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1. Introduction

Light scattering as a diagnostic tool has proved to
be a suitable technique for resolving real problems
of increasing complexity in the area of particle siz-
ing. This technique has inherent problems, how-
ever, owing to the need to perform a large number
of numerical calculations to resolve the inverse
problem generated by the rigorous solution for
spherical particles as described by Mie theory1 and
the need to input the refractive indices of the ma-
terials being measured.

An alternative formalism to Mie theory is the
Fraunhofer approximation, which is based on scalar
diffraction theory. This approximation is valid for
particles of radius greater than 2.5 �m when ana-
lyzed with visible light, wavelength � � 0.5 �m.2
Jones3 proposed that, for nonabsorbent particles with
a radius greater than 1.5 �m, a refractive index
greater than 1.3 and for errors below 20%, the Fraun-
hofer approximation is valid for visible wavelengths.

Although Mie theory is valid in the region of radii
and wavelengths where the Fraunhofer approxima-
tion may be used, it is important to compare both
techniques and obtain a criterion that allows us to
decide when it is appropriate to use Fraunhofer since

numerical calculations using Mie theory become ex-
tremely slow as the particle size increases. Addition-
ally one should consider the more general case of a
conglomerate of particles of varying sizes, which
more closely resembles real-world sizing tasks. One
should thus determine if the validity criterion de-
pends on the type of distribution and the inversion
method used to retrieve the particle-size distribution
(PSD).

We use normal, gamma, and lognormal distribu-
tions to numerically simulate an intensity pattern
using Mie theory. For the inverse problem of PSD
recovery, we use the Chin–Shifrin (CS) method4–9 and
the singular value decomposition (SVD) technique,9–12

when working with the Fraunhofer approximation,
and the Phillips–Twomey (PT) method12,13 and the
SVD technique when using Mie theory. These in-
version methods are widely used at present. Sto-
chastic numerical techniques such as the Monte
Carlo method14 and genetic algorithms15,16 have
been reported elsewhere and are not considered in
this work.

In the Section 2 we present some general consid-
erations of importance to the subsequent numerical
simulations. The kernels for the Fraunhofer approx-
imation and Mie theory are presented in Section 3,
and the CS, SVD, and PT numerical techniques are
introduced. Section 4 shows the results relating to the
critical size interval that defines the validity of the
Fraunhofer approximation that applies typically to
these monomodal distributions with the CS and SVD
inversion methods. In Section 5 results are given for
Mie theory by using SVD and PT methods. The reg-
ularization parameter, which affects the performance
of the PT method, is discussed in Section 6, and a
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comparison between Mie and Fraunhofer with their
respective inversion methods for large particles is
presented in Section 7. Our conclusions are presented
in Section 8.

2. General Considerations

The gamma and lognormal distributions used in this
work are those used frequently to model PSDs in
aerosols.17 The gamma distribution is defined as

fG��� ��N
�� � �0��1�b��3

�bt��1�b��2���1�b��2� exp��0 � �

bt � for � � �0

0 for � � �0

,

(1)

where � � kr is a nondimensional quantity known
as the size parameter for a particle of radius r,
k � 2	�� is the wavenumber, and � is the wavelength
of light in the medium that surrounds the particles.
Quantities t and b are the effective size parameter
and the variance, respectively, and control the shape
of the distribution.5 Finally, �0 determines the small-
est size parameter present in the distribution, N is
the total number of particles, and � is the gamma
function.

The lognormal distribution is defined as
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2
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where N and �0 are as defined for the gamma distri-
bution, � is the standard deviation of the distribution,
and A0 is a quantity related to the mean size param-
eter ��� of a normal distribution through

� � exp�ln�A0� �

2

2 �. (3)

A third distribution used in this work is the normal
distribution, which facilitates interpretation of the
results when attempting to establish a critical inter-
val of validity for the Fraunhofer approximation. It
serves as a reference point with respect to the gamma
and lognormal distributions, which are in general
asymmetric, and it helps us to evaluate the quality of
the retrieval for each inversion method used. The
normal distribution is defined as

fN��� �
N


	2	
exp��

1
2�� � �


 
2�, (4)

where �, �, and N are the mean size parameter, the
standard deviation, and the number of particles, re-
spectively.

