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An algorithm is presented based on an evolution strategy to retrieve a particle size distribution from
angular light-scattering data. The analyzed intensity patterns are generated using the Mie theory, and
the algorithm retrieves a series of known normal, gamma, and lognormal distributions by using the
Fraunhofer approximation. The distributions scan the interval of modal size parameters 100 = @
= 150. The numerical results show that the evolution strategy can be successfully applied to solve this
kind of inverse problem, obtaining a more accurate solution than, for example, the Chin—Shifrin inversion
method, and avoiding the use of a priori information concerning the domain of the distribution, commonly
necessary for reconstructing the particle size distribution when this analytical inversion method is

used. © 2007 Optical Society of America
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1. Introduction

The estimation of particle size is an important task in
a large range of industrial processes and technologi-
cal applications. A frequently used optical technique
is the analysis of the scattering pattern produced by
the sample in the propagation direction. The estima-
tion of a particle-size distribution (PSD) is an inverse
problem rigorously treated by means of the Mie the-
ory [1]. However, when the size of the scatterer be-
comes considerably larger than the wavelength of the
light, and the relative refractive index between the
scatterer and the medium differs substantially from
unity, the dominant contribution to the near forward-
scattered light can be described by the Fraunhofer
approximation of the scalar diffraction theory [1].
The Fraunhofer approximation represents an as-
ymptotic limit of the Mie theory, independent of the
optical properties of the particles and the medium
and is numerically easy to manage. The problem is
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solved either by a direct integral transform inversion
method, known as the Chin—Shifrin method (CS)
[2—8] or indirectly by using a numerical quadrature
of the governing integral equation [8—10]. However,
this asymptotic limit to the rigorous theory depends
on initial information that must be provided by the
user. The most significant disadvantage in these in-
version schemes, is that we must suppose a priori the
domain of the sought distribution. On the other hand,
the evolutive algorithm obtains the PSD ignoring in-
formation about the domain, since it works as a non-
traditional optimization method [11,12], which is
based on the mechanisms of biological evolution.
An evolution strategy (ES) works with a set of po-
tential solutions to the problem of interest, where
each potential solution, called an individual, is rep-
resented by a vector of real numbers. This is a good
representation when the problem at hand deals with
continuous parameters. The main objective is to find
a PSD starting from an intensity pattern, reduced to
obtain a vector of real numbers that encodes an ad-
equate solution, evaluated according to a fitness func-
tion that depends on the problem to be solved. The ES



begins searching for a solution within a population of
individuals, each of which represents not only a
search point in the space of potential solutions to the
given problem, but also may be a temporal container
of current knowledge about the laws of the environ-
ment [13]. The starting population evolves toward
successively better regions of the search space by
means of processes of recombination, mutation, and
selection. The recombination mechanism allows for
mixing of parental information, which is passed on to
their descendants, while mutation introduces inno-
vation into the population [14]. The environment de-
livers a quality metric (fitness value) for each search
point, and the selection process favors those individ-
uals with higher quality to reproduce more often than
weak individuals [13].

Thus our method retrieves a PSD from simulated
angular light-scattering data by solving an optimiza-
tion problem in the real domain, where an objective
function [13] is minimized and the solution to the
total scattered intensity equation is considered as an
inverse problem.

In spite of its limitations, the Fraunhofer approxi-
mation continues to be used in problems where the
optic properties of the particles and the medium that
contains them are not so important, when the refrac-
tive index of the particles, the medium, or both are
unknown, or simply when we do not have sufficient
computation power for the numeric treatment of the
problem. Numerical calculations using Mie theory
are slow when the sample includes large particle
sizes. In such cases, Mie theory requires the evalua-
tion of series, which for convergence has a number of
terms proportional [15] to the nondimensional size
parameter a = ka, with £ = 27/\ the wavenumber, \
the wavelength of light in the medium, which sur-
rounds the particles, and a the radius. This results in
approximately 250 terms for A = 0.6328 pm and
a = 25 pm, implying a factor of 4500 times more CPU
time, compared with calculations performed using
the Fraunhofer approximation. Although the ES in-
creases the CPU time by a factor of 30 compared with
the CS inversion method in the Fraunhofer approxi-
mation, this is still relatively small when compared
with the CPU time used by the Mie theory.

