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for me and I am sure they will still be there.

Thanks to my advisors, Dr. Gordana Jovanovic Dolecek and Dr. Alfonso
Fernández Vázquez, for their guidance, patience and support.

Thanks to the Instituto Nacional de Astrof́ısica, Óptica y Electrónica for
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Resumen

En esta tesis se propone un modelo de comunicaciones digitales para codificación
de canal. El modelo utiliza técnicas de Bancos de Filtros Sobremuestreados y
métodos de Verificación de Paridad de Baja Densidad (LDPC). Inicialmente se
presentan los fundamentos de un sistema de comunicación y codificación. Se
hace una breve descripción de varios tipos de codificación y simulaciones. En
seguida se hace una introducción a la decodificación por ventanas de códigos
LDPC. Después se menciona lo que es un banco de filtros sobremuestreado, sus
propiedades y como diseñarlo. Posteriormente se explica cómo utilizar bancos
de filtros para codificación. Finalmente se presenta el modelo de codificación de
canal propuesto con simulaciones y conclusiones.
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Abstract

In this thesis a digital communications model for channel coding is proposed.
The model uses Oversampled Filter Bank (OFB) techniques and Low-Density
Parity-Check (LDPC) coding. First, the fundamentals of a communication
channel and coding are presented. A brief description of some coding types
and simulations are described. After that, an introduction to the window de-
coding of LDPC codes is introduced. Later is mentioned what is an OFB,
its properties and how to design it. Then is explained how an OFB is used
for coding. Finally, the proposed model for channel coding is presented with
simulations and conclusions.
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Chapter 1

Introduction

In this chapter the fundamentals of a communication channel are described.
Also the fundamentals of coding are presented.

1.1 Communication System

The simple model of digital communication system is presented in Figure 1.1.
The principal blocks of this model are the Source encoder, the Channel encoder,
and the Modulator in the Transmitter. In the receiver side, the principal blocks
are the Demodulator, the Channel decoder and the Source decoder.

Figure 1.1: Digital communication system model.

This thesis is focused on the Channel encoder and the Channel decoder. This
modules provide the capacity to protect the messages when they are exposed
to noise in the channel by adding controlled extra information to the messages,
also known as redundancy, in the Channel encoder. This redundancy is used by
the Channel decoder to detect and correct errors in the corrupt messages. This
techniques are applied to decrease the error probability in the transmission of
messages.

1
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1.2 Coding Fundamentals

1.2.1 Alphabet Coding

A data source must be analyzed as a random data source, because it is unknown
what data is going to be delivered by the source. Still, the data’s behaviour can
be described by a probability distribution, assigning certain probability to each
datum. An alphabet can be defined by a probability distribution. A source
alphabet is defined as the collection of all possible messages [1]. An alphabet,
denoted as U , with r messages, like u1, u2, ... , ur, and with their respective
probabilities p1, p2, ... , pr satisfy:

pi ≥ 0,∀i, (1.1)

and:
r∑
i=1

pi = 1. (1.2)

1.2.2 Entropy

The amount of acquired information after the event sk, with probability pk, is:

I(sk) = log2

(
1

pk

)
. (1.3)

The average information in the alphabet U is:

H(U) = E[I(sk)] (1.4)

=

r∑
k=0

pkI(sk) (1.5)

=

r∑
k=0

pk log2

(
1

pk

)
. (1.6)

This amount H(U) is called entropy of a discrete memoryless source with source
alphabet U . It provides us the average information per symbol in the source [2].

1.2.3 Discrete Memoryless Channel

A Discrete Memoryless Channel is a statistical model with an input X and an
output Y which is a contaminated version of X; both X and Y are random
variables [2]. The channel accepts an input symbol X from the alphabet X and,
in response, it emits a symbol Y from an alphabet Y. The channel is a discrete
channel because both alphabets have finite sizes and it is memoryless because
the output symbol does not depend on the input symbol.

The channel has an input alphabet:

X = {x0, x1, ..., xJ−1} , (1.7)
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an output alphabet:
Y = {y0, y1, ..., xK−1} , (1.8)

and a set of transition probabilities:

p(yk|xj) = P (Y = yk|X = xj). (1.9)

1.2.4 Mutual Information

The mutual information denoted as I(X ,Y) is defined as:

I(X ,Y) = H(X )−H(X|Y) (1.10)

= H(Y)−H(Y|X ) (1.11)

= I(Y,X ), (1.12)

where H(X ) is the input channel entropy, H(Y) is the output channel en-
tropy, H(X|Y) is the entropy of the input channel after knowing the output
and H(Y|X ) is the entropy of the output channel given certain input. The dif-
ference H(X )−H(X|Y) represents the remaining uncertainty of the input after
knowing the channel output [2].

The conditional entropy H(X|Y) is defined as:

H(X|Y) =

K−1∑
k=0

J−1∑
j=0

p(xj , yk) log2

[
1

p(xj |yk)

]
, (1.13)

where
p(xj , yk) = p(xj |yk)p(yk). (1.14)

1.2.5 Channel Capacity

The channel capacity of a discrete memoryless channel is the maximum mutual
information, finding the distribution probability at the input that maximizes
the mutual information [2]. The channel capacity is denoted as C and defined
as:

C = max
p(xj)

I(X ,Y). (1.15)

1.2.6 Shannon’s Channel Coding Theorem

For a discrete memoryless channel, is possible to transmit messages with a small
error probability if communication rate r is below or equal the channel capacity
C, that is:

r ≤ C. (1.16)

The communication rate is defined as:

r =
k

n
, (1.17)

where k is the length of the message and n is the length of transmitted bits [1].



Chapter 2

Code Classification

In this chapter is given a classification of coding techniques. Also, a brief de-
scription of some coding types and simulations is presented.

The coding techniques may be classified as linear and nonlinear codes. The
linear codes may be subclassified in block codes and convolutional codes. This
classification is shown in Figure 2.1.

Figure 2.1: Coding classification.

This thesis only considers linear codes. Some of them are described in the
next sections.

2.1 Linear Codes

A code is linear if the sum of any two codewords (encoded messages) generates
a third codeword. This sum is performed in modulo-2 arithmetic. In a (n, k)
linear code, where n is the length of the codeword and k is the length of the
message, the n − k bits are generated from the message bits according to the
coding rule that determines the code mathematical structure. This n − k bits

4
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are called the parity bits [2].
The system can be defined in a matrix form like this:

m = [m0,m1, ...,mk−1] (2.1)

b = [b0, b1, ..., bn−k−1] (2.2)

c = [c0, c1, ..., cn−1] = [b
...m], (2.3)

where m is the message vector, b is the parity vector, and c is the codeword.
The equation system that define the parity bits is:

b = mP , (2.4)

where P is the coefficient matrix:

P =


p0,0 p0,1 · · · p0,n−k−1
p1,0 p1,1 · · · p1,n−k−1

...
...