In the rigorous simulations of intensity we use the
relative refractive index m � np�nm � 1.5, where np
and nm are the indices of refraction of the particle and
the surrounding medium, respectively.

The total scattered intensity, I���, attributable to a
given proposed distribution f ���, is defined by the
following integral equation1:

I��� ��
0




I��, ��f���d�, (5)

where � is the forward-scattering angle in the direc-
tion of propagation. The kernel, I��, ��, represents the
scattered intensity in the annular region defined by
angle �, corresponding to a single particle with size
parameter � and is calculated according to Mie the-
ory. f ��� is the particle density, such that f ���d� is
the number of particles with sizes between � and
� � d�.

The integral in Eq. (5) is calculated numerically by
using the trapezoidal rule in the finite interval in
which the proposed distribution is defined. If the dis-
tribution of particles f��� is discretized into M size
intervals, then for the most general case the total
intensity of Eq. (5) is reduced to a system of linear
equations that gives rise to a matrix equation of the
form

y � Ax, (6)

where y is the total intensity vector due to the con-
tribution of each size interval at a given angle �, A is
a matrix that contains the scattering coefficients aij,
calculated according to Mie theory or Fraunhofer ap-
proximation as appropriate, and x is the unknown
vector that contains the fraction of particles in each
size interval.

Normally in such problems matrix A is almost sin-
gular or ill-conditioned, and a direct inversion using
common methods such as lower triangular–upper tri-
angular (LU) decomposition or Gaussian elimination,
usually produces nonphysical solutions. For this rea-
son one must turn to numerical inversion methods
adequate for this type of matrix.

3. Kernel and Inversion Methods

In the Fraunhofer approximation the kernel I��, �� is
modeled as the Airy pattern produced by an opaque
disk of radius r equal to that of the particle. Hence
from Eq. (5) the total intensity is given by1

I��� �
I0

k2F2 �
0



�2J1

2����
�2 f���d�, (7)

where I0 is the incident beam intensity, J1 is a Bessel
function of the first kind, first order, and F is the focal
length of the receiver lens, as typically encountered
in laser diffraction particle size analyzers. This equa-
tion accepts an asymptotic analytic solution, widely
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referred to in the literature as the CS method6,9
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(8)

where, Y1 is a Bessel function of the second kind, first
order. This solution has differences in the sampling
and size dominions, and this leads to serious prob-
lems in the retrieval of the function. More precisely,
angle � can acquire values only in a small interval,
limited by the validity of the paraxial approximation,
up to a maximum angle �max, and this has important
implications in the discretization of the integral. Fur-
ther problems are encountered with the angular sam-
pling interval �� and the minimum sampling angle
�min, and furthermore, this solution is applicable only
for particles whose radii are several times greater
than the analyzing wavelength.

The second inversion method, SVD, is applicable to
both Fraunhofer and Mie theories. It consists of re-
solving the inverse problem posed by Eq. (6) using the
factorization of range p of matrix A�m � n� into two
orthonormal matrices, U�m � p�, V�n � p�, and a
diagonal matrix P�p � p�, such that

A � UPVT, (9)

Q � A�1 � VP�1UT. (10)

All the diagonal elements of matrix P are positive
and are known as singular values. The degree of sin-
gularity in A is determined by the condition number,
the ratio between the largest and the smallest singu-
lar values. Furthermore, if the pseudoinverse matrix
of A generated by SVD is Q, then the solution to the
inverse problem presented in Eq. (6) is

x � Qy. (11)

To introduce the third inversion method, we now
consider the kernel for spherical particles within
the context of Mie theory. From Eq. (5) the total
intensity is1

I��� ��
0



I0�i1 � i2�

2k2R2 f���d�, (12)

where i1 and i2 refer to the intensity of light vibrating
perpendicular and parallel to the reference plane,
respectively. Information about particle size and rel-
ative refractive index m is contained in these inten-
sity contributions. R is the distance from the particle
to the plane of observation.