In this work we consider three unimodal normal,
gamma, and lognormal distributions centered at
a = 100 and a = 150 over a fixed interval of sizes, and
we use Mie theory to simulate an intensity pattern
1(6), where 6 is the scattered angle. Then we retrieve
the respective PSD by means of both the ES and the
CS methods with the purpose of comparing the accu-
racy with which each method recovers the proposed
distribution and the CPU time invested in each case.

In Section 2 we describe the formalism relating to
the Fraunhofer approximation and the respective CS
inversion method. Section 3 presents a generalized
description of the algorithm implemented in this
work. In Section 4 the main numerical results are
presented. Finally conclusions are presented in Sec-
tion 5.

2. Fraunhofer Approximation and the Chin-Shifrin
Method

In the context of Mie theory the total scattered inten-
sity 1(6), due to a proposed distribution f(«), is given
by the following integral equation [1]:

I(e):J 1(8, o, m)f(e)da. (1)

0

This is a Fredholm integral of the first kind in which
the kernel 1(6, o, m) represents the Mie-scattered in-
tensity corresponding to a single particle of size pa-
rameter o and relative refractive index m in the
annular region defined by the forward-scattering an-
gle 6 in the direction of propagation. f(a) is the par-
ticle density, such that fla)da, is the number of
particles with sizes between o and o + da.

When the Fraunhofer approximation is used, the
kernel does not depend on the relative refractive in-
dex since 1(6, o) is modeled as the Airy pattern pro-
duced by an opaque disk of radius a equivalent to that
of the particle of size parameter o. Hence from Eq. (1)
the total intensity is given by [1]

I, [ o2 2(ab)
1(0) = s f =
0

where I, is the incident beam intensity, /;, is the
Bessel function of the first kind and order one, and F'
is the focal length of the receiver lens, as typically
encountered in laser diffraction particle size analyz-
ers. In this paper the integrals in Eqgs. (1) and (2) are
calculated numerically using the trapezoidal rule in
the finite interval in which the proposed distribution
is defined. These intensity patterns were generated
for a common angular region 0.0573° = 6 = 10.886°,
with angular sampling A6 = 0.0458° and 40 subdivi-
sions in size Aa.

Equation (2) accepts an asymptotic analytic solu-
tion, widely referred to in the literature as the CS
method [4,7]:

f(o)do, (2)

—2nk’F? [ dr I
f(OL) ZOLQJ (aG)Jl(aG)Yl(ae)de[G IO :|de,

where, Y, is the Bessel function of the second kind
and order one.

This solution is a direct integral transform inver-
sion method in that the integrand directly contains
the measured intensity. Once again the integral in
Eq. (3) is calculated numerically by means of the
trapezoidal rule, and the derivative is calculated by
the finite differences method.

In the numerical evaluation of Eqgs. (2) and (3), it is
important to recognize the differences in both the size
and angular domains because a priori we suppose
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that the major contribution to the integral occurs only
for a finite interval in sizes and for 6 in the range from
Omin to 0., limited by the validity of the paraxial
approximation. The truncation by 6,,., leads to a de-
crease of the performance in the retrieval function
using this method.

3. Proposed Algorithm

This recuperation method is based on the evolutive
algorithm described by Vazquez-Montiel et al. [14].
To produce offspring we used the recombination and
mutation operators such as those described in the
previous work. The selection operator was performed
using the configuration (wn + B) [13]. In this notation
. represents the set of parents and B the set of off-
spring, so the best individuals are chosen for the next
iteration from the set of parents and offspring; thus
the proposed algorithm produces an enlarged sam-
pling because both parents and offspring have the
same chance of competing for survival. As a result a
deterministic search is performed to find the solution
within the space of potential solutions.

To perform the proposed algorithm each individ-
ual X, is formed by the vector of elements called object
variables x,, with a respective strategy parameter
£, [14].

.'Z'g = [x(,p, gf,p]’ Where,p = ]., ey 5. (4)

Thus each individual represents the set of param-
eters necessary to describe a PSD, given by means of
the following assignation:

X1 = mean size parameter,

%, = standard deviation,

x¢3 = first size parameter,

x4 = second size parameter,

x5 = smallest size parameter, (5)

where “first size parameter” and “second size param-
eter” correspond to the finite interval in which the
distribution is defined.

