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Incoherent convergence of diffraction free fields
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Abstract

We describe a method for the synthesis of diffraction free fields by means of an ensemble of optical fields mutually incoherent. The
constituent optical fields are generated by controlling the angular correlation function between two points distributed on a circle in the
frequency space. The angular position and the separation between the points are considered as random variables. The implicit proba-
bility density function allows us to generate diffraction free beams with easily tunable profiles. Inverse problems are also analyzed, which
consists in finding the joint probability density function for a known irradiance distribution. Experimental and computational results are
shown.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The diffraction free fields (DFF) [1] offer applications in
many physical situations such as optical twisters, atom-ion
trapping, as illuminating beams for the generation of sur-
face plasmons, etc. [2,3]. In this sense, it is desirable to gen-
erate DFF with diverse profiles; this is what we want to
study in the present contribution. The study presented here
can be considered as a consequence of the ergodic theorem
[4] that essentially establishes that the average of spatial
fluctuations is equal to temporary averages for stationary
optical fields. This allows us to analyze ensembles of opti-
cal fields using a set of transmittances with random fea-
tures, generating a mutually incoherent irradiance
superposition, which is detected with an additive detector.

It is a well known fact that coherent DFF can be repre-
sented as a superposition of plane waves, described by the
angular spectrum model given by [5],
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/ðx; y; zÞ ¼
Z Z 1

�1
Hðu; vÞdðu2 þ v2 � d2Þ exp i2pðxu

þ yvþ zpÞdudv; ð1Þ

where (u,v,p) represents the spatial frequencies, that must
satisfy u2 þ v2 þ p2 ¼ 1

k

2
, and k is the wavelength. The

expression in the integral Hðu; vÞdðu2 þ v2 � d2Þ represents
a circle of radius ‘‘d’’ modulated by an arbitrary function
H(u,v) this representation is a sufficient condition for the
synthesis of coherent DFF [1]. In the present paper, the
optical fields under study are generated using a set of mod-
ulating functions Hi(u,v) with random features. Each mod-
ulating function has associated an optical field
characterized by an amplitude function and its correspond-
ing irradiance distribution. Analyzing the mean for the
irradiance superposition of all the optical fields associated
to the set of modulating functions we have that the new
optical field is a diffraction free field DFF. This is because
its frequency representation remains on some regions of a
circle, keeping the condition of being diffraction free fields
[1]. This construction corresponds with an incoherent con-
vergence, because we are performing an irradiance super-
position and interference effects between the optical fields
associated to different modulating functions are avoided.

mailto:gmartin@Inaoep.mx


G.M. Niconoff et al. / Optics Communications 275 (2007) 10–13 11
For mathematical simplicity we transform Eq. (1) to
cylindrical coordinates, taken the form

/ðr; h; zÞ ¼ eibz
X

n

J nð2prdÞeinh

Z
HðuÞe�inudu; ð2Þ

where b ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k2 � d2

q
and non relevant constants have

been omitted. The irradiance distribution is given by

I iðr; hÞ ¼
X
n;m

J nð2prdÞJ mð2prdÞeihðn�mÞ

�
Z Z

HðuÞH �ðu0Þe�inueimu0dudu0

¼
X
n;m

J nð2prdÞeihnAnm

X
n;m

J mð2prdÞe�ihm: ð3Þ

It must be noted that the irradiance distribution is non-
dependent on z coordinate. Some interesting cases can be
identified. If the H function is a constant, the matrix ele-
ments are zero except A00 and the optical field corresponds
with a zero-order Bessel beam. Another case is when the
circle has an angular modulation given by H iðuÞ ¼ eisu

and the irradiance distribution corresponds with a Bessel
function of order s: IðpÞ ¼ J 2

s ð2prdÞ. The general case
occurs when H is an arbitrary but deterministic function,
which can be expressed as HðuÞ ¼

P
sase

isu. For this case,
the irradiance is represented as a sum of Bessel functions of
integer order, whose representation can be expressed in the
matrix form

IðrÞ ¼ ðJ 0ð2prÞ; J 1ð2prÞeih; . . . ; J nð2prÞeinh . . .Þ

�

ja00j2 a0a�1 a0a�n
a1a�0 ja11j2 a1n

ana�0 an2 jannj2

0
BBBBBBBBB@

1
CCCCCCCCCA

J 0ð2prÞ
J 1ð2prÞe�ih

J nð2prÞe�inh

0
BBBBBB@

1
CCCCCCA
: ð4Þ

The matrix elements satisfy the following equation:
aq ¼

R P
sase

isue�iqud/. Eq. (4) can be considered as the
general expression for coherent diffracted free beam. The
diagonal elements represent the energy associated with a
Bessel function of integer order and the outer elements rep-
resents the energy transfer between Bessel functions of dif-
ferent orders.