Here it is important that we apply an adequate
inversion method so as to obtain the maximum effi-
ciency in calculating the inverse matrix that resolves
the inherent ill-conditioned behavior in the inverse
problem expounded by Eq. (12). A common strategy
to obtain a stable solution is to incorporate a priori
information pertaining to the desired result. A widely
used technique, known as the Tikhonov regulariza-
tion12 and also referred to as the PT method,13 offers
this possibility.

The PT method postulates a minimization prob-
lem, which in a least-squares sense can be written in
the form

���2 � �2�Bx�2 → min. (13)

Here, � � Ax � y is the residual vector, �·� denotes the
Euclidian norm, and B is a matrix operator designed
to reduce the ill-conditioned behavior of matrix A.
Generally, B is a finite-differential operator of sec-
ond order that has a smoothing effect on x and
is included as a priori information about the dis-
tribution sought. The � parameter represents an
adjustable regularization parameter or Lagrange
multiplier; it is a real and positive number, and it is
also a weight factor for the included a priori infor-
mation.

For a given value of �, from Eq. (13) one achieves a
unique solution given by13

x � �ATA � �H��1ATy, (14)

where H � BTB serves as the regularization matrix
to suppress spurious oscillations that appear in the
solution vector of the basic linear system [Eq. (6)],
which is ill-conditioned.

Finally, the inverse matrix �ATA � �H��1 may be
calculated by using standard techniques; for this
work we use LU decomposition.

Although � must be determined to solve the inverse
problem, an initial proposal for the value of the reg-
ularization parameter is suggested,12 since � is con-
stant in the minimization problem of Eq. (13). This
initial value is given by

�0 �
Tr�ATA�
Tr�H�

, (15)

since this choice tends to make the two parts of the
minimization have comparable weights. We can ad-
just from there until we reach a good match between
the proposed and the retrieved distributions. Details
of the proper selection of � are discussed in Section 6.

4. Validity Range in the Fraunhofer Approximation:
Comparison between the Chin–Shifrin Method and the
Singular Value Decomposition Technique

Taking as a premise the results of Hodkinson2 and
Jones,3 we consider a critical interval for the study of
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the behavior of the Fraunhofer approximation, using
five characteristic size ranges for each of the three
distribution types. The five normal distributions are
centered at size parameters � � 50, 45, 40, 35, and
30, with a standard deviation 
 � 15 used through-
out. The corresponding gamma and lognormal distri-
butions have modal peaks in the same vicinity as that
of the normal distributions. The distribution param-
eters are shown in Table 1. The size dominion for all
distributions is 1 � � � 100, with the same sampling
interval �� � 1. It is sufficient to consider just the
distributions centered at the extremes of the modal
size interval since they illustrate adequately the be-
havior of the intensity patterns and the recuperation
tendency.

Figure 1(a) shows a normal distribution centered
at � � 50 with a standard deviation of 
 � 15, to-
gether with gamma and lognormal distributions cen-
tered within the same interval close to � � 50. Figure
1(b) compares the logarithm of the intensity patterns

(normalized with total incident intensity) calculated
by using Fraunhofer and Mie theory [Eqs. (7) and
(12)] for just the normal distribution, since the
gamma and lognormal distributions generate identi-
cal patterns. Figure 1(c) shows the three distribu-
tions centered at � � 30. The resulting intensity
patterns, again for only the normal distribution, are
shown in Fig. 1(d).

For the following analysis we consider the six dis-
tributions of Figs. 1(a) and 1(c) as representative of
the extremes of interval that we consider critical for
the validity of the Fraunhofer approximation. Thus
on referring to the critical interval, we refer to the
modal values in the interval of size parameter that
delimits these distributions.

