plotted in order to discriminate a possible contamination due to the presence of AGN in the sample.

4.1 $L(H\beta)$ - σ Relation

In order to assess the $L(H\beta)$ - σ relation as a distance estimator, 117 HII-like starburst galaxies were selected from the total sample at high redshift, in a range of 1.3 < z < 3.4. Also 114 HIIGx at low redshift, in a range of 0.008 < z < 0.165, were taken from Chávez et al. (2014) in order to compare the behaviour in the relationship. Therefore, in total we have 231 objects between high and low redshift with available data.

The resulting $L(H\beta)$ - σ relation is shown in Figure 4.1, from this we can see that even with large uncertainties for the high redshift data, a flattening that starts at approximately $\log(\sigma) = 1.8$ km s⁻¹ is evident. The reason behind such flattening in the relationship is not obvious. However it is clear that in the range of 0.008 < z < 0.165 and $\log(\sigma) < 1.8$ km s⁻¹ if the velocity dispersion increases, the luminosity also increases. This is not the case at high redshift (1.3 < z < 3.4) and $\log(\sigma) > 1.8$ km s⁻¹, where an increase in the velocity dispersion does not affect the luminosity. A possible explanation for the observed flattening in the L(H β)- σ relation is that the objects with $\log(\sigma) > 1.8$ km s⁻¹ are dominated by rotation. Therefore, the emission-line profile widths are the result of the motions in the gravitational potential and also of rotation effects. As a consequence, there is no longer a direct correlation between mass and velocity dispersion.

This flattening might have an impact into cosmology since we can use it as a standard candle, in which the HIIGx with $\log(\sigma) > 1.8$ km s⁻¹ may be assumed to have an upper limit in their luminosities. As can be seen in Figure 4.1, this occurs for HIIGx in a range of 1.3 < z < 3.4, though we need more data for HIIGx at higher redshift to confirm this trend. Besides, we need to have high resolution spectra in order to measure with accuracy the FWHM in the emission lines and therefore to obtain the velocity dispersion. We can also expect to have smaller uncertainties in the calculated fluxes and therefore in the luminosities.

Figure 4.1: $L(H\beta) - \sigma$ relation for 231 objects. From these 231 objects, 117 are HII-like starburst galaxies at high redshift (green symbols), in a range of 1.300 < z < 3.387, and 114 are HIIGx at low redshift taken from Chávez et al. (2014) (black symbols), in a range of 0.008 < z < 0.165. The blue band, at approximately $log(\sigma) = 1.8 \text{ km s}^{-1}$, indicates the approximate value where the flattening in the L- σ relation starts.

This result has not been reported before in the literature and the possibility that there is an upper limit to the luminosity of a burst of star formation has several important consequences. One of them is that if this is confirmed we would have a "standard candle" distance estimator similar to the SNIa, but capable of reaching up to the most distant star forming systems.

4.2 Luminosity vs Redshift

Motivated by the flattening observed in the $L(H\beta)$ - σ relation for the sample at high redshift, we made the plot luminosity vs redshift for all objects with luminosities, which have been reported in Chapter 3 regardless of whether they have or not σ determinations. The result is shown in Figure 4.2, where the pink dots represent observed luminosities and the green dots represent the luminosities corrected by extinction. The principal characteristic in this plot is that in the range of 1.3 < z < 3.4 the luminosity effectively remains constant within the errors. The inset shows the luminosity distribution for such HII-like galaxies at high redshift, where the dashed line represents the median value of logL(H β)= 42.16 erg s⁻¹.

Figure 4.2: $H\beta$ luminosity vs redshift for 167 HII-like starburst galaxies at z > 1.3. The pink dots are objects with observed $L(H\beta)$ and green dots represent the $L(H\beta)$ corrected by extinction. The inset shows the luminosity distribution where the dashed line represents the median.

The luminosity vs redshift relation for the 103 objects with $\log(\sigma) > 1.8$ km s⁻¹ is

shown in Figure 4.3. Clearly the luminosity remains roughly constant within errors in this redshift range. I expect to further investigate this interesting aspect of the HIIGx behaviour in my PhD work. The inset shows the luminosity distribution for such HII-like galaxies at high redshift, where the dashed line represents the median value of logL(H β)= 42.26 erg s⁻¹.

Figure 4.3: H β luminosity vs redshift for 103 HII-like starburst galaxies with $\log \sigma > 1.8$ km s⁻¹. The inset shows the luminosity distribution where the dashed line represents the median.

4.3 Cosmological Parameters Solution Space

From the previous analysis, we clearly see that the luminosity remains roughly constant within errors for the 103 objects with $\log(\sigma) > 1.8$ km s⁻¹ and for 167 HIIGx at z > 1.3. Therefore, we can use this constant luminosity in HIIGx as a "Standard clandle" in order to constrain cosmological parameters.