The genetic operators of recombination and muta-
tion work with all the extended vector X, from Eq. (4),
because it contains the standard deviation for carry-
ing out the mutation.

The process of evaluating the fitness of an individ-
ual X, consists of the following two steps [14]:

® Anintensity pattern I, is constructed from X, by
substituting only the first five elements of x, from Eq.
(4) to generate the distribution f{a). Equation (2), is
then used to calculate the total scattered intensity.

® (Considering each element in the matrix I, as a
dimension in a Euclidian distance space, we assign as
the fitness the Euclidian distance between I, and the
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reference intensity pattern represented by I,,. Thus
the fitness is given by

fitness = \é‘i [Le, = Lo % (6)

where j is the number of elements in the intensity
pattern.

We have chosen this fitness function because it
evaluates the minimum distance between the opti-
mized intensity and the simulated intensity for a
specific number of iterations. This function repre-
sents a measure of the quality of the solution that the
best individual of a population contains in its struc-
ture. In our numerical results, this particular fitness
function and the operators of recombination, muta-
tion, and selection accomplish a mapping with a high
correlation between the objective function and the
proximity to the zone where the correct solution or
optimal solution resides.

Rechenberg [11] proposed a deterministic adjust-
ment of strategy parameters during evolution called
the “1/5 — success rule,” which reflects that, on av-
erage, one output from every five mutations should
cause an improvement in the objective function val-
ues to achieve best convergence rates. If more than
1/5 of the mutations are successful, the strategy pa-
rameter £ is increased, otherwise it is decreased. The
selection operator evaluates Eq. (6) for the total pop-
ulation and chooses the best M individuals that will
in turn form the new generation of solutions.

Our program was implemented in MATLAB program-
ming language since it allows an algorithm to be
written in the simplest form. We note that MATLAB is
called an interpreter because it first interprets the
operations, and then the operations are performed.
As a result we have a slow algorithm. However, a
compiler such as Fortran provides a series of optimi-
zations that can help speed up the compiled code. An
analysis of this option is not intended to form part of
this paper.

4. Numerical Results

Each numerical realization took approximately 30
min to run on a PC with a Pentium IV processor
under the following conditions: A population equal to
M = 50 is used throughout; the recombination oper-
ator is applied to the set of parents to obtain 30% of
offspring, while the mutation operator provides the
remaining 70%. Thus the set of parents and offspring
has a similar number of individuals. The aptitude
related to each individual was determined by using
Eq. (6). The selection operator chooses the best M
individuals from the set of 2M parents and offspring
for the next iteration ¢ = ¢ + 1 by means of a ranking
procedure. In each iteration we use the output of the
best individual to plot the behavior of the objective
function. This cycle is repeated until we obtain a goal
value such that the objective function is minimized,
or when a fixed number of iterations is reached. This
stop criterion was fixed after testing different distri-
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Fig. 1. Typical behavior in the minimization of the objective function for normal, gamma, and lognormal retrieved distributions in the

medium size range.

butions. In Fig. 1 we illustrate the typical behavior of
the objective function for the three kinds of distribu-
tion analyzed in this study.

The objective function never reaches the proposed
goal value of 10~?; hence we fixed the maximum num-
ber of iterations at 500 as a threshold value and the
goal value 10~ as our stop criterion in the algorithm.
We observe good convergence of the three distribu-
tions for 100 iterations. When the stop criterion is
reached, our result is the best individual of the last
generation, represented by a vector, which corre-
sponds to the PSD that best matches the analyzed
intensity pattern.

Figure 2 contains several plots that compare the
logarithm of the optimized intensity pattern pro-
duced by the ES with the theoretical intensity pat-
terns calculated using Mie theory, normalized with
total incident intensity. Figures 2(a)-2(c) correspond
to the normal, lognormal, and gamma distributions,
respectively, as used in Fig. 1. We can see that the
optimized intensity patterns, shown by the dotted
curves of Fig. 2, are in agreement with the values of
the objective function. The optimized pattern shows
evident discrepancies. This behavior suggests that fit
errors of the order of 10 ° or smaller will generate a
high degree of similarity between intensity patterns,

as shown in Fig. 2. Nevertheless, in this work we
considered 10° as a goal value to assure the best
results.