The intensity patterns calculated using the Fraun-
hofer approximation and Mie theory for a single dis-
tribution are in agreement for small angles but show
discrepancies at larger angles. The angular region in
which these discrepancies become evident depends to
some extent on where the distribution is centered.
For example, for distributions centered at � � 50, the
agreement begins to fail beyond � � 4°; for distri-
butions centered at � � 30, the discrepancy occurs
beyond � � 5°. This behavior can be explained by
considering that the Fraunhofer approximation an-
ticipates an inverse functional dependence between
particle size and scattering angle. Furthermore the
angular region in which both formalisms give identi-
cal results is that governed by the paraxial approxi-
mation sin � � �, implicit in the characteristic Airy
pattern.

The similarity between intensity patterns pro-
duced by the three distributions defined within a sim-
ilar region of particle size eliminates any hypothesis
that the critical region of validity of the Fraunhofer
approximation is dependent on the type of distribu-
tion we use. This conclusion is further borne out by
considering the same three distributions in regions
beyond the critical size interval. For distributions
defined within the interval 1 � � � 60, with modal
peak in the interval 10 � � � 30, at least 68% (and
occasionally up to 100%) of the particles that make up
the distribution have a size parameter � � 45. The
result is different intensity patterns for each theory.
If we shift the modal peak and the size interval for
the distributions to greater sizes with respect to the
critical interval, the intensity patterns coincide to
within an angular interval 0° � � � 4°, for distribu-
tions defined within the interval 30 � � � 170;
whereas for distributions defined within the interval
50 � � � 250 the intensity patterns coincide for
0° � � � 2.5°.

The previous discussion enables us to justify our
selection of the interval 1 � � � 100, with corre-
sponding modal values between 30 � � � 50 as being
that which encompasses the limit of validity of the
Fraunhofer approximation. In the following para-
graphs we analyze the retrieved distributions ob-
tained in this region.

In Figure 2 we compare the retrieved distributions
obtained from the Fraunhofer approximation by us-

Table 1. Parameters of the Proposed Distribution Functionsa

Normal Gamma Lognormal

� � t b A0 �
50 15 55 0.5 52 2.2
45 15 55 0.7 45 2.8
40 15 50 0.8 42 3.0
35 15 45 0.8 37 3.0
30 15 40 1.1 33 3.8

aThe size dominion 1 � � � 100 is used throughout. Sampling
�� 	 1; minimum sampling angle �min 	 0.057°; angular sampling
�� 	 0.057°; and maximum sampling angle �max 	 10°.

Fig. 1. (a), (c) Normal, gamma, and lognormal distributions cen-
tered at � � 50 and � � 30, respectively. (b), (d) Intensity patterns
for the normal distribution of (a) and (c), respectively.
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ing the CS and the SVD inversion methods. Figures
2(a) and 2(d) correspond to normal distributions,
Figs. 2(b) and 2(e) are for gamma distributions, and
Figs. 2(c) and 2(f) for lognormal distributions. Each
pair of functions corresponds once again to the ex-
tremes of the critical size interval. We observe that
for all distribution types SVD inversion generates
superior results compared with CS.

It is well known that when working with the
Fraunhofer approximation the retrieved distribu-
tions are strongly dependent on the angular com-
position of the scattered intensity, and to apply
numerical techniques the sampling interval must
be finite, �min � � � �max. Furthermore within this
interval the aforementioned function must be dis-
cretized into a finite number of points. In the profiles
discussed in this section, we use the same values of
�min � 0.057°, �max � 10°, and �� � 0.057° throughout.

We find that the value of �max is critical for ade-
quate retrieval of distributions using CS inversion.
One must sample up to a value of �max that coincides
with the angular region in which the intensity pat-
terns produced by Mie and Fraunhofer formalisms
begin to differ [see Figs. 1(b) and 1(d)]. If this is not
the case then the retrieved function bears no resem-
blance whatsoever to that expected. Despite consid-
eration of an adequate value for �max, in accordance
with the paraxial condition that gives rise to the
Fraunhofer approximation, we observe that the re-
trieved function continues to present considerable
noise in the region corresponding to small particle
size, for each of the three distribution types. This
noise may be attributed to an incompatibility be-
tween the intervals of Eqs. (7) and (8) as mentioned
previously. For this reason, we reject the employment
of the retrieval method using the CS inversion in our
subsequent analysis of the critical interval of validity

of the Fraunhofer approximation, making a final
comment that this inversion method is suitable in the
region of large particle sizes.

