Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/989
Comparison of two types of event Bayesian networks: a case study
GUSTAVO ARROYO FIGUEROA
LUIS ENRIQUE SUCAR SUCCAR
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Bayesian networks
Temporal reasoning
Fault diagnosis and prediction
Evaluation
Case study
Temporal Nodes Bayesian Networks (TNBNs) and Networks of Probabilistic Events in Discrete Time (NPEDTs) are two different types of Event Bayesian Networks (EBNs). Both are based on the representation of uncertain events, alternatively to Dynamic Bayesian Networks, which deal with real-world dynamic properties. In a previous work, Arroyo-Figueroa and Sucar applied TNBNs to the diagnosis and prediction of the temporal faults that may occur in the steam generator of a fossil power plant. We present an NPEDT for the same domain, along with a comparative evaluation of the two networks. We examine different methods suggested in the literature for the evaluation of Bayesian networks, analyze their limitations when applied to this temporal domain, and suggest a new evaluation method appropriate for EBNs. In general, the results show that, in this domain, NPEDTs perform better than TNBNs, possibly due to be the finer time granularity used in the NPEDT.
Applied Artificial Intelligence
2007
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Galán, S.F., et al., (2007). Comparison of two types of event Bayesian networks: a case study, Applied Artificial Intelligence, 21(3):185-209
CIENCIA DE LOS ORDENADORES
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
9_Comparison_of_two_types.pdf306.84 kBAdobe PDFVisualizar/Abrir