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Abstract Recently, there has been some interest in finding exact solutions to the time-dependent
Schrödinger equation, specifically in the case of a time-dependent linear potential, though
surprisingly in all those works very cumbersome methods are used. In the present report
we want to emphasize that there exists another method, quite general and simple, to solve
such kind of problems. The method was proposed several years ago and it is based on the
so called Wei–Norman theorem.

Recently, there has been some interest in the solutions of the Schrödinger equation
for the time-dependent linear potential [1–6]. Most of the authors use the method of
the Lewis–Riesenfeld invariant while Feng [6] used a a space time transformation
method. In this work we want to emphasize that there is yet another method, simpler
and straightforward, based on the Wei–Norman theorem [7]. A particular version of
this method has been used by Rau et al. [8] to analyze the same problem and later on
applied to the quantum Liouville–Bloch equation [9]. Curiously, in this publication
[9], they do not give credit to the work of Wei and Norman although they do in the
first one [8]. Our approach is quite different from that of Rau et al. since we avoid
guessing the solution (ansatz) and, instead, a closed algebra is defined by adding
some operators to the original problem. Although this would seem to complicate the
problem, it happens to be just the opposite: the problem can be solved straightforward
and, from the very beginning, the coefficients of the new operators are set equal to
zero, thus leading to the solution we are looking for.

As an example of how this method works, let us consider the equation [8]

i
∂ψ

∂t
=
{

−1
2
∂2

∂x2 + E0x sinwt

}
ψ,(1)

147
S. Lahmar et al. (eds.), Topics in the Theory of Chemical and Physical Systems, 147–150.
c© 2007 Springer.



148 Alejandro Palma and I. Pedraza

which can be written as

i
∂ψ

∂t
=
{ 4∑

i=1

ai Hi

}
ψ(2)

where a1 = 0, H1 = 1; a2 = E0 sinwt, H2 = x; a3 = 0, H3 = ∂
∂x ; a4 =

− 1
2 , H4 = ∂2

∂x2 . It is very simple to show that £ = {H1, H2, H3, H4} is a solvable Lie
Algebra [7] since £′′ = {0}, so that the problem can be solved by quadratures.

Actually, solving the above equation is equivalent to do so for the evolution
operator

i
∂U
∂t

= ġ1 H1U + ġ2 H2U + ġ3U H3 + ġ4U H4,(3)

where �(x, t) = U (t)�(x, 0) = eg1 H1 eg2 H2 eg3 H3 eg4 H4ϕ(x) and the upper dots
denote differentiation with respect to t , and �(x, 0) = ϕ(x) is the solution of the
time independent Schrödinger equation.

Application of some well–known operator algebra techniques, leads to a set of four
linear equations:

i ġ4 = −1
2

(4a)

i ġ2 = E0 sinwt(4b)
ġ3 − 2ġ4g2 = 0(4c)

ġ1 − ġ3g2 + ġ4g2
2 = 0(4d)

which can be easily integrated to give the desired solution, that is, the one reported by
Rau and Unnikrishnan [8]. The case with E = E0 coswt can be treated in a similar
fashion, and also those analyzed in references [1–6]. The advantage of using properly
the Wei–Norman method is that we can know in advance whether the problem is
soluble or not, as it is shown to be the case here, because it corresponds to a solvable
Lie algebra.

Another important feature of the Wei–Norman method is that the solution is global
[10], i.e. it is valid in the whole domain of variable t , restricted only to time-dependent
equations where solutions are of the exponential type.

Let us consider a more general equation, the one which is called the reduced
velocity gauge or the Airy–Gordon–Volkov wave equation [11].

i
∂ψ

∂t
=
{

− 1
2m

∂2

∂x2 + i
A0 coswt

m
∂

∂x
+ V − Fx

}
ψ,(5)

which can be transformed to an equivalent one for the evolution operator, as we did
in the previous case:

dU
dt

=
{

i
2m

∂2

∂x2 + A0 coswt
m

∂

∂x
+ i Fx − iV

}
U (t) = H(t)U (t).(6)
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Introducing now the definitions

a1(t) = i
2m

(7a)

a2(t) = A0 coswt
m

(7b)

a3(t) = i F(7c)

a4(t) = iV(7d)

H1 = ∂2

∂x2(7e)

H2 = ∂

∂x
(7f)

H3 = x(7g)

H4 = I(7h)

This set of four operators forms a solvable Lie algebra, as we pointed out above,
and the proposed Eq. (5) must have an elementary solution. In order to find it, we
propose again:

�(x1t) = U (t)�(x, 0) = eg1 H1eg2 H2eg3 H3eg4 H4ϕ(x)(8)

Repeating the procedure outlined above we obtain a set of four linear differential
equations:

ġ1 = a1(9a)

ġ2 + 2ġ3g1 = a2(9b)

ġ3 = a3(9c)

ġ4 + ġ3g2 = a4(9d)

which can be easily integrated thus obtaining:

g1(t) = i t
2m

(10a)

g2(t) = A0 sinwt
mw

+ F
2m

t2(10b)

g3(t) = i Ft(10c)

g4(t) = iV t + i
A0 F coswt

mw2 − i
F2

6m
t3 − i

A0 F
mw2(10d)

It is important to point out that this solution for the evolution operator U (t) is
not unique, since it depends on the order in which we arrange the elements of the
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corresponding Lie algebra, we can obtain a unique solution by using the BCH formula
[12]:

�(x, t) = e−i Et ei F A0 coswt
mw2 Ai

[
− (2m F)1/3

(
x + A0 sinwt

mw
+ E − V

F

)]
(11)

where Ai is the Airy function.
There are several other similar cases, called length gauge, velocity gauge,

Kramers–Henneberger frame, which are particular cases of Eq. (2) with appropriate
coefficient a′

i s. All of them are related to the same Lie algebra but with different
Hamiltonians and their solution has been reported elsewhere [13].

We have shown in this work the power and elegance of Lie algebraic methods
in the solution of differential equations, which, when used properly, lead easily to
the desired solution. Application of this method to the case of the Caldirola–Kanai
Hamiltonian is in progress and will be published elsewhere.
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