A retrieval using the SVD method also depends on
the correct selection of �max, although in this case the
dependence is not so clearly evident. If the recuper-
ation is carried out considering the totality of singu-
lar values, we obtain a result similar to that obtained
when CS inversion is employed with an inadequate
value of �max. The retrieved functions improve dra-
matically, however, when we begin to eliminate (re-
place with zeros) the smallest singular values in the
linear system of equations. We may interpret this as
a diminishment in �max and a simultaneous improve-
ment in the conditioning of the matrix to be inverted,
since if for the same distribution we calculate the
intensity by using an adequate value of �max, then the
number of singular values that must be eliminated is
less than in the previous case, and the condition num-
ber of the matrix is reduced. The same behavior of
improvement in the matrix conditioning is observed
when the sampling ratio �� diminishes; however, an
analysis of this effect is not intended to form part of
this paper.

Although no formula exists for determining the
number of singular values that must be removed, the
retrieved functions obtained by varying this param-
eter to obtain the optimum results show that the SVD
method is adequate for our present analysis. For the
three types of distribution, with modal peaks in the
region � � 50, acceptable results are obtained by
using SVD [see Figs. 2(a)–2(c)]. Meanwhile distribu-
tions with modal peaks in the region � � 30 exhibit
noise [see Figs. 2(d)–2(f)], which is manifested as os-
cillations superimposed upon the proposed distribu-
tion. This behavior is attributable in large part to the
inadequacy of the Fraunhofer approximation in the
inversion process for the given size interval and, to a
lesser extent, to the asymmetry of the proposed dis-
tributions.

Since the behavior is similar for each type of dis-
tribution, both in the intensity patterns and in the
inversions, we continue our analysis in this section
only with normal distributions. At the same time we
further limit the interval of modal size in the distri-
butions so as to obtain an indicative limiting value for
the Fraunhofer approximation. We consider a series
of six normal distributions centered at � � 48, 47, 46,
44, 43, 42, since by observation we note that in this
region of mean size parameter, the Fraunhofer ap-
proximation loses its validity. Each distribution has
the same sampling as before (see the caption of Ta-
ble 1), and the SVD inversion method is employed
throughout. The retrieval of this series of distribu-
tions using SVD is shown in Fig. 3.

As an indicator of error between the proposed and
the retrieved distributions, we take the standard de-
viation

s �
1
Ns

	�
i�1

Ns �fi � xi�2

fi
2 , (16)

Fig. 2. Recovered distributions using the Fraunhofer approxima-
tion with the SVD and CS inversion methods. Graphs (a), (b), and (c)
correspond to normal, gamma, and lognormal distributions, respec-
tively, with modal peaks at � � 50. Graphs (d), (e), and (f) as above,
for � � 30.
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where fi and xi, are the i values of the proposed and
the retrieved distributions, respectively, and Ns is the
number of points calculated. The error values are
0.86, 0.92, 1.06, 1.59, 1.94, and 2.32 for Figs. 3(a)–3(f),
respectively.

These results allow us to confirm that for the
Fraunhofer approximation a critical interval exists
for the modal peak of distributions centered be-
tween size parameter 42 � � � 48. We can consider
the distribution centered at � � 46 [Fig. 3(c)], as
best representing the threshold value of validity for
the Fraunhofer approximation, applied to recuperate
smooth distributions of types such as normal, gamma,
and lognormal. We can conclude that, for monomodal
distributions with modal size parameters greater than
the threshold value �� � 46� with errors less than
unity and employment of the SVD inversion method, it
is clearly convenient to use the Fraunhofer approxi-
mation. Conversely, for monomodal distributions with
modal size parameters below this threshold value, we
propose the use of Mie theory.