. . .
...

pk−1,0 pk−1,1 · · · pk−1,n−k−1

 , (2.5)

and pi,j is 0 or 1 and is set in a way that the rows of the generator matrix are
linearly independent and the parity equations are unique.

From the equations (2.1)-(2.5) it can be noted that:

c = [b
...m] (2.6)

= [mP
...m] (2.7)

= m[P
... Ik], (2.8)

where Ik is the k-by-k identity matrix, and the generator matrix G is defined
as:

G = [P
... Ik]. (2.9)

The codeword can be redefined as:

c = mG. (2.10)

Other way to express the relation between the message bits and the parity
matrix is with the parity check matrix H, defined as:

H = [In−k
...P T ]. (2.11)

It can be shown that:

HGT = 0 (2.12)

= GHT .
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Then:

cHT = mGHT (2.13)

= 0.

The generator matrix and the parity check matrix are basic for the descrip-
tion and operation of a linear block code. This two equations are described in
Figure 2.2 as blocks.

Figure 2.2: Linear coding [2].

During the decoding process, we define r as the resulting vector after sending
the codeword c through a noisy channel like:

r = c + e, (2.14)

where e is the error vector.
The ith element of e is 0 if the corresponding element of r is equal to c,

otherwise is 1. The decoding algorithm begins with the vector syndrome s
defined as:

s = rHT , (2.15)

which depends only on the error pattern e defined as:

s = rHT (2.16)

= (c + e)HT (2.17)

= cHT + eHT (2.18)

= eHT . (2.19)

Erroneous bits can be detected with the syndrome s from the received vector
r and get the transmitted codeword c. This is accomplished with the Decoding
table defined as:

d =

[
01×(n−k) 01×n

HT In

]
. (2.20)

The first n − k columns is the syndrome, and the last n columns is where the
error is located in the codeword. Flipping the bit in error is enough to correct
the message.

Minimum Distance

The Hamming distance between two code vectors is the number of different
elements on the same position of the vectors and the Hamming weight is the
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number of “1” in a code vector. The minimum distance dmin of a linear block
code is defined by the minimum number of rows of the matrix HT whose sum is
equal to the zero vector [2]. The minimum distance defines the error-correcting
capabilities of a code. An (n, k) linear block code can correct up to t errors if,
and only if:

t ≤
⌊

1

2
(dmin − 1)

⌋
, (2.21)

where bc is the largest integer function.

Simulation Results

For a (7,4) block code the coefficient matrix is equal to [2]:

P =


1 1 0
0 1 1
1 1 1
1 0 1

 . (2.22)

The generation matrix and the parity-check matrix are given in the matrices:

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 , (2.23)

and:

H =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 . (2.24)

The decoding table is presented as:

d =



000 0000000
100 1000000
010 0100000
001 0010000
110 0001000
011 0000100
111 0000010
101 0000001


. (2.25)

If the message vector is m = [1000], the codeword vector will be c =
[1101000] after the encoding process. Assuming one error produced by the chan-
nel, then the received vector could be r = [1101100] This means that the fifth
bit is erroneous. When the received vector r is processed with the parity-check
matrix, we get:

s = rHT

= [011].
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After checking the decoding table (2.25), we note that the syndrome s = [011]
corresponds to the vector [0000100], so we conclude that the fifth bit is in error,
and we only flip the bit value to correct the message.

2.2 Cyclic Codes

A binary code is cyclic if it has two properties [2]:

1. Linear property: The sum of any two codeword is a codeword.

2. Cyclic property: Any shifted codeword is a codeword.

If the n-tuple (c0, c1, ..., cn−1) is a linear block codeword (n, k), then the code
is cyclic if the n-tuples:

(cn−1, c0, ..., cn−2)

(cn−2, cn−1, ..., cn−3)

...

(c1, c2, ..., cn−1, c0)

are also codewords. These coefficients define de codeword polynomial like:

c(X) = c0 + c1X + c2X
2...+ cn−1X

n−1, (2.26)

where X represents a time shift [2].

Generator Polynomial

If g(X) is a polynomial of (n − k) degree that is a factor of Xn + 1, generally
g(X) can be expanded like:

g(X) = 1 +

n−k−1∑
i=1

giX
i +Xn−k, (2.27)

where the coefficients gi are 0 or 1.
The g(X) polynomial is called the generator polynomial of the cyclic code.

The cyclic code is uniquely determined by the generator polynomial. The co-
efficients of the generator polynomial shifts may define the generator matrix G
in a linear code. Each codeword can be expressed as:

c(X) = a(X)g(X), (2.28)

where a(X) is a polynomial of k − 1 degree.
Assuming that we have a generator polynomial and if we require to encode

a message (m0,m1, ...,mk−1) in a cyclic code like:

(b0, b1, ..., bn−k−1,m0,m1, ...,mk−1), (2.29)
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where bn are the n− k parity bits, the message polynomial is defined like:

m(X) = m0 +m1X + ...+mk−1X
k−1. (2.30)

Similarly, the parity polynomial is equal to:

b(X) = b0 + b1X + ...+ bn−k−1X
n−k−1. (2.31)

The codeword polynomial would be:

c(X) = b(X) +Xn−km(X) (2.32)

= a(X)g(X). (2.33)

After applying some algebraic properties we get:

Xn−km(X)

g(X)
= a(X) +

b(X)

g(X)
. (2.34)

This equation implies that b(X) is the residual from dividing Xn−km(X) by
g(X).

The summary steps to achieve the codeword are these:

1. Multiply the message polynomial m(X) by Xn−k.

2. Divide Xn−km(X) by g(X) and get the residual b(X).

3. Sum b(X) to Xn−km(X) and obtain the codeword polynomial.

Syndrome Polynomial

When the codeword is transmitted through a channel [2], the received polyno-
mial is obtained:

r(X) = r0 + r1X + ...+ rn−1X
n−1. (2.35)

The remainder of dividing r(X) by the generator polynomial g(X) (a polynomial
of degree (n − k − 1) or less) is called the syndrome polynomial s(X), and its
coefficients define the syndrome vector. After the syndrome is calculated, the
correcting procedure applied to a linear code codeword is also applied to correct
a cyclic code codeword.