Figure 4.4 shows the Hubble diagram for the joint sample of HIIGx at low and high redshift, where the red continuous line indicates the concordance Λ CDM cosmology with $\Omega_m = 0.3$; $w_0 = -1.0$ and $H_0 = 73.6$ km s⁻¹ Mpc⁻¹. The points correspond to individual HIIGx, where their distance moduli were obtained using the procedure explained in the section 2.4. For the sample at high redshift with $\log(\sigma) > 1.8$ km s⁻¹, we propose to use a value of log $L(H\beta) = 42.3 \pm 0.3$ erg s⁻¹ as standard candle. The

left panel of Figure 4.4 shows distance moduli as a function of redshift for 103 HIIGx at high redshift with $\log(\sigma) > 1.8 \text{ km s}^{-1}$. While right panel of Figure 4.4 shows the same but adding the local sample of 156 HIIGx and GEHRs. It is important to note that the Hubble diagram obtained by combining HIIGx at high and low redshift covers a huge redshift range. In particular, it has galaxies in the Local Group up to $z \sim 3.4$.

Adopting the value of $H_0 = 73.6 \pm 3.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $w_1 = 0$ and our standard candle of log $L(H\beta) = 42.3 \pm 0.3 \text{ erg s}^{-1}$, we obtain reasonable strong restrictions on the plane Ω_m , w_0 , which are shown in Figure 4.5 (Chávez et al. in preparation). The left panel of Figure 4.5 shows the solution for 103 HIIGx at high redshift with $\log(\sigma) > 1.8 \text{ km}$ s⁻¹. 1, 2 and 3σ contours (random) are shown. The right panel of Figure 4.5 shows the effect of including a local sample of 156 HIIGx and GEHRs (Terlevich et al., 2015; Chávez et al., 2014). By comparing both plots in Figure 4.4, we have verified that by using a few tens of HIIGx at high redshift (in the range 1.3 < z < 3.4), even with a relatively large distance modulus uncertainty, improves the constraints on the plane { Ω_m , w_0 }. This provides an indication of how much an increase in number can restrict the cosmological parameters solution space.

By comparing our results on the plane $\{\Omega_m, w_0\}$, in which we combine the high redshift with the local HIIGx samples (see right panel of Figure 4.5), with recent results from SNeIa, CMB and BAO (see right panel of Figure 2.14,) we can conclude that our results are not only in agreement with those of SNeIa but the surface covered by our simple approach is not much larger than that of the SNeIa solution. In fact our 1- σ area solution looks very similar to the 2- σ area of the SNeIa solution. Therefore, with a larger sample of HII galaxies at higher redshift with high quality data it may be possible to achieve similar results (and perhaps even better restrictions) for the cosmological parameters solution space obtained from SNeIa.

4.4 Luminosity - Radius and Velocity Dispersion -Radius Relations

As was explained in section 3.2, the nature of the L - σ relation for HIIGx is gravitational where the emission-line profile widths reflect the motions in the gravitational potential well (Terlevich & Melnick, 1981). Besides, the HIIGx define a fundamental plane that is similar to that defined by normal elliptical galaxies (Telles, 1995).

With the purpose of exploring if the radius can be a parameter that contributes to such observed flattening, I made the plots velocity dispersion vs radius and luminosity vs radius which are shown in Figure 4.6, where the half-light radius was obtained using curves-of-growth extracted from circular apertures. (see subsection 3.2.2).

Figure 4.4: Distance moduli as a function of redshift. Left Panel: Our results for 103 HIIGx at high redshift with $\log(\sigma) > 1.8 \text{ km s}^{-1}$. Right Panel: The same but for the combined 103 HIIGx at high redshift with $\log(\sigma) > 1.8 \text{ km s}^{-1}$ and the local sample of 156 HIIGx and GEHRs (Terlevich et al., 2015; Chávez et al., 2014).

Figure 4.5: Cosmological Parameters Solution Space. Left Panel: Our results for 103 HIIGx at high redshift with $\log(\sigma) > 1.8 \text{ km s}^{-1}$. Right Panel: The same but for the combined 103 HIIGx at high redshift with $\log(\sigma) > 1.8 \text{ km s}^{-1}$ and the local sample of 156 HIIGx and GEHRs (Terlevich et al., 2015; Chávez et al., 2014). 1, 2 and 3σ contours (random) are shown.

Figure 4.6: Left: Velocity Dispersion vs Radius for 230 objects, of which 124 are HII-like starburst galaxies at high redshift, in a range of 0.68 < z < 2.58, and 106 are HIIGx at low redshift, in a range of 0.01 < z < 0.17. Right: Luminosity of H β emission line vs Radius for 236 objects, of which 118 are HII-like starburst galaxies at high redshift, in a range of 0.60 < z < 2.58, and 106 are HIIGx at low redshift, in a range of 0.01 < z < 0.20.