5. Mie Theory: Comparison between Singular Value
Decomposition and Phillips–Twomey

For distribution retrieval using Mie theory, we use
both the SVD and PT inversion methods, with the
three distribution pairs considered at the extremes of
the Fraunhofer interval of validity as defined in the
previous section. The plots are shown in Fig. 4, with
associated errors in Table 2. Retrieval using SVD is
clearly inferior, exhibiting incorrectly centered modal
peaks and excessive noise, while the PT method
shows evident superiority. For the latter we used a
regularization parameter � � 10�18, selected in agree-
ment with Eq. (15). In Section 6 we discuss the im-
portance of this parameter to obtain optimal results.

The poor performance of SVD with Mie theory may
be largely attributed to the instability of the scattering
matrix as reflected by a large condition number, which
can be used as a measure of the degree of ill-posedness
in the inverse problem. The matrices generated in the
numerical calculations of Fig. 4 produce a condition
number of 1.56 � 1021, which when combined with
the asymmetry of the proposed distributions makes
second-order normalization a necessity, as in the case
of the PT method. In other words, first-order normal-
ization methods such as SVD12 cease to be adequate in
highly unstable inversion problems. For example, in
the distributions of Section 4 (Fig. 3), where the scat-
tering matrices were constructed using the Fraunhofer
approximation, the SVD method was successful, since
here the condition number was 2 orders of magnitude
lower �5.85 � 1019�.

The second reason for the poor performance of the
SVD method with Mie theory is the asymmetric
shape of the proposed distributions. For example,
despite using the same condition number through-
out, the symmetric distribution of Fig. 4(a) produces
better results than the asymmetric distribution of
Fig. 4(f).

Fig. 3. Normal distributions recovered using the Fraunhofer ap-
proximation with the SVD inversion method in the critical size
interval.

Table 2. Error in the Retrieval of Fig. 4 using PT and SVD Methods
with Mie Theory

Figure Distribution
Modal
Peak

Error
PT

Error
SVD

4(a) Normal 50 1.54 2.0
4(b) Gamma 
50 1.42 4.72
4(c) Lognormal 
50 1.21 4.75
4(d) Normal 30 1.17 9.25
4(e) Gamma 
30 4.08 10.05
4(f) Lognormal 
30 4.37 8.57

Fig. 4. Distributions recovered using Mie theory with the PT and
SVD inversion methods. The regularization parameter � � 10�18 is
used throughout. Graphs (a), (d), (b), (e), and (c), (f) correspond to
the normal, gamma and lognormal distributions, respectively.
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With regard to the use of the PT method with Mie
theory, the asymmetry in the distributions has little
effect on the ability of this method to recover the
proposed distributions. Although the error for PT is
almost tripled for the distributions with the highest
asymmetry [gamma and lognormal with modal peak
� � 30; see Figs. 4(e) and 4(f), respectively], the re-
moval of the negative (nonphysical) values from the
analysis reduces the error to unity or less.

From the results presented in this section, we may
thus conclude that the SVD inversion method is less
than adequate when used with Mie theory, while the
PT method, for the three kinds of asymmetrical dis-
tributions considered here, gives acceptable results,
especially if we discard nonphysical (negative) values
in the retrieved profile. Based on these observations,
we expand our analysis in the following sections to
regions of large and small particle size, exclusively for
one kind of distribution.

6. Phillips–Twomey Method and the Optimal
Regularization Parameter

When we use Mie theory with the PT method, an
important aspect to be taken into account for solv-
ing the inverse problem is the proper choice of the
regularization parameter to obtain optimal results
in the retrieved distribution. Two different approaches
commonly exist for making this selection. The first is
based on an iterative process and can be applied in any
situation since no estimation of noise level in the input
data is needed. This iterative procedure is robust and
gives good estimations of the sought distribution. In
the second approach more information is needed and
no iteration is required. However, it is necessary to
assume some restrictions on both the expected solution
and the noise of the measurements since they affect
the quality of the solution. Thus the application of this
last approach may be more difficult.

As already mentioned in Section 3, we use the
iterative procedure for the selection of the regular-
ization parameter. Taking �0 given by Eq. (15) as an
initial value guarantees that we are on the path to-
ward a practical solution. The selection of this initial
value accelerates the convergence of the iterative pro-
cess and reduces the number of steps to reach an
optimal value �opt. We propose that �opt is reached
when the error between the recovered and the pro-
posed distribution is a minimum.