Parity-Check Polynomial

A cyclic code is uniquely specified by its generator polynomial g(X) but there
is other polynomial of k degree that can specify the code. This is called the
parity-check polynomial [2], which is:

h(X) = 1 +

k−1∑
i=1

hiX
i +Xk. (2.36)
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This polynomial is related to g(X) as:

g(X)h(X) mod (Xn + 1) = 0. (2.37)

Both polynomials g(X) and h(X) are factors of Xn + 1:

g(X)h(X) = Xn + 1. (2.38)

The coefficients of the parity-check polynomial h(X) have to be reversed and
shifted to define de parity-check matrix H. Knowing this, we can define the
reciprocal of the parity-check polynomial as:

Xkh(X−1) = Xk

(
1 +

k−1∑
i=1

hiX
−i +X−k

)
(2.39)

= 1 +

k−1∑
i=1

hk−iX
i +Xk. (2.40)

The coefficient n-tuples of this polynomials now can be used for the parity-check
matrix H.

BCH Coding

The Bose-Chaudhuri-Hocquenghem (BCH) code is a special type of cyclic code
where:

Block length: n = 2m − 1,

Number of message bits: k ≥ n−mt,
Minimum distance: dmin ≥ 2t+ 1,

where m is an integer greater or equal to 3.
Each BCH code is a t-error correcting code in that it can detect and correct

up to t random errors per codeword.

Simulation Results

With a (7,4) Hamming Code and the generator polynomial [2]:

g = 1 +X +X3, (2.41)

we assume a message vector m = [0100]. After following the steps to encode a
message described in this section, we will obtain the codeword c = [0110100].
Assuming one error produced by the channel, the received vector could be r =
[0110101]. This means that the seventh bit is in error. When r(X) polynomial
is divided by g(X) we get the syndrome s = [101]. To construct the parity-check
matrix H, we take the reciprocal of h(X) and two shifted versions:

X4h(X−1) = 1 +X2 +X3 +X4 (2.42)

X5h(X−1) = X +X3 +X4 +X5 (2.43)

X6h(X−1) = X2 +X4 +X5 +X6. (2.44)
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Using the coefficients of this polynomials we define H ′ as:

H ′ =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 . (2.45)

This matrix is not in a systematic form. A systematic form means that the
original message is embedded in the codeword. To achieve a systematic form
we perform some row arithmetic operations and we obtain H:

H =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 , (2.46)

which is equal to the matrix (2.24). So we can consult the syndrome in the
decoding table (2.25) to check that the seventh bit is the one that has to be
flipped.

2.3 Convolutional Codes

A convolutional code generates redundant bits applying modulo-2 convolutions
[2]. It has 1/n code rate, and can be described by a finite state machine that
consists on M -stage shift registers, n modulo-2 adders, and multiplexers that
serialize the system output.

An L bits message produces an output of n(L+M) length bits. The coding
rate is:

r =
L

n(L+M)
. (2.47)

Typically, L >> M then the code rate is simplified to:

r ' 1

n
. (2.48)

The convolutional code length is defined by the number which shows how
one bit shifts of the message can influence the encoder output. In a coder
with M -stage registers, the coder memory is equal to the M message bits, and
K = M + 1 shifts are required to the message bit to exit the system.

An k = 2 registers, and n = 2 adders convolutional encoder is depicted in
Figure 2.3.

Each path between the encoder input and output can be expressed by the
impulse response, defined as the response to a single bit 1 through the path
and a zero initial stage. Also we can characterize each path by a generator
polynomial, defined as the unit-delay transform of the impulse response, like:

g(i)(D) = g
(i)
0 + g

(i)
1 D + g

(i)
2 D2 + ...+ g

(i)
MDM , (2.49)

where D denotes the unit delay variable, and g
(i)
j are the coefficients that de-

scribe the impulse response through the i path.
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Figure 2.3: Convolutional encoder with 1/2 code rate [2].

The convolutional encoder shown in Figure 2.3 is described by the next set
of generator polynomials:

g(1)(D) = 1 +D +D2 (2.50)

g(2)(D) = 1 +D2. (2.51)

If we have the message m = [10011], its message polynomial is:

m(D) = 1 +D3 +D4. (2.52)

Like the Fourier transform, the output of the time domain convolution, is a
product in the D domain, then:

c(1) = g(1)(D)m(D) (2.53)

= (1 +D +D2)(1 +D3 +D4) (2.54)

= 1 +D +D2 +D3 +D6, (2.55)

c(2) = g(2)(D)m(D) (2.56)

= (1 +D2)(1 +D3 +D4) (2.57)

= 1 +D2 +D3 +D4 +D5 +D6 (2.58)

and the output through the path 1 is [1111001] and through the path 2 is
[1011111]. Finally, with the multiplexers, the two output paths generate the
codeword:

c = [11, 10, 11, 11, 01, 01, 11]. (2.59)
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A trellis or a stage machine is a graphic way to describe a convolutional
code. Figure 2.4 is a trellis of the Figure 2.3 coder, we can see the stages and
the outputs when a 0 (solid line) and a 1 (dashed line) inputs the system. The
stage diagram in Figure 2.5 provides the same information but in a compact
way.

Figure 2.4: Trellis [2].

Figure 2.5: Stage diagram [2].

To decode a message is necessary to apply maximum likelihood techniques,
which uses the fact that the correct message is the one that minimizes the
Hamming distance between the received vector r and the transmitted vector c.
To achieve this we can use the Viterbi algorithm described next.
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Viterbi Algorithm [2]

1. Initialization

• Label the most left stage of the trellis as 0.

2. Computation step j + 1

• Let j = 0, 1, 2, ..., and consider that in the last step of j two things
were done:

– All the survivor paths where identified, i.e., of all the roads end-
ing in a single state, only the ones with the lower Hamming
distance are saved.

– All of the survivor paths and their Hamming distance to each
stage are saved.

3. Final Step

• Until the algorithm reaches the last node, the lower Hamming dis-
tance path is picked and that is the decoded message.

Simulation Result

Following the example explained before in this section, if the message is m =
[10011] and the generator polynomials are (2.50) and (2.51). The codeword is
c = [11101111010111]. When the codeword goes through the channel, an error
is generated through the channel, so we will assume that the received vector
is r = [11101111011111]. After applying the Viterbi algorithm, the decoded
vector is equal to the original message.

2.4 Low-Density Parity-Check Codes

The Low-Density Parity-Check (LDPC) codes are specified by a parity-check
matrix A which is sparse [2], i.e., it consists mainly of “0” and a small number
of “1”. A (n, tc, tr) LDPC code, consists of n bits length, tc is the weight (the
number of 1s) on each column of A and tr is the weight of each row with the
constraint tr > tc. The code rate of an LDPC code is equal to:

r = 1− tc
tr
. (2.60)

The rows in matrix A must be linearly independent.
An LDPC code structure is described by a bipartite graph that is shown in

Figure 2.6 where an (10, 3, 5) LDPC code is presented. The left side nodes
are called variable nodes that represent the codeword elements. The right side
nodes are called check nodes that correspond to a set of parity-check constraints.
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Figure 2.6: Bipartite graph of the (10, 3, 5) LDPC code [2].

The parity-check matrix A is defined as:

AT =

A1

. . .
A2

 , (2.61)

where A1 is the (n − k) × (n − k) square matrix and A2 is the k × (n − k)
rectangular matrix.

Using the variable definitions in Section 2.1 we have:

cAT = 0 (2.62)

= [b
...m]

A1

. . .
A2

 (2.63)

= bA1 + mA2 (2.64)

= mPA1 + mA2 (2.65)

= PA1 + A2, (2.66)
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and solving for P :
P = A2A

−1
1 , (2.67)

the generator matrix is defined as:

G = [P
... Ik] (2.68)

= [A2A
−1
1

... Ik]. (2.69)

Sum-Product Decoding Algorithm

An LDPC decoding method is the Sum-Product Algorithm, which is a message
passing algorithm between the check nodes and the variable nodes of the decod-
ing matrix A. It has an horizontal step and a vertical step, which operate with
the rows and columns of matrix A, respectively. A bit refers to an element of
the received vector and a check refers to a row of a matrix A. Let J(i) denote
the set of bits in check i and I(j) denote the set of checks in which bit j par-
ticipates. The expression a(k) \ b means the exclusion of element b from the set
a(k). Next, the algorithm is described [2]:

• Initialization The variables P 0
ij and P 1

ij are set equal to the a priori

probabilities p0j and p1j of symbols 0 and 1, respectively, with p0j + p1j = 1.
P xij defines the probability that the bit in position j is symbol x (either a
0 or a 1), given the data from the checks performed in the horizontal step,
except for check i.

• Horizontal step The runs on checks i define:

∆Pij = P 0
ij − P 1

ij .

For each pair (i, j) we define:

∆Qij =
∏

j′∈J(i)\j

∆Pij′

and:

Q0
ij =

1

2
(1 + ∆Qij)

Q0
ij =

1

2
(1 + ∆Qij)

where Qxij represents the probability that check i is satisfied, given that
bit j is fixed at the value x and the other bits have probabilities Pij′ : j′ ∈
J(i) \ j.

• Vertical step For each bit j compute:

P 0
ij = αijp

0
j

∏
i′∈I(j)\i

Q0
i′j

P 1
ij = αijp

1
j

∏
i′∈I(j)\i

Q1
i′j
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where αij is chosen to make:

P 0
ij + P 1

ij = 1 (2.70)

also:

P 0
j = αjp

0
j

∏
i∈I(j)

Q0
ij

P 1
j = αjp

1
j

∏
i∈I(j)

Q1
ij

where αj is chosen to make:

P 0
j + P 1

j = 1.

The results of the vertical step define a tentative vector ĉ. If ĉAT = 0 is
satisfied, the decoding is successfully finished. Otherwise, the algorithm returns
to the horizontal step. If a defined number of iterations is performed and the
decoding is not successful, the decoding is declared a failure.

Simulation Result

With a (6, 2, 3) LDPC code and the parity-check matrix [3]:

A =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 , (2.71)

we define de generator matrix:

G =

[
1 0 1 0 1 0
0 1 1 0 0 1

]
. (2.72)

If the message vector is m = [11], the codeword vector will be c = [110011]
after the encoding process. Assuming one error produced by the channel, then
the received vector could be r = [110001]. This means that the fifth bit is erro-
neous. When r is processed with the decoding algorithm the correct codeword
is recovered.



Chapter 3

The Window Decoder

First, Spatially-Coupled Codes and Window Decoder are presented. In the fol-
lowing, the performance of the window decoder and block decoder are compared.
The comparison is made in terms of the decoding complexity, expressed with the
average time needed to decode a frame of data and the average number of frames
of data in error in the high Signal to Noise Ratio (SNR) region. The results are
obtained by simulation.

3.1 Spatially-Coupled Codes

The Spatially-Coupled (SC) codes are error correcting code techniques defined
by partitioning an LDPC block H to a number of component matrices Hi, and
coupling L replicas of these components together, as shown in Fig. 3.1, where
i ∈ {0, 1, ...,m}, and m is the memory parameter.

The SC codes have superior performance over memoryless binary-input chan-
nel and they approach to the Shannon limit. However, there is a large latency
during the decoding due to large blocklenghts [4].

Figure 3.1: A SC-code parity check matrix with parameters m and L [5].

We are considering Circulant-Based (CB) LDPC codes to define the SC-
coupled matrix. CB codes are a class of structured regular (γ, κ) LDPC codes,

18
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where γ is the column weight of the parity-check matrix, and κ is the row weight.
The parity-check matrix H of a CB code is constructed as follows [5]:

H =


σf0,0 σf0,1 · · · σf0,κ−1

σf1,0 σf1,1 · · · σf1,κ−1

...
...

. . .
...

σfγ−1,0 σfγ−1,1 · · · σfγ−1,κ−1

 ,
where σ is the p×p circulant matrix obtained by cyclically shifting the columns
of an identity matrix the value in the exponent. In the parity-check matrix H,
let i, 0 ≤ i ≤ γ − 1, be the row group index and j, 0 ≤ j ≤ κ− 1, be the column
group index. The circulant exponents are non-negative integer values, for the
simulations f(i, j) = ij and κ = p.

A circulant-based SC code is defined by partitioning the κγ circulants in
the parity-check matrix H, into component matrices Hi, 0 ≤ i ≤ m, where
m is the memory parameter. All Hi components have the same size as H.
They contain a subset of circulants in H, and the rest of the matrix elements is
zero. Each circulant in H is assigned to exactly one of the components, where∑m
i=0Hi = H.

3.2 Window Decoding

The Windowed Decoder (WD) breaks down the Belief Propagation (BP) algo-
rithm decoding into a series of decoding steps. When using a window of size
W, the WD performs BP over the subcode consisting of the first W sections of
the variable nodes and their neighboring check nodes, and attempts to decode
a subset of symbols (target symbols). Upon successful decoding of the target
symbols, the window slides over one section and performs the BP algorithm [6].

There are two different approaches depending on what information the WD
keeps after the BP algorithm finished decoding each window configuration:

1. Retain only the target nodes information and discard the nontarget nodes
information.

2. Retain all the information. In this way, the decoding information of the
nontarget nodes will be available for the decoding of the next window
section.