In the left panel of Figure 4.6, we see that if the effective radius increases, the velocity dispersion also increases in both ranges of redshift 0.01 < z < 0.20 and 0.60 < z < 2.58 by approximately the same factor in velocity dispersion, while in the right panel there seems to be a flattening for high luminosity objects. This is in agreement with the L- σ behaviour in the sense that it also suggests that there is an upper limit in the luminosity of the HIIGx.

4.5 Dynamical Mass vs Stellar Mass

As was explained before, the dynamical mass for the sample at high redshift (as at low redshift) was calculated using the equation (3.4). Regarding the calculation of stellar mass, this was made using the stellar population synthesis model *Starburst99*¹ (Leitherer et al., 1999). The simulation used a Kroupa IMF (Initial Mass Function), instantaneous star formation and a metallicity of 0.004 of Padova AGB.

The EWs for the sample at high redshift were taken from the EWs delivered by the simulation and the luminosity and mass loss were examined for each object. The mass loss was subtracted from the initial mass in order to obtain the total mass. Finally with the total mass and the luminosity I estimated the constant of the stellar mass-to-light

 $^{^{1}}Starburst99$ is a stellar population synthesis model, which is available in the website http://www.stsci.edu/science/starburst99

ratio. In order to estimate the stellar mass for each object, I multiplied such constant by the $L(H\beta)$ calculated as in subsection 3.2.5.

Comparing the Stellar Mass - Dynamical Mass relation for the high and low redshift samples, I obtain the result that such objects do not fall into the same correlation, as can be seen in Figure 4.7. It is important to note that for the objects at low redshift there is a difference of an order of magnitude between the dynamical mass and the stellar mass.

Figure 4.7: Stellar Mass - Dynamical Mass relation for 196 objects. 90 at high redshift, in a range of 1.40 < z < 2.57 (green dots), and 106 at low redshift, in a range of 0.01 < z < 0.16 (black dots). Note the similarity with the L - σ relation.

In order to confirm the results, I also calculate the M_{dyn} using the equation found in Chávez et al. 2014:

$$M_{dyn} = 7.1 \times 10^{-34} L(H\beta), \tag{4.1}$$

which was obtained using a *Starburst*99 model and an EW(H β) = 50 Å as lower limit. However, no major differences were found in the plot M_{*} vs M_{dyn} previously analysed.

A possible answer to the difference observed in the M_* - M_{dyn} relation between the samples at high and low redshift is the flattening found in the $L(H\beta)$ - σ relation. We see in the $L(H\beta)$ - σ relation that the velocity dispersion continues increasing while the

luminosity is approximately constant for the objects with log $\sigma > 1.8$ km s⁻¹ at high redshift. Therefore, the increase in σ indicates an increase in the dynamical mass (see equation 3.4) and that the luminosity is approximately constant means that the stellar mass increases very little. A drawback is that the definition of the radius is very important in the determination of dynamical mass (see subsection 3.2.3). I used the half-light radius, which was determined using curves-of-growth extracted from circular apertures (see subsection 3.2.2) for calculating the dynamical mass.

In order to obtain an unbiased estimate of the dynamical mass a good measurement of the effective radius of the ionising massive cluster is necessary. Therefore, the difference found between the objects at high and low redshift in the M_{dyn} vs M_* relation also can be due to estimation in the radii, which in both cases are affected by the seeing and by the instrumental resolution. For example, Chávez et al. (2014) compared the HST angular size with the Petrosian radius obtained from the SDSS u band photometry (corrected for seeing) and they found that the ionising cluster radius measured from the HST images is on average more than a factor of 5 smaller than the SDSS Petrosian radius. For the moment, for estimating the dynamical mass of the objects at low and high redshift I have not corrected in any way the radii reported in the literature. However, this correction must be contemplated also for the sample at high redshift since due to the instrumental resolution and the large redshift of the sample many of the objects are perhaps unresolved even under very good seeing conditions. As a consequence, the half-light radii can be overestimated and hence also the dynamical masses. The effects of rotation or multiplicity affecting the mass estimates have also to be taken into account. All this needs careful investigation in the future.

4.6 Metallicity - Mass Relation

The existence of a correlation between stellar mass and metallicity reflects the fundamental role that galaxy mass plays in galactic chemical evolution. However, it is still unclear whether this sequence is one of enrichment or depletion. If more massive galaxies form fractionally more stars in a Hubble time than their low-mass counterparts, then the observed mass-metallicity relation represents a sequence in astration. However, if galaxies form similar fractions of stars, then the relation could imply that metals are lost from galaxies with small potential wells via galactic winds. Using a sample of ~ 53,000 star-forming galaxies selected from the SDSS, Tremonti et al. (2004) found that a striking correlation is observed, extending over three decades in stellar mass and a factor of 10 in metallicity. The correlation is roughly linear from $10^{8.5}$ to $10^{10.5}$ M_{\odot}, after which a gradual flattening occurs.