Figure 5 shows the evolution of parameter � for two
gamma distributions of several particle sizes. We
show two different distributions to illustrate the chal-
lenges involved in the procedure for proper selection
of �opt. The first is representative of distributions in
the region of large particles where the Fraunhofer
approximation can be applied. The second is for the
regime of small particle sizes where Mie Theory is
adequate. We have explored the solutions obtained
for different values of � but report here only the dis-
tributions that correspond to the initial and optimal
values of the regularization parameters.

For the larger particles [Fig. 5(a)], the regulariza-
tion parameter has an initial value given by �0 �

5.9938 � 10�11, represented by the symbol A in Fig.
5(b). This gives a retrieved distribution with an error of
1.6057, appearing in Fig. 5(a) as a dashed curve. After
several steps an optimal value �opt � 5.9938 � 10�15 is
obtained as indicated by the symbol � in Fig. 5(b). This
gives a retrieved distribution with an error of 0.2797,
corresponding to the thin solid curve in Fig. 5(a). How-
ever, this last plot is not well distinguished since it
coincides with the proposed distribution.

For the small particles [Fig. 5(c)], the initial value
is �0 � 9.0564 � 10�21, also represented by A in Fig.
5(d), and the corresponding retrieved distribution has
an error of 17.9142. The optimal value of the regu-
larization parameter is �opt � 2.0 � 10�22 represented
by the symbol � in Fig. 5(d), with an error between
the proposed and the retrieved distribution given by
14.3582. In this case also the retrieved distributions
[Fig. 5(c)] are represented by a dashed curve for the
initial value of �, and a thin curve for the optimal
value of �.

We can see that �opt provides adequate results for
large particles with good agreement between the pro-
posed and the recovered distributions, since the error
is less than unity. However, for the region of small
particle size, the reconstructed distribution is de-
graded in spite of selecting the optimal value of �.
This is typical in a very narrow distribution, where,
as the distribution gets wider, the recovery improves.
Similar results are obtained with narrow normal and
lognormal distributions.

Since the scattering matrix condition number used
in the SVD method can be used as a measure of the
degree of ill-posedness, we have tried to find a rela-

Fig. 5. Evolution of the regularization parameter. Plots (a) and (c)
are the distributions retrieved with values of �0 and �opt, respec-
tively. In (b) the values of �0 � 5.9938 � 10�11 (A) and �opt

� 5.9938 � 10�15 ��� generate the distributions of the large parti-
cles shown in (a). Similarly in (d), the values �0 � 9.0564 � 10�21 (A)
and �opt � 2.0 � 10�22 ��� generate the distributions for the small
particles shown in (c).
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tionship between this condition number and the op-
timal regularization parameter but without success.

In summary, we show that the application of this
iterative procedure to select the regularization pa-
rameter gives optimal values. In general, good esti-
mations of the retrieved distributions are obtained by
using the PT method. The process works well for
broad distributions with large particles, but fails
somewhat for narrow distributions skewed toward
small particle sizes. The performance of this method
demands a considerable amount of computing time.

7. Comparison of Mie Theory and the Fraunhofer
Approximation

We now consider the comparison of the reconstruction
of a normal distribution of large particles using Mie
theory with the PT method and that reconstructed
with the Fraunhofer approximation using both SVD
and CS methods. The proposed distribution is defined
in the interval 50 � � � 250, centered at � � 150
and deviation 
 � 30. The intensity pattern is calcu-
lated according to Mie theory, with m � 1.5 and
� � 0.6328 �m, for the angular resolution ���� shown
in Table 1. This kind of distribution is intentionally
chosen with the object of highlighting the unneces-
sary applicability of the Mie theory for very large
spherical particles.