2. Random ensemble of difracted free fields

As it was mentioned, we are interested in the synthesis of
optical fields generated by means of an incoherent ensem-
ble of DFF. This is obtained associating random features
to the modulating function H(u,v) as it is shown below.
The new optical field is generated by means of the irradi-
ance superposition of these random diffracted free beams.
The probability density functions implicated in the treat-
ment allow us to generate the desirable optical field with
easily tunable profiles. The main idea is to generate an
ensemble of mutually incoherent fields and to describe its
irradiance average, which according to Eq. (3) takes the
form

IðpÞh i ¼
X
n;m

J nð2prdÞJ mð2prdÞeihðn�mÞ

�
Z Z

H iðuÞH �i ðu0Þ
� �

e�inueimu0dudu0; ð5Þ

where the function HiðuÞH 0iðu0Þ
� �

represents the angular
correlation function and the sub-index represents an event
of the set of random modulation functions. The value of
the integral represents the angular correlation coefficient
qnm. The simplest case for the angular correlation function
occurs when H iðuÞH �i ðu0Þ

� �
¼ C, and the irradiance distri-

bution is again proportional to a zero order Bessel beam

IðpÞh i ¼ jAj2
X
n¼0

J 2
nð2prdÞ ¼ jAj2 1

2
ð1þ J 2

0ð2prdÞÞ: ð6Þ
3. Experimental implementation

A simple method to control the irradiance convergence
described by Eq. (5) consists in selecting of two arbitrary
coherent points on the frequency circle. A simple case
occurs when the relative separation ‘‘a’’ between these
two points is a constant but the angular position h is a ran-
dom variable. The implicit parameters are sketched in the
experimental set up shown in Fig. 1.

The irradiance associated to the optical field for these
pair of points is

Iðx; y; hÞ ¼ 2ð1þ cosð4paðx cos hþ y sin hÞÞÞ; ð7Þ
this expression correspond to the fringes associated with
Young’s experiment, the interference pattern is rotated an
angle h, which is the random variable with probability den-
sity function q(h). The average irradiance distribution is gi-
ven by

Iðx; yÞh i ¼
Z 2p

0

2ð1þ cosð4paðx cos hþ y sin hÞÞÞqðhÞdh:

ð8Þ
The structure of q(h) allows us to generate diffraction free
beams with tunable profile. Some interesting cases can be
identified. If the probability density function is uniform,
the irradiance distribution is given by a zero order Bessel
function Iðx; yh i ¼ 1

2
ð1þ J 0ð4pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ, where 0 6 a 6

d. In Fig. 2a we show the computational simulation for
the optical field for this case. The profiles for diffraction
free fields can be extended if we consider now the angular
position and the relative separation between points as a
random variable with joint probability density function
qða; hÞ. For this case, the irradiance distribution is given
by

Iðx; yÞh i ¼
Z d

0

Z 2p

0

2ð1þ cosð4paðx cos hþ y sin hÞÞÞ

� qða; hÞdadh: ð9Þ



Fig. 1. Experimental set up and parameters for two points randomly localized on the frequency circle. The relative separation ‘‘a’’ and the angular
positions h are considered as random variables.

