Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1043
Using wittgenstein’s family resemblance principle to learn exemplars
ANDRES FLORENCIO RODRIGUEZ MARTINEZ
LUIS ENRIQUE SUCAR SUCCAR
Jia Wu
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Machine learning
Family resemblance
Bayesian networks
The introduction of the notion of family resemblance represented a major shift in Wittgenstein’s thoughts on the meaning of words, moving away from a belief that words were well defined, to a view that words denoted less well defined categories of meaning. This paper presents the use of the notion of family resemblance in the area of machine learning as an example of the benefits that can accrue from adopting the kind of paradigm shift taken by Wittgenstein. The paper presents a model capable of learning exemplars using the principle of family resemblance and adopting Bayesian networks for a representation of exemplars. An empirical evaluation is presented on three data sets and shows promising results that suggest that previous assumptions about the way we categories need reopening.
Springer Science+Business Media
2008
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Vadera, S., et al., (2008). Using wittgenstein’s family resemblance principle to learn exemplars, Found Sci (13):67–74
CIENCIA DE LOS ORDENADORES
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos: