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1. Introduction

Over the past few decades, the inherent parallelism of optics has prompted a great deal of re-
search on optical information processing. Among all the possible applications, a very promising
direction is optical encryption [1]-[24]. With their pioneering work on double random phase
(DRP) encoding, Réfrégier and Javidi [1] paved the way for many following proposals of op-
tical security and encryption systems. This very DRP scheme has spawned several variation
techniques and has been applied in many situations [11]-[24]. However only recently has the
security of DRP started to be thoroughly analyzed and a few weaknesses have started to appear
[25]-[29]. Carnicer et al. presented a chosen ciphertext attack where an attacker can retrieve the
key by inducing a legitimate user in deciphering many specially crafted ciphered images [25].
Gopinathan et al. [27] and Peng et al. [28] described two techniques to recover the key knowing
a single plain image and the corresponding ciphered image. In the first case the key is obtained
through a simulated annealing process, while in the second case a phase retrieval algorithm is
used. A variant of the DRP encryption is also attacked in [29]. In this paper, we comment on
several possible attacks on the DRP encryption scheme and in particular we present a known
plaintext attack that requires two known plain images [26], but that is able to retrieve the exact
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Fig. 1. Principle of the double random phase encryption scheme.

key rather than an approximation of it as in Refs. [27] and [28]. We demonstrate the feasibility
of the proposed attacks using computer-generated images.

In section 2, we recall the principle of the double random phase encryption. In section 3 we
consider brute force attacks to the system. In sections 4 and 5 we describe chosen plaintext
attacks and known plaintext attacks respectively. Section 6 gives a discussion of the various
attacks presented in this and other papers. Conclusions are presented in Section 7.

2. Overview of the double random phase encryption scheme

The original double random phase encryption technique was proposed in [1]. It is described in
Fig. 1. The image to be encrypted, or plain image P, is immediately followed by a first random
phase mask, which is the first key X . Both the image and the mask are located in the object
focal plane of a first lens. In the image focal plane of this lens is therefore obtained the Fourier
transform (FT) of the product P ·X . This product is then multiplied by another random phase
mask that is the second key Y . Lastly, another FT is performed by a second lens to return to the
spatial domain. Since the last FT does not add anything to the security of the system, we will
perform all our analyses in the Fourier plane. The ciphered image C is then

C = Y ·F (P ·X), (1)

where F stands for the Fourier transform operation. In most of the paper, we will assume
that P is a gray-level image — the so-called amplitude encoding. However, the last attacks we
will present also work with the phase encoding variant [12] where the image is pure phase (see
Section 6).

3. Brute force attacks

3.1. Exact decryption

The first obvious attack against any encryption system consists of trying every possible key
until finding the correct one. Assuming that both phase masks have a size of

√
N ×√

N pixels
and that each pixel has L possible phase values, the number of attempts required to retrieve
both keys is of the order of L2N . For any practical values of L and N, this number is huge and it
increases exponentially with the number of pixels N which makes this attack computationally
intractable. For instance, let us fix L = 16 phase levels and N = 100 × 100 pixels. Then
the number of keys to try would be 1620000 ∼ 1024000, which is inconceivable. In practice,
however, it is not always necessary to consider all of these combinations.
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Thus, in the most common case of amplitude encoding [1], we do not need to know the first
key X to decipher an image C. Indeed, if we know the second key Y , we can find

P ·X = F−1 (C÷Y ) , (2)

where F−1 denotes the inverse Fourier transform and ÷ stands for the point-by-point divi-
sion. Now because P is a pure magnitude function and X is a pure phase function, the plain
image is easily recovered by

P = |P ·X | = ∣
∣F−1 (C÷Y )

∣
∣ , (3)

where | | is the modulus. This property leads to the first reduced brute-force attack:

Attack 1: Try every possible instance of the second key Y , while ignoring the first key X .

The number of trials required by this attack is LN instead of L2N . This represents a great
simplification since the number of combinations is reduced by a factor L N . In the case of the
numerical example used above, the number of trials is 16 10000 ∼ 1012000.

3.2. Approximate decryption

In addition to attack 1, it is possible to look for an approximate version of the key Y instead of
its exact value. The first possible simplification consists of reducing the number of phase levels,
at the cost of a loss of quality in the decrypted image. For instance, we can look for keys with
only two phase levels.