Discarding some information between two window configurations can only per-
form worse than retaining all the information [6]. The WD aims to retain the
features of BP, while reducing the complexity. Also, we obtain a reduced latency
during the decoding.

Fig. 3.2 shows the simulation results for the SC code with block decoder
and WD [6]. It shows that the performance of the WD increases as the window
size increases, but a WD never has better performance than a block decoder.
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Figure 3.2: BER of the SC code with blocklengh 65,536 and window sized
W = 4, 6 and 8 [6].

3.3 Comparison of Window Decoder and Block
Decoder Using Simulation

This simulations compare the performance of the window decoder and block
decoder in terms of the decoding complexity (the average time needed to decode
a frame of data in both cases) and the error-floor (the average number of frames
of data in error in the high SNR region). The simulations were coded in C++
and executed in the Hoffman server in UCLA.

Simulation Results

In this section, we present the results obtained by simulating WD and block
decoding on a SC code, and a comparison between both of them.

The SC code used for the simulation is an Array Based-SC code, where the
size of the circulant is p = 17, the column weight is γ = 3, the row weight is
κ = 17, the memory parameter is m = 1, and the number of coupled replicas
is L = 30. The block length is 8670 bits. The simulation channel noise is
Additive Gaussian White Noise (AWGN), with different SNRs and the number
of iterations is 50. The BP algorithm implemented on the decoding is the
MinSum algorithm.

For the WD, we used a window size W = 3. The implemented algorithm
assigns the initial data from the channel for every window configuration at the
beginning of ever WD, so it is equivalent to the first approach on how the WD
keeps the information, where the data from the nontarget nodes is discarded
after each section of the WD is decoded.

We can see in Fig. 3.3, that the block decoder behaves like a straight line for
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both the Bit Error Rate (BER) and the Frame Error Rate (FER), decreasing
their values as the SNR increases. In the high SNR region, the performances of
both decoders are similar. Even though, we have lower BER and higher FER
in the window decoder. This is an improvement in the number of bits in error
for the WD for highest SNR region, but as the SNR decreases, the graph shows
that both BER and FER behaves more like the block decoder. When the SNR
is 4.5 we see a significant reduction in the BER and FER. The average time for
decoding a frame in block decoding is 0.01 seconds and in WD is 0.64 seconds.

(a) (b)

Figure 3.3: Simulation results for block decoder and WD with W = 3 and
blocklength of 8670 bits. (a) Bit Error Rate, (b) Frame Error Rate.

Summary of Simulation

In the simulation results we see that the block decoder behaves almost like a
linear function, i.e., as the SNR increases the BER and FER decreases. This
might be explained simply by considering that the signal strength is greater
than the noise strength as we increase the SNR, so the errors in the channel
are lower as the SNR increases. Both decoders, the block decoder and the WD
show similar performance in the high SNR region, but the are not the same.
The interesting thing is that the window size is small. In [6] is shown that as
the window size increases, the BER decreases, but never as good as in the block
decoder. In this results we see a reduction of the BER with a small window
size. If we apply [6] we may expect lower BER when we increase the window
size. The WD FER is greater than the block decoder FER and it decreases
as the SNR decreases. As we are not decoding the entire frame, the decoding
information in each window is limited, then more errors occur. When the SNR is
4.5 we can notice that the BER and FER have a significant reduction compared
to the block decoder. The amount of information variables have decreased, so
with less information, its harder to decode the channel codeword.

The time for decoding a frame with the WD is 64 times the time for decoding
a frame with the block decoder. The necessary is that a WD performs the
MinSum decoder on every window configuration. The advantage of the WD is
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that after the decoding of the first target nodes, they are ready to use them.
However, in the block decoder, the user must wait until the whole blocklenght
of data is decoded. Still the time difference between the block decoder and the
WD is to big.

As the WD algorithm discards the information of the nodes, we may expect
a better performance if we change this approach. It is better if we keep the
information of the nontarget nodes, because certain level of decoding is already
performed in these nodes, so that can help to decrease the complexity on the
next window configuration decoding.



Chapter 4

Filter Banks

In this chapter basic concepts of filter banks are described. Two kind of filter
banks, the Maximally Decimated Filter Banks and the Oversampled Filter Banks,
are introduced. Also the polyphase representation of a filter bank is presented.

4.1 Maximally Decimated Filter Bank

A filter bank is composed of two parts, an analysis and a synthesis filter banks.
The analysis bank splits the input signal x(n) into the subband signals vk(n).
The synthesis bank combines the subband signals v̂k(n) into the output signal
x̂(n). Both filter banks are composed of digital filters, with a common input
in the analysis bank, and a common output in the synthesis bank. The filtered
signals in the analysis bank vk(n) are downsampled byM , while the input signals
of the synthesis bank v̂k(n) are upsampled by M . If the number of subbands
N is equal to the downsample factor M , the filter bank is called Maximally
Decimated filter bank as shown on Fig. 4.1, taking N = M = 4.

4.2 Filter Banks Errors

The reconstructed signal x̂(n) is, in the best case, an approximation of the
original signal. There are some errors that occur during the splitting of the
signal in the analysis bank that are mentioned in this section.

Input-Output Relations for a Maximally Decimated Filter Bank

The input-output relation in the z-domain is expressed as [7]:

Y (z) = T0(z)X(z) +

M−1∑
l=1

Tl(z)X(ze−j2πl/M ), (4.1)

23
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Figure 4.1: Maximally decimated filter bank.

where:

T0(z) =
1

M

M−1∑
k=0

Fk(z)Hk(z), (4.2)

and:

Tl(z) =
1

M

M−1∑
k=0

Fk(z)Hk(ze−j2πl/M ) for l = 1, 2, ...,M − 1. (4.3)

The factor T0(z) is called the distortion transfer function and determines the
distortion caused by the overall system for the unaliased component X(z) of the
input signal. The factor Tl(z) is the alias transfer function and determine how
well the aliased components X(ze−j2πl/M ) of the input signal are attenuated
[7].

Perfect Reconstruction

If a filter bank does not present any aliasing, phase or amplitude distortion, it
accomplishes with the perfect reconstruction (PR) property. Meaning:

X̂(z) = cz−n0X(z), i.e., x̂(n) = cx(n− n0), c 6= 0, (4.4)

for any signal x(n), where c is a real value and n0 is an integer greater than zero.
In other words, x̂(n) is a scaled and time delayed version of the x(n) signal.

This is accomplished if the distortion transfer function is equal to T0(z) =
z−n0 and the alias transfer function is equal to zero in (4.1).
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4.3 Polyphase Representation

A transfer function Hk(z) can be expressed as [8]:

Hk(z) =

M−1∑
l=0

z−lEkl(z
M ) (Type 1 polyphase). (4.5)

That can be written as:H0(z)
...