A. Evolution Strategy and the Chin-Shifrin Method in the
Recuperation of a Normal Distribution

The aim of this first part of our numerical study is to
analyze the behavior of the ES with respect to the CS
inversion method when the intensity pattern is cal-
culated by means of rigorous Mie theory, and the
recuperation is realized with the Fraunhofer approx-
imation. We choose two characteristic size ranges
where the use of the Fraunhofer approximation is
feasible. For this work we have analyzed three dif-
ferent kinds of distribution; however, for the present
discussion it is enough to consider only the results
obtained for normal distributions since they illus-
trate adequately the advantages of our algorithm in
comparison with the results given by the CS method.

The two normal distributions analyzed cover the
range 30 = o = 200, centered at @« = 100, and 50
= a = 250 centered at & = 150. We will refer to them
as medium and large sizes, respectively. It has been
shown by several authors that the Fraunhofer ap-
proximation describes well the scattering phenomena
produced by spherical particles in this range of size
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Fig. 2. Comparison between the retrieved scattering pattern produced by the ES and the simulated intensity patterns calculated with
Mie theory. The plots correspond to the three distributions presented in Fig. 1: (a) normal, (b) lognormal, and (c) gamma.

parameters [2,6,16]. The intensity patterns were gen-
erated with the same mesh and common angular re-
gion used in the evaluation of the numerical integrals
calculated in Section 2. The parameters that control
the shape of the two normal distributions discussed
here are presented in Table 1.

For the two distributions mentioned above, we gen-
erate an intensity pattern by means of Mie theory,
then using the Fraunhofer approximation together
with our algorithm we obtain a first retrieved PSD,

Table 1. Shape Parameters of the Proposed Distribution Functions®

PSD Proposed Normal Gamma Lognormal
Size ranges @ I € v o A, I o
Medium 100 20 90 06 299 76 2.7 299
Large 150 30 125 0.7 499 107 2.9 499

“A particle number N = 100 is used throughout. @ and o repre-
sent the mean size parameter and the standard deviation in nor-
mal distributions, respectively. € and v are the effective size
parameter and the variance in gamma distributions. In the log-
normal distributions, o is the standard deviation, and A, is a
quantity related with the mean size parameter of an equivalent
normal distribution through & = exp[ln(4,) +(c?/2)]. o, deter-
mines the smallest size parameter present in the gamma and
lognormal distributions.
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and with the Fraunhofer approximation and the CS
method we obtain a second retrieved PSD as shown in
Fig. 3. This figure illustrates adequately both the
good behavior of the ES in the recuperation and the
poor results reported by the CS inversion method.

The differences between the retrieved and pro-
posed distributions can be considered as an indicator
of error in the recuperation, which is estimated by
means of the standard deviation

1 \“Ns ﬁe-_fnz
A g

where f,,, and ;. are the i values of the proposed and
the retrieved distributions, respectively, and IV, is the
number of points calculated. Both error values, those
relating to the CS method and those associated with
our algorithm are shown for the corresponding curves
by arrows in Fig. 3. Figure 3(a) represents the me-
dium size range, and Fig. 3(b) represents the large
size range. Corresponding fit errors between the sim-
ulated intensity patterns and the intensity patterns
reported at the end of the optimization process in the
ES were 6.1934 X 107° and 1.4415 x 107° for the
medium and large sizes, respectively. These results
will be discussed further in Subsection 4.B.
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Fig. 3. Comparison between the ES and the CS methods applied to the recuperation of a normal distribution. (a) Medium size region and

(b) large size regions.

Figures 3(a) and 3(b) show that for both regions
chosen for «, the ES generates superior results. We
note also from Fig. 1 that the fit error between the
calculated and ES intensity patterns remains al-
most constant from iteration number 100. This con-
firms that our algorithm finds the closest solution to
the global optimum. Remember again that the ES
method is capable of obtaining the correct results
without any a priori information regarding the dis-
tribution interval, and that the possible discrepan-
cies in the angular composition of the scattered
intensity do not affect the performance of the algo-
rithm, as happens in general when the Fraunhofer
approximation is applied to solve the inverse prob-
lem by quadratures, and again with the CS method.
This last point is clearly observed with the CS re-
cuperation in Fig. 3. We can conclude that in the
particular case of medium and large particles, the
Fraunhofer approximation implemented using an
ES algorithm obtains accurate results.