Attack 2: Try only binary phase keys for the second key Y ; ignore the first key X .

The number of possible combinations is then 2N instead of LN . For the example of section
3.1, the number of combinations to try would be 2 10000 ∼ 103000. Figure 2 shows the result of
decrypting two 100 × 100 images with various reductions of phase levels of the key Y . The
original key has 16 phase levels but the original image is recognizable even with a binarized
phase key. However, the fewer phase levels, the more noise is introduced in the reconstruction.

Another possible simplification is to retrieve a partial window of the key Y instead of the full
key [25, 26, 29]. Since the pixels outside the window are then ignored, deciphering with the
partial window amounts to applying a low-pass filter to the deciphered image. The details of
the original image are thus lost but large features can be recognized.

Attack 3: Brute force search of a partial window of the second key Y ; ignore the first key X .

If the window has a total of Nr < N pixels, then the number of combinations to try is LNr

instead of LN . Figure 3 presents decryptions of two 100 × 100 images using partial windows
of the ciphered image with various sizes. In this case, retrieving a 30 × 30 window of the
second key is sufficient to recognize the plain image, although the details are lost. The number
of combinations is thus reduced to 16900 ∼ 101080.

Additionally, it is possible to combine Attacks 2 and 3 as follows:

Attack 4: Brute force search of a partial window of the second key Y trying a small number
of phase levels; ignore the first key X .

For instance, if we use only three phase levels then the number of combinations to try is 3 Nr

instead of the original LN . Figure 4 presents decrypted images using ternary phase levels for
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Fig. 2. Decryption of images encrypted with 16-level phase keys. (a)-(b) 16-level decryp-
tion key, (c)-(d) 4-level decryption key, and (e)-(f) 2-level decryption key.

Fig. 3. Decryption using partial windows of the original 100 × 100 key. (a)-(b) 50 × 50
window, (c)-(d) 40 × 40 window, and (e)-(f) 30 × 30 window.
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Fig. 4. Decryption using partial windows of the original 100 × 100 key and reduction to
three phase levels. (a)-(b) 50 × 50 window, (c)-(d) 40 × 40 window, and (e)-(f) 30 × 30
window.

the second key and various window sizes. It can be seen that a gray-level image with details
deteriorates faster than a binary image with a low-level of detail. In the case of Fig. 4(e), the
number of trials would be 3900 ∼ 10429, while the image is still recognizable. Although that
number represents a dramatic reduction from the original 10 24000 attempts, the number of trials
remains huge. Therefore we can conclude that brute force attacks are intractable. However it
should be kept in mind that the nominal security of the scheme is lower than one may naively
expect.

4. Chosen plaintext attacks

We now assume that the attacker has the ability to trick a legitimate user of the system into
encrypting particular images. In this case, as mentioned in [25] and [26], a very simple and yet
very effective attack can be mounted:

Attack 5: Obtain the ciphered image corresponding to a Dirac delta function as plain image.

In other terms, the plain image is entirely black except for a single pixel. If the non-black
pixel is centered, it is straightforward to see from Eq. (1) that the resulting ciphered image is
— to a constant phase factor — the second key Y [26]. If the non-black pixel is not centered,
then the ciphered image is the second key Y multiplied by a linearly varying phase. Since this
linear phase is known (it only depends on the position of the non-black pixel), it is possible to
extract the key Y . Thus, the system can be easily broken by encrypting a single chosen plain
image. It can be argued that such a plain image can look suspicious to the authorized user that
is to encrypt it. A variant can therefore be used:

Attack 6: Obtain and subtract the ciphered images corresponding to two plain images whose
difference is a delta function.
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This attack is made possible because the encryption scheme is linear. Indeed, If P1, P2 are two
plain images with corresponding ciphered images C1, C2, and α , β are two scalar coefficients,
it is easy to see from Eq. (1) that αP1 + β P2 is encrypted to αC1 + βC2. In the case of Attack
6, if P1 − P2 = δ then C1 − C2 is the ciphered image of a delta function — that is the second
key Y — as in Attack 5. In order to disguise the attack even further, it is possible to use an
arbitrary number of plain images (instead of just two) for which a particular linear combination
gives a delta function. It is then sufficient to compute the corresponding linear combination of
the ciphered images to obtain the key.

Note that Attack 5 is not applicable in the case of the phase-encoded variant of the encryption
scheme [12]. This is because it is impossible to obtain zero-valued pixels in this case, thus
forbidding the formation of a delta function. However, Attack 6 remains possible. For instance,
let us assume that amplitude images with values between 0 and 1 are encoded to phases between
0 and 2π . Now we choose amplitude Image 1 to be uniformly zero and amplitude Image 2
to also be uniformly zero except in the center (0,0) where it takes a value of 0.5. Then the
corresponding phase encoded plain images will be P1 that is uniformly 1 (phase 0) and P2 that
will be uniformly 1 except in the center where it takes a value of −1 (phase π). The difference
P1 −P2 is therefore 0 at every pixel except in the center where it take the value 1− (−1) = 2.
Therefore we can see that P1 −P2 = 2δ and Attack 6 is applicable. It has to be noted that, since
the plain images are phase coded, the knowledge of the first key X is necessary to complete
the decryption process. Fortunately, this key can be recovered with a single additional plain-
ciphered image pair.

Attack 7: Employ Attack 5 or 6, and further obtain the ciphered image corresponding to a
uniform image as plain image; deduce the first key X .

Indeed, if P3 is a uniform (spatially constant) image, with its corresponding ciphered image
C3, then Eq. (2) gives

P3 ·X = F−1 (C3 ÷Y ) , (4)

and since P3 is constant, the first key is directly recovered as

X ∝ F−1 (C3 ÷Y) . (5)

To sum up, with at most three chosen plain-ciphered image pairs, it is possible to recover the
two encryption keys and break the system.

5. Known plaintext attacks

We now assume that the attacker knows several plain images with their corresponding ciphered
images. The plain images do not have to have very specific forms so they do not have to be
chosen by the attacker.

5.1. Vectorial notation

For the following analysis, we consider that P, C, X and Y are discrete (pixelized) and spatially
bounded. This is always the case in practice, given that even continuous images and phase keys
can be adequately sampled. We therefore represent these four two-dimensional functions by
four arrays. The total number of pixels of each array is N. We re-arrange each array into a
vector with N components; this vector is formed by sequentially appending each column of
the original array. The four vectors are called P, C, X and Y. The linearity of the encryption
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scheme (see Section 4) means that the transformation between the plain image vector P and the
ciphered image vector C can be represented by a matrix-vector product as follows

C = TP, (6)

where T is the N × N transformation matrix that characterizes the encryption process.

5.2. Using a base of the vector space

As a linear operation in a vector space of dimension N, the encryption is fully defined by its
operation on a base of the vector space (that is, a set of N linearly independent vectors).

Attack 8: Obtain the ciphered images corresponding to N known linearly independent plain
images; retrieve the key by matrix inversion.

An N × N matrix P can be formed, using as columns the vectors P 1, . . .PN that correspond to
the N plain images. Similarly, an N × N matrix C can be formed with the vectors corresponding
to the ciphered images. The process of encrypting all the plain images can be written as

C = TP, (7)

where T is the same encryption matrix as in Eq. (6). Now, P and C are known to the attacker,
and P is invertible because its columns are linearly independent. So, the encryption matrix can
be computed by

T = CP−1, (8)

with P−1 the inverse of P. At this stage the system is compromised because knowing the
encryption matrix T is equivalent to knowing the keys. Indeed, from Eq. (6), we see that any
unknown plain image P can be obtained from the ciphered image C by

P = T−1C, (9)

where T−1 is the inverse of T.
Note that the attack presented in this subsection is quite general and would work for any

linear encryption technique [30, 31]. In practice, this attack is not very useful because it requires
one to know a huge number of plain images, for instance 10000 images if each image has
100 × 100 pixels.

5.3. Using two known images

Here we assume that the attacker knows two plain images P and P ′ with their corresponding
ciphered images C and C ′.

Attack 9: Obtain the ciphered images corresponding to 2 known plain images and deduce
the keys by solving a linear system of equations.