In order to test the possible existence of a Metallicity - Stellar Mass relation for HII galaxies, I used a sample of 53 HII-like starburst galaxies at high redshift and 117

HIIGx at low redshift for which the required data exists in the literature. The results are presented in Figure 4.8, which shows a large dispersion. This could be due to the fact that we are not dealing here with the properties of whole galaxies but instead with the properties of a young massive burst of starformation for which no correlation between size and metallicity is expected.

Figure 4.8: Relation between stellar mass, in units of solar masses, and gas-phase oxygen abundance for 170 objects, of which 53 (green symbols) are at high redshift, in a range of redshift of 0.21 < z < 3.39, and 117 (black symbols) are at low redshift, in a range of redshift of 0.01 < z < 0.20. The different symbols indicate the different metallicity calibrators (see subsection 3.2.8).

4.7 Metallicity-Luminosity Relation

It is well known that both star-forming and early-type galaxies in the local universe follow the correlation between rest-frame B-band luminosity and the degree of chemical enrichment (Lequeux et al., 1979; Skillman et al., 1989; Garnett & Shields, 1987). This relationship is expected because of the fundamental role that galaxy mass plays in determining the degree of chemical enrichment of the interstellar medium through the rate at which those elements are produced by star formation. Because of the relative difficulty of measuring the stellar mass of galaxies, nevertheless, most works have focused on the relationship between galaxy luminosity and metallicity.

For 231 HII-like starburst galaxies at high redshift and 100 HIIGx at low redshift, I plotted in Figure 4.9 metallicity vs rest-frame B-band luminosity. The relationship exists, albeit with large dispersion in the data which could be due to the large uncertainties in the estimates of metallicity based on different calibrators (see subsection 3.2.8) indicated by different symbols in Figure 4.9.

Figure 4.9: Relation between *B*-band luminosity and gas-phase oxygen abundance for 331 objects, of which 231 (green symbols) are at high redshift, in a range of redshift of 0.10 < z < 3.39, and 100 (black symbols) are at low redshift, in a range of redshift of 0.01 < z < 0.17. The different symbols shown in the inset indicate the calibrator used for the estimation of metallicity (see subsection 3.2.8).

The slight overall trend observed in Figure 4.9, in which objects with higher luminosities have higher metallicities, again supports the idea that with HIIG we are not dealing with the properties of whole galaxies but instead with the properties of a young massive burst of starformation for which no correlation between luminosity and metallicity is expected.

4.8 Starburst or AGN?

For this thesis I have assumed that star formation is primarily responsible for the narrow and intense emission lines. However, such result would be entirely coincidental in the case that the emission lines are powered by AGN since the width of AGN emission lines is not necessarily coupled to the stellar mass of the host galaxy. In other words, we observe narrow emission lines in these small systems (~ 1 kpc) where the emission-line profile widths reflect the motions in the gravitational potential well, while typical AGN narrow line region (clouds of gas at low densities and velocities located farther away from the black hole) also have emission line widths, σ , from $\sim 200 - 1200$ km/s (Osterbrock & Mathews, 1986).

Anyway, the most secure method to distinguish starburst galaxies from AGN is by using a diagnostic diagram, for example the BPT diagram (Baldwin, Phillips, & Terlevich, 1981), a diagnostic diagram that uses emission line ratios, e.g. [NII] λ 6584/H α and [OIII] λ 5007/H β (In what follows I will use the term [NII]/H α to refer to the measured ratio between [NII] λ 6584 and H α and [OIII]/H β for the measured ratio between [OIII] λ 5007 and H β) to classify objects into groups corresponding to the predominant excitation mechanism. These groups are: normal HII regions (photoionization by O and B stars), narrow-line regions of Seyfert 1 galaxies (photoionization by a power-law continuum source) and LINERS, Low Ionization Nuclear Emission Line Regions, (shock-wave heating).

The BPT diagram locates star-forming galaxies in the lower left corner, in a region defined by decreasing excitation as a function of increasing metallicity. This physical sequence results in the empirical anticorrelation between [OIII]/H β and [NII]/H α up to the point where [NII]/H α saturates at [NII]/H $\alpha \sim 0.3$. At the highest metallicities [OIII]/H β continues decreasing at relatively fixed [NII]/H α . AGN are mostly located in the upper right corner of the diagram, typically described by both higher [NII]/H α and [OIII]/H β ratios than those in star-forming galaxies. Several curves in the BPT diagram represent the theoretical upper limit on the location of star-forming galaxies (Kewley et al., 2001; Kauffmann et al., 2003).