Fig. 2. In (a), computational results for an angular random variable with
uniform probability density function. (b) Computational results for the
case when angle and separation between points are random variables. The
joint probability density function is uniform for both variables and they
are considered as statistically independent. In (c) and (d), experimental
results when the separation ‘‘a’’ between two points is a random variable
with uniform probability density function in the range [4,6] and [1,6],
respectively. The interval is in mm and the angle is constant. The radius of
the ring is 3 mm approximately.
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In Fig. 2b we show again the computational simulation for
the irradiance distribution for the case when the random
variables are statistically independent, i.e. qða; hÞ ¼
AðaÞHðhÞ being each probability density function as uni-
form. The optical field for this case has the structure of a
string beam. The experimental details for the synthesis of
this optical field can be founded in [6]. Another interesting
case is obtained when the angle h is constant but the sepa-
ration between points, ‘‘a’’, is a random variable. For this
case, in Fig. 2c and d we show the experimental results for
the irradiance average when q(a) is uniform in two different
intervals. To select these two points with random separa-
tion we superpose on the screen containing the ring a sec-
ond screen containing a linear slit. The screen is mounted
on a commercial linear motorized staged. The displace-
ments are perpendicular to the z-axis as is shown in
Fig. 1, being the minimum displacement of 0.1 mm. The
random displacements were controlled with a personal
computer PC and the irradiance was recorded using a
CCD camera. The average was calculated numerically.
From the experimental results we can appreciate that,
when the interval of displacements is maximum, being
equal to the diameter of the ring, the optical field tends
to a ‘‘string beam’’ in the one-dimensional version. In the
experiment, we generated 200 different optical fields associ-
ated to the randomly linear displacements of the slit.

4. Description of the probability density function

At this point, from Eq. (9), inverse problems can be
identified. For a known irradiance distribution Iðx; yÞh i,
the problem consists in finding the joint probability density
function qða; hÞ. The solution is obtained from the Fred-
holm integral equation of the first kind given by Eq. (9),
it can be rewritten in the following form

Iðx; yÞh i ¼
Z d

0

Z 2p

0

cosð4paðx cos hþ y sin hÞÞqða; hÞdadh;

ð10Þ

The simplest cases occurs when the separation ‘‘a’’ is con-
stant or when h is constant. The corresponding integral
equations are
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Iðx; yÞh i ¼
Z 2p

0

cosð4paðx cos hþ y sin hÞÞqðhÞdh;

IðxÞh i ¼
Z d

0

cosð4paxÞqðaÞda:

ð11Þ

Considering the first integral equation and re-writing the
kernel by means of the Jacobi–Anger expansion, we have

Iðx; yÞh i ¼
X
n;m

J nð2paxÞJ mð2payÞ
Z 2p

0

einheimhqðhÞdh

¼
X
n;m

qnmJ nð2paxÞJ mð2payÞ; ð12Þ

where the qnm coefficient satisfies qnm ¼
R 2p

0 einheimhqðhÞdh.
The kind of irradiance distributions that can be gener-

ated must be in the rank of the integral equation [7], and
in this way, we have that the irradiance distributions must
be represented as a Fourier Bessel series

Iðx; yÞh i ¼
X
n;m

anmJ nð4paxÞJ mð4payÞ; ð13Þ

where the coefficients anm can be obtained by use of the
orthogonally properties of the

Bessel functions : anm ¼
R R

Iðx; yÞh iJ nð4paxÞJ mð4payÞdxdyR R
J 2

nð4paxÞJ 2
mð4payÞdxdy

:

For a spatial stationary process, the probability density
function must be periodic with period of 2p, and then it
can be represented by a Fourier series qðhÞ ¼

P
sase

ish.
Then we have that the inverse problem reduces to find
the as coefficients. Comparing terms we have that
anm ¼

P
sas

R 2p
0 einheimheishdh. The last expression is always

zero except when s ¼ �ðnþ mÞ and then it takes the 2p
value.

In this way, the coefficients as of the probability density
function are related to the irradiance coefficients, by
as ¼ a�ðmþnÞ ¼ 1

2p anm. For the case when the relative separa-
tion ‘‘a’’ is a random variable, the inverse problem can be
solved directly by means of a cosine transform of the irra-
diance distribution given by qðaÞ ¼

R1
�1 IðxÞh i cosð4paxÞdx,

as can be deduced directly from the second equation in
(11). As conclusion, we have described the synthesis of
diffraction free beams by means of an irradiance superpo-
sition of random diffracted free beams mutually incoherent,
where the average profile is obtained by controlling the
joint probability density function. The constituent optical
fields have an incoherent consonance in the phase function.
For this reason, the treatment can be considered as the ran-
dom version of the Lau effect [8,9]. This description can be
extended almost without changes to generate optical fields
that exhibit the self-imaging phenomenon, where the
random points are distributed on the Montgomery rings
[10–12].
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