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Sudden death and long-lived entanglement of two trapped ions
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Abstract

The dynamical properties of quantum entanglement in two effective two-level trapped ions interacting with a laser field are studied in terms of
the negative eigenvalues of the partial transposition of the density operator. In contrast to the usual belief that destroying the entanglement can
be observed due to the environment, it is found that the Stark shift can also produce sudden death of entanglement and long-lived entanglement
between the qubits that are prepared initially in separable states or mixed states.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

As a promising resource, quantum entanglement plays a key
role in quantum information processing such as quantum tele-
portation [1], superdense coding [2], and quantum key distri-
bution [3]. However, in the real world, quantum information
processing will be inevitably affected by the decoherence that
destroys quantum superposition and quantum entanglement.
The extent to which decoherence affects quantum entanglement
is an interesting problem [4], and many researchers study it ex-
tensively based on various models [5–8] with the point of view
of environment induced decoherence.

The decay of entanglement cannot be restored by local op-
erations and classical communications, that is one of the main
obstacles to achieve a quantum computer [9]. Therefore it be-
comes an important subject to study the loss of entanglement
[4,11,13–16]. Quite recently, by using vacuum noise two-qubit,
entanglement terminated abruptly in finite time has been per-
formed [4] and the entanglement dynamics of a two two-level
atoms model have been discussed [11,12]. They called the non-
smooth finite-time decay entanglement sudden death. Although
entanglement can be realized in different ways in experiments,
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how we can preserve it is still a big challenge for current tech-
nology [17]. Because for open system, entanglement is fragile
and decays exponentially, it is often thought as similar as quan-
tum decoherence. Most of the authors who have treated this
problem have dealt with the case in which the Stark shift has
been ignored [4,10]. However, in reality it cannot be ignored.
The main aim of the present Letter is try to answer the follow-
ing question: what happens to two qubits entanglement when
we consider the Stark shift and different initial state setting in
the absence or presence of the decoherence?

We present an explicit connection between the initial state
setting, Stark shift and the dynamics of the entanglement. We
give a condition for the existence of either entanglement sudden
death or long-lived entanglement. In particular, a quantitative
characterization of a general system of two three-level trapped
ions interacting with a laser field is presented. We present vari-
ous numerical examples in order to monitor the partial trans-
pose of the density operator and entanglement dynamics. In
principle, by proper adjustment of the initial state parameters,
we can always find suitable values of Stark shift which can be
use to suppress the decay of entanglement.

2. Model

The physical system on which we focus is two effective
two-level harmonically trapped ions with their center-of-mass
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motion quantized. The electronic levels |a〉, |b〉 and |c〉 are as-
sumed to be metastable and coupled via a laser field of the
form [18]

(1)E(x̂, t) = E0 exp
[
i
(
k̂ . x̂ − ωt + φ(t)

)]
,

where E0 is the strength of the electric field, k̂ is the wave vec-
tor of the driving laser field, x̂ is the position operator associated
with the center-of-mass motion and ω is the laser frequency. We
denote by φ(t) the fluctuations in the laser phase. Therefore, we
can express the center-of-mass position in terms of the creation
and annihilation operators of the one-dimensional trap namely
x̂ = √

h̄/(2mωs)(â
† + â) = Δx(â† + â). We denote by â and

â† the annihilation and creation operators and ωs is the vibra-
tional frequency related to the center-of-mass harmonic motion
along the direction x̂. In the absence of the rotating wave ap-
proximation, the trapped ions Hamiltonian may be written as

(2)Ĥ = Ĥ0 + Ĥ1,

where Ĥ0 = h̄ωs â
†â + h̄ωa|a〉〈a|+ h̄ωb|b〉〈b|+ h̄ωc|c〉〈c|, and

Ĥ1 = h̄

2∑
i=1

(
λ

(i)
1 e−i(ki .x̂−ωt+φi)S

(i)
bc + λ

(i)
2 e−i(ki .x̂−ωt+φi)S(i)

ac

(3)+ c.c.
)
.