Finally the Fig. 3 results show the poor quality of
the recuperation using the CS method. Thus, it is not
recomended to use this inversion method with the
Fraunhofer approximation for these size ranges.

B. Robustness of the Evolution Strategy for Retrieval of a
Particle Size Distribution

In this second part of our numerical study, we show
the robustness of the ES implemented in our algo-

rithm with the Fraunhofer approximation. Given the
intensity pattern corresponding to a known distribu-
tion, our algorithm selects among the three kinds of
distribution under consideration, finding that which
can be satisfactorily fitted to this original intensity
pattern. This procedure is carried out adjusting the
simulated intensity pattern, with the intensity pat-
tern generated by each kind of distribution sequen-
tially inside the algorithm evaluating the fit error
between both patterns. The corresponding retrieved
distributions are then compared with the proposed
theoretical distribution, and the recuperation error
between both distributions is obtained. The smallest
values of both errors determines the best retrieved
distribution that the algorithm can obtain. The best
result (smaller errors) coincides with the proposed
distributions.

To generate the simulated intensity pattern, we
consider only the gamma and lognormal distribu-
tions, since the performance of the ES method with
normal distributions was discussed in Subsection 4.A
and produces similar results. Again we consider two
intervals, similar with respect to the previous numer-
ical simulations, representing medium and large par-
ticle size ranges, and we employ the same domain
and angular sampling parameters that we used in
the previous section.

Figure 4 shows the behavior of our algorithm for
both distributions. As can be seen, the performance of
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by Mie theory with a gamma distribution at the medium and large sizes. (¢) and (d) correspond to normal, gamma, and lognormal
distributions retrieved by the ES from the intensity pattern generated by Mie theory with a lognormal distribution at the medium and large

sizes.

the ES is similar with respect to the previous numer-
ical simulations. Figures 4(a) and 4(b) correspond to
the intensity patterns generated by gamma distribu-
tions in both size ranges, while Figs. 4(c) and 4(d)
correspond to the intensity patterns generated by the
lognormal distributions.

The curves display an identical numerically re-
trieved PSD, and we can see in Table 2 that the fit
error and the recuperation error are a minimum (in
boldface) when the ES algorithm selects the gamma
distribution. In Figs. 4(a) and 4(b) both normal dis-
tributions (dotted curves) and lognormal distribu-

Table 2. Errors for Proposed Gamma Distributions®

PSD Gamma-Medium Gamma-Large

Error Ifit PSD Ifit PSD
N 9.97 X 107° 1.84 2.05 X 10~* 1.14
G 7.92 X 107° 1.02 1.73 x 1074 0.67
L-N 8.28 X 107° 1.14 1.91 x 10°* 0.72

“Column I-fit represents the fit errors between the simulated
intensity pattern with a gamma distribution and the intensity
pattern reported by the ES to each kind of distribution. Column
PSD represents the errors of recuperation between the proposed
and the retrieved distributions.
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tions (circled curves) are retrieved from the intensity
pattern generated by the above-mentioned gamma
distribution. In the first case, the fit error and the
recuperation error increase because when the ES
transforms the fitting problem into an optimization
problem the solution found is not near-optimal. On
the other hand, when the proposed distributions are
analyzed with lognormal distributions our algorithm
gives a better result. Here the recuperated lognormal
distributions are closer to the proposed distribution
in the medium and large range; however, as men-
tioned above, the minimal recuperation error is ob-
tained when our algorithm analyzes the proposed
distribution with the gamma distribution. We con-
clude that the ES is able to recognize the correct
distribution among the three possibilities of distribu-
tions mentioned above.