Let us express the encryption operation in terms of p i, p′i, ci, c′i, xi and yi, the elements of the
vectors P, P′, C, C′, X and Y, respectively. For the first image, we can write

ci = yi

N

∑
j=1

Fi jx j p j with 1 ≤ i ≤ N, (10)

#80383 - $15.00 USD Received 23 Feb 2007; revised 27 Apr 2007; accepted 10 May 2007; published 30 Jul 2007

(C) 2007 OSA 6 August 2007 / Vol. 15,  No. 16 / OPTICS EXPRESS  10260



where Fi j is the matrix that characterizes the FT operation. Note that, although it operates
on vectors, it does not represent a one-dimensional FT but rather a two-dimensional FT on the
images before they are re-arranged in vector form. For the second image, we can write similarly

c′i = yi

N

∑
j=1

Fi jx j p
′
j with 1 ≤ i ≤ N. (11)

Now, it is possible to eliminate the elements of the second key yi by cross-multiplying Eqs.
(10) and (11). We get

ci

N

∑
j=1

Fi jx j p
′
j = c′i

N

∑
j=1

Fi jx j p j with 1 ≤ i ≤ N, (12)

hence

N

∑
j=1

Fi jx j(ci p
′
j − c′i p j) = 0 with 1 ≤ i ≤ N. (13)

In Eq. (13), the only unknown variables are the components of the first key x j. We thus
rewrite this equation as

N

∑
j=1

Si jx j = 0 with 1 ≤ i ≤ N, (14)

where Si j = Fi j(ci p′j − c′i p j) is known. Equation (14) represents a system of N linear equa-
tions with N unknown variables. This system has a trivial solution x i = 0 for every i. This
solution is not the one we are looking for because we know that the first key is not zero. There-
fore there has to be another solution to this system. This is only possible if the determinant of
the matrix S is zero, that is if the N equations are not linearly independent. The interpretation
of this property is that the keys are defined up to a constant phase factor. We can thus arbitrarily
choose the value of one pixel of the key and this will fix the values of the rest of the pixels.
We decide to fix xN = 1. We can also eliminate the last equation of the system, because it is a
linear combination of the other equations. With these modifications, Eq. (14) is transformed to

N−1

∑
j=1

Si jx j = −SiN with 1 ≤ i ≤ N −1. (15)

This new system of N −1 equations with N −1 variables can be solved by classical system
solving techniques such as Gauss elimination or LU decomposition [32]. Of course, the resolu-
tion is only possible if the determinant of this new system is not zero. In practice, this condition
is not very restrictive and it is easy to find two images for which it holds. Once the first key is
known, the second key is easily retrieved using for instance Eq. (10) by

yi =
ci

N

∑
j=1

Fi jx j p j

with 1 ≤ i ≤ N. (16)

An example of this attack is presented in Fig. 5. The known plain images P and P ′ are shown
in Figs. 5(a) and 5(b) respectively. From these two images and their corresponding ciphered
images, the keys X and Y are found. These recovered keys are then used to decrypt the unknown
ciphered image shown in Fig. 5(c). The result of the decryption is given in Fig. 5(d). As can be
seen, the plain image is successfully decrypted.
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(a) (b) (c) (d)

Fig. 5. Decryption using Attack 9. (a) and (b) are the two known plain images. (c) Ciphered
image corresponding to an unknown plain image. (d) Unknown image decrypted using the
keys retrieved by Attack 9.

The attack presented in this section requires solving a system of about N equations. The
complexity of this attack is thus O(N2) in space and O(N3) in time. This polynomial complexity
makes the problem tractable. For the 100 × 100 images of Fig. 5, the keys were found in 2
hours 15 minutes on a desktop computer (Pentium 4 HT, 3.0 GHz, 2 GB RAM) using Gaussian
elimination with backsubstitution.

Note that all the variables involved in the attack can be complex-valued. The only restrictions
are that all xi, all yi and a sufficient number of pi and p′i be different from 0. This situation means
in particular that pi can take complex values as happens in the phase-encoded encryption. The
attack therefore works without any modification in this latter case. It would even be applicable
to a mixed amplitude-phase encoding. Also, the encryption keys need not be pure phase to be
recovered.