HM−1

 =


E0,0(zM ) E0,1(zM ) . . . E0,M−1(zM )
E1,0(zM ) E1,1(zM ) . . . E1,M−1(zM )

...
...

. . .
...

EM−1,0(zM ) EM−1,1(zM ) . . . EM−1,M−1(zM )




1
z−1

...
z−(M−1)

 ,
(4.6)

or like:
h(z) = E(zM )e(z), (4.7)

where:

E(z) =


E0,0(z) E0,1(z) . . . E0,M−1(z)
E1,0(z) E1,1(z) . . . E1,M−1(z)

...
...

. . .
...

EM−1,0(z) EM−1,1(z) . . . EM−1,M−1(z)

 , (4.8)

this representation is depicted in the Figure 4.2.

Figure 4.2: Type 1 polyphase representation of an analysis bank [8].

We can express the synthesis filters in a similar way:

Fk(z) =

M−1∑
l=0

z−(M−1−l)Rlk(zM ) (Type 2 polyphase). (4.9)
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In matrix notation:

[F0(z) · · · FM−1(z)] =

[
z−(M−1) z−(M−2) · · · 1

]


R0,0(zM ) . . . R0,M−1(zM )
R1,0(zM ) . . . R1,M−1(zM )

...
. . .

...
RM−1,0(zM ) . . . RM−1,M−1(zM )

 . (4.10)

Also, in terms of e(z) and the synthesis bank vector fT (z):

fT (z) = z−(M−1)ẽ(z)R(zM ), (4.11)

where:

R(z) =


R0,0(z) R0,1(z) . . . R0,M−1(z)
R1,0(z) R1,1(z) . . . R1,M−1(z)

...
...

. . .
...

RM−1,0(z) RM−1,1(z) . . . RM−1,M−1(z)

 . (4.12)

and the paraconjugate of A is equal to Ã = AT
∗ , where AT is the transpose of

A, and A∗ means the conjugation of only the coefficients of the filters of the
matrix A.

The synthesis bank vector fT (z) is depicted in Figure 4.3.

Figure 4.3: Type 2 polyphase representation of a synthesis bank [8].

Joining the analysis bank and the synthesis bank, the system depicted on
Figure 4.4(a) is obtained. The Figure 4.4(b) is a simplified form when we use
the noble identities.

Paraunitary Property

For rational transfer functions:

H̃(z)H(z) = dI, for all z, (4.13)
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Figure 4.4: (a) Polyphase representation of an M-channel filter bank. (b) Rear-
rangement using noble identities [8].

which is called the paraunitary property [8].
The paraunitary property implies that:

Ẽ(z)E(z) = dI, for all z d > 0. (4.14)

So we define:
R(z) = cz−KẼ(z) (4.15)

for some c 6= 0, to satisfy the perfect reconstruction property. In other words,
the polyphase matrix P (z) in Figure 4.5, must be I(z) to have perfect recon-
struction.
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Figure 4.5: Simplification polyphase representation of an M-channel filter bank
[8].

4.4 Oversampled Filter Banks

A filter bank, in which the number of subbands N is greater than the down-
sampling factor M , N > M , the subband signals vk(n) are redundant. They
contain more samples (per unit time) than the input signal x(n). This kind of
filter bank is called Oversampled Filter Bank (OFB), as shown in Figure 4.6,
for N = 6 and M = 6.

Figure 4.6: Oversampled filter bank.



Chapter 5

Oversampled Filter Banks
Design

Although, there are many ways to design an OFB [9, 10, 11, 12, 13, 14, 15],
in this thesis we will explain only the Discrete Fourier Transform Modulation
technique. This chapter presents a brief description of this PR OFB design
technique.

5.1 Discrete Fourier Transform Modulation

The analysis bank of an OFB is designed with the DFT modulation of the
prototype lowpass filter described with the impulse response p(n). Denoting
the causal FIR analysis filters impulse responses as hk(n), of length L, we have:

hk(n) =
1√
N
p(n) exp

(
j

2πkn

N

)
, n = 0, ..., L− 1, k = 0, ..., N − 1.

(5.1)
The N ×M analysis and synthesis polyphase matrices, Hp(z) and F p(z), re-
spectively, have the following efficient realizations as depicted in Figure 5.1:

Hp(z) = WH
NE(z) (5.2)

F p(z) = H̃p(z) (5.3)

= Ẽ(z)WN , (5.4)

where WN is the N ×N orthonormal DFT matrix, WN = exp
(−2jπ

N

)
, AH =

(A∗)T is the hermitian of A, and E(z) is the sparse matrix with the elements:

[E(z)]i,j =

{
z−lPj+lN (zJ), if (i− j) mod b = 0

0, otherwise
(5.5)

i = 0, ..., N − 1, j = 0, ...,M − 1, (j + lM) mod N = i,
(5.6)
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where the greatest common divider of M and N is denoted by g = gcd(M,N),
the least common multiple by K = lcm(M,N), J = N/b [12] and Pk(z) is
the z transform of the kth of K type-I polyphase components of the lowpass
prototype filter p(n).

Figure 5.1: Polyphase realization of oversampled DFT-modulated filter bank
[12].

The PR constraints for paraunitary oversampled DFT filter banks can be
expressed as:

F p(z)Hp(z) = H̃p(z)Hp(z) = Ẽ(z)E(z) = IM , (5.7)

and E(z) can be partitioned into b independent set of PR matrices:

Ẽl(z)El(z) = IM/b with [El(z)]k,j = [E(z)]l+kb,l+jb, (5.8)

l = 0, ..., b− 1, k = 0, ..., J − 1,

j = 0, ...,M/b− 1.

As El(z) contains delayed J-fold upsampled polyphase components of the
prototype filter, it can be expressed as a product of J×J and M/b×M/b parau-
nitary diagonal matrices Λ1(z) and Λ2(z), respectively, containing monomials
in z, and a matrix El↓(z

J) of size J×M/b that contains polynomials in zJ [12]:

El(z) = Λ1(z)El↓(z
J)Λ2(z). (5.9)

The J times downsampled version of the PR matrices becomes:

Ẽl↓(z)El↓(z) = IM/b. (5.10)

Example 1

In this simulation we generate an OFB with N = 8 subbands, a decimator factor
of M = 6 and a filter length of L = 48. Then the greatest common divider is
g = 2, the least common multiple is K = 24, J = 4. The prototype FIR filter
p(n) is a Nyquist Filter which is modulated using (5.1). Figure 5.2 shows the
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frequency responses of the designed filters. A random goes through the filter
bank, and without channel noise, we can compare the output signal with an
input signal shown in Figure 5.3. We can observe the PR property and the
output signal delay.