We now look at the two lognormal distributions
shown in Figs. 4(c) and 4(d). The dotted curves show
a numerically resolved size-distribution recovery
identical to the normal distributions in both regions
as before. Recovery with the gamma distribution is
acceptable in the medium region; however, for the
region of large particles, the retrieved distribution in
Fig. 4(d) is very poor. Table 3 shows the fitting and



Table 3. Errors for Proposed Lognormal Distributions®

PSD Lognormal-Medium Lognormal-Large

Error I-fit PSD I-fit PSD
N 1.21x10°* 1.18 2.15 X 10°* 1.35
G 146 x 104 1.24 1.85 x 107* 9.59

L-N 7.73 X 1075 1.12 1.71x10°* 0.66

“Column I-fit represents the fit errors between the simulated
intensity pattern with a lognormal distribution and the intensity
pattern reported by the ES to each kind of distribution. Column
PSD represents the errors of recuperation between the proposed
and the retrieved distributions.

recuperation errors corresponding to all curves of
Figs. 4(c) and 4(d).

Regarding the fit with a lognormal distribution, we
can see from Figs. 4(c) and 4(d) and Table 3 that this
distribution (circles) generates superior results, with
the recuperation practically identical to the proposed
distribution. Again, in the particular case of a lognor-
mal distribution used to generate an intensity pat-
tern, the ES gives the best results, and it can be
commented that the asymmetry of the distributions
in both ranges of sizes of particles does not affect the
performance of our algorithm.

From the above numerical simulations and for
these three particular distributions we can conclude
that the ES is independent of the type of monomodal
distribution that we use. The ES can be adjusted with
a distribution type unrelated to the proposed size
distribution, though obviously with a lesser degree of
accuracy in the results. However, this method can
still be of value when information regarding the
sought distribution is not available, or when the only
important task is to give a diagnosis of the size of the
particles and not the distribution type.

Finally, it is important to point out that our al-
gorithm can analyze only distribution functions
with up to a maximum of six optimization variables.
If our method uses more than six optimization vari-
ables it cannot perform a search within the space of
potential solutions. With a maximum of six vari-
ables our algorithm converges to an accurate solu-
tion at approximately the 100th generation in the
simplest situations and at approximately the 420th
generation when the problem is more numerically
complex. During each experiment our method re-
quired more CPU time than the CS method, 30 min
in our case, compared with 57 s for the CS method.
When information about the sought distribution is
unknown, it is preferable to consume more comput-
ing time.

5. Conclusions

In this work we have presented a method based on
evolutionary computation to retrieve particle-size dis-
tributions from angular light-scattering data. Our
method analyzes intensity patterns generated using
Mie theory, giving as a result a series of known mono-
modal normal, gamma, and lognormal distributions by

means of the Fraunhofer approximation. The proposed
method introduces two important characteristics when
compared to the traditional Chin—Shifrin method: We
have obtained solid results that show that our program
yields more accurate solutions compared to the
Chin—Shifrin method and does not require a priori
information about the domain of the particle-size dis-
tribution that we are seeking. The only requirement
at the beginning of each optimization process is for
information related to the simulated intensity pat-
tern and a group of possible candidates of distribu-
tions in order to carry out the adjustment and obtain
the corresponding particle-size distribution.

For the particular case of the three kinds of distri-
bution discussed in this work, the performance of our
program is not dependent on the type of monomodal
distribution that we are analyzing. Accurate results
are obtained for both symmetrical and asymmetrical
distributions, and the method is able to identify the
correct distribution from the three distribution types
presented. The results are less accurate but still sat-
isfactory when our method is applied to a distribution
type unrelated to the proposed size distribution. This
can be important when information on the original
distribution is unavailable or when only a diagnosis of
sizes present in the sample is required. We note that
possible discrepancies in the angular composition of
the scattered intensity do not affect the performance of
the algorithm, unlike the case when the Fraunhofer
approximation is used to solve the inverse problem by
quadratures or with the CS method.

We propose a threshold value of 500 for the number
of iterations and the goal value 10~ ? as a general stop
criterion when this algorithm is used. These values
guarantee the correct convergence in the objective
function, such that our algorithm can find the closest
solution to the optimum global.

This inversion method based on evolutionary com-
putation demonstrates high precision and acceptable
computing time, providing the evolutive operators are
used with a correct objective function. However, we
have analyzed only distribution functions considering
up to six optimization variables as a maximum. At
present, this limitation does not allow us to retrieve
more complex distributions, such as multimodal.
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