An advantage of these BPT diagrams is that the measured line ratios, [NII]/H α and [OIII]/H β , are not affected by uncertainties in flux calibration or dust extinction since each line ratio is calculated from emission lines very close in wavelength. Another common diagnostic diagram in the literature uses the log([OIII] λ 5007/H β) vs log([SII] λ 6716 + λ 6731/H α) ratios (Veilleux & Osterbrock, 1987).

In order to characterize the sample, a BPT diagram was made for the 25 HII-like starburst galaxies in a range of redshift of 1.30 < z < 2.135 and 96 HIIGx in a range of redshift of 0.01 < z < 0.20, which is illustrated in Figure 4.10. The stars in our BPT diagram indicate that the data were taken using the *Plot Digitizer* program ², which allows us to take a scanned image of a plot and quickly digitize values off the plot just by clicking the mouse on each data point.

From the BPT diagram it can be seen that if we consider the uncertainties, most of the objects are located just below the transition line (Kewley et al., 2001), indicating high excitation and suggesting low metal content and photoionization due to the presence of hot main sequence stars, which is consistent with the expectations for young HII regions.

² The *Plot Digitizer* program is a Java program used for digitalizer scanner plots and it is available in the website http://plotdigitizer.sourceforge.net/.

Figure 4.10: BPT diagram for 121 objects. From these 121, 25 are HII-like starburst galaxies at high redshift (green symbols), in a range of redshift of 1.30 < z < 2.135, and 96 are HIIGx at low redshift (black symbols), in a range of redshift of 0.01 < z < 0.20. The stars indicate that the data were taken using the *Plot Digitizer* program. The solid line represents the theoretical upper limit for stellar photoionization, from Kewley et al. (2001).

In the next Chapter, I will summarise the results of this work and set a scheme for future work.

Starburst or AGN?

Chapter 5 Conclusions and future work

We have selected a sample of 504 HII like-starburst galaxies in a range of redshift of 0.1 < z < 3.4 from the literature in order to assess the validity of the L(H β) - σ relation at high redshift and its use as an accurate distance estimator. The candidates were selected according to the equivalent widths in their emission lines. We also compared the physical parameters of the HII-like galaxies at high redshift with the nearby sample of HIIGx from Chávez et al. (2014).

The main conclusions obtained are:

1 There is a large enough number of appropriate objects at high redshift in the literature to measure cosmological parameters with high accuracy using the $L(H\beta)$ - σ relation for HIIGx.

2 The objects at high redshift cover the following ranges in their physical parameters: 39.84 < L(H β) < 43.59, -0.97 < SFR(H β) < 2.78, 6.41 < Log M_{*} < 10.43, 8.87 < Log M_{dyn} < 11.75, 2.04 < Log r_{eff} < 4.04, 7.32 < 12 + log(O/H) < 8.99. These values, within the uncertainties, are consistent with the ones for the HIIGx at low redshift. This suggests that the physical properties for HIIGx at low and high redshift are similar.

3 I compared the low and high redshift $L(H\beta) - \sigma$ relation, 117 HII-like starburst galaxies having the required data in a range of 1.3 < z < 3.4. By combining this subset with 114 HIIGx on the range 0.008 < z < 0.165 from Chávez et al. 2014, we find an evident flattening in the $L(H\beta) - \sigma$ relation. This flattening starts at approximately $\log(\sigma) = 1.8 \text{ km s}^{-1}$, i.e there seems to be an upper limit to the luminosity of HIIGx.

4 The flattening or the existence of an upper limit in the luminosity of HIIGx has not been reported before. The fact that we see a constant luminosity could be the consequence of the existence of an upper limit for the luminosity of a burst of star formation combined with the limiting flux achievable with present day instrumentation.

5 If the HIIGx with $\log(\sigma) > 1.8 \text{ km s}^{-1}$ have an upper limit in their luminosities, we would have a "standard candle" distance estimator similar to the SNIa, but capable of reaching up to the most distant star forming systems.

6 By comparing the Stellar Mass vs Dynamical Mass relation for the high and low redshift samples, I found that the objects at low redshift have a difference of an order of magnitude between the dynamical mass and the stellar mass whereas for the objects at high redshift there is a difference of two orders of magnitude between them. This implies that such objects do not fall into the same correlation. A possible explanation to such result is related to the flattening in the $L(H\beta)$ - σ relation since the estimated stellar mass depends on luminosity and the estimated dynamical mass also need a good measurement of the effective radius of the ionising massive cluster. Therefore, the difference found between the objects at high and low redshift in the M_* - M_{dyn} relation also can be related to the radii estimates, which are affected by the seeing and instrumental resolution of the observations.

7 The [OIII]/H β vs [NII]/H α BPT diagnostic diagram was used to investigate the nature of the ionization source for the samples at high and low redshift. The result is that if we consider the uncertainties, most of the objects are located just below the transition line (Kewley et al., 2001), indicating high excitation and suggesting low metal content and photoionization by hot main sequence stars, which is consistent with the expectations for young HII regions.