Figure 5.2: Frequency response for the filters in the example 1.

Figure 5.3: OFB input and output for the example 1.



Chapter 6

Oversampled Filter Banks
for Coding

In this chapter, a description of how the OFBs are used for coding and how the
syndrome can be used for error correction, are presented. Also the procedure to
design the prototype filter and the parity-check polynomial matrix is described.

In an OFB the subband signals are redundant. They contain more samples
(per unit time) than the input signal [16]. This redundancy can be used as a
coding process for the input signal, where the N subbands and the decimator
factor M < N provides an M/N < 1 code rate, ensuring the robustness to avoid
the noise interference error [9]. Now, we need to define the process to generate
the signal syndrome.

6.1 Parity-Check Polinomials

A parity-check polynomial matrix CPC(z) is necessary in the receiver to cal-
culate the N −M syndrome signals from the subband signals ŷ(n) [12]. Since
CPC(z) satisfies:

CPC(z)Hp(z) = 0(N−M)×M , (6.1)

the syndrome signals are identical to zero if ŷ(n) = y(n). To acquire an efficient
implementation, we factorize the parity-check polynomial matrix as:

CPC(z) = z−vC̃(z)WH , (6.2)

where C̃(z) is a (N −M)×N polynomial matrix that, for a given parity-check
polynomial matrix CPC(z), can be calculated as C̃(z) = zvCPC(z)W .

Expressing Hp(z) according to (5.2) and CPC(z) according to (6.2), the
expression (6.1) simplifies to:

C̃(z)E(z) = 0(N−M)×M . (6.3)
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The sparseness of E(z) allows us to express (6.3) into b parity-check polynomials
matrices C̃l(z) of size (N −M)/b× J :

C̃l(z)El(z) = 0(N−M)×M/b, (6.4)

with [C̃l(z)]i,j = [C̃(z)]l+ib,l+jb,

0 ≤ l < b, 0 ≤ i < (N −M)/b, 0 ≤ j < J.

As El(z) have delayed J-fold upsampled polyphase components of the pro-
totype filter, the same applies to C̃l(z) to fulfill (6.4). A downsampled version
of (6.4) is defined by expressing C̃l(z) as a product of (N −M)/b× (N −M)/b
paraunitary diagonal matrix Λ̃3(z), a (N −M)/b× J matrix C̃l↓(z

J) that con-

tains polynomials in zJ , and Λ̃1(z), which is the para-conjugate of the J × J
matrix Λ1(z) in (5.9):

C̃l(z) = Λ̃3(z)C̃l↓(z
J)Λ̃1(z), l = 0, ..., b− 1. (6.5)

Applying (5.9), (6.5) to (6.4), the downsampled version of (6.4) is obtained:

C̃l↓(z)El↓(z) = 0(N−M)/b×M/b. (6.6)

6.2 Syndrome

From (6.3) we realize that the analysis polyphase matrix E(z), when multiplied
with the parity check matrix C̃(z), returns the zero matrix. Then, the syndrome
is the output signal of the C̃(z) matrix when is fed with the V (z) signals as
seen in Figure 6.1, and described in:

S(z) = C̃(z)V̂ (z). (6.7)

Figure 6.1: Syndrome Generation [17].

When the subband signals are corrupted by the channel noise, these can be
written as Ŷ (z) = Y (z) + Q(z), where Q(z) is the z-transform of the noise.

From Figure 5.1, V̂ (z) can be written as:

V̂ (z) = WŶ (z) (6.8)

= W [Y (z) + Q(z)] (6.9)

= WWHE(z)X(z) + WQ(z) (6.10)

= E(z)X(z) + WQ(z) (6.11)
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and if we substitute this on (6.7) and with (6.3), we have:

S(z) = C̃(z)E(z)X(z) + C̃(z)WQ(z) (6.12)

= C̃(z)WQ(z). (6.13)

If there is noise in the subband signals, the syndrome will be non-zero, and this
information can be used to detect and correct the subband signals [17].

We can split the calculation of theN−M syndromes into parallel calculations
of b parity-check polynomial matrices C̃l(z), of size (N − M)/b × J . Each
calculation takes the vectors v̂l(n) = [v̂l(n), v̂l+b(n), ..., v̂l+(J−1)b(n)]T , which
are subsets of the v̂(n) signals, as inputs to calculate the syndrome vectors
sl(n) = [sl(n), sl+b(n), ..., sl+N−M−b(n)]T , l = 0, ..., b− 1 [12].

6.3 Joint Prototype Filter and Paraunitary
Parity-Check Polynomial Matrix Design

The paraunitary parity-check polynomial matrices can be calculated into the
prototype filter design procedure. This can be accomplished by optimizing the
prototype filter with a cost function [12]. The applied cost function minimized
the stopband energy. Also, [El↓(z)Cl↓(z)] can be factored into paraunitary
building blocks:

[El↓(z)Cl↓(z)] =

Le−1∏
i=1

V l,i(z)

J−1∏
j=1

U l,j , (6.14)

V l,i(z) = IJ − vl,iv
T
l,i + z−1vl,iv

T
l,i,

U l,j = IJ − 2ul,jv
T
l,j ,

where Le = dL/Ke, and perform an unconstrained optimization of vl,i and ul,j
according to our cost function.

Example 2

In this simulation we generate an OFB with N = 8 subbands, a decimator
factor of M = 6 and a filter length of L = 60. Then the greatest common
divider is g = 2, the least common multiple is K = 24, J = 4. The prototype
FIR filter p(n), is designed using (6.14) and is modulated using (5.1). Figure 6.2
shows us the frequency responses of the designed filters. When a random signal
goes through the filter bank, without channel noise, we can compare the output
signal with an input signal in Figure 6.3. We can observe the PR property and
the output signal delay.

6.4 Signature Waveforms

When an impulse error occurs in one of the channels of the system, multiple non-
zero taps are generated in the N −M syndromes. Depending on the channel
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Figure 6.2: Frequency response for the filters in the example 2.

Figure 6.3: OFB input and output for the example 2.

where the impulse error occurred, the shape of the syndrome waveforms are
unique. This shapes are called signature waveforms [17]. This information in
the syndrome allows us to:

• identify the channel in error, by comparing the output syndrome with the
signature waveforms.

• detect the time when the error occurs, by comparing the coefficients with
certain threshold.

• calculate an approximation of the amplitude by adding the magnitude of
the entire syndrome coefficient.