Figure 6 shows the performance of the three meth-
ods. The proposed distribution is represented by the
continuous thick curve. The reconstructed size distri-
bution with cross marks corresponds to Mie theory
with the PT method, using the optimum value of
regularization parameter, � � 1.0 � 10�12. Obviously,
with a very small value of error equal to 0.1598 and
practically identical to the proposed distribution, this
reconstruction can be considered acceptable.

The plots shown by the dashed curve and the dotted
curve correspond to the Fraunhofer approximation
with the SVD and the CS methods, respectively. Qual-

itatively speaking, the plot for SVD fits better to the
proposed distribution, with an error of 0.9759, com-
pared with an error of 2.5809 for CS. The peak of the
plot for CS is better aligned to that of the proposed
distribution, while the SVD peak is lightly shifted to-
ward smaller �’s . Additionally, the plot for CS is very
noisy in the small size region, and this may be associ-
ated with the truncation of the numeric integral at
some cutoff angle �max, while the negative number den-
sity is due to the missing data at small angles of the
scattering pattern. Meanwhile the plot for SVD shows
a slight disagreement with the proposed distribution
at extremes of small and large particle sizes. This is
possibly due to the discretization of the data in the
scattering matrix and may also be due to a bad selec-
tion of the angular sampling interval. These incompat-
ible conditions for the Fraunhofer approximation with
both methods result in a poor inversion performance
compared with the Mie theory using the PT method.
Nevertheless, we maintain that the Fraunhofer ap-
proximation has a practical use for some applications,
i.e., when the problem involves particles with un-
known refractive indices and has practical measure-
ment limitations, or simply when the main objective is
to reduce computing time.

Finally, we state that Mie theory with PT inversion
provides superior results when compared with the
Fraunhofer approximation using either CS or SVD
algorithms, the first combination of methods exhibit-
ing the lowest error. However, it must also be noted
that retrieval using Mie theory requires a factor of
4500 more CPU time than the method using the
Fraunhofer approximation. For this reason, we sug-
gest using Mie theory with the PT method only for
distributions under the threshold value for the valid-
ity of the Fraunhofer approximation.

8. Conclusions

For smooth, normal, gamma, and lognormal, mono-
modal particle-size distributions composed of spherical
particles, with real relative refractive indices given by
m � 1.5, it is appropriate to use the Fraunhofer ap-
proximation beyond a certain critical size interval.
This interval corresponds to the modal peak of the
distribution centered between 42 � � � 48. We con-
sider the distribution centered at � � 46 as best
representing the threshold value for the validity of the
Fraunhofer approximation. Additionally, the method
of singular value decomposition generates better re-
sults than the Chin–Shifrin method when solving
the inverse problem with the Fraunhofer approxi-
mation. In this part of the work all the distributions
were considered in the size dominium between 1
� � � 100.

The singular value decomposition inversion method
produces unacceptable results when used with Mie
theory, while the Phillips–Twomey method gives the
best results for all three kinds of distribution consid-
ered here. The asymmetric shape of the distribution
does not affect the efficiency of the Phillips–Twomey
method. We also note that a larger sampling interval
has no effect on the performance of this method.

Fig. 6. Comparison between Mie theory and the Fraunhofer ap-
proximation in the region of large particle sizes.
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The principal factor that affects the success of the
Phillips–Twomey method is the regularization pa-
rameter. The application of an iterative procedure to
select this parameter gives an optimal value that
produces a good estimation of the retrieved distribu-
tion. This optimal value produces an error of less
than 1 for broad distributions with large particles,
but the retrieved distribution is not so accurate for
narrow particle distributions skewed toward small
sizes. The performance of this method demands a
considerable amount of computing time.

With regard to comparison of the Mie and Fraun-
hofer formalisms within the region of large particle
sizes where the use of the Fraunhofer approxi-
mation is perfectly valid, we can conclude that the
combination of Mie theory with the Phillips–Twomey
method results in a better approach compared with
singular value decomposition and the Chin–Shifrin
method using the Fraunhofer approximation. The only
disadvantage of Mie theory in this case is an increase
in CPU time by 4 orders of magnitude. Hence we rec-
ommend using the Fraunhofer approximation with the
singular value decomposition inversion method.
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