5.4. Effect of noise

In all the attacks described above, we have assumed that the ciphered images are known without
error. This might not be the case in practice. In this section, we assume that the ciphered images
are known up to an additive gaussian noise. We have already said that Attacks 1-4 are not prac-
tical. For Attack 5-7, it is not difficult to see that the error on the retrieved key is proportional to
the noise on the ciphered images. Attacks 8 and 9 are more heavily affected by noise since the
linear system resolutions involved in the key recovery process amplify the errors. Let us focus
on the most interesting case of Attack 9. Figure 6(a) presents six plain images, of which the two
leftmost are supposed to be known. The corresponding ciphered images are degraded by a 5%
additive gaussian noise. We apply Eqs. (15) and (16) to recover the keys from the two known
images, as in Section 5.3. Figure 6(b) shows the images decrypted with the recovered keys. It
can be seen that, even with this low noise, the images are not recognizable, except maybe the
ones that were used to compute the keys.

In order to more accurately retrieve the encryption keys in spite of the noise, we need to
use more than two plain-ciphered image pairs. We now assume that we know four such pairs,
although the process can be generalized to any number of pairs. The four known plain images
P1, P2, P3, P4 are the four leftmost images in Fig. 6(a). For any two pairs of known plain-
ciphered images (Pα ,Cα ) and (Pβ ,Cβ ), we can obtain a system of equations identical to Eq.
(14):

N

∑
j=1

Sαβ
i j x j = 0 with 1 ≤ i ≤ N, (17)

where Sαβ
i j = Fi j(cα

i pβ
j − cβ

i pα
j ) and pα

j , pβ
j , cα

i and cβ
i are the pixels of Pα , Pβ , Cα and Cβ
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Fig. 6. Decryption of noisy ciphered images using an adaptation of Attack 9. (a) Plain
images. (b) Decrypted images using the keys retrieved by simple system solving. (c) De-
crypted images using the keys retrieved by least-square solving.

respectively. Equation (17) can also be written in matrix form as

Sαβ X = 0, (18)

where Sαβ is the N × N matrix that contains the Sαβ
i j , X is a N × 1 vector that contains the

unknown pixels of the first key, and the right-hand term is a N × 1 vector of zeros. Now we can
associate the four known images in six different ways in order to obtain six different versions
of Eq. (18) with varying values of α and β . These six equations, together with the condition
xN = 1 that avoids the trivial solution X = 0 (see Section 5.3), can be combined into a single
equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S12

S13

S14

S23

S24

S34

0 . . . 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡

⎢
⎢
⎢
⎣

0
...
0
1

⎤

⎥
⎥
⎥
⎦

, (19)

where the left-hand term is the product of a (6N + 1) × N matrix by a N × 1 vector, and
the right-hand term is a (6N + 1) × 1 vector. Equation (19) defines an overdetermined sys-
tem of equations. A least-square solution of this system can be found by classical techniques
such a QR decomposition or singular value decomposition [32]. The obtained key X is still
noisy; in particular it is not pure phase as it is supposed to be. We can enforce this property by
normalizing the amplitude of each pixel:

x̂i =
xi

|xi| with 1 ≤ i ≤ N. (20)

We now need to recover the second key Y from the first (normalized) key X̂ . Rather than a
direct derivation from a single image using Eq. (16), it is more accurate to find again a least-
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square solution using the four known images. Since the x̂ i are now known, Eq. (10) for image
α can be rewritten as

λ α
i yi = cα

i with 1 ≤ i ≤ N, (21)

where

λ α
i =

N

∑
j=1

Fi jx̂ j p
α
j . (22)

Equation (21) can be written in the following matrix form

ΛαY = Cα , (23)

where Λα is a diagonal matrix given by

Λα =

⎡

⎢
⎣

λ α
1

. . .
λ α

N

⎤

⎥
⎦ . (24)

The four known images provide four different versions of Eq. (23) that can be combined into
a single equation:

⎡

⎢
⎢
⎣

Λ1

Λ2

Λ3

Λ4

⎤

⎥
⎥
⎦

Y =

⎡

⎢
⎢
⎣

C1

C2

C3

C4

⎤

⎥
⎥
⎦

. (25)

Again, Eq. (25) can be solved in a least-square sense by classical algorithms and the obtained
Y can be normalized by

ŷi =
yi

|yi| with 1 ≤ i ≤ N. (26)

Figure 6(c) presents the images decrypted using the retrieved keys X̂ and Ŷ . The results are
now very satisfactory, including for the two rightmost images that were not used in the key
recovery process. These results demonstrate that a good approximation of the keys was found.
If the noise were stronger, it would be necessary to incorporate more known images in the key
estimation process.