We denote by λ
(i)
1 = 〈b|℘(i)|c〉E01 (λ

(i)
2 = 〈a|℘(i)|c〉E02) the

Rabi frequency characterizing the coupling strength (products
of dipole matrix elements and amplitudes of the incoming
fields), where ℘(i) is the dipole moment operator. As usual,
to describe this system we use the operators S

(i)
lm = |l(i)〉〈m(i)|

(l,m = a, b, c and i = 1,2). For the sake of simplicity (but
without loss of generality), we have assumed to deal with the
case in which φ1 = 0, φ2 = φ and the level |c〉 is assumed to
be dipole-coupled to both the levels |a〉 and |b〉 via a far de-
tuned laser field. While this is straightforward, it is often the
case that it is simpler to work in the interaction picture in which
the Hamiltonian (2) evolves in time according to the interaction
with the vacuum field. If we express the center-of-mass position
in terms of the creation and annihilation operators, the interac-
tion part of Eq. (2) becomes

Ĥint = h̄Δ

2∑
i=1

(
S

(i)
bb + S(i)

aa

)

+ h̄
(
λ

(1)
1 e−iη(â†+â)S

(1)
bc + λ

(1)
2 e−iη(â†+â)S(1)

ac + c.c.
)

+ h̄
(
λ

(2)
1 e−iη(â†+â)S

(2)
bc e−iφ

(4)+ λ
(2)
2 e−iη(â†+â)S(2)

ac e−iφ + c.c.
)
,

where η = k

√
h̄

2Mωs
, is the Lamb–Dicke parameter and Δ is

the detuning. In Eq. (4) the time-dependent factor is elimi-
nated in the interaction picture, since ωc − (ωb + Δ) = ωs

and ωc − (ωa + Δ) = ωs (degenerate levels). Making use of
the special form of Baker–Hausdorff theorem [19] the opera-
tor exp[iη(a† + a)] may be written as a product of operators

i.e. exp(iη(a† + a)) = exp(
η2 [a†, a]) exp(iηa†) exp(iηa) and
2
assume the Lamb–Dicke regime with small η. In order to ob-
tain this we detune the laser frequency ω to the first vibrational
red sideband. Also, we apply the rotating wave approximation
discarding the rapidly oscillating terms and selecting the terms
that oscillate with minimum frequency [20]. In these limits we
can expand the interaction Hamiltonian to lowest order in η.
The resulting Hamiltonian may be written as

Ĥint = h̄Δ

2∑
i=1

(
S

(i)
bb + S(i)

aa

)

+ h̄
(
ζ

(1)
1 â†S

(1)
bc + ζ

(1)
2 â†S(1)

ac + c.c.
)

(5)+ h̄
(
ζ

(2)
1 â†S

(2)
bc e−iφ + ζ

(2)
2 â†S(2)

ac e−iφ + c.c.
)
,

with a new coupling parameter ζ
(j)
i that includes the Dicke pa-

rameter in its definition. The analysis of such a Hamiltonian
model can be carried out, providing eliminating of the non-
resonantly coupled atomic level |c〉 adiabatically, due to the
large detuning, the transitions for instance from the level |a〉
to the level |c〉 are very fast and immediately followed by de-
cays on the atomic level |b〉. Therefore, considering only coarse
grained observables, meaning that the system is observed at
a rough enough time scale, effectively eliminates the far de-
tuned level, namely, at such a time scale, the only observables
and hence meaningful dynamical behaviors, involve levels |a〉
and |b〉 as a result of time averaging second order processes
having |c〉 as an intermediate virtual level. This procedure then
suppresses the fine dynamics, that is it sacrifices any informa-
tion concerning the fast dynamics the third level is involved in.
So that the effective Hamiltonian of the system including the
ac-Stark shift, in the dipole and rotating wave approximation,
can be written as [21,22] (h̄ = 1)

Ĥeff = â†â
(
β1S

(1)
bb + β2S

(1)
aa

) + â†â
(
β1S

(2)
bb + β2S

(2)
aa

)
+ ζ1

(
S

(1)
ab â2 + S

(1)
ba â†2)

(6)+ ζ2
(
eiφS

(2)
ab â2 + e−iφS

(2)
ba â†2).

We denote by β1 and β2 the intensity-dependent Stark shifts
β1 = ζ 2

1 /Δ, and β2 = ζ 2
2 /Δ, that are due to the virtual transi-

tions to the intermediate relay level and ζi = ζ
(i)
1 ζ

(i)
2

Δ
(Δ �= 0).

This means that the two three-level trapped ions (one-photon
transitions) can be described by an effective two two-level
system (in this case two-photon process). A scheme utilizing
position-dependent ac Stark shifts for doing quantum logic with
trapped ions has been presented [23]. It has been shown that
specific ac Stark shifts can be assigned to the individual ions
using a proper choice of direction, position, and size, as well as
power and frequency of a far-off-resonant laser beam.