8 Finally, we have applied the HIIGx standard candle method to the high redshift sample to constrain the cosmological parameters solution space. Adopting the value of log L(H β)= 42.2 ± 0.3 erg s⁻¹ as a standard candle for 103 HIIGx at high redshift with log(σ) > 1.8 km s⁻¹, we obtain strong restrictions on the plane { Ω_m, w_0 }.

The combination of our sample at high redshift with the local sample of 156 (HIIGx and GEHRs) from Chávez et al. (2014) and Terlevich et al. (2015) dramatically improves the constraints on the plane Ω_m , w_0 . This provides a clear indication of how much an increase in number can restrict the cosmological parameters solution space.

These results are surprisingly good considering the high uncertainties in the data at high redshift, therefore we expect better constraints on the plane $\{\Omega_m, w_0\}$ with new high quality data from high resolution spectrographs at 8 m class telescopes.

5.1 Future work

The main aim of my future work is to investigate both HIIGx distance estimators for the accurate determination of cosmological parameters up to the highest redshift possible.

The main aspects are:

1 Observe the sample of 504 HII like-starburst galaxies at high redshift using high resolution spectrographs at 8 m class telescopes in order to measure with great accuracy the flux and the FWHM in the emission lines.

To observe the selected sample, the best option is to use multiples IFUs at large telescopes, e.g. VLT-KMOS and KECK-MOSFIRE, for which we have already been granted observing time. The reason for this is that several objects in the same field can be observed simultaneously (~ 40 objects/night), increasing notably the observation efficiency and in this way we take advantage of the high number density of the HIIGx.

2 I will compare the intrinsic properties of the new high precision data on this high-z sample with the low-z sample in order to have a better understanding of the nature of these starforming galaxies at high redshift and their relation with similar objects nearby.

3 Analyse critically the L - σ distance estimator and its application in cosmology.

4 I will explore in detail the observed flattening in the L - σ relation for objects with $\text{Log}(\sigma) > 1.8 \text{ km s}^{-1}$ and its use as a standard candle, which is an independent method to determine cosmological parameters, in particular Ω_m and w_0 .

5 Given the high redshift at which these methods seem to work, I will also explore the evolution of the dark energy equation of state to explore whether its is a cosmological constant or a field that provides a time varying equation of state.

6 Finally, I will do joint analysis of the HIIGx methods with the SNIa method as accurate distance estimators to learn about systematics affecting both approaches.

Bibliography

- Albrecht, A., Bernstein, G., Cahn, R., et al. 2006, ArXiv Astrophysics e-prints
- Alloin, D., Collin-Souffrin, S., Joly, M., & Vigroux, L. 1979, Astronomy and Astrophysics, 78, 200
- Amanullah, R., Lidman, C., Rubin, D., et al. 2010, The Astrophysical Journal, 716, 712
- Amorín, R., Sommariva, V., Castellano, M., et al. 2014, Astronomy & Astrophysics, 568, L8
- Amorín, R., Pérez-Montero, E., Contini, T., et al. 2015, Astronomy & Astrophysics, 578, A105
- Aubourg, É., Bailey, S., Bautista, J. E., et al. 2014, ArXiv e-prints
- Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, Publications of the Astronomical Society of the Pacific, 93, 5
- Bassett, B. A. 2005, Physical Review D, 71, 083517
- Bordalo, V., & Telles, E. 2011, The Astrophysical Journal, 735, 52
- Bosch, G., Terlevich, E., & Terlevich, R. 2002, Monthly Notices of the Royal Astronomical Society, 329, 481
- Bueno Sanchez, J. C., Nesseris, S., & Perivolaropoulos, L. 2009, Journal of Cosmology and Astroparticle Physics, 11, 29
- Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, The Astrophysical Journal, 533, 682
- Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, The Astrophysical Journal, 429, 582
- Chávez, R., Terlevich, E., Terlevich, R., et al. 2012, Monthly Notices of the Royal Astronomical Society, 425, L56