With this data we can correct the impulse error.
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Example 3

With the parity-check polynomial matrices designed in Simulation 2, we obtain
the signature waveforms depicted in Figure 6.4. After generating an impulse
error of an amplitude equal to 2.73, in the channel 1, at time index 18, we get
the syndrome depicted in Figure 6.5. We can appreciate that the shape of this
syndrome is like the channel 1 signature waveform showed in Figure 6.4. When
we add the magnitude of the coefficients of one of the syndromes we get the
value of 2.5931, which is an approximation to the actual magnitude of the error.
Also if we check the magnitude of the syndrome coefficients in Figure 6.6 we
see that the first non-zero value begins at time 18, which is the time where the
impulse error occurred.

6.5 Filter Banks and BCH Coding

The author in [17] reports a simulation where the performance of a subband
coding using BCH code (a cyclic coding type) is analyzed to correct the additive
noise in the channel. The signal is splitted into subbands by a filter bank. Each
of the subbands is quantized by a variable number of bits defined by the next
equation [8]:

bk = b+
1

2
log2

 σ2
xk(∏N−1

i=0 σ2
xi

)1/N
 , (6.15)

where bk is the bit allocation in the k subband, b is the average bit allocation
and σ2

xk is the variance of the signal in the k subband.
After the quantization, the subband signals define a bit stream that is en-

coded with the BCH code and transmitted to the channel. In the receiver side,
the inverse operations are performed.

The signal in the channel is corrupted by two independent noise sources:

1. Noise by quantization.

2. A Bernoulli-Gaussian impulse noise [17] modeled as:

ni(n) = ξ(n)b′(n), (6.16)

where ξ(n) stands for a Bernoulli process, and i.i.d. sequence of “0” and
“1” with Prob(ξ(n) = 1) = p, and b′(n) represents a Gaussian noise with
zero mean and variance σ2

g = 0.001, such that σ2
i � σ2

g [18].

The results reported in [17] show the performance of the BCH subband
coder. The results are depicted in Figure 6.7 and 6.8. Additionally of using the
BCH decoder, they report the performance of the impulse error correction with
OFB, based on the syndrome correction and the signature waveforms theory,
explained in the last section. The correction capacity of the coding systems
simulated decreases as Pi increases. The syndrome based decoder cannot detect
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure 6.4: Signature Waveforms.

and correct different impulse errors that occur very closely one next to the other
one. Even so, the syndrome based decoder has a better performance than the
BCH decoder.
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Figure 6.5: Syndrome generated in the example 3.

Figure 6.6: Coefficients of the syndrome in Example 3. The first column is the
time index, the second and third columns are the syndrome 0 and syndrome 1
magnitude, respectively.
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Figure 6.7: Influence of Pi on the error correction ability of OFB under coarser
quantization (b = 4) [17].

Figure 6.8: Influence of Pi on the error correction ability of OFB under finer
quantization (b = 6) [17].



Chapter 7

Filter Banks for LDPC
Coding

In this chapter a communication model for error correcting coding using OFB
and LDPC coding is proposed.

An OFB has shown to be usefull for coding. And the LDPC coding tech-
niques has demonstrated that its performance approaches to the Shannon limit
[19], but its decoding may be very complex [20]. A communication model using
this techniques is proposed to decrease the error probability for a channel with
Additive Gaussian White Noise (AWGN) and impulse noise.

The model transmitter splits the input signal into subbands with an analysis
filter bank. Then the signal in each subband is quantized with an optimum bit
allocation process using (6.15). The next step is defining a bit stream with the
quantized data. The output bit stream may have different dimensions according
to the different optimum bit allocation values assigned to each subband. The
bit stream is encoded with the LDPC generation matrix defined with the parity-
check matrix from [21]. After that, each binary “0” is coded as “1”, and each
“1” is coded as “-1”. Then the signal is delivered to the noisy channel. The
transmitter model is shown in Figure 7.1.

Figure 7.1: Proposed model transmitter.

In the receiver, the inverse process is performed. The corrupted signal is
corrected with the LDPC decoder from [22]. Then, the bit stream is decoded
and the data is delivered to each corresponding subband. After that, the inverse

40
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process of quantization is applied to the bits. Finally, the reconstruction of the
message is performed with the synthesis filter bank. The receiver model is shown
in Figure 7.2.

Figure 7.2: Proposed model receiver.

Simulation Results

The model simulation used the OFB previously designed in Section 6.3, along
with a (273,3,10) LDPC parity check matrix with 0.7 code rate obtained from
[21]. The channel model was the same used on [17] described in Section 6.5,
and also an extra source of AWGN with zero mean and identical σ2

w = 0.001
in all subbands is included. Different average bit allocation was used for the
quantization (using 4, 6 and 7 bits). The results are depicted on figure 7.3.

Figure 7.3: Proposed model simulation results.

Figure 7.3 shows a reduction on the Mean Square Error (MSE) from [17],
depicted on Figures 6.7 and 6.8, where the worst MSE is above 10−2. The
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case, where b = 4, shows that in the proposed model worst case, in the higher
probability of impulse occurrence region, is better than in [17] best case. Also, as
the probability of impulse occurrence decreases, the proposed model has better
correction of the errors, but the results of [17] show the same MSE from certain
probability of impulse occurrence thresholds. This behavior is also presented
when b = 6. For each case, the proposal method shows a decrease on the MSE
for at least one magnitude order. The 7 bits quantization result is similar to
the 6 bits quantization performance. In the high impulse occurrence probability
region, the LDPC decoding cannot work correctly.



Chapter 8

Conclusions

It was proposed the use of DFT OFB for LDPC coding with the goal to decrease
the coding complexity. This is achieved by splitting the input signal into sub-
bands using an analysis filter bank. The simulation results are presented with
the graphics of probability of error versus the probability of impulse occurrence.
From the graphic it can be seen the benefits of the proposed coding in terms of
the probability of error. The comparisons of the proposed coding method with
method [17] show that the proposed coding presents better results regarding the
probability of error.

The WD Section, studied the performance of the WD on LDPC coding.
This had the objective of decrease the complexity of the LDPC decoder. The
WD consists in decoding a window of the codeword. When this decoding is
finished, the window slides one section and attempts to decode the next window
configuration. The simulations graphics show that the WD decoder and the
block decoder have similar behaviour, but the WD can decode a part of the
codeword in a lower latency than the block decoder.

Future Work

• Investigate the OFB and LDPC coding technique coding using the window
decoder.

• Investigate the OFB and LDPC coding technique using different code
rates.

• Investigate the OFB and LDPC coding technique with the OFB impulse
syndrome correction algorithm.

• Implement on FPGA the most promising coding technique.
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