The time evolution of the system density operator ρ̂(t) can
be written as [24–26]

(7)
d

dt
ρ̂(t) = − i

h̄
[Ĥ , ρ̂] − γ

2h̄2

[
Ĥ , [Ĥ , ρ̂]],

where γ is the phase decoherence rate. Eq. (7) reduces to the
ordinary von Neumann equation for the density operator in the
limit γ → 0. The equation with the similar form has been pro-
posed to describe the intrinsic decoherence [27]. Under Markov
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approximations the solution of the master equation can be ex-
pressed in terms of Kraus operators [4] as follows

ρ̂(t) =
∞∑

m=0

(γ t)m

m! Ĥm exp(−iĤ t) exp

(
−γ t

2
Ĥ 2

)
ρ̂(0)

× exp

(
−γ t

2
Ĥ 2

)
exp(iĤ t)Ĥm

(8)=
∞∑

m=0

(γ t)m

m! M̂m(t)ρ̂(0)M̂†m(t),

where ρ̂(0) is the density operator of the initial state of the sys-
tem and M̂m are the Kraus operators which completely describe
the reduced dynamics of the qubits system,

(9)M̂m = Ĥm exp(−iĤ t) exp

(
−γ t

2
Ĥ 2

)
.

Eq. (8) can also be written as

ρ̂(t) = exp(−iĤ t) exp

(
−γ t

2
Ĥ 2

){
eŜM t ρ̂(0)

}

× exp

(
−γ t

2
Ĥ 2

)
exp(iĤ t)

where we have defined the superoperator ŜMρ̂(0) = Ĥ ρ̂(0)Ĥ .
We will choose the following mixed state of the ions

(10)ρa(0) = cos2 θ |a, b〉〈a, b| + sin2 θ |b, a〉〈b, a| ∈ SA,

while the initial state of the vibrational mode is in a vacuum
state ρf (0) = |0〉〈0| ∈ SF . Then the initial state of the system
can be written as ρ̂(0) = ρa(0) ⊗ ρf (0).

3. Entanglement

In this Letter we take the measure of negative eigenvalues for
the partial transposition of the density operator. It was proved
that the negativity is an entanglement monotone [29], hence, the
negativity is a good entanglement measure. According to the
Peres and Horodecki’s condition for separability [30], a two-
qubit state for the given set of parameter values is entangled if
and only if its partial transpose is negative. The measure of en-
tanglement can be defined in terms of the negative eigenvalues
of the partial transposition in the following form [31]

(11)Iρ(t) = 2 max
(
0,−λ(i)

neg

)

where λ
(i)
neg is the sum of the negative eigenvalues of the par-

tial transposition of the time-dependent reduced atomic density
matrix ρa , which can be obtained by tracing out the vibrational
mode variables

(12)ρa = Trf
(
ρ̂(t)

)
.

In the two qubit system (C2 ⊗ C2) it can be shown that the
partial transpose of the density matrix can have at most one
negative eigenvalue [30]. The entanglement measure then en-
sures the scale between 0 and 1 and monotonously increases
as entanglement grows. An important situation is that, when
Iρ(t) = 0 the two qubits are separable and Iρ(t) = 1 indicates
maximum entanglement between the two qubits. In our calcu-
lations, we have used the two qubit basis |aa〉, |ab〉, |ba〉 and
|bb〉 to obtain the evolution of the density matrix of the system.

An interesting question is whether or not the entanglement
is affected by the different parameters of the present system
with the initial state in which one of the qubits is prepared in
its excited state and the other in the ground state. In partic-
ular, we focus on the effect of the mixed state parameter θ ,
the Stark shift parameter β (≡ β1) and the decoherence. As
expected from the results presented in [32], the analytical so-
lution of Eq. (8), when we set γ = 0, does not depend on the
Stark shift parameter β2, this result can be understood as com-
ing from the setting of the initial state of the vibrational mode,
which was assumed to be in the vacuum state.