- Chávez, R., Terlevich, R., Terlevich, E., et al. 2014, Monthly Notices of the Royal Astronomical Society, 442, 3565
- Chevallier, M., & Polarski, D. 2001, International Journal of Modern Physics D, 10, 213
- Copetti, M. V. F., Pastoriza, M. G., & Dottori, H. A. 1986, Astronomy and Astrophysics, 156, 111
- Denicoló, G., Terlevich, R., & Terlevich, E. 2002, Monthly Notices of the Royal Astronomical Society, 330, 69
- Dicus, D. A., & Repko, W. W. 2004, Physical Review D, 70, 083527
- Dottori, H. A. 1981, Astrophysics and Space Scienc, 80, 267
- Dottori, H. A., & Bica, E. L. D. 1981, Astronomy and Astrophysics, 102, 245
- Edmunds, M. G., & Pagel, B. E. J. 1984, Monthly Notices of the Royal Astronomical Society, 211, 507
- Erb, D. K., Pettini, M., Shapley, A. E., et al. 2010, The Astrophysical Journal, 719, 1168
- Erb, D. K., Shapley, A. E., Steidel, C. C., et al. 2003, The Astrophysical Journal, 591, 101
- Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., & Adelberger, K. L. 2004, The Astrophysical Journal, 612, 122
- Erb, D. K., Steidel, C. C., Shapley, A. E., et al. 2006a, The Astrophysical Journal, 647, 128
- 2006b, The Astrophysical Journal, 646, 107
- Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, The Astrophysical Journal, 706, 1364
- Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, The Astrophysical Journal, 758, 24
- García-Benito, R. 2009, PhD thesis, Universidad Autonoma de Madrid
- Garnett, D. R., & Shields, G. A. 1987, Astrophysical Journal, 317, 82
- Gilliland, R. L., Nugent, P. E., & Phillips, M. M. 1999, The Astrophysical Journal, 521, 30

- Gilliland, R. L., & Phillips, M. M. 1998, IAU Circ., 6810, 1
- Haro, G. 1956, Boletin de los Observatorios Tonantzintla y Tacubaya, 2, 8
- Hicken, M., Wood-Vasey, W. M., Blondin, S., et al. 2009, The Astrophysical Journal, 700, 1097
- Hoyos, C., Koo, D. C., Phillips, A. C., Willmer, C. N. A., & Guhathakurta, P. 2005, The Astrophysical Journal, 635, L21
- Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, Monthly Notices of the Royal Astronomical Society, 346, 1055
- Kennicutt, R. C., & Evans, N. J. 2012, Annual Review of Astronomy and Astrophysics, 50, 531
- Kennicutt, Jr., R. C., Bresolin, F., & Garnett, D. R. 2003, The Astrophysical Journal, 591, 801
- Kennicutt, Jr., R. C., Edgar, B. K., & Hodge, P. W. 1989, The Astrophysical Journal, 337, 761
- Kewley, L. J., & Dopita, M. A. 2002, The Astrophysical Journal Supplement Series, 142, 35
- Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, The Astrophysical Journal, 556, 121
- Kewley, L. J., & Ellison, S. L. 2008, The Astrophysical Journal, 681, 1183
- Kobulnicky, H. A., Kennicutt, Jr., R. C., & Pizagno, J. L. 1999, The Astrophysical Journal, 514, 544
- Kobulnicky, H. A., & Kewley, L. J. 2004, The Astrophysical Journal, 617, 240
- Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, The Astrophysical Journal Supplement, 192, 18
- Kroupa, P., & Weidner, C. 2003, The Astrophysical Journal, 598, 1076
- Kunth, D., & Ostlin, G. 2000, The Astronomy and Astrophysics Review, 10, 1
- Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, The Astrophysical Journal Supplement Series, 123, 3
- Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A., & Torres-Peimbert, S. 1979, Astronomy and Astrophysics, 80, 155

- Linder, E. V. 2003, Physical Review Letters, 90, 091301
- Mancini, C., Förster Schreiber, N. M., Renzini, A., et al. 2011, The Astrophysical Journal, 743, 86
- Maseda, M. V., van der Wel, A., da Cunha, E., et al. 2013, The Astrophysical Journal Letters, 778, L22
- Maseda, M. V., van der Wel, A., Rix, H.-W., et al. 2014, The Astrophysical Journal, 791, 17
- Masters, D., McCarthy, P., Siana, B., et al. 2014, The Astrophysical Journal, 785, 153
- Matsuda, Y., Smail, I., Geach, J. E., et al. 2011, Monthly Notices of the Royal Astronomical Society, 416, 2041
- McCall, M. L., Rybski, P. M., & Shields, G. A. 1985, Astrophysical Journal Supplement Series, 57, 1
- Melnick, J. 1978, Astronomy and Astrophysics, 70, 157
- Melnick, J. 1987, in Starbursts and Galaxy Evolution, ed. T. X. Thuan, T. Montmerle, & J. Tran Thanh van, 215–225
- Melnick, J., Moles, M., Terlevich, R., & Garcia-Pelayo, J.-M. 1987, Monthly Notices of the Royal Astronomical Society, 226, 849
- Melnick, J., Terlevich, R., & Moles, M. 1988, Monthly Notices of the Royal Astronomical Society, 235, 297
- Melnick, J., Terlevich, R., & Terlevich, E. 2000, Monthly Notices of the Royal Astronomical Society, 311, 629
- Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae and active galactic nuclei
- Osterbrock, D. E., & Mathews, W. G. 1986, Annual review of astronomy and astrophysics, 24, 171
- Pagel, B. E. J., Edmunds, M. G., Blackwell, D. E., Chun, M. S., & Smith, G. 1979, Monthly Notices of the Royal Astronomical Society, 189, 95
- Pagel, B. E. J., Simonson, E. A., Terlevich, R. J., & Edmunds, M. G. 1992, Monthly Notices of the Royal Astronomical Society, 255, 325
- Peebles, P. J., & Ratra, B. 2003, Reviews of Modern Physics, 75, 559
- Percival, W. J., Reid, B. A., Eisenstein, D. J., et al. 2010, Monthly Notices of the Royal Astronomical Society, 401, 2148