6. Discussion

This paper presents an analysis of the theoretical — rather than practical — security of the DRP
technique. The various presented attacks assume an abstract version of the technique where all
data is available in digital form. In a real optical implementation, the difficulty to manipulate
and measure the involved physical quantities adds some challenges to the attacker.

We have shown that Attacks 1 through 4 are intractable, which makes the DRP encryption
resistant to brute force attacks. Attack 8 requires a very large number of known plain images
and is therefore quite impractical. On the other hand, Attacks 5 to 7 are surprisingly easy and
effective if the attacker is able to choose images to be encrypted. If this possibility does not
exist, Attack 9 is still very powerful as a known plain image attack which only requires two
known images. The DRP technique must therefore be considered potentially insecure against
chosen and known plaintext attacks. Its main weakness lies in its linearity.
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The attacks presented in this paper have some advantages over other attacks proposed re-
cently. For instance, the attack described in [29] requires access to an encryption machine and
uses a large number of chosen plain images, which makes it impractical. Similarly, the tech-
nique in [25] requires access to a decryption machine and a large number of chosen ciphered
images. In addition, the latter paper mentions an attack with a centered delta function as input
image. In this paper we have shown that a non-centered delta function will also suffice, as will
any set of innocuous images whose linear combination is a shifted delta function. This latter
attack defeats the defense proposed by Carnicer et al. [25]. Further, we have shown that with
the possibility of a second chosen image (an image with constant complex amplitude) the first
phase mask can also be found, allowing complex-valued inputs to be decrypted.

The attacks presented in [27] and [28] use heuristic approaches and result in an approximated
recovery of the keys and the decrypted images are quite noisy. Actually, Ref. [28] does not
show the decryption of an unknown image. On the other hand, our Attacks 5 to 9 are based on
a mathematical analysis of the DRP technique and they are able to recover the exact keys and
therefore provide a perfect decryption of unknown images. Additionally, it is important to note
that the attacks proposed in [25, 27, 28, 29] only work for the case of amplitude-coded plain
images. In our proposal, Attacks 6 through 9 are perfectly applicable to phase-encoded images
so they can be used against the full phase DRP encryption [12].

A variant of the DRP encoding that uses keys in the Fresnel domain has been proposed in
[14]. Optical encoding using keys in the Fresnel domain will be substantially more secure as
any attack requires a search in 3D domain to locate the precise Fresnel location of the keys.
Therefore, various attacks presented in the literature which use the linearity property will not
be very practical. Also, other encryption techniques based on fractional Fourier transform have
been proposed [8, 16, 18, 23]. The most effective attacks presented in this paper are not directly
applicable to these variant schemes using Fresnel domain keys and fractional Fourier transform.
These variant schemes should therefore be preferred to the original DRP encryption.

7. Conclusion

In this paper we have described several ways to attack the double random phase encryption
technique, some of which are impractical and other are very effective. We have shown that an
exhaustive search of the key is generally intractable, even when applying some simplifications
to reduce the number of combinations. However, we have presented chosen and known plaintext
attacks that are able to efficiently recover the keys of the system. The most dangerous attack
only requires two known plain images. We have studied the effects of noise on this attack and
proposed a way to reduce them. We have also provided a comparison of the proposed attacks to
other techniques described in the literature. Given the risks involved with the presented attacks,
it is recommendable to be extremely cautious when using the double random phase encryption.
Large keys of at least 1000×1000 pixels should be used and, if possible, it should be avoided
to re-use the same keys for different images, as in a one-time pad approach. Also, a safer
alternative to the original double random phase encryption is to use variant schemes such as
keys in the Fresnel domain or fractional Fourier transform encryption.
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