A numeric evaluation of the entanglement measure leads to
the plot in Fig. 1. We consider the initial state of the two ions
θ = 0. In this case, we see that the entanglement is equal to zero
in a periodic way for a small values of the Stark shift parame-
ter, this period is increased with decreasing the parameter β . It
is remarkable to see that with the value of the Stark shift pa-
rameter, β = 20 the entanglement is only zero for the initial
Fig. 1. The evolution of the quantum entanglement Iρ(t) as a function of the scaled time λt (λ = ζ1 = ζ2) and Stark shift parameter β . The parameters are θ = 0
and γ = 0.
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Fig. 2. The evolution of the quantum entanglement Iρ(t) as a function of the
scaled time λt and different values of Stark shift parameter β , where, β = 2
(solid curve), β = 5 (dotted curve) and β = 15 (dashed curve). The parameters
are γ = 0 and (a) θ = π

2 and (b) θ = π
4 .

period of the interaction time, while long lived entanglement
is observed as the time goes on. In this case we can say that,
when the system is allowed to evolve without applying a phase
shift (φ = 0), the entanglement is a periodic function of time for
small values of the Stark shift while long-survival entanglement
can be obtained for larger values of Stark shift (see Fig. 1). This
is particularly because of the non-linear nature of the coupling
in this case (two-photon process) [28].

We see from Fig. 2(a) that large values of the Stark shift
parameter leads to zero entanglement. The situation here is
quite different from that observed in Fig. 1, where the entan-
glement exist only for small values of Stark shift while van-
ishes for all periods of the interaction time when β > 12. In
Fig. 2(b), we pause to touch on certain entanglement features
when a mixed state of the qubits is considered as ρa(0) =
0.5(|a, b〉〈a, b| + |b, a〉〈b, a|) i.e. θ = π/4. It is interesting to
see here that the first maximum value of the entanglement is ob-
served at earlier time than the previous case. For large values of
the Stark shift parameter we see that the entanglement has zero
value only for a short period of the interaction time and then
starts to increase. This zero entanglement period is increased
when the Stark shift in increased further. These properties show
that the role played by the Stark shift on the entanglement is es-
sential. Interestingly, when β is taken to be non-zero, the values
of the maximum entanglement are decreased, indicating that
Fig. 3. The evolution of the quantum entanglement as a function of the scaled
time λt and different values of the decoherence parameter γ , where, γ = 0.01
(solid curve), γ = 0.1 (dotted curve) and γ = 0.7 (dashed curve). The other
parameters are θ = π/2 and β1/β2 = 1.

the mixed state setting leads to a decreasing of the qubit–qubit
entanglement. Generally speaking, because of the influence of
mixed state parameter on entanglement, the amplitude of local
maxima and minima decrease with increasing the deviation of
β from the unity. However, as β takes values close to the unity
we return to the same behavior in the initial pure state setting
i.e. ρ = |a, b〉 ⊗ 〈a, b|. However a slight change in β therefore,
dramatically alters the entanglement. This is remarkable as the
entanglement is strongly dependent on the initial state, which
can be entangled or unentangled.

We devote the discussion in Fig. 3 to consider the decoher-
ence parameters effect on the entanglement in the presence of
Stark shift. We would like to remark that decoherence due to
normal decay is often said to be the most efficient effect in
physics. Which means that, the entanglement increases rapidly,
then approaches to a minimum value in a periodic manner. In
this case, the entanglement introduced by the coherent interac-
tion oscillates without dissipation, as showed in Fig. 3. Once,
the environment has been switched on, i.e., γ �= 0, it is very
clear that the decoherence plays a usual role in destroying the
entanglement. Also, from numerical results we note that with
the increase of the parameter γ , a rapid decrease of the entan-
glement (entanglement sudden death) is shown (in agreement
with [4]).

The remaining task is to identify and compare the results
presented above for the entanglement degree with another ac-
cepted entanglement measure such as the concurrence [29].
One, possibly not very surprising, principal observation is that
the numerical calculations corresponding to the same parame-
ters, which have been considered in Figs. 1–3, give nearly the
same behavior. This means that both the entanglement due to
the negativity and concurrence measures are qualitatively the
same.

4. Conclusion

We have investigated the entanglement in the context of
an ensembles of two identical qubits (or ions) and negativity as
computable measure of the mixed-state entanglement has been
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used. We have treated the more general case where the initial
state of the two qubits can be mixed taking into account the
presence of Stark shift. Through analysis, we find that the ex-
tent to which that the entanglement vanishes due to Stark shift
relies not only on the Stark shift value, but also on the initial
state setting. When the two ions start from a mixed state, the
larger the Stark shift is, the faster the entanglement vanishes.
For pure quantum states, the complete disentanglement occurs
for a very short time in a periodic way only for small values
of the Stark shift. We found that, the entanglement decay due
to Stark shift for an initial mixed state is similar to the entan-
glement decay due to the decoherence. Finally, we expect our
work will be helpful for preserving entanglement in practical
experiments.
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