- Pérez-Montero, E., & Díaz, A. I. 2003, Monthly Notices of the Royal Astronomical Society, 346, 105
- Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, The Astrophysical Journal, 517, 565
- Pettini, M., & Pagel, B. E. J. 2004, Monthly Notices of the Royal Astronomical Society, 348, L59
- Pettini, M., Shapley, A. E., Steidel, C. C., et al. 2001, The Astrophysical Journal, 554, 981
- Pilyugin, L. S. 2001a, Astronomy and Astrophysics, 369, 594
- —. 2001b, Astronomy and Astrophysics, 374, 412
- 2001c, Astronomy and Astrophysics, 373, 56
- Plionis, M., Terlevich, R., Basilakos, S., et al. 2011, Monthly Notices of the Royal Astronomical Society, 416, 2981
- Poznanski, D., Butler, N., Filippenko, A. V., et al. 2009, The Astrophysical Journal, 694, 1067
- Raimann, D., Storchi-Bergmann, T., Bica, E., Melnick, J., & Schmitt, H. 2000, Monthly Notices of the Royal Astronomical Society, 316, 559
- Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, The Astronomical Journal, 116, 1009
- Riess, A. G., Nugent, P. E., Gilliland, R. L., et al. 2001, The Astrophysical Journal, 560, 49
- Riess, A. G., Macri, L., Casertano, S., et al. 2011, The Astrophysical Journal, 730, 119
- Sargent, W. L. W., & Searle, L. 1970, The Astrophysical Journal, 162, L155
- Schaefer, B. E. 2007, The Astrophysical Journal, 660, 16
- Searle, L., & Sargent, W. L. W. 1972, The Astrophysical Journal, 173, 25
- Shapley, A. E., Erb, D. K., Pettini, M., Steidel, C. C., & Adelberger, K. L. 2004, The Astrophysical Journal, 612, 108
- Siegel, E. R., Guzmán, R., Gallego, J. P., Orduña López, M., & Rodríguez Hidalgo, P. 2005, Monthly Notices of the Royal Astronomical Society, 356, 1117

- Skillman, E. D., Kennicutt, R. C., & Hodge, P. W. 1989, Astrophysical Journal, 347, 875
- Stolte, A., Brandner, W., Grebel, E. K., Lenzen, R., & Lagrange, A.-M. 2005, The Astrophysical Journal, 628, L113
- Storchi-Bergmann, T., Calzetti, D., & Kinney, A. L. 1994, The Astrophysical Journal, 429, 572
- Suzuki, N., Rubin, D., Lidman, C., et al. 2012, The Astrophysical Journal, 746, 85
- Swinbank, A. M., Smail, I., Chapman, S. C., et al. 2004, The Astrophysical Journal, 617, 64
- Telles, E., Melnick, J., & Terlevich, R. 1997, Monthly Notices of the Royal Astronomical Society, 288, 78
- Telles, J. E. 1995, PhD thesis, Univ. Cambridge, (1995)
- Terlevich, R., & Melnick, J. 1981, Monthly Notices of the Royal Astronomical Society, 195, 839
- Terlevich, R., Melnick, J., Masegosa, J., Moles, M., & Copetti, M. V. F. 1991, Astronomy and Astrophysics Supplement Series, 91, 285
- Terlevich, R., Terlevich, E., Melnick, J., et al. 2015, Monthly Notices of the Royal Astronomical Society, 451, 3001
- Terlevich, R., Terlevich, E., Rosa-González, D., & Silich, S. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 297, Star Formation Through Time, ed. E. Perez, R. M. Gonzalez Delgado, & G. Tenorio-Tagle, 149
- Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, The Astrophysical Journal, 613, 898
- van der Wel, A., Straughn, A. N., Rix, H.-W., et al. 2011, The Astrophysical Journal, 742, 111
- Veilleux, S., & Osterbrock, D. E. 1987, Astrophysical Journal Supplement Series, 63, 295
- Wang, Y., & Mukherjee, P. 2006, The Astrophysical Journal, 650, 1
- Weiner, B. J., Willmer, C. N. A., Faber, S. M., et al. 2006, The Astrophysical Journal, 653, 1027
- Xia, L., Malhotra, S., Rhoads, J., et al. 2012, The Astronomical Journal, 144, 28

Zaritsky, D., Kennicutt, Jr., R. C., & Huchra, J. P. 1994, Astrophysical Journal,